1
|
Ma S, Ma Q, Hu S, Mo X, Zhu C, Zhang X, Jia Z, Tang L, Jiang L, Cui Y, Chen Z, Hu W, Zhang X. Deletion of histamine H2 receptor in VTA dopaminergic neurons of mice induces behavior reminiscent of mania. Cell Rep 2024; 43:114717. [PMID: 39264811 DOI: 10.1016/j.celrep.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Hyperfunction of the dopamine system has been implicated in manic episodes in bipolar disorders. How dopaminergic neuronal function is regulated in the pathogenesis of mania remains unclear. Histaminergic neurons project dense efferents into the midbrain dopaminergic nuclei. Here, we present mice lacking dopaminergic histamine H2 receptor (H2R) in the ventral tegmental area (VTA) that exhibit a behavioral phenotype mirroring some of the symptoms of mania, including increased locomotor activity and reduced anxiety- and depression-like behavior. These behavioral deficits can be reversed by the mood stabilizers lithium and valproate. H2R deletion in dopaminergic neurons significantly enhances neuronal activity, concurrent with a decrease in the γ-aminobutyric acid (GABA) type A receptor (GABAAR) membrane presence and inhibitory transmission. Conversely, either overexpression of H2R in VTA dopaminergic neurons or treatment of H2R agonist amthamine within the VTA counteracts amphetamine-induced hyperactivity. Together, our results demonstrate the engagement of H2R in reducing VTA dopaminergic activity, shedding light on the role of H2R as a potential target for mania therapy.
Collapse
Affiliation(s)
- Shijia Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Songhui Hu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
| | - Xinlei Mo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chenze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xingxian Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zetao Jia
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingjie Tang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yihui Cui
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China.
| |
Collapse
|
2
|
Yokoi Y, Kubo A, Nishimura K, Takamura Y, Morishita Y, Minami M, Nomura H. Chemogenetic activation of histamine neurons promotes retrieval of apparently lost memories. Mol Brain 2024; 17:38. [PMID: 38877480 PMCID: PMC11179205 DOI: 10.1186/s13041-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/08/2024] [Indