1
|
Ebrahimi MN, Banazadeh M, Alitaneh Z, Jaafari Suha A, Esmaeili A, Hasannejad-Asl B, Siahposht-Khachaki A, Hassanshahi A, Bagheri-Mohammadi S. The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiol Behav 2024; 284:114639. [PMID: 39004195 DOI: 10.1016/j.physbeh.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Understanding the central nervous system (CNS) circuitry and its different neurotransmitters that underlie reward is essential to improve treatment for many common health issues, such as addiction. Here, we concentrate on understanding how the mesolimbic circuitry and neurotransmitters are organized and function, and how drug exposure affects synaptic and structural changes in this circuitry. While the role of some reward circuits, like the cerebral dopamine (DA)/glutamate (Glu)/gamma aminobutyric acid (GABA)ergic pathways, in drug reward, is well known, new research using molecular-based methods has shown functional alterations throughout the reward circuitry that contribute to various aspects of addiction, including craving and relapse. A new understanding of the fundamental connections between brain regions as well as the molecular alterations within these particular microcircuits, such as neurotrophic factor and molecular signaling or distinct receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse has been made possible by the ability to observe and manipulate neuronal activity within specific cell types and circuits. It is exciting that these discoveries from preclinical animal research are now being applied in the clinic, where therapies for human drug dependence, such as deep brain stimulation and transcranial magnetic stimulation, are being tested. Therefore, this chapter seeks to summarize the current understanding of the important brain regions (especially, mesolimbic circuitry) and neurotransmitters implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these areas, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.
Collapse
Affiliation(s)
- Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Ali Jaafari Suha
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Hassanshahi
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Labouesse MA, Cola RB, Patriarchi T. GPCR-Based Dopamine Sensors-A Detailed Guide to Inform Sensor Choice for In vivo Imaging. Int J Mol Sci 2020; 21:E8048. [PMID: 33126757 PMCID: PMC7672611 DOI: 10.3390/ijms21218048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how dopamine (DA) encodes behavior depends on technologies that can reliably monitor DA release in freely-behaving animals. Recently, red and green genetically encoded sensors for DA (dLight, GRAB-DA) were developed and now provide the ability to track release dynamics at a subsecond resolution, with submicromolar affinity and high molecular specificity. Combined with rapid developments in in vivo imaging, these sensors have the potential to transform the field of DA sensing and DA-based drug discovery. When implementing these tools in the laboratory, it is important to consider there is not a 'one-size-fits-all' sensor. Sensor properties, most importantly their affinity and dynamic range, must be carefully chosen to match local DA levels. Molecular specificity, sensor kinetics, spectral properties, brightness, sensor scaffold and pharmacology can further influence sensor choice depending on the experimental question. In this review, we use DA as an example; we briefly summarize old and new techniques to monitor DA release, including DA biosensors. We then outline a map of DA heterogeneity across the brain and provide a guide for optimal sensor choice and implementation based on local DA levels and other experimental parameters. Altogether this review should act as a tool to guide DA sensor choice for end-users.
Collapse
Affiliation(s)
- Marie A. Labouesse
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Reto B. Cola
- Anatomy and Program in Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland;
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Chen XY, Xue Y, Chen H, Chen L. The globus pallidus as a target for neuropeptides and endocannabinoids participating in central activities. Peptides 2020; 124:170210. [PMID: 31778724 DOI: 10.1016/j.peptides.2019.170210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The globus pallidus in the basal ganglia plays an important role in movement regulation. Neuropeptides and endocannabinoids are neuronal signalling molecules that influence the functions of the whole brain. Endocannabinoids, enkephalin, substance P, neurotensin, orexin, somatostatin and pituitary adenylate cyclase-activating polypeptides are richly concentrated in the globus pallidus. Neuropeptides and endocannabinoids exert excitatory or inhibitory effects in the globus pallidus mainly by modulating GABAergic, glutamatergic and dopaminergic neurotransmission, as well as many ionic mechanisms. Pallidal neuropeptides and endocannabinoids are associated with the pathophysiology of a number of neurological disorders, such as Parkinson's disease, Huntington's disease, schizophrenia, and depression. The levels of neuropeptides and endocannabinoids and their receptors in the globus pallidus change in neurological diseases. It has been demonstrated that spontaneous firing activity of globus pallidus neurons is closely related to the manifestations of Parkinson's disease. Therefore, the neuropeptides and endocannabinoids in the globus pallidus may function as potential targets for treatment in some neurological diseases. In this review, we highlight the morphology and function of neuropeptides and endocannabinoids in the globus pallidus and their involvement in neurological diseases.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Bada Juarez JF, Muñoz-García JC, Inácio Dos Reis R, Henry A, McMillan D, Kriek M, Wood M, Vandenplas C, Sands Z, Castro L, Taylor R, Watts A. Detergent-free extraction of a functional low-expressing GPCR from a human cell line. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183152. [PMID: 31843475 DOI: 10.1016/j.bbamem.2019.183152] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023]
Abstract
Dopamine receptors (DRs) are class A G-Protein Coupled Receptors (GPCRs) prevalent in the central nervous system (CNS). These receptors mediate physiological functions ranging from voluntary movement and reward recognition to hormonal regulation and hypertension. Drugs targeting dopaminergic neurotransmission have been employed to treat several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, Huntington's disease, attention deficit hyperactivity disorder (ADHD), and Tourette's syndrome. In vivo, incorporation of GPCRs into lipid membranes is known to be key to their biological function and, by inference, maintenance of their tertiary structure. A further significant challenge in the structural and biochemical characterization of human DRs is their low levels of expression in mammalian cells. Thus, the purification and enrichment of DRs whilst retaining their structural integrity and function is highly desirable for biophysical studies. A promising new approach is the use of styrene-maleic acid (SMA) copolymer to solubilize GPCRs directly in their native environment, to produce polymer-assembled Lipodisqs (LQs). We have developed a novel methodology to yield detergent-free D1-containing Lipodisqs directly from HEK293f cells expressing wild-type human dopamine receptor 1 (D1). We demonstrate that D1 in the Lipodisq retains activity comparable to that in the native environment and report, for the first time, the affinity constant for the interaction of the peptide neurotransmitter neurotensin (NT) with D1, in the native state.
Collapse
Affiliation(s)
| | - Juan C Muñoz-García
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, UK; School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | - Marco Kriek
- UCB Celltech, 216 Bath Road, Slough SL1 3WE, UK
| | - Martyn Wood
- UCB BioPharma SPRL, Braine-l'Alleud, Belgium
| | | | - Zara Sands
- UCB Celltech, 216 Bath Road, Slough SL1 3WE, UK
| | - Luis Castro
- UCB Celltech, 216 Bath Road, Slough SL1 3WE, UK
| | | | - Anthony Watts
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
5
|
Borroto-Escuela DO, Perez De La Mora M, Manger P, Narváez M, Beggiato S, Crespo-Ramírez M, Navarro G, Wydra K, Díaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Filip M, Franco R, Fuxe K. Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Front Synaptic Neurosci 2018; 10:20. [PMID: 30042672 PMCID: PMC6048293 DOI: 10.3389/fnsyn.2018.00020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023] Open
Abstract
This perspective article provides observations supporting the view that nigro-striatal dopamine neurons and meso-limbic dopamine neurons mainly communicate through short distance volume transmission in the um range with dopamine diffusing into extrasynaptic and synaptic regions of glutamate and GABA synapses. Based on this communication it is discussed how volume transmission modulates synaptic glutamate transmission onto the D1R modulated direct and D2R modulated indirect GABA pathways of the dorsal striatum. Each nigro-striatal dopamine neuron was first calculated to form large numbers of neostriatal DA nerve terminals and then found to give rise to dense axonal arborizations spread over the neostriatum, from which dopamine is released. These neurons can through DA volume transmission directly influence not only the striatal GABA projection neurons but all the striatal cell types in parallel. It includes the GABA nerve cells forming the island-/striosome GABA pathway to the nigral dopamine cells, the striatal cholinergic interneurons and the striatal GABA interneurons. The dopamine modulation of the different striatal nerve cell types involves the five dopamine receptor subtypes, D1R to D5R receptors, and their formation of multiple extrasynaptic and synaptic dopamine homo and heteroreceptor complexes. These features of the nigro-striatal dopamine neuron to modulate in parallel the activity of practically all the striatal nerve cell types in the dorsal striatum, through the dopamine receptor complexes allows us to understand its unique and crucial fine-tuning of movements, which is lost in Parkinson's disease. Integration of striatal dopamine signals with other transmitter systems in the striatum mainly takes place via the receptor-receptor interactions in dopamine heteroreceptor complexes. Such molecular events also participate in the integration of volume transmission and synaptic transmission. Dopamine modulation of the glutamate synapses on the dorsal striato-pallidal GABA pathway involves D2R heteroreceptor complexes such as D2R-NMDAR, A2AR-D2R, and NTSR1-D2R heteroreceptor complexes. The dopamine modulation of glutamate synapses on the striato-entopeduncular/nigral pathway takes place mainly via D1R heteroreceptor complexes such as D1R-NMDAR, A2R-D1R, and D1R-D3R heteroreceptor complexes. Dopamine modulation of the island/striosome compartment of the dorsal striatum projecting to the nigral dopamine cells involve D4R-MOR heteroreceptor complexes. All these receptor-receptor interactions have relevance for Parkinson's disease and its treatment.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Physiology, Department of Biomolecular Science, University of Urbino, Urbino, Italy
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Yaguajay, Cuba
| | - Miguel Perez De La Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paul Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Manuel Narváez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Zaida Díaz-Cabiale
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Alicia Rivera
- Department of Cell Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Luca Ferraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
- CiberNed: Centro de Investigación en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
The role of intraamygdaloid neurotensin and dopamine interaction in conditioned place preference. Behav Brain Res 2018; 344:85-90. [DOI: 10.1016/j.bbr.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
|
7
|
Ollmann T, Péczely L, László K, Kovács A, Gálosi R, Kertes E, Kállai V, Zagorácz O, Karádi Z, Lénárd L. Anxiolytic effect of neurotensin microinjection into the ventral pallidum. Behav Brain Res 2015; 294:208-14. [PMID: 26296669 DOI: 10.1016/j.bbr.2015.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 01/31/2023]
Abstract
Neurotensin (NT) acts as a neurotransmitter and neuromodulator in the central nervous system. NT is involved in reward and memory processes, drug addiction and also in the regulation of anxiety. The ventral pallidum (VP) receives neurotensinergic innervation from the ventral striatopallidal pathway originating from the nucleus accumbens. Positive reinforcing effects of NT in the VP had been shown recently, however the possible effects of NT on anxiety have not been examined yet. In our present experiments, the effects of NT on anxiety were investigated in the VP. In male Wistar rats bilateral microinjections of 100 ng or 250 ng NT were delivered in the volume of 0.4 μl into the VP, and elevated plus maze (EPM) test was performed. In another groups of animals, 35 ng NT-receptor 1 (NTR1) antagonist SR 48,692 was applied by itself, or microinjected 15 min before 100 ng NT treatment. Open field test (OPF) was also conducted. The 100 ng dose of NT had anxiolytic effect, but the 250 ng NT did not influence anxiety. The antagonist pretreatment inhibited the effect of NT, while the antagonist itself had no effect. In the OPF test there was no difference among the groups. Our present results show that microinjection of NT into the VP induces anxiolytic effect, which is specific to the NTR1 receptors because it can be eliminated by a specific NTR1 antagonist. It is also substantiated that neither the NT, nor the NTR1 antagonist in the VP influences locomotor activity.
Collapse
Affiliation(s)
- Tamás Ollmann
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Pécs University, Szentágothai Center, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Pécs University, Szentágothai Center, Pécs, Hungary.
| |
Collapse
|
8
|
Zhang H, Dong H, Cilz NI, Kurada L, Hu B, Wada E, Bayliss DA, Porter JE, Lei S. Neurotensinergic Excitation of Dentate Gyrus Granule Cells via Gαq-Coupled Inhibition of TASK-3 Channels. Cereb Cortex 2014; 26:977-90. [PMID: 25405940 DOI: 10.1093/cercor/bhu267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurotensin (NT) is a 13-amino acid peptide and serves as a neuromodulator in the brain. Whereas NT has been implicated in learning and memory, the underlying cellular and molecular mechanisms are ill-defined. Because the dentate gyrus receives profound innervation of fibers containing NT and expresses high density of NT receptors, we examined the effects of NT on the excitability of dentate gyrus granule cells (GCs). Our results showed that NT concentration dependently increased action potential (AP) firing frequency of the GCs by the activation of NTS1 receptors resulting in the depolarization of the GCs. NT-induced enhancement of AP firing frequency was not caused indirectly by releasing glutamate, GABA, acetylcholine, or dopamine, but due to the inhibition of TASK-3 K(+) channels. NT-mediated excitation of the GCs was G protein dependent, but independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Immunoprecipitation experiment demonstrates that the activation of NTS1 receptors induced the association of Gαq/11 and TASK-3 channels suggesting a direct coupling of Gαq/11 to TASK-3 channels. Endogenously released NT facilitated the excitability of the GCs contributing to the induction of long-term potentiation at the perforant path-GC synapses. Our results provide a cellular mechanism that helps to explain the roles of NT in learning and memory.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nicholas I Cilz
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Etsuko Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, Tokyo, Japan
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James E Porter
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
9
|
Fliegel S, Brand I, Spanagel R, Noori HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol 2013; 1:7. [PMID: 25505652 PMCID: PMC4230485 DOI: 10.1186/2193-9616-1-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In recent years in vivo microdialysis has become an important method in research studies investigating the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain, numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol. METHODS Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry. RESULTS For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response (glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal response were identified. CONCLUSIONS In summary, our results provide standardized basal values for future experimental and in silico studies on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of a wide range of preclinical data.
Collapse
Affiliation(s)
- Sarah Fliegel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Ines Brand
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| |
Collapse
|
10
|
Ferraro L, O'Connor WT, Beggiato S, Tomasini MC, Fuxe K, Tanganelli S, Antonelli T. Striatal NTS1 , dopamine D2 and NMDA receptor regulation of pallidal GABA and glutamate release--a dual-probe microdialysis study in the intranigral 6-hydroxydopamine unilaterally lesioned rat. Eur J Neurosci 2011; 35:207-20. [PMID: 22211865 DOI: 10.1111/j.1460-9568.2011.07949.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current microdialysis study elucidates a functional interaction between the striatal neurotensin NTS(1) receptor and the striatal dopamine D(2) and N-methyl-d-aspartic acid (NMDA) receptors in the regulation of striatopallidal gamma-aminobutyric acid (GABA) and glutamate levels after an ipsilateral intranigral 6-hydroxydopamine-induced lesion of the ascending dopamine pathways to the striatum. Lateral globus pallidus GABA levels were higher in the lesioned group while no change was observed in striatal GABA and glutamate levels. The 6-hydroxydopamine-induced lesion did not alter the ability of intrastriatal NT (10 nm) to counteract the decrease in pallidal GABA and glutamate levels induced by the dopamine D(2) -like receptor agonist quinpirole (10 μm). A more pronounced increase in the intrastriatal NMDA- (10 μm) induced increase in pallidal GABA levels was observed in the lesioned group while it attenuated the increase in striatal glutamate levels and amplified the increase in pallidal glutamate levels compared with that observed in the controls. NT enhanced the NMDA-induced increase in pallidal GABA and glutamate and striatal glutamate levels; these effects were counteracted by the NTS(1) antagonist SR48692 (100 nm) in both groups. These findings demonstrate an inhibitory striatal dopamine D(2) and an excitatory striatal NMDA receptor regulation of striatopallidal GABA transmission in both groups. These actions are modulated by NT via antagonistic NTS(1) /D(2) and facilitatory NTS(1) /NMDA receptor-receptor interactions, leading to enhanced glutamate drive of the striatopallidal GABA neurons associated with motor inhibition, effects which all are counteracted by SR48692. Thus, NTS(1) antagonists in combination with conventional treatments may provide a novel therapeutic strategy in Parkinson's disease.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Pharmacology Section and LTTA Centre, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ferraro L, Beggiato S, Tomasini MC, Fuxe K, Tanganelli S, Antonelli T. Neurotensin regulates cortical glutamate transmission by modulating N-methyl-D-aspartate receptor functional activity: an in vivo microdialysis study. J Neurosci Res 2011; 89:1618-26. [PMID: 21656844 DOI: 10.1002/jnr.22686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 12/30/2022]
Abstract
The aim of the present in vivo microdialysis study was to investigate whether the tridecapeptide neurotensin (NT) influences the N-methyl-D-aspartate (NMDA) receptor-mediated increase of cortical glutamate transmission in freely moving rats. Intracortical perfusion with NT influenced local extracellular glutamate levels in a bell-shaped, concentration-dependent manner. One hundred and three hundred nanomolar NT concentrations increased glutamate levels (151% ± 7% and 124% ± 3% of basal values, respectively). Higher (1,000 nM) and lower (10 nM) NT concentrations did not alter extracellular glutamate levels. The NT receptor antagonist SR48692 (100 nM) prevented the NT (100 nM)-induced increase in glutamate levels. NMDA (100 and 500 μM) perfusion induced a concentration-dependent increase in extracellular glutamate levels, the lower 10 μM NMDA concentration being ineffective. When NT (10 nM, a concentration by itself ineffective) was added in combination with NMDA (100 μM) to the perfusion medium, a significant greater increase in extracellular glutamate levels (169% ± 7%) was observed with respect to the increase induced by NMDA (100 μM) alone (139% ± 4%). SR48692 (100 nM) counteracted the increase in glutamate levels induced by the treatment with NT (10 nM) plus NMDA (100 μM). The enhancement of cortical glutamate levels induced by NMDA (100 and 500 μM) was partially antagonized by the presence of SR48692, at a concentration (100 nM) that by itself was ineffective in modulating glutamate release. These findings indicate that NT plays a relevant role in the regulation of cortical glutamatergic transmission, especially by modulating the functional activity of cortical NMDA receptors. A possible role in glutamate-mediated neurotoxicity is suggested.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Pharmacology Section and LTTA Centre, Universityof Ferrara, Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Thompson CL, Wisor JP, Lee CK, Pathak SD, Gerashchenko D, Smith KA, Fischer SR, Kuan CL, Sunkin SM, Ng LL, Lau C, Hawrylycz M, Jones AR, Kilduff TS, Lein ES. Molecular and anatomical signatures of sleep deprivation in the mouse brain. Front Neurosci 2010; 4:165. [PMID: 21088695 PMCID: PMC2981377 DOI: 10.3389/fnins.2010.00165] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 08/23/2010] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) leads to a suite of cognitive and behavioral impairments, and yet the molecular consequences of SD in the brain are poorly understood. Using a systematic immediate-early gene (IEG) mapping to detect neuronal activation, the consequences of SD were mapped primarily to forebrain regions. SD was found to both induce and suppress IEG expression (and thus neuronal activity) in subregions of neocortex, striatum, and other brain regions. Laser microdissection and cDNA microarrays were used to identify the molecular consequences of SD in seven brain regions. In situ hybridization (ISH) for 222 genes selected from the microarray data and other sources confirmed that robust molecular changes were largely restricted to the forebrain. Analysis of the ISH data for 222 genes (publicly accessible at http://sleep.alleninstitute.org) provided a molecular and anatomic signature of the effects of SD on the brain. The suprachiasmatic nucleus (SCN) and the neocortex exhibited differential regulation of the same genes, such that in the SCN genes exhibited time-of-day effects while in the neocortex, genes exhibited only SD and waking (W) effects. In the neocortex, SD activated gene expression in areal-, layer-, and cell type-specific manner. In the forebrain, SD preferentially activated excitatory neurons, as demonstrated by double-labeling, except for striatum which consists primarily of inhibitory neurons. These data provide a characterization of the anatomical and cell type-specific signatures of SD on neuronal activity and gene expression that may account for the associated cognitive and behavioral effects.
Collapse
|
13
|
Yamada D, Wada E, Amano T, Wada K, Sekiguchi M. Lack of neurotensin type 1 receptor facilitates contextual fear memory depending on the memory strength. Pharmacol Biochem Behav 2010; 96:363-9. [PMID: 20600248 DOI: 10.1016/j.pbb.2010.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/26/2010] [Accepted: 06/11/2010] [Indexed: 12/18/2022]
Abstract
Neurotensin is known to have antipsychotic-like behavioral and neurochemical effects, but its participation in fear memory has not been fully elucidated. Here, we report that a lack of type 1 neurotensin receptor (Ntsr1) increases the behavioral fear response elicited by weak fear memory. Adult Ntsr1-knockout (KO) mice and their wild-type (WT) littermates were compared in contextual fear conditioning. The mice were exposed twice for 3min to the context 24 and 48h after conditioning (first and second exposure, respectively), and freezing response of mice at the exposure was measured to evaluate fear memory. Ntsr1-KO mice showed a higher freezing rate than WT mice at both first and second exposures under the condition where a relatively weak unconditioned stimulus (footshock) was applied and thus elicited a relatively lower freezing rate. The difference in the first exposure between Ntsr1-KO and WT mice disappeared under the condition where a more intense unconditioned stimulus was used. The enhancement of freezing response in Ntsr1-KO mice at second exposure was abolished by propranolol, a beta-adrenergic blocker that suppresses fear memory reconsolidation, and suppressed by MK-801, an NMDA receptor antagonist. These results suggest that Ntsr1 plays inhibitory roles in weak fear memory.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
14
|
Fawaz CS, Martel P, Leo D, Trudeau LE. Presynaptic action of neurotensin on dopamine release through inhibition of D(2) receptor function. BMC Neurosci 2009; 10:96. [PMID: 19682375 PMCID: PMC2745416 DOI: 10.1186/1471-2202-10-96] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/10/2022] Open
Abstract
Background Neurotensin (NT) is known to act on dopamine (DA) neurons at the somatodendritic level to regulate cell firing and secondarily enhance DA release. In addition, anatomical and indirect physiological data suggest the presence of NT receptors at the terminal level. However, a clear demonstration of the mechanism of action of NT on dopaminergic axon terminals is lacking. We hypothesize that NT acts to increase DA release by inhibiting the function of terminal D2 autoreceptors. To test this hypothesis, we used fast-scan cyclic voltammetry (FCV) to monitor in real time the axonal release of DA in the nucleus accumbens (NAcc). Results DA release was evoked by single electrical pulses and pulse trains (10 Hz, 30 pulses). Under these two stimulation conditions, we evaluated the characteristics of DA D2 autoreceptors and the presynaptic action of NT in the NAcc shell and shell/core border region. The selective agonist of D2 autoreceptors, quinpirole (1 μM), inhibited DA overflow evoked by both single and train pulses. In sharp contrast, the selective D2 receptor antagonist, sulpiride (5 μM), strongly enhanced DA release triggered by pulse trains, without any effect on DA release elicited by single pulses, thus confirming previous observations. We then determined the effect of NT (8–13) (100 nM) and found that although it failed to increase DA release evoked by single pulses, it strongly enhanced DA release evoked by pulse trains that lead to prolonged DA release and engage D2 autoreceptors. In addition, initial blockade of D2 autoreceptors by sulpiride considerably inhibited further facilitation of DA release generated by NT (8–13). Conclusion Taken together, these data suggest that NT enhances DA release principally by inhibiting the function of terminal D2 autoreceptors and not by more direct mechanisms such as facilitation of terminal calcium influx.
Collapse
Affiliation(s)
- Charbel S Fawaz
- Department of Pharmacology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Quebec, H3C 3J7, Canada.
| | | | | | | |
Collapse
|
15
|
Heightened amygdala long-term potentiation in neurotensin receptor type-1 knockout mice. Neuropsychopharmacology 2008; 33:3135-45. [PMID: 18354386 DOI: 10.1038/npp.2008.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurotensin receptor type-1 (Ntsr1) is the main receptor subtype that underlies neurotensin (NT)-mediated modulation of the dopamine (DA) system. Although NT and DA coexist in the basolateral nucleus of the amygdala (BLA), the function of Ntsr1 in the amygdala is not well characterized. In the present study, we utilized Ntsr1 knockout (Ntsr1-KO) mice to examine the role of Ntsr1 in the amygdala. In acute brain slices of Ntsr1-KO mice, synaptic currents elicited in BLA pyramidal neurons by electrical stimulation of the lateral nucleus of the amygdala (LA) were greatly potentiated by tetanic stimulation (BLA-long-term potentiation (LTP)). Such potentiation was not evident in pyramidal neurons of wild-type mice. In the presence of an antagonist of Ntsr1, SR48692, BLA-LTP was consistently observed in the neurons of wild-type mice, suggesting that both inherited deletion and acute pharmacological blockade of Ntsr1 induce BLA-LTP. BLA-LTP in Ntsr1-KO mice was impaired by sulpiride, a DA D(2)-like receptor antagonist. Conversely, quinpirole, a D(2)-like receptor agonist, induced pronounced BLA-LTP in wild-type mice, suggesting the upregulation of D(2)-like receptor activity in Ntsr1-KO mice. The ratio of NMDA receptor-mediated to non-NMDA receptor-mediated synaptic currents in Ntsr1-KO mouse BLA neurons was approximately double that measured in wild-type mouse neurons. Furthermore, quinpirole potentiated NMDA receptor-mediated synaptic currents in the BLA of wild-type mice. These results suggest that, without Ntsr1, synaptic responses from the LA to BLA pyramidal neurons undergo LTP in response to tetanus stimulation through facilitation of D(2)-like receptor-induced activation of NMDA receptors.
Collapse
|
16
|
Effects of the selective neurotensin antagonist SR 142948A on 3,4-methylenedioxymethamphetamine-induced behaviours in mice. Neuropharmacology 2008; 54:1107-11. [DOI: 10.1016/j.neuropharm.2008.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 01/11/2008] [Accepted: 03/02/2008] [Indexed: 11/23/2022]
|
17
|
Torregrossa MM, Kalivas PW. Neurotensin in the ventral pallidum increases extracellular gamma-aminobutyric acid and differentially affects cue- and cocaine-primed reinstatement. J Pharmacol Exp Ther 2008; 325:556-66. [PMID: 18252810 PMCID: PMC2672956 DOI: 10.1124/jpet.107.130310] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine-primed reinstatement is an animal model of drug relapse. The neurocircuitry underlying cocaine-primed reinstatement includes a decrease in GABA in the ventral pallidum (VP) that is inhibited by a mu opioid receptor antagonist, suggesting that opioid peptides colocalized with GABA in the projection from the nucleus accumbens to the VP may mediate this effect. Neurotensin is also colocalized with GABA and has been shown to increase GABA release in several brain regions. Therefore, the present study determined whether neurotensin increases GABA release in the VP, antagonizes cocaine-induced decreases in GABA, and prevents reinstatement of cocaine seeking. In vivo microdialysis revealed that the neurotensin agonist neurotensin peptide fragment 8-13 [NT(8-13)] increased GABA in the VP in a neurotensin receptor and tetrodotoxin-dependent manner and blocked the cocaine-induced decrease in GABA. NT(8-13) (3 nmol) microinjected into the VP prevented cue-induced reinstatement without affecting cocaine self-administration. In contrast, 3 nmol NT(8-13) potentiated cocaine-primed reinstatement. The neurotensin antagonist SR142948 (2-[[[5-(2,6-dimethoxyphenyl)-1-[4-[[[3-(dimethylamino)propyl]methylamino]carbonyl]-2-(1-methylethyl)phenyl]-1H -pyrazol-3-yl]carbonyl]amino]-tricyclo-[3.3.1.13,7]decane-2-carboxylic acid) had no effect on any behavioral measure when infused in the VP at the dose tested but attenuated cocaine-primed reinstatement when administered systemically. In contrast to reinstatement, NT(8-13) did not alter the motor response to acute cocaine or the development of motor sensitization by chronic cocaine. Three conclusions can be drawn from these data: 1) neurotensin promotes GABA release in the VP and correspondingly inhibits cue-induced reinstatement, 2) neurotensin and cocaine interact in a manner that countermands the neurotensin-induced increase in GABA and promotes reinstatement, and 3) endogenous release of neurotensin in the VP is not necessary for reinstatement.
Collapse
Affiliation(s)
- Mary M Torregrossa
- Yale University, Department of Psychiatry, 34 Park Street, New Haven, CT 06511.
| | | |
Collapse
|
18
|
Li S, Geiger JD, Lei S. Neurotensin Enhances GABAergic Activity in Rat Hippocampus CA1 Region by Modulating L-Type Calcium Channels. J Neurophysiol 2008; 99:2134-43. [DOI: 10.1152/jn.00890.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurotensin (NT) is a tridecapeptide that interacts with three NT receptors; NTS1, NTS2, and NTS3. Although NT has been reported to modulate GABAergic activity in the brain, the underlying cellular and molecular mechanisms of NT are elusive. Here, we examined the effects of NT on GABAergic transmission and the involved cellular and signaling mechanisms of NT in the hippocampus. Application of NT dose-dependently increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from CA1 pyramidal neurons with no effects on the amplitude of sIPSCs. NT did not change either the frequency or the amplitude of miniature (m)IPSCs recorded in the presence of tetrodotoxin. Triple immunofluorescent staining of recorded interneurons demonstrated the expression of NTS1 on GABAergic interneurons. NT increased the action potential firing rate but decreased the afterhyperpolarization (AHP) amplitude in identified CA1 interneurons. Application of L-type calcium channel blockers (nimodipine and nifedipine) abolished NT-induced increases in action potential firing rate and sIPSC frequency and reduction in AHP amplitude, suggesting that the effects of NT are mediated by interaction with L-type Ca2+channels. NT-induced increase in sIPSC frequency was blocked by application of the specific NTS1 antagonist SR48692, the phospholipase C (PLC) inhibitor U73122, the IP3receptor antagonist 2-APB, and the protein kinase C inhibitor GF109203X, suggesting that NT increases γ-aminobutyric acid release via a PLC pathway. Our results provide a cellular mechanism by which NT controls GABAergic neuronal activity in hippocampus.
Collapse
|
19
|
Ferraro L, Tomasini MC, Mazza R, Fuxe K, Fournier J, Tanganelli S, Antonelli T. Neurotensin receptors as modulators of glutamatergic transmission. ACTA ACUST UNITED AC 2007; 58:365-73. [PMID: 18096238 DOI: 10.1016/j.brainresrev.2007.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 12/22/2022]
Abstract
Functional studies have provided evidence supporting the concept that the tridecapeptide neurotensin (NT) acts in the central nervous system as a classical neurotransmitter and/or as an important modulator of neuronal signalling. The role of NT in the regulation of the striatal amino acidergic transmission, mainly by antagonising D2 receptor function, will be analysed. In addition, in different rat brain regions, including the basal ganglia, the contribution of NT receptors in modulating and reinforcing glutamate signalling will be shown including the involvement of interactions between NT and NMDA receptors. Since the enhancement of glutamate transmission and in particular the excessive activation of NMDA receptors, has been postulated to be an important factor in the induction of glutamate-mediated neuronal damage, the involvement of NT in the glutamate-induced neurodegenerative effects will be discussed. Moving from these observations and in order to further investigate this issue, results from preliminary behavioural, functional and biochemical experiments will be presented on the putative neuroprotective effect obtained by the blockade of NT receptor 1 (NTS1) via the systemic administration of the selective NTS1 antagonist SR48692 in an in vivo animal model of Parkinson's disease [unilateral nigral 6-hydroxydopamine (6-OHDA) induced lesion of the nigrostriatal pathway].
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007; 83:92-109. [PMID: 17673354 DOI: 10.1016/j.pneurobio.2007.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 05/18/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
The extracellular accumulation of glutamate and the excessive activation of glutamate receptors, in particular N-methyl-D-aspartate (NMDA) receptors, have been postulated to contribute to the neuronal cell death associated with chronic neurodegenerative disorders such as Parkinson's disease. Findings are reviewed indicating that the tridecaptide neurotensin (NT) via activation of NT receptor subtype 1 (NTS1) promotes and reinforces endogenous glutamate signalling in discrete brain regions. The increase of striatal, nigral and cortical glutamate outflow by NT and the enhancement of NMDA receptor function by a NTS1/NMDA interaction that involves the activation of protein kinase C may favour the depolarization of NTS1 containing neurons and the entry of calcium. These results strengthen the hypothesis that NT may be involved in the amplification of glutamate-induced neurotoxicity in mesencephalic dopamine and cortical neurons. The mechanisms involved may include also antagonistic NTS1/D2 interactions in the cortico-striatal glutamate terminals and in the nigral DA cell bodies and dendrites as well as in the nigro-striatal DA terminals. The possible increase in NT levels in the basal ganglia under pathological conditions leading to the NTS1 enhancement of glutamate signalling may contribute to the neurodegeneration of the nigro-striatal dopaminergic neurons found in Parkinson's disease, especially in view of the high density of NTS1 receptors in these neurons. The use of selective NTS1 antagonists together with conventional drug treatments could provide a novel therapeutic approach for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- T Antonelli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Ferraro L, Tomasini MC, Fuxe K, Agnati LF, Mazza R, Tanganelli S, Antonelli T. Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. ACTA ACUST UNITED AC 2007; 55:144-54. [PMID: 17448541 DOI: 10.1016/j.brainresrev.2007.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022]
Abstract
The tridecapeptide neurotensin (NT) acts in the mammalian brain as a primary neurotransmitter or neuromodulator of classical neurotransmitters. Morphological and functional in vitro and in vivo studies have demonstrated the existence of close interactions between NT and dopamine both in limbic and in striatal brain regions. Additionally, biochemical and neurochemical evidence indicates that in these brain regions NT plays also a crucial role in the regulation of the aminoacidergic signalling. It is suggested that in the nucleus accumbens the regulation of prejunctional dopaminergic transmission induced by NT may be primarily due to indirect mechanism(s) involving mediation via the aminoacidergic neuronal systems with increased glutamate release followed by increased GABA release in the nucleus accumbens rather than a direct action of the peptide on accumbens dopaminergic terminals. The neurochemical profile of action of NT in the control of the pattern of dopamine, glutamate and GABA release in the nucleus accumbens differs to a substantial degree from that shown by the peptide in the dorsal striatum. The neuromodulatory NT mechanisms in the regulation of the ventral striato-pallidal GABA pathways are discussed and their relevance for schizophrenia is underlined.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Cáceda R, Kinkead B, Nemeroff CB. Neurotensin: role in psychiatric and neurological diseases. Peptides 2006; 27:2385-404. [PMID: 16891042 DOI: 10.1016/j.peptides.2006.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT), an endogenous brain-gut peptide, has a close anatomical and functional relationship with the mesocorticolimbic and neostriatal dopamine system. Dysregulation of NT neurotransmission in this system has been hypothesized to be involved in the pathogenesis of schizophrenia. Additionally, NT containing circuits have been demonstrated to mediate some of the mechanisms of action of antipsychotic drugs, as well as the rewarding and/or sensitizing properties of drugs of abuse. NT receptors have been suggested to be novel targets for the treatment of psychoses or drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMRB, 101 Woodruff Circle, Atlanta, GA 30322 4990, USA.
