1
|
Cortes N, Ladret HJ, Abbas-Farishta R, Casanova C. The pulvinar as a hub of visual processing and cortical integration. Trends Neurosci 2024; 47:120-134. [PMID: 38143202 DOI: 10.1016/j.tins.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
The pulvinar nucleus of the thalamus is a crucial component of the visual system and plays significant roles in sensory processing and cognitive integration. The pulvinar's extensive connectivity with cortical regions allows for bidirectional communication, contributing to the integration of sensory information across the visual hierarchy. Recent findings underscore the pulvinar's involvement in attentional modulation, feature binding, and predictive coding. In this review, we highlight recent advances in clarifying the pulvinar's circuitry and function. We discuss the contributions of the pulvinar to signal modulation across the global cortical network and place these findings within theoretical frameworks of cortical processing, particularly the global neuronal workspace (GNW) theory and predictive coding.
Collapse
Affiliation(s)
- Nelson Cortes
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Hugo J Ladret
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, 13005, France
| | - Reza Abbas-Farishta
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
2
|
Casanova C, Chalupa LM. The dorsal lateral geniculate nucleus and the pulvinar as essential partners for visual cortical functions. Front Neurosci 2023; 17:1258393. [PMID: 37712093 PMCID: PMC10498387 DOI: 10.3389/fnins.2023.1258393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
In most neuroscience textbooks, the thalamus is presented as a structure that relays sensory signals from visual, auditory, somatosensory, and gustatory receptors to the cerebral cortex. But the function of the thalamic nuclei goes beyond the simple transfer of information. This is especially true for the second-order nuclei, but also applies to first-order nuclei. First order thalamic nuclei receive information from the periphery, like the dorsal lateral geniculate nucleus (dLGN), which receives a direct input from the retina. In contrast, second order thalamic nuclei, like the pulvinar, receive minor or no input from the periphery, with the bulk of their input derived from cortical areas. The dLGN refines the information received from the retina by temporal decorrelation, thereby transmitting the most "relevant" signals to the visual cortex. The pulvinar is closely linked to virtually all visual cortical areas, and there is growing evidence that it is necessary for normal cortical processing and for aspects of visual cognition. In this article, we will discuss what we know and do not know about these structures and propose some thoughts based on the knowledge gained during the course of our careers. We hope that these thoughts will arouse curiosity about the visual thalamus and its important role, especially for the next generation of neuroscientists.
Collapse
Affiliation(s)
| | - Leo M. Chalupa
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
3
|
Kirchgessner MA, Franklin AD, Callaway EM. Distinct "driving" versus "modulatory" influences of different visual corticothalamic pathways. Curr Biol 2021; 31:5121-5137.e7. [PMID: 34614389 PMCID: PMC8665059 DOI: 10.1016/j.cub.2021.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/25/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023]
Abstract
Higher-order (HO) thalamic nuclei interact extensively and reciprocally with the cerebral cortex. These corticothalamic (CT) interactions are thought to be important for sensation and perception, attention, and many other important brain functions. CT projections to HO thalamic nuclei, such as the visual pulvinar, originate from two different excitatory populations in cortical layers 5 and 6, whereas first-order nuclei (such as the dorsolateral geniculate nucleus; dLGN) only receive layer 6 CT input. It has been proposed that these layer 5 and layer 6 CT pathways have different functional influences on the HO thalamus, but this has never been directly tested. By optogenetically inactivating different CT populations in the primary visual cortex (V1) and recording single-unit activity from V1, dLGN, and pulvinar of awake mice, we demonstrate that layer 5, but not layer 6, CT projections drive visual responses in the pulvinar, even while both pathways provide retinotopic, baseline excitation to their thalamic targets. Inactivating the superior colliculus also suppressed visual responses in the same subregion of the pulvinar, demonstrating that cortical layer 5 and subcortical inputs both contribute to HO visual thalamic activity-even at the level of putative single neurons. Altogether, these results indicate a functional division of "driver" and "modulator" CT pathways from V1 to the visual thalamus in vivo.
Collapse
Affiliation(s)
- Megan A Kirchgessner
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis D Franklin
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Abbas Farishta R, Boire D, Casanova C. Hierarchical Organization of Corticothalamic Projections to the Pulvinar. Cereb Cortex Commun 2021; 1:tgaa030. [PMID: 34296104 PMCID: PMC8152833 DOI: 10.1093/texcom/tgaa030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Signals from lower cortical visual areas travel to higher-order areas for further processing through cortico-cortical projections, organized in a hierarchical manner. These signals can also be transferred between cortical areas via alternative cortical transthalamic routes involving higher-order thalamic nuclei like the pulvinar. It is unknown whether the organization of transthalamic pathways may reflect the cortical hierarchy. Two axon terminal types have been identified in corticothalamic (CT) pathways: the types I (modulators) and II (drivers) characterized by thin axons with small terminals and by thick axons and large terminals, respectively. In cats, projections from V1 to the pulvinar complex comprise mainly type II terminals, whereas those from extrastriate areas include a combination of both terminals suggesting that the nature of CT terminals varies with the hierarchical order of visual areas. To test this hypothesis, distribution of CT terminals from area 21a was charted and compared with 3 other visual areas located at different hierarchical levels. Results demonstrate that the proportion of modulatory CT inputs increases along the hierarchical level of cortical areas. This organization of transthalamic pathways reflecting cortical hierarchy provides new and fundamental insights for the establishment of more accurate models of cortical signal processing along transthalamic cortical pathways.
Collapse
Affiliation(s)
| | - Denis Boire
- École d'optométrie, Université de Montréal, Québec, Canada.,Département d'anatomie, Université du Québec à Trois-Rivières, Québec, Canada
| | | |
Collapse
|
5
|
de Souza BOF, Cortes N, Casanova C. Pulvinar Modulates Contrast Responses in the Visual Cortex as a Function of Cortical Hierarchy. Cereb Cortex 2021; 30:1068-1086. [PMID: 31408095 PMCID: PMC7132966 DOI: 10.1093/cercor/bhz149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/26/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
The pulvinar is the largest extrageniculate visual nucleus in mammals. Given its extensive reciprocal connectivity with the visual cortex, it allows the cortico-thalamocortical transfer of visual information. Nonetheless, knowledge of the nature of the pulvinar inputs to the cortex remains elusive. We investigated the impact of silencing the pulvinar on the contrast response function of neurons in 2 distinct hierarchical cortical areas in the cat (areas 17 and 21a). Pulvinar inactivation altered the response gain in both areas, but with larger changes observed in area 21a. A theoretical model was proposed, simulating the pulvinar contribution to cortical contrast responses by modifying the excitation-inhibition balanced state of neurons across the cortical hierarchy. Our experimental and theoretical data showed that the pulvinar exerts a greater modulatory influence on neuronal activity in area 21a than in the primary visual cortex, indicating that the pulvinar impact on cortical visual neurons varies along the cortical hierarchy.
Collapse
Affiliation(s)
| | - Nelson Cortes
- School of Optometry, Université de Montréal, Quebec, CP 6128 Canada
| | | |
Collapse
|
6
|
de Souza BOF, Frigon ÉM, Tremblay-Laliberté R, Casanova C, Boire D. Laminar distribution of cortical projection neurons to the pulvinar: A comparative study in cats and mice. J Comp Neurol 2020; 529:2055-2069. [PMID: 33226127 DOI: 10.1002/cne.25072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 01/19/2023]
Abstract
The cortical processing of visual information is thought to follow a hierarchical framework. This framework of connections between visual areas is based on the laminar patterns of direct feedforward and feedback cortico-cortical projections. However, this view ignores the cortico-thalamo-cortical projections to the pulvinar nucleus in the thalamus, which provides an alternative transthalamic information transfer between cortical areas. It was proposed that corticothalamic (CT) pathways follow a similar hierarchical pattern as cortico-cortical connections. Two main types of CT projections have been recognized: drivers and modulators. Drivers originate mainly in Layer 5 whereas modulators are from Layer 6. Little is known about the laminar distribution of these projections to the pulvinar across visual cortical areas. Here, we analyzed the distribution of CT neurons projecting to the lateral posterior (LP) thalamus in two species: cats and mice. Injections of the retrograde tracer fragment B of cholera toxin (CTb) were performed in the LP. The morphology and cortical laminar distribution of CTb-labeled neurons was assessed. In cats, neurons were mostly found in Layer 6 except in Area 17, where they were mostly in Layer 5. In contrast, CT neurons in mice were mostly located in Layer 6 across all areas. Thus, our results demonstrate that CT projections in mice do not follow the same organization as cats suggesting that the transthalamic pathways play distinct roles in these species.
Collapse
Affiliation(s)
| | - Éve-Marie Frigon
- Département d'Anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | - Denis Boire
- Département d'Anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,École d'Optométrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Distribution and Morphology of Cortical Terminals in the Cat Thalamus from the Anterior Ectosylvian Sulcus. Sci Rep 2019; 9:3075. [PMID: 30816175 PMCID: PMC6395774 DOI: 10.1038/s41598-019-39327-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/22/2019] [Indexed: 11/08/2022] Open
Abstract
Two main types of cortical terminals have been identified in the cat thalamus. Large (type II) have been proposed to drive the response properties of thalamic cells while smaller (type I) are believed to modulate those properties. Among the cat's visual cortical areas, the anterior ectosylvian visual area (AEV) is considered as one of the highest areas in the hierarchical organization of the visual system. Whereas the connections from the AEV to the thalamus have been recognized, their nature (type I or II) is presently not known. In this study, we assessed and compared the relative contribution of type I and type II inputs to thalamic nuclei originating from the AEV. The anterograde tracer BDA was injected in the AEV of five animals. Results show that (1) both type I and II terminals from AEV are present in the Lateral Posterior- Pulvinar complex, the lateral median suprageniculate complex and the medial and dorsal geniculate nuclei (2) type I terminals significantly outnumber the type II terminals in almost all nuclei studied. Our results indicate that neurons in the AEV are more likely to modulate response properties in the thalamus rather than to determine basic organization of receptive fields of thalamic cells.
Collapse
|
8
|
Huang JY, Wang C, Dreher B. Silencing "Top-Down" Cortical Signals Affects Spike-Responses of Neurons in Cat's "Intermediate" Visual Cortex. Front Neural Circuits 2017; 11:27. [PMID: 28487637 PMCID: PMC5404610 DOI: 10.3389/fncir.2017.00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/04/2017] [Indexed: 11/13/2022] Open
Abstract
We examined the effects of reversible inactivation of a higher-order, pattern/form-processing, postero-temporal visual (PTV) cortex on the background activities and spike-responses of single neurons in the ipsilateral cytoarchitectonic area 19 (putative area V3) of anesthetized domestic cats. Very occasionally (2/28), silencing recurrent “feedback” signals from PTV, resulted in significant and reversible reduction in background activity of area 19 neurons. By contrast, in large proportions of area 19 neurons, PTV inactivation resulted in: (i) significant reversible changes in the peak magnitude of their responses to visual stimuli (35.5%; 10/28); (ii) substantial reversible changes in direction selectivity indices (DSIs; 43%; 12/28); and (iii) reversible, upward shifts in preferred stimulus velocities (37%; 7/19). Substantial (≥20°) shifts in preferred orientation and/or substantial (≥20°) changes in width of orientation-tuning curves of area 19 neurons were however less common (26.5%; 4/15). In a series of experiments conducted earlier, inactivation of PTV also induced upward shifts in the preferred velocities of the ipsilateral cytoarchitectonic area 17 (V1) neurons responding optimally at low velocities. These upward shifts in preferred velocities of areas 19 and 17 neurons were often accompanied by substantial increases in DSIs. Thus, in both the primary visual cortex and the “intermediate” visual cortex (area 19), feedback from PTV plays a modulatory role in relation to stimulus velocity preferences and/or direction selectivity, that is, the properties which are usually believed to be determined by the inputs from the dorsal thalamus and/or feedforward inputs from the primary visual cortices. The apparent specialization of area 19 for processing information about stationary/slowly moving visual stimuli is at least partially determined, by the feedback from the higher-order pattern-processing visual area. Overall, the recurrent signals from the higher-order, pattern/form-processing visual cortex appear to play an important role in determining the magnitude of spike-responses and some “motion-related” receptive field properties of a substantial proportion of neurons in the intermediate form-processing visual area—area 19.
Collapse
Affiliation(s)
- Jin Y Huang
- Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia.,Discipline of Biomedical Science, School of Medical Sciences, The University of SydneySydney, NSW, Australia.,The Bosch Institute, The University of SydneySydney, NSW, Australia
| | - Chun Wang
- Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia.,The Bosch Institute, The University of SydneySydney, NSW, Australia
| | - Bogdan Dreher
- Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia.,The Bosch Institute, The University of SydneySydney, NSW, Australia
| |
Collapse
|
9
|
Spatiotemporal Profile of Voltage-Sensitive Dye Responses in the Visual Cortex of Tree Shrews Evoked by Electric Microstimulation of the Dorsal Lateral Geniculate and Pulvinar Nuclei. J Neurosci 2015; 35:11891-6. [PMID: 26311771 DOI: 10.1523/jneurosci.0717-15.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The primary visual cortex (V1) receives its main thalamic drive from the dorsal lateral geniculate nucleus (dLGN) through synaptic contacts terminating primarily in cortical layer IV. In contrast, the projections from the pulvinar nucleus to the cortex are less clearly defined. The pulvinar projects predominantly to layer I in V1, and layer IV in extrastriate areas. These projection patterns suggest that the pulvinar nucleus most strongly influences (drives) activity in cortical areas beyond V1. Should this hypothesis be true, one would expect the spatiotemporal responses evoked by pulvinar activation to be different in V1 and extrastriate areas, reflecting the different connectivity patterns. We investigated this issue by analyzing the spatiotemporal dynamics of cortical visual areas' activity following thalamic electrical microstimulation in tree shrews, using optical imaging and voltage-sensitive dyes. As expected, electrical stimulation of the dLGN induced fast and local responses in V1, as well as in extrastriate and contralateral cortical areas. In contrast, electrical stimulation of the pulvinar induced fast and local responses in extrastriate areas, followed by weak and diffuse activation in V1 and contralateral cortical areas. This study highlights spatiotemporal cortical activation characteristics induced by stimulation of first (dLGN) and high-order (pulvinar) thalamic nuclei. SIGNIFICANCE STATEMENT The pulvinar nucleus represents the main extrageniculate thalamic visual structure in higher-order mammals, but its exact role remains enigmatic. The pulvinar receive prominent inputs from virtually all visual cortical areas. Cortico-thalamo-cortical pathways through the pulvinar nuclei may then provide a complementary route for corticocortical information flow. One step toward the understanding of the role of transthalamic corticocortical pathways is to determine the nature of the signals transmitted between the cortex and the thalamus. By performing, for the first time, high spatiotemporal mesoscopic imaging on tree shrews (the primate's closest relative) through the combination of voltage-sensitive dye recordings and brain stimulation, we revealed clear evidence of distinct thalamocortical functional connectivity pattern originating from the geniculate nucleus and the pulvinar nuclei.