| | | | | |
Collapse
|
23
|
Antonelli T, Tomasini MC, Fuxe K, Agnati LF, Tanganelli S, Ferraro L. Receptor–receptor interactions as studied with microdialysis. Focus on NTR/D2 interactions in the basal ganglia. J Neural Transm (Vienna) 2006; 114:105-13. [PMID: 16983483 DOI: 10.1007/s00702-006-0558-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 07/11/2006] [Indexed: 12/21/2022]
Abstract
Using mono and dualprobe(s) microdialysis in the basal ganglia of the freely moving rat evidence has been obtained that neurotensin (NT) in threshold concentrations can counteract the D(2) agonist (intrastriatally perfused) induced inhibition of striatal dopamine (DA) release and of pallidal GABA release from the striato-pallidal GABA pathway, effects that are blocked by a NTR(1) antagonist SR48692. These results indicate the existence of antagonistic intramembrane NTR/D(2) receptor interactions in the striatal DA terminals and in the somato-dendritic regions of the striato-pallidal GABA neurons. By the NT-induced reduction of the D(2) mediated signals at the striatal pre- and postjunctional level DA transmission is switched towards a D(1) mediated transmission leading to increased activity in the striatopallidal and striatonigral GABA pathways. The former action will contribute to the motor inhibition and catalepsy found with NT treatment and underlies the use of NT receptor antagonists as a treatment strategy for Parkinson's disease. Nigral NT by an antagonistic NTR/D(2) receptor interaction in the DA cell body and dendrites may also increase nigral DA release leading to a D(2) mediated inhibition of the nigrothalamic GABA pathway. Such an effect, will instead result in antiparkinsonian actions. Thus, increases in NT transmission will have different consequences for the motor system depending upon where in the basal ganglia the increase takes place.
Collapse
Affiliation(s)
- T Antonelli
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Sil'kis IG. Possible Mechanisms of the Involvement of Dopaminergic Cells and Cholinergic Interneurons in the Striatum in the Conditioned-Reflex Selection of Motor Activity. ACTA ACUST UNITED AC 2006; 36:163-75. [PMID: 16380830 DOI: 10.1007/s11055-005-0175-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 03/15/2004] [Indexed: 10/25/2022]
Abstract
A possible mechanism for the involvement of cholinergic interneurons in the striatum and dopaminergic cells in the substantia nigra in the selection from among several types of motor activity during learning is proposed. Selection is triggered by simultaneous increases in the activity of dopaminergic neurons and a pause in the activity of cholinergic interneurons in response to the conditioned signal. The appearance of the pause may facilitate activation of GABAergic interneurons in the striatum and the action of dopamine on D2 receptors on cholinergic interneurons. Differently directed changes in dopamine and acetylcholine levels synergistically modulate the efficiency of corticostriatal inputs, such that the rules for modulation of the "strong" and "weak" inputs are opposite in sign. The subsequent reorganization of neuron activity in the cortex-basal ganglia-thalamus-cortex circuit leads to increased activity in those cortical neurons providing "strong" innervation to the striatum with simultaneous decreases in the activity of neurons providing "weak" innervation to the striatum, which may underlie the selection of the movement reaction, in which the neocortex is involved. It follows from this model that if the delay between the conditioned and unconditioned stimuli is not longer than the latent period of the reactions of dopaminergic and cholinergic cells (about 100 msec), selection of movement activity in response to the conditioned signal and learning is hindered.
Collapse
Affiliation(s)
- I G Sil'kis
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow.
| |
Collapse
|
25
|
Petrie KA, Schmidt D, Bubser M, Fadel J, Carraway RE, Deutch AY. Neurotensin activates GABAergic interneurons in the prefrontal cortex. J Neurosci 2005; 25:1629-36. [PMID: 15716398 PMCID: PMC6725935 DOI: 10.1523/jneurosci.3579-04.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Converging data suggest a dysfunction of prefrontal cortical GABAergic interneurons in schizophrenia. Morphological and physiological studies indicate that cortical GABA cells are modulated by a variety of afferents. The peptide transmitter neurotensin may be one such modulator of interneurons. In the rat prefrontal cortex (PFC), neurotensin is exclusively localized to dopamine axons and has been suggested to be decreased in schizophrenia. However, the effects of neurotensin on cortical interneurons are poorly understood. We used in vivo microdialysis in freely moving rats to assess whether neurotensin regulates PFC GABAergic interneurons. Intra-PFC administration of neurotensin concentration-dependently increased extracellular GABA levels; this effect was impulse dependent, being blocked by treatment with tetrodotoxin. The ability of neurotensin to increase GABA levels in the PFC was also blocked by pretreatment with 2-[1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazole-3-yl)carbonylamino]tricyclo(3.3.1.1 [EC] .3.7)decan-2-carboxylic acid (SR48692), a high-affinity neurotensin receptor 1 (NTR1) antagonist. This finding is consistent with our observation that NTR1 was localized to GABAergic interneurons in the PFC, particularly parvalbumin-containing interneurons. Because neurotensin is exclusively localized to dopamine axons in the PFC, we also determined whether neurotensin plays a role in the ability of dopamine agonists to increase extracellular GABA levels. We found that D2 agonist-elicited increases in PFC GABA levels were blocked by pretreatment with SR48692, consistent with data indicating that D2 autoreceptor agonists increase neurotensin release from dopamine-neurotensin axons in the PFC. These findings suggest that neurotensin plays an important role in regulating prefrontal cortical interneurons and that it may be useful to consider neurotensin agonists as an adjunct in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Kimberly A Petrie
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA
| | | | | | | | | | | |
Collapse
|
26
|
Chartoff EH, Szczypka MS, Palmiter RD, Dorsa DM. Endogenous neurotensin attenuates dopamine-dependent locomotion and stereotypy. Brain Res 2004; 1022:71-80. [PMID: 15353215 DOI: 10.1016/j.brainres.2004.06.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2004] [Indexed: 11/15/2022]
Abstract
The neuropeptide neurotensin (NT) is highly sensitive to changes in dopaminergic signaling in the striatum, and is thought to modulate dopamine-mediated behaviors. To explore the interaction of NT with the dopamine system, we utilized mice with a targeted deletion of dopamine synthesis specifically in dopaminergic neurons. Dopamine levels in dopamine-deficient (DD) mice are less than 1% of control mice, and they require daily administration of the dopamine precursor L-dihydroxyphenylalanine (L-DOPA) for survival. DD mice are supersensitive to the effects of dopamine, becoming hyperactive relative to control mice in the presence of L-DOPA. We show that 24 h after L-DOPA treatment, when DD mice are in a "dopamine-depleted" state, Nt mRNA levels in the striatum of DD mice are similar to those in control mice. Administration of L-DOPA or L-DOPA plus the L-amino acid decarboxylase inhibitor, carbidopa, (C/L-DOPA) induced Nt expression in the striatum of DD mice. The dopamine D1 receptor antagonist, SCH23390, blocked C/L-DOPA-induced Nt. To test the hypothesis that this striatal Nt expression modulated dopamine-mediated behavior in DD mice, we administered SR 48692, an antagonist of the high affinity NT receptor, together with L-DOPA or C/L-DOPA. L-DOPA-induced hyperlocomotion and C/L-DOPA-induced stereotypy were potentiated by peripheral administration of SR 48692. Furthermore, intrastriatal microinjections of SR 48692 augmented L-DOPA-induced hyperlocomotion. These results demonstrate a dynamic regulation of striatal Nt expression by dopamine via D1 receptors in DD mice, and point to a physiological role for endogenous striatal NT in counteracting motor behaviors induced by an overactive dopamine system.