Collapse
|
10
|
Piché M, Thomas S, Casanova C. Spatiotemporal profiles of receptive fields of neurons in the lateral posterior nucleus of the cat LP-pulvinar complex. J Neurophysiol 2015; 114:2390-403. [PMID: 26289469 DOI: 10.1152/jn.00649.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/16/2015] [Indexed: 11/22/2022] Open
Abstract
The pulvinar is the largest extrageniculate thalamic visual nucleus in mammals. It establishes reciprocal connections with virtually all visual cortexes and likely plays a role in transthalamic cortico-cortical communication. In cats, the lateral posterior nucleus (LP) of the LP-pulvinar complex can be subdivided in two subregions, the lateral (LPl) and medial (LPm) parts, which receive a predominant input from the striate cortex and the superior colliculus, respectively. Here, we revisit the receptive field structure of LPl and LPm cells in anesthetized cats by determining their first-order spatiotemporal profiles through reverse correlation analysis following sparse noise stimulation. Our data reveal the existence of previously unidentified receptive field profiles in the LP nucleus both in space and time domains. While some cells responded to only one stimulus polarity, the majority of neurons had receptive fields comprised of bright and dark responsive subfields. For these neurons, dark subfields' size was larger than that of bright subfields. A variety of receptive field spatial organization types were identified, ranging from totally overlapped to segregated bright and dark subfields. In the time domain, a large spectrum of activity overlap was found, from cells with temporally coinciding subfield activity to neurons with distinct, time-dissociated subfield peak activity windows. We also found LP neurons with space-time inseparable receptive fields and neurons with multiple activity periods. Finally, a substantial degree of homology was found between LPl and LPm first-order receptive field spatiotemporal profiles, suggesting a high integration of cortical and subcortical inputs within the LP-pulvinar complex.
Collapse
Affiliation(s)
- Marilyse Piché
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Thomas
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montréal, Québec, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Cortes N, van Vreeswijk C. The role of pulvinar in the transmission of information in the visual hierarchy. Front Comput Neurosci 2012; 6:29. [PMID: 22654750 PMCID: PMC3361059 DOI: 10.3389/fncom.2012.00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/23/2012] [Indexed: 11/13/2022] Open
Abstract
Visual receptive field (RF) attributes in visual cortex of primates have been explained mainly from cortical connections: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output presents much more sensitivity to contrast and has a similar level of contrast invariance of the tuning.
Collapse
Affiliation(s)
- Nelson Cortes
- Laboratoire de Neurophysique et Physiologie, CNRS UMS 8119, Université Paris Descartes Paris, France
| | | |
Collapse
|
12
|
Girardin CC, Martin KAC. Cooling in cat visual cortex: stability of orientation selectivity despite changes in responsiveness and spike width. Neuroscience 2009; 164:777-87. [PMID: 19660532 DOI: 10.1016/j.neuroscience.2009.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
Cooling is one of several reversible methods used to inactivate local regions of the brain. Here the effect of cooling was studied in the primary visual cortex (area 17) of anaesthetized and paralyzed cats. When the cortical surface temperature was cooled to about 0 degrees C, the temperature 2 mm below the surface was 20 degrees C. The lateral spread of cold was uniform over a distance of at least approximately 700 microm from the cooling loop. When the cortex was cooled the visually evoked responses to drifting sine wave gratings were strongly reduced in proportion to the cooling temperature, but the mean spontaneous activity of cells decreased only slightly. During cooling the strongest effect on the orientation tuning curve was on the peak response and the orientation bandwidth did not change, suggesting a divisive mechanism. Our results show that the cortical circuit is robust in the face of cooling and retains its essential functionality, albeit with reduced responsiveness. The width of the extracellular spike waveform measured at half height increased by 50% on average during cooling in almost all cases and recovered after re-warming. The increase in spike width was inversely correlated with the change in response amplitude to the optimal stimulus. The extracellular spike shape can thus be used as a reliable and fast method to assess whether changes in the responses of a neuron are due to direct cooling or distant effects on a source of its afferents.
Collapse
Affiliation(s)
- C C Girardin
- Institute of Neuroinformatics, ETH/University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|
13
|
Fitzgibbon T. Do first order and higher order regions of the thalamic reticular nucleus have different developmental timetables? Exp Neurol 2007; 204:339-54. [PMID: 17234184 DOI: 10.1016/j.expneurol.2006.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 10/27/2006] [Accepted: 11/29/2006] [Indexed: 12/20/2022]
Abstract
The thalamic reticular nucleus (TRN) can been subdivided into sectors based on thalamic and cortical input. Additionally, in carnivores the visual sector of the TRN can be subdivided into first order (perigeniculate nucleus: PGN) and higher order (TRN) regions. This report examines whether TRN development reflects the nature of its higher order visual connections. 170 cells from 12 kittens aged between postnatal day 0 (P0) and P125 were fully analysed after single cell injections in 400-500 microm fixed brain slices. TRN cells have a period of exuberant dendritic branching that peaks between P3 and P12, around the time of eye opening (P7), followed by branch pruning until P68. Similarly, most dendritic appendages are added between P12 and P22 followed by pruning, which is also largely complete by P68. Most branch points occur within the first 10-30% of the dendritic arbor, peaking between 10 and 20% (roughly equivalent to 100 mum from the soma), while appendages were concentrated between 20 and 30% of the arbour; appendages tend to be distributed over a larger proportion of the arbor up to P14 compared to later ages. TRN and PGN maturation were not significantly different. The present data suggest that clear distinctions cannot be made between the maturation of first and higher order pathways and indicate that GABAergic cells of the ventral thalamus may mature earlier than relay cells of the dorsal thalamus. Furthermore, dendritic development in the TRN may be less dependent on extrinsic factors than an intrinsic growth pattern or factors other than a functional hierarchy within the visual pathway.