Collapse
Affiliation(s)
- Elena H Chartoff
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
27
|
Chen L, Yung KKL, Yung WH. Neurotensin depolarizes globus pallidus neurons in rats via neurotensin type-1 receptor. Neuroscience 2004; 125:853-9. [PMID: 15120846 DOI: 10.1016/j.neuroscience.2004.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 11/16/2022]
Abstract
The globus pallidus is a major component in the indirect pathway of the basal ganglia. There is evidence that neurotensin receptors exist in this nucleus. To determine the electrophysiological effects of neurotensin on pallidal neurons, whole-cell patch-clamp recordings were performed in the acutely prepared brain slices. Under current-clamp recordings, neurotensin at 1 microM depolarized pallidal neurons. Voltage-clamp recordings also showed an inward current induced by neurotensin. The depolarizing effect of neurotensin could be mimicked by the C-terminal fragment, neurotensin (8-13), but not by the N-terminal fragment, neurotensin (1-8). Both SR 142948A, a non-selective neurotensin receptor type-1 and type-2 antagonist, and SR 48692, a selective type-1 receptor antagonist, blocked the depolarizing effect of neurotensin, and which themselves had no effect on membrane potential. Thus, neurotensin type-1 receptors appear to mediate the effect of neurotensin. The depolarization evoked by neurotensin persisted in the presence of tetrodotoxin, ionotropic and metabotropic glutamate and GABA receptor antagonists, indicating that neurotensin excited the pallidal neurons by activating the receptor expressed on the neurons recorded. Current-voltage relationship revealed that both the suppression of a potassium conductance and the activation of a cationic conductance are involved in the neurotensin-induced depolarization. Based on the action of neurotensin in the globus pallidus we hypothesize that alterations of the striatopallidal neurotensin system contribute to symptoms of basal ganglia motor disorders.
Collapse
Affiliation(s)
- L Chen
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
28
|
Matsuyama S, Fukui R, Higashi H, Nishi A. Regulation of DARPP-32 Thr75 phosphorylation by neurotensin in neostriatal neurons: involvement of glutamate signalling. Eur J Neurosci 2003; 18:1247-53. [PMID: 12956723 DOI: 10.1046/j.1460-9568.2003.02859.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurotensin is a neuropeptide involved in dopaminergic signalling. We have recently reported that neurotensin stimulates the phosphorylation of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa) at Thr34 (PKA-site) by activating dopamine D1-type receptors in neostriatal neurons. DARPP-32 is also phosphorylated by cyclin-dependent kinase 5 on Thr75, and the phosphorylated form of DARPP-32 at Thr75 inhibits protein kinase (PKA) activity. In this study, we examined the effect of neurotensin on DARPP-32 Thr75 phosphorylation using mouse neostriatal slices. Neurotensin decreased the level of phospho-Thr75 DARPP-32 at 2 min of incubation, maximally to about 50% of control at a concentration of 1 micro m. Pretreatment with a combined neurotensin receptor type 1 (NTR1)/type 2 (NTR2) antagonist, SR142948, reduced the basal level of phospho-Thr75 DARPP-32 and abolished the ability of neurotensin to decrease DARPP-32 Thr75 phosphorylation. However, neither an NTR1 antagonist, SR48692, an NTR2 antagonist, levocabastine, nor the two combined affected the basal level and the neurotensin-mediated decrease in DARPP-32 Thr75 phosphorylation. The effect of neurotensin was abolished by tetrodotoxin (TTX) or MK801 plus CNQX, but not by SCH23390 or raclopride. These results indicate that neurotensin stimulates the release of glutamate by activating a hypothesized unidentified neurotensin receptor, resulting in the dephosphorylation of DARPP-32 at Thr75 by activating NMDA and AMPA receptors expressed at medium spiny neurons. Thus, neurotensin, by removing the inhibition of PKA by phospho-Thr75 DARPP-32, potentiates its signalling via the dopamine/D1 receptor/PKA/phospho-Thr34 DARPP-32/PP-1 cascade.
Collapse
Affiliation(s)
- Seiichiro Matsuyama
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | | | | | | |
Collapse
|
29
|
Agnati LF, Ferré S, Lluis C, Franco R, Fuxe K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 2003; 55:509-50. [PMID: 12869660 DOI: 10.1124/pr.55.3.2] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis for the known intramembrane receptor/receptor interactions among G protein-coupled receptors was postulated to be heteromerization based on receptor subtype-specific interactions between different types of receptor homomers. The discovery of GABAB heterodimers started this field rapidly followed by the discovery of heteromerization among isoreceptors of several G protein-coupled receptors such as delta/kappa opioid receptors. Heteromerization was also discovered among distinct types of G protein-coupled receptors with the initial demonstration of somatostatin SSTR5/dopamine D2 and adenosine A1/dopamine D1 heteromeric receptor complexes. The functional meaning of these heteromeric complexes is to achieve direct or indirect (via adapter proteins) intramembrane receptor/receptor interactions in the complex. G protein-coupled receptors also form heteromeric complexes involving direct interactions with ion channel receptors, the best example being the GABAA/dopamine D5 receptor heteromerization, as well as with receptor tyrosine kinases and with receptor activity modulating proteins. As an example, adenosine, dopamine, and glutamate metabotropic receptor/receptor interactions in the striatopallidal GABA neurons are discussed as well as their relevance for Parkinson's disease, schizophrenia, and drug dependence. The heterodimer is only one type of heteromeric complex, and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist. These complexes may assist in the process of linking G protein-coupled receptors and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for some forms of learning and memory.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Central administration of neurotensin (NT) results in a variety of neurobehavioral effects which, depending upon the administration site, resemble the effects of antipsychotic drugs (APDs) and psychostimulants. All clinically effective APDs exhibit significant affinities for dopamine D(2) receptors, supporting the hypothesis that an increase in dopaminergic tone contributes to schizophrenic symptoms. Psychostimulants increase extracellular dopamine (DA) levels and chronics administration can produce psychotic symptoms over time. APDs and psychostimulants induce Fos and NT expression in distinct striatal subregions, suggesting that changes in gene expression underlie some of their effects. To gain insight into the functions of NT, we analyzed APD and psychostimulant induction of Fos in NT knockout mice and rats pretreated with the NT antagonist SR 48692. In both NT knockout mice and rats pretreated with SR 48692, haloperidol-induced Fos expression was markedly attenuated in the dorsolateral striatum; amphetamine-induced Fos expression was reduced in the medial striatum. These results indicate that NT is required for the activation of specific subpopulations of striatal neurons in distinct striatal subregions in response to both APDs and psychostimulants. This review integrates these new findings with previous evidence implicating NT in both APD and psychostimulant responses.
Collapse
Affiliation(s)
- Paul R Dobner
- Department of Molecular Genetics and Microbiology, Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester 01655, USA.
| | | | | |
Collapse
|
31
|
Petersén A, Puschban Z, Lotharius J, NicNiocaill B, Wiekop P, O'Connor WT, Brundin P. Evidence for dysfunction of the nigrostriatal pathway in the R6/1 line of transgenic Huntington's disease mice. Neurobiol Dis 2002; 11:134-46. [PMID: 12460553 DOI: 10.1006/nbdi.2002.0534] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present multidisciplinary study examined nigrostriatal dopamine and striatal amino acid transmission in the R6/1 line of transgenic Huntington's disease (HD) mice expressing exon 1 of the HD gene with 115 CAG repeats. Although the number of tyrosine hydroxylase-positive neurons was not reduced and nigrostriatal connectivity remained intact in 16-week-old R6/1 mice, the size of tyrosine hydroxylase-positive neurons in the substantia nigra was reduced by 15%, and approximately 30% of these cells exhibited aggregated huntingtin. In addition, using in vivo microdialysis, we found that basal extracellular striatal dopamine levels were reduced by 70% in R6/1 mice compared to their wild-type littermates. Intrastriatal perfusion with malonate in R6/1 mice resulted in a short-lasting, attenuated increase in local dopamine release compared to wild-type mice. Furthermore, the size of the malonate-induced striatal lesion was 80% smaller in these animals. Taken together, these findings suggest that a functional deficit in nigrostriatal dopamine transmission may contribute to the behavioral phenotype and the resistance to malonate-induced neurotoxicity characteristic of R6/1 HD mice.
Collapse
Affiliation(s)
- A Petersén
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Legault M, Congar P, Michel FJ, Trudeau LE. Presynaptic action of neurotensin on cultured ventral tegmental area dopaminergic neurones. Neuroscience 2002; 111:177-87. [PMID: 11955721 DOI: 10.1016/s0306-4522(01)00614-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine-containing neurones of the ventral tegmental area express neurotensin receptors which are involved in regulating cell firing and dopamine release. Although indirect evidence suggests that some neurotensin receptors may be localised on the nerve terminals of dopaminergic neurones in the striatum and thus locally regulate dopamine release, a clear demonstration of such a mechanism is lacking and a number of indirect sites of action are possible. We have taken advantage of a simplified preparation in which cultured rat ventral tegmental area dopaminergic neurones establish nerve terminals that co-release glutamate to determine whether neurotensin can act at presynaptic sites. We recorded glutamate-mediated synaptic currents that were generated by dopaminergic nerve terminals as an index of presynaptic function. The neurotensin receptor agonist NT(8-13) caused an inward current and an enhancement of the firing rate of dopaminergic neurones together with an increase in the frequency of spontaneous glutamate receptor-mediated excitatory postsynaptic currents (EPSCs). Incompatible with a direct excitatory action on nerve terminals, NT(8-13) failed to change the amplitude of individual action potential-evoked EPSCs or the frequency of miniature EPSCs recorded in the presence of tetrodotoxin. However, NT(8-13) reduced the ability of terminal D2 dopamine receptors to inhibit action potential-evoked EPSCs in isolated dopaminergic neurones. Taken together, our results suggest that in addition to its well-known somatodendritic excitatory effect leading to an increase in firing rate, neurotensin also acts on nerve terminals. The main effect of neurotensin on nerve terminals is not to produce a direct excitation, but rather to decrease the effectiveness of D2 receptor-mediated presynaptic inhibition.
Collapse
Affiliation(s)
- M Legault
- Départements de Pharmacologie et de Psychiatrie, Centre de Recherche en Sciences Neurologiques, Centre de Recherche Fernand Seguin, Université de Montréal, Montréal, QC, Canada
| | | | | | | |
Collapse
|
33
|
O'Connor WT. Functional neuroanatomy of the ventral striopallidal GABA pathway. New sites of intervention in the treatment of schizophrenia. J Neurosci Methods 2001; 109:31-9. [PMID: 11489297 DOI: 10.1016/s0165-0270(01)00398-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microdialysis was employed to investigate the dopamine, cholecystokinin (CCK) and neurotensin receptor regulation of ventral striopallidal GABA transmission by intra-accumbens perfusion with selective receptor ligands and monitoring local or ipsilateral ventral pallidal GABA release. In the dual probe studies intra-accumbens perfusion with the dopamine D1 and D2 receptor agonists SKF28293 and pergolide had no effect on ventral pallidal GABA, while both the D1 and D2 receptor antagonists SCH23390 and raclopride increased ventral pallidal GABA release. In contrast, intra-accumbens CCK decreased ventral pallidal GABA release and this was reversed by local perfusion with the CCK2 receptor antagonist PD134308 but not the CCK1 receptor antagonist L-364,718. In a single probe study intra-accumbens neurotensin increased local GABA release, which was strongly potentiated when the peptidase inhibitor phosphodiepryl 08 was perfused together with neurotensin. In addition, the neurotensin receptor antagonist SR48692 counteracted this phosphodiepryl 08 induced potentiated increased in GABA release. Taken together, these findings indicate that mesolimbic dopamine and CCK exert a respective tonic and phasic inhibition of ventral pallidal GABA release while the antipsychotic activity associated with D1 and D2 receptor antagonists may be explained by their ability to increase ventral striopallidal GABA transmission. Furthermore, the findings suggest that CCK2 receptor antagonists and neurotensin endopeptidase inhibitors may be useful antipsychotics.
Collapse
MESH Headings
- Animals
- Cholecystokinin/agonists
- Cholecystokinin/antagonists & inhibitors
- Dopamine/metabolism
- Dopamine D2 Receptor Antagonists
- Extracellular Space/metabolism
- Globus Pallidus/cytology
- Globus Pallidus/drug effects
- Globus Pallidus/metabolism
- Male
- Microdialysis/methods
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neural Pathways/cytology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurotensin/agonists
- Neurotensin/antagonists & inhibitors
- Nucleus Accumbens/cytology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cholecystokinin B
- Receptors, Cholecystokinin/agonists
- Receptors, Cholecystokinin/antagonists & inhibitors
- Receptors, Cholecystokinin/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Receptors, Neurotensin/agonists
- Receptors, Neurotensin/antagonists & inhibitors
- Schizophrenia/metabolism
- Schizophrenia/pathology
- Schizophrenia/physiopathology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- W T O'Connor
- Department of Human Anatomy and Physiology, Conway Institute of Biomedical and Biomolecular Research, University College, Earlsfort Terrace, Dublin 2, Ireland.
| |
Collapse
|
34
|
Brun P, Leonetti M, Sotty F, Steinberg R, Soubrié P, Renaud B, Suaud-Chagny MF. Endogenous neurotensin down-regulates dopamine efflux in the nucleus accumbens as revealed by SR-142948A, a selective neurotensin receptor antagonist. J Neurochem 2001; 77:1542-52. [PMID: 11413237 DOI: 10.1046/j.1471-4159.2001.00353.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SR-142948A belongs to the second generation of potent, selective, non-peptide antagonists of neurotensin receptors. It was used to investigate the role of endogenous neurotensin in the regulation of dopamine efflux in the nucleus accumbens and striatum of anaesthetized and pargyline-treated rats. All the data were obtained using in vivo electrochemistry. Electrically evoked (20 Hz, 10 s) dopamine efflux was monitored by differential pulse amperometry, whereas variations in basal (tonic) dopamine efflux were monitored by differential normal pulse voltammetry. Like the first-generation compound SR-48692, SR-142948A did not affect the tonic and evoked dopamine efflux, but dose-dependently enhanced haloperidol (50 microg/kg, i.p.) induced facilitation of the electrically evoked dopamine release in the nucleus accumbens. In contrast to SR-48692, SR-142948A dose-dependently potentiated haloperidol (50 microg/kg, i.p.) induced increase in the basal dopamine level in the nucleus accumbens. This potentiating effect did not appear in the striatum. When dopaminergic and/or neurotensinergic transmissions were modified by a higher dose of haloperidol (0.5 mg/kg, i.p.), apomorphine, amphetamine or nomifensine, SR-142948A pre-treatment affected only the effect of apomorphine on the basal dopamine level in the nucleus accumbens. These results strengthen the hypothesis that endogenous neurotensin could exert a negative control on mesolimbic dopamine efflux.
Collapse
Affiliation(s)
- P Brun
- INSERM U 512, Laboratoire de Neuropharmacologie et Neurochimie, Université Claude Bernard, Lyon, France Sanofi-Synthélabo, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Enhanced neurotensin neurotransmission is involved in the clinically relevant behavioral effects of antipsychotic drugs: evidence from animal models of sensorimotor gating. J Neurosci 2001. [PMID: 11160439 DOI: 10.1523/jneurosci.21-02-00601.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To date, none of the available antipsychotic drugs are curative, all have significant side-effect potential, and a receptor-binding profile predictive of superior therapeutic ability has not been determined. It has become increasingly clear that schizophrenia does not result from the dysfunction of a single neurotransmitter system, but rather from an imbalance between several interacting systems. Targeting neuropeptide neuromodulator systems that concertedly regulate all affected neurotransmitter systems could be a promising novel therapeutic approach for schizophrenia. A considerable database is concordant with the hypothesis that antipsychotic drugs act, at least in part, by increasing the synthesis and release of the neuropeptide neurotensin (NT). In this report, we demonstrate that NT neurotransmission is critically involved in the behavioral effects of antipsychotic drugs in two models of antipsychotic drug activity: disrupted prepulse inhibition of the acoustic startle response (PPI) and the latent inhibition (LI) paradigm. Blockade of NT neurotransmission using the NT receptor antagonist 2-[[5-(2,6-dimethoxyphenyl)-1-(4-(N-(3-dimethylaminopropyl)-N-methylcarbamoyl)-2-isopropylphenyl)-1H- pyrazole-3-carbonyl]-amino]-adamantane-2-carboxylic acid, hydrochloride (SR 142948A) prevented the normal acquisition of LI and haloperidol-induced enhancement of LI. In addition, SR 142948A blocked the PPI-restoring effects of haloperidol and the atypical antipsychotic drug quetiapine in isolation-reared animals deficient in PPI. We also provide evidence of deficient NT neurotransmission as well as a left-shifted antipsychotic drug dose-response curve in isolation-reared rats. These novel findings, together with previous observations, suggest that neurotensin receptor agonists may represent a novel class of antipsychotic drugs.
Collapse
|
36
|
Nicniocaill B, Haraldsson B, Hansson O, O'Connor WT, Brundin P. Altered striatal amino acid neurotransmitter release monitored using microdialysis in R6/1 Huntington transgenic mice. Eur J Neurosci 2001; 13:206-10. [PMID: 11135020 DOI: 10.1046/j.0953-816x.2000.01379.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Huntington's disease is an autosomal dominant disease which presents with striatal and cortical degeneration causing involuntary movements, dementia and emotional changes. We employed 16-week-old transgenic Huntington mice (R6/1 line developed by Bates and coworkers) that express exon 1 of the mutant human Huntington gene with 115 CAG triplet repeats. At this age, R6/1 mice do not exhibit an overt neurological phenotype nor any striatal neuronal loss. Using microdialysis, we monitored basal and intrastriatal N-methyl D-aspartate (NMDA, 100 microM, 15 min)- and KCl (100 mM, 15 min)-induced increases in local aspartate, glutamate and GABA release in halothane-anaesthetized transgenic mice and wild-type controls. Basal striatal dialysate glutamate levels were reduced by 42% in R6/1 mice whilst aspartate and GABA levels did not differ from those observed in control mice. Intrastriatal NMDA was associated with significantly greater aspartate (at 15 min) and GABA (at 30 min) levels in the R6/1 mice compared to controls, whilst glutamate release rapidly increased to the same extent in both groups. Intrastriatal KCl was associated with enhanced increases (30 min) in local aspartate and glutamate release in the R6/1 mice above those observed in controls whilst the rapid increase (15 min) in GABA release was similar in both groups. The results provide compelling evidence for specific alterations in both basal, as well as NMDA- and KCl-induced, release of striatal amino acid neurotransmitters in this transgenic model of Huntington's disease, even in the absence of manifest neurodegeneration.