Collapse
Affiliation(s)
- Thomas Fitzgibbon
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
14
|
Wróbel A, Ghazaryan A, Bekisz M, Bogdan W, Kamiński J. Two streams of attention-dependent beta activity in the striate recipient zone of cat's lateral posterior-pulvinar complex. J Neurosci 2007; 27:2230-40. [PMID: 17329420 PMCID: PMC6673477 DOI: 10.1523/jneurosci.4004-06.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 01/22/2007] [Accepted: 01/22/2007] [Indexed: 11/21/2022] Open
Abstract
Local field potentials from different visual cortical areas and subdivisions of the cat's lateral posterior-pulvinar complex of the thalamus (LP-P) were recorded during a behavioral task based on delayed spatial discrimination of visual or auditory stimuli. During visual but not auditory attentive tasks, we observed an increase of beta activity (12-25 Hz) as calculated from signals recorded from the caudal part of the lateral zone of the LP-P (LPl-c) as well as from cortical areas 17 and 18 and the complex located at the middle suprasylvian sulcus (MSS). This beta activity appeared only in the trials that ended with a successful response, proving its relationship to the mechanism of visual attention. In contrast, no enhanced beta activity was observed in the rostral part of the lateral zone of the LP-P and in the pulvinar proper. Two subregions of LPl-c (ventromedial and dorsolateral) were distinguished by visually related, attentional beta activity of low (12-18 Hz) and high (18-25 Hz) frequencies, respectively. At the same time, area 17 exhibited attentional activation in the whole beta range, and an increase of power in low-frequency beta was observed in the medial bank of MSS, whereas cortical area 18 and the lateral bank of the MSS were activated in the high beta range. Phase-correlation analysis revealed that two distinct corticothalamic systems were synchronized by the beta activity of different frequencies. One comprised of cortical area 17, ventromedial region of LPl-c, and medial MSS, the second involved area 18 and the dorsolateral LPl-c. Our observations suggest that LPl-c belongs to the wide corticothalamic attentional system, which is functionally segregated by distinct streams of beta activity.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
15
|
HUPPÉ-GOURGUES F, BICKFORD ME, BOIRE D, PTITO M, CASANOVA C. Distribution, morphology, and synaptic targets of corticothalamic terminals in the cat lateral posterior-pulvinar complex that originate from the posteromedial lateral suprasylvian cortex. J Comp Neurol 2006; 497:847-63. [PMID: 16802329 PMCID: PMC2561298 DOI: 10.1002/cne.21024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lateral posterior (LP) nucleus is a higher order thalamic nucleus that is believed to play a key role in the transmission of visual information between cortical areas. Two types of cortical terminals have been identified in higher order nuclei, large (type II) and smaller (type I), which have been proposed to drive and modulate, respectively, the response properties of thalamic cells (Sherman and Guillery [1998] Proc. Natl. Acad. Sci. U. S. A. 95:7121-7126). The aim of this study was to assess and compare the relative contribution of driver and modulator inputs to the LP nucleus that originate from the posteromedial part of the lateral suprasylvian cortex (PMLS) and area 17. To achieve this goal, the anterograde tracers biotinylated dextran amine (BDA) or Phaseolus vulgaris leucoagglutinin (PHAL) were injected into area 17 or PMLS. Results indicate that area 17 injections preferentially labelled large terminals, whereas PMLS injections preferentially labelled small terminals. A detailed analysis of PMLS terminal morphology revealed at least four categories of terminals: small type I terminals (57%), medium-sized to large singletons (30%), large terminals in arrangements of intermediate complexity (8%), and large terminals that form arrangements resembling rosettes (5%). Ultrastructural analysis and postembedding immunocytochemical staining for gamma-aminobutyric acid (GABA) distinguished two types of labelled PMLS terminals: small profiles with round vesicles (RS profiles) that contacted mostly non-GABAergic dendrites outside of glomeruli and large profiles with round vesicles (RL profiles) that contacted non-GABAergic dendrites (55%) and GABAergic dendritic terminals (45%) in glomeruli. RL profiles likely include singleton, intermediate, and rosette terminals, although future studies are needed to establish definitively the relationship between light microscopic morphology and ultrastructural features. All terminals types appeared to be involved in reciprocal corticothalamocortical connections as a result of an intermingling of terminals labelled by anterograde transport and cells labelled by retrograde transport. In conclusion, our results indicate that the origin of the driver inputs reaching the LP nucleus is not restricted to the primary visual cortex and that extrastriate visual areas might also contribute to the basic organization of visual receptive fields of neurons in this higher order nucleus.
Collapse
Affiliation(s)
- F. HUPPÉ-GOURGUES
- Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - M. E. BICKFORD
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - D. BOIRE
- Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - M. PTITO
- Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - C. CASANOVA
- Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
- Correspondence to: Christian Casanova, Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7. E-mail:
| |
Collapse
|
16
|
Paróczy Z, Nagy A, Márkus Z, Waleszczyk WJ, Wypych M, Benedek G. Spatial and temporal visual properties of single neurons in the suprageniculate nucleus of the thalamus. Neuroscience 2006; 137:1397-404. [PMID: 16359815 DOI: 10.1016/j.neuroscience.2005.10.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/12/2005] [Accepted: 10/14/2005] [Indexed: 11/18/2022]
Abstract
The spatial and temporal visual sensitivity to drifting sinusoidal gratings was studied in 105 neurons of the suprageniculate nucleus of the feline thalamus. Extracellular single-unit recordings were performed in halothane-anesthetized, immobilized, artificially ventilated cats. Most suprageniculate nucleus cells were strongly sensitive to the direction of drifting gratings. The suprageniculate nucleus units had a clear preference for very low spatial frequencies with a mean of 0.05 cycle/deg. The spatial resolution was also very low with a mean of 0.16 cycle/deg. Most of the cells displayed low-pass spatial tuning characteristics, while the remainder of the units were band-pass tuned. The suprageniculate nucleus units were extremely narrowly tuned, to spatial frequencies with a mean spatial bandwidth of 1.07 octaves. A majority of the units responded optimally to high temporal frequencies, with a mean of 8.53 Hz. The temporal frequency tuning functions predominantly revealed a band-pass character, with a mean temporal bandwidth of 1.66 octaves. These results demonstrate that the neurons in the suprageniculate nucleus display particular spatial and temporal characteristics. The spatial and temporal tuning properties of the suprageniculate nucleus neurons are very similar to those of the superior colliculus and the anterior ectosylvian cortex, structures that provide the main visual afferentation toward the suprageniculate nucleus. This suggests their common function in motion perception, and especially in the recording of movements of the visual environment relative to the body, and the related behavioral action.
Collapse
Affiliation(s)
- Z Paróczy
- Department of Physiology, Faculty of Medicine, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Dóm tér 10., H-6720 Szeged, P.O. 427, Hungary
| | | | | | | | | | | |
Collapse
|
17
|
Saint-Amour D, Walsh V, Guillemot JP, Lassonde M, Lepore F. Role of primary visual cortex in the binocular integration of plaid motion perception. Eur J Neurosci 2005; 21:1107-15. [PMID: 15787716 DOI: 10.1111/j.1460-9568.2005.03914.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study assessed the early mechanisms underlying perception of plaid motion. Thus, two superimposed gratings drifting in a rightward direction composed plaid stimuli whose global motion direction was perceived as the vector sum of the two components. The first experiment was aimed at comparing the perception of plaid motion when both components were presented to both eyes (dioptic) or separately to each eye (dichoptic). When components of the patterns had identical spatial frequencies, coherent motion was correctly perceived under dioptic and dichoptic viewing condition. However, the perceived direction deviated from the predicted direction when spatial frequency differences were introduced between components in both conditions. The results suggest that motion integration follows similar rules for dioptic and dichoptic plaids even though performance under dichoptic viewing did not reach dioptic levels. In the second experiment, the role of early cortical areas in the processing of both plaids was examined. As convergence of monocular inputs is needed for dichoptic perception, we tested the hypothesis that primary visual cortex (V1) is required for dichoptic plaid processing by delivering repetitive transcranial magnetic stimulation to this area. Ten minutes of magnetic stimulation disrupted subsequent dichoptic perception for approximately 15 min, whereas no significant changes were observed for dioptic plaid perception. Taken together, these findings suggest that V1 is not crucial for the processing of dioptic plaids but it is necessary for the binocular integration underlying dichoptic plaid motion perception.
Collapse
Affiliation(s)
- Dave Saint-Amour
- Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7
| | | | | | | | | |
Collapse
|
18
|
Rushmore RJ, Payne BR, Lomber SG. Functional impact of primary visual cortex deactivation on subcortical target structures in the thalamus and midbrain. J Comp Neurol 2005; 488:414-26. [PMID: 15973682 DOI: 10.1002/cne.20597] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The functional relationships between the primary visual cortex and its major subcortical target structures have long been a subject of interest. We studied these relationships by using localized cooling deactivation to silence portions of primary visual cortex and measuring 2-deoxyglucose (2DG) uptake to assess neural activity in subcortical and midbrain targets. We focused analysis on the largest subcortical targets of primary visual cortex: the superior colliculus (SC), the dorsal lateral geniculate nucleus of the thalamus (dLGN), and the lateral division of the lateral posterior nucleus of the thalamus (LPL). We found that localized cooling of different regions of primary visual cortex caused specific decreases in 2DG uptake in target structures such that the location of 2DG decrease varied according to joint retinotopy, and the magnitude of the decreases in target structures was associated with the amount of cooled cortex. In addition, we found that the impact of cortical cooling was more profound on the SC than on the dLGN. The functional impact of cortical deactivations on the LPL was weak for small deactivations but approximated the impact on the SC when deactivations were large. We discuss these findings in terms of neural circuits and in terms of drivers and modulators.