Collapse
Affiliation(s)
- B Nicniocaill
- Department of Human Anatomy & Physiology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
37
|
Antonelli T, Ferioli V, Lo Gallo G, Tomasini MC, Fernandez M, O'Connor WT, Glennon JC, Tanganelli S, Ferraro L. Differential effects of acute and short-term lithium administration on dialysate glutamate and GABA levels in the frontal cortex of the conscious rat. Synapse 2000; 38:355-62. [PMID: 11020239 DOI: 10.1002/1098-2396(20001201)38:3<355::aid-syn15>3.0.co;2-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we employed in vivo microdialysis in the frontal cortex of the awake rat to investigate the effects of acute and short-term (twice daily, 3 days) lithium chloride administration (1, 2, and 4 meq/kg, s.c.) on local dialysate glutamate and GABA levels. Acute lithium (1 meq/kg) failed to influence cortical glutamate levels while the higher (2 and 4 meq/kg) doses increased (+38 +/- 6% of basal levels) and reduced (-27 +/- 4%) cortical glutamate levels, respectively. Cortical GABA levels were affected by acute lithium only at the highest 4 meq/kg dose (+62 +/- 6%). Furthermore, these effects were prevented by tetrodotoxin (1 microM) and low-calcium (0.2 mM) medium perfusion. Following short-term administration, lithium increased (+58 +/- 4%) cortical dialysate glutamate levels at the 1 meq/kg dose, was ineffective at 2 meq/kg, while the effect of the 4 meq/kg dose was similar to that observed after acute administration. Interestingly, intracortical perfusion with the GABA(B) receptor antagonist CGP 35348 (100 microM) reversed the acute lithium (4 meq/kg)-induced decrease in glutamate levels. Taken together, these findings indicate a differential dose and duration dependent effect of lithium on cortical dialysate glutamate levels involving both a direct enhancement and an indirect inhibition that is mediated via an activation of local GABA(B) receptor. These findings may be relevant for the therapeutic effects of the drug.
Collapse
Affiliation(s)
- T Antonelli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sotty F, Brun P, Leonetti M, Steinberg R, Soubrié P, Renaud B, Suaud-Chagny MF. Comparative effects of neurotensin, neurotensin(8-13) and [D-Tyr(11)]neurotensin applied into the ventral tegmental area on extracellular dopamine in the rat prefrontal cortex and nucleus accumbens. Neuroscience 2000; 98:485-92. [PMID: 10869842 DOI: 10.1016/s0306-4522(00)90023-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ejections of 10(-5)-10(-3)M neurotensin into the ventral tegmental area increased dopamine efflux measured by electrochemical approaches in the prefrontal cortex of anaesthetized rats. In the same conditions, the effects evoked on dopamine efflux by 10(-5)M neurotensin(8-13) and [D-Tyr(11)]neurotensin were different from each other and depended on the explored area: the prefrontal cortex and the caudal and rostral nucleus accumbens. In the prefrontal cortex, neurotensin(8-13) was as potent as neurotensin, whereas [D-Tyr(11)]neurotensin was ineffective. In the caudal nucleus accumbens, when considering the initial intensity of the effect, neurotensin(8-13) and neurotensin appeared more potent than [D-Tyr(11)]neurotensin. In contrast, in the rostral nucleus accumbens, neurotensin(8-13) was less potent than [D-Tyr(11)]neurotensin and neurotensin. These results support the differential involvement of two pharmacologically distinct neurotensin receptor entities on ventral tegmental area neurons in the modulation of mesolimbic and mesocortical dopaminergic activity.
Collapse
Affiliation(s)
- F Sotty
- Laboratoire de Neuropharmacologie et Neurochimie, INSERM U 512, Faculté de Pharmacie, Université Claude Bemard-Lyon I, 8 avenue Rockefeller, 69373 Cedex 08, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Ferraro L, Tomasini MC, Siniscalchi A, Fuxe K, Tanganelli S, Antonelli T. Neurotensin increases endogenous glutamate release in rat cortical slices. Life Sci 2000; 66:927-36. [PMID: 10714893 DOI: 10.1016/s0024-3205(99)00676-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present study, the effects of the tridecapeptide neurotensin [NT(1-13)] and its fragments, NT(1-7) and NT(8-13), on endogenous glutamate release from rat cortical slices, were evaluated. NT(1-13) (100-1000 nM) slightly increased spontaneous glutamate release, while it was ineffective at 1 and 10 nM concentrations. Neither the biologically active NT fragment NT(8-13) nor the inactive one NT(1-7) affected basal glutamate release. NT(1-13) (1-1000 nM) enhanced potassium (35 mM)-evoked glutamate release displaying a bell-shaped concentration response curve. In addition NT(8-13) (10 nM) increased K+-evoked-glutamate release similarly to the parent peptide (10 nM), while the biologically inactive fragment NT(1-7) (10-100 nM) was ineffective. The effects of NT(1-13) and NT(8-13) were fully counteracted by the selective neurotensin receptor antagonist SR48692 (100 nM). These findings suggest that NT plays a role in regulating cortical glutamate transmission.
Collapse
Affiliation(s)
- L Ferraro
- Department of Clinical and Experimental Medicine, University of Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Dual probe microdialysis was employed in intact rat brain to investigate the effect of intrastriatal perfusion with selective dopamine D1 and D2 receptor agonists and with c-fos antisense oligonucleotide on (a) local GABA release in the striatum; (b) the internal segment of the globus pallidus and the substantia nigra pars reticulata, which is the output site of the strionigral GABA pathway; and (c) the external segment of the globus pallidus, which is the output site of the striopallidal GABA pathway. The data provide functional in vivo evidence for a selective dopamine D1 receptor-mediated activation of the direct strionigral GABA pathway and a selective dopamine D2 receptor inhibition of the indirect striopallidal GABA pathway and provides a neuronal substrate for parallel processing in the basal ganglia regulation of motor function. Taken together, these findings offer new therapeutic strategies for the treatment of dopamine-linked disorders such as Parkinson's disease, Huntington's disease, and schizophrenia.
Collapse
Affiliation(s)
- W T O'Connor
- Department of Human Anatomy and Physiology, University College, Dublin, Ireland.
| |
Collapse
|
41
|
The striatal neurotensin receptor modulates striatal and pallidal glutamate and GABA release: functional evidence for a pallidal glutamate-GABA interaction via the pallidal-subthalamic nucleus loop. J Neurosci 1998. [PMID: 9712666 DOI: 10.1523/jneurosci.18-17-06977.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, we used dual-probe microdialysis to investigate the effects of intrastriatal perfusion with neurotensin (NT) on striatal and pallidal glutamate and GABA release. The role of the pallidal GABAA receptor in the intrastriatal NT-induced increase in pallidal glutamate release was also investigated. Intrastriatal NT (100 and 300 nM) increased striatal glutamate and GABA (100 nM, 155 +/- 9 and 141 +/- 6%, respectively; 300 nM, 179 +/- 8 and 166 +/- 11%, respectively) release, as well as pallidal glutamate and GABA (100 nM, 144 +/- 8 and 130 +/- 5%; 300 nM, 169 +/- 9 and 157 +/- 8%, respectively) release. These effects were dose-dependently antagonized by the NT receptor antagonist 2-[(1-(7-chloro-4-quinolinyl)-5-(2, 6-dimethoxy-phenyl)pyrazol-3-yl)carboxylamino]tricyclo)3.3.1 .1.3. 7)-decan-2-carboxylic acid (SR48692). Intrasubthalamic injection of the GABAA receptor antagonist (-)-bicuculline (10 pmol/100 nl, 30 sec) rapidly increased pallidal glutamate release, whereas the intrastriatal NT-induced increase in pallidal glutamate release was counteracted by intrapallidal perfusion with (-)-bicuculline, suggesting that an increase in striopallidal GABA-mediated inhibition of the GABAergic pallidal-subthalamic pathway results in an increased glutamatergic drive in the subthalamic-pallidal pathway. These results demonstrate a tonic pallidal GABA-mediated inhibition of excitatory subthalamic-pallidal neurons and strengthen the evidence for a functional role of NT in the regulation of glutamate and GABA transmission in the basal ganglia. The ability of intrastriatal SR48692 to counteract the NT-induced increase in both striatal and pallidal glutamate and GABA release suggests that blockade of the striatal NT receptor may represent a possible new therapeutic strategy in the treatment of those hypokinetic disorders implicated in disorders of the indirect pathway mediating motor inhibition.
Collapse
|