Collapse
Affiliation(s)
- R Jarrett Rushmore
- Cerebral Dynamics and Neural Plasticity, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
19
|
Boire D, Matteau I, Casanova C, Ptito M. Retinal projections to the lateral posterior-pulvinar complex in intact and early visual cortex lesioned cats. Exp Brain Res 2004; 159:185-96. [PMID: 15252699 DOI: 10.1007/s00221-004-1946-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Accepted: 04/18/2004] [Indexed: 11/25/2022]
Abstract
In intact cats, it is generally considered that the lateral posterior-pulvinar complex (LP-pulvinar) does not receive direct retinal terminals, with the exception of the retino-recipient zone known as the geniculate wing. There is, however, some evidence that early lesions of the visual cortex can occasionally induce the formation of novel retinal projections to the LP nucleus. Given the importance of knowing the connectivity pattern of the LP-pulvinar complex in intact and lesioned animals, we used the B fragment of cholera toxin, a sensitive anterograde tracer, to reinvestigate the retinal projections to the LP-pulvinar in normal cats and in cats with early unilateral lesions of the visual cortex (areas 17 and 18). Immunohistochemical localization of the toxin was performed to show the distribution and morphology of retinofugal terminals. A direct bilateral but predominantly contralateral retinal projection reached the caudal portion of LPl and LPm in the form of patches located mainly along its dorsomedial surface and many scattered terminals. The distribution of retinal projections to LP-pulvinar in intact and operated cats did not differ. Contrary to what had been previously reported, we found no evidence for lesion-induced sprouting of retinal axons in these higher-order thalamic nuclei. Retinal input to the LP-pulvinar might modulate visual responses driven by primary visual cortex or superior colliculus.
Collapse
Affiliation(s)
- Denis Boire
- Ecole d'Optométrie, Université de Montréal, CP 6128 Succ Centre-Ville, H3C 3J7, Montréal, Canada.
| | | | | | | |
Collapse
|
20
|
Wang S, Eisenback MA, Bickford ME. Relative distribution of synapses in the pulvinar nucleus of the cat: implications regarding the "driver/modulator" theory of thalamic function. J Comp Neurol 2002; 454:482-94. [PMID: 12455011 DOI: 10.1002/cne.10453] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To provide a quantitative comparison of the synaptic organization of "first-order" and "higher-order" thalamic nuclei, we followed bias-corrected sampling methods identical to a previous study of the cat dorsal lateral geniculate nucleus (dLGN; Van Horn et al. [2000] J. Comp. Neurol. 416:509-520) to examine the distribution of terminal types within the cat pulvinar nucleus. We observed the following distribution of synaptic contacts: large terminals that contain loosely packed round vesicles (RL profiles), 3.5%; presynaptic profiles that contain densely packed pleomorphic vesicles (F1 profiles), 7.3%; profiles that could be both presynaptic and postsynaptic that contain loosely packed pleomorphic vesicles (F2 profiles), 5.0%; and small terminals that contain densely packed round vesicles (RS profiles), 84.2%. Postembedding immunocytochemistry for gamma-aminobutyric acid (GABA) was used to distinguish the postsynaptic targets as thalamocortical cells or interneurons. The distribution of synaptic contacts on thalamocortical cells was as follows: RL profiles, 2.1%; F1 profiles, 6.9%; F2 profiles, 5.4%; and RS profiles, 85.6%. The distribution of synaptic contacts on interneurons was as follows: RL profiles, 11.8%; F1 profiles, 9.7%; F2 profiles, 2.8%; and RS profiles, 75.6%. These distributions are similar to that found within the dLGN in that the RS inputs (the presumed "modulators") far outnumber the RL inputs (the presumed "drivers"). However, in comparison to the dLGN, the pulvinar nucleus receives significantly fewer numbers of RL, F1, and F2 contacts and significantly higher numbers of RS contacts. Thus, the RS/RL synapse ratio in the pulvinar nucleus is 24:1, in contrast to the 5:1 RS/RL synapse ratio in the dLGN (Van Horn et al., 2000). In first-order nuclei, the lower RS/RL synapse ratio may result in the transfer of visual information that is largely unmodified. In contrast, in higher-order nuclei, the higher RS/RL synapse ratio may allow for a finer modulation of driving inputs.
Collapse
Affiliation(s)
- Siting Wang
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
21
|
Desautels A, Casanova C. Response properties in the pulvinar complex after neonatal ablation of the primary visual cortex. PROGRESS IN BRAIN RESEARCH 2002; 134:83-95. [PMID: 11702565 DOI: 10.1016/s0079-6123(01)34007-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Injuries to specific areas of the brain (such as cerebrovascular accidents or surgical procedures) and particularly to the primary visual cortex, yield profound visual defects. The level of spared visual functions or residual vision depends on the extent and location of the lesion as well as the age at which the trauma occurs. For instance, in primate as well as non-primate species, it is well established that lesions in adulthood have a more profound effect than those occurring in young animals. The recovery of visually guided behavior observed after massive destruction of the occipital cortex in young animals across many species has been generally associated with the reorganization of the pathways from the extrageniculate thalamus to the spared visual cortex, i.e. the extrastriate areas. In this chapter, we present some evidence that the lateral posterior-pulvinar (LP-pulvinar) complex may contribute to maintaining visual capacities in brain-damaged cats. Our data indicate that the overall visual responsiveness of the lateral part of the LP (LPl) cells is not altered by the early removal of the visual cortex. However, some specific properties differ from those of intact animals: on average, LPl neurons in brain-damaged animals are more broadly tuned for orientation than that in intact cats. Spatial frequency tuning functions are also affected since most units in lesioned animals are of the low-pass type. Moreover, most LPl cells of lesioned cats responded to drifting gratings with modulated discharges and a linear spatial summation within their receptive field, a characteristic that is infrequently observed in intact animals. The change in LPl response properties observed in the present study is likely to come from the reorganization of cortical and retinal fibers reaching this extrageniculate nucleus.
Collapse
Affiliation(s)
- A Desautels
- Laboratoire des Neurosciences de la Vision, Ecole d'Optométrie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, PQ, H3C 3J7 Canada
| | | |
Collapse
|
22
|
Casanova C, Merabet L, Desautels A, Minville K. Higher-order motion processing in the pulvinar. PROGRESS IN BRAIN RESEARCH 2002; 134:71-82. [PMID: 11702564 DOI: 10.1016/s0079-6123(01)34006-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Thalamic nuclei have long been considered as passive relay stations for sensory signals en route to the cerebral cortex, where higher level processing occurs. In recent years, it has been proposed that thalamic nuclei may actively participate in the processing of specific information in conjunction with cortical areas. In support of this hypothesis, we recently discovered that neurons in the main extrageniculate visual nucleus, the pulvinar, exhibit higher-order visual properties that were, until now, only associated with higher-order cortical areas. Pulvinar neurons can indeed code the veridical direction of a moving plaid pattern, indicating that these cells can integrate ambiguous signals into a coherent percept. This finding as well as our demonstration that there are cortico-thalamo-cortical loops involved in complex motion analysis open promising avenues in unraveling the function of the pulvinar complex in normal vision.
Collapse
Affiliation(s)
- C Casanova
- Laboratoire des neurosciences de la vision, Ecole d'optométrie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, PQ, H3C 3J7 Canada.
| | | | | | | |
Collapse
|
23
|
Minville K, Casanova C. Spatial frequency processing in posteromedial lateral suprasylvian cortex does not depend on the projections from the striate-recipient zone of the cat's lateral posterior-pulvinar complex. Neuroscience 1998; 84:699-711. [PMID: 9579777 DOI: 10.1016/s0306-4522(97)00525-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is generally considered that the posteromedial part of the cat's lateral suprasylvian cortex is involved in the analysis of image motion. The main afferents of the posteromedial lateral suprasylvian cortex come from a direct retinogeniculate pathway and indirect retinotectal and retino-geniculo-cortical pathways. Removal of the primary visual cortex does not affect the spatial and temporal processing of suprasylvian cortex cells suggesting that these properties are derived from thalamic input. We have investigated the possibility that the striate-recipient zone of the lateral posterior nucleus-pulvinar complex may be responsible for the spatial (and temporal) frequency processing in posteromedial lateral suprasylvian cortex since these two regions establish strong bidirectional connections and share many visual properties. Experiments were done on anaesthetized normal adult cats. Visual responses in suprasylvian cortex were recorded before, during, and after the deactivation of the lateral part of the lateral posterior nucleus accomplished by the injection of lidocaine or GABA. Results can be summarized as follows. A total of 64 cells was tested. Out of this number, 11 units were affected by the deactivation of the lateral part of lateral posterior nucleus and one cell, by the blockade of pulvinar. For all cells, except one, the effect consisted in a global reduction of the evoked discharge rate suggesting that the thalamo-suprasylvian cortex projections are excitatory in nature. We did not find any significant differences in the optimal spatial frequency, nor in the width of the tuning function, whether the grating was presented at half- or saturation contrast. In addition, there were no significant differences between the low- and high cut-off spatial frequency values computed before and after the deactivation of the lateral posterior nucleus. No specific changes were observed in the contrast sensitivity function of the posteromedial lateral suprasylvian cortex cells. Similar results were observed with respect to the temporal frequency tuning functions. Deactivating the lateral posterior nucleus did not modify the direction selectivity nor the organization of the subregions of the lateral suprasylvian cortex "classical" receptive fields. The absence of strong changes in posteromedial lateral suprasylvian cortex cell response properties following the functional blockade of the lateral posterior nucleus suggests that the projections from this part of the thalamus are not essential to generate the spatial characteristics of most posteromedial lateral suprasylvian cortex receptive fields. These properties may be derived from other thalamic inputs (e.g., medial interlaminar nucleus) and/or from the intrinsic computation of the afferent signals within the lateral suprasylvian cortex. On the other hand, it is possible that the lateral posterior nucleus lateral suprasylvian cortex loop may be involved in other functions such as the analysis of complex motion as suggested by the findings from our and other groups.
Collapse
Affiliation(s)
- K Minville
- Département de Chirurgie-Ophthalmologie, Faculté de Médecine, Université de Sherbrooke, Québec, Canada
| | | |
Collapse
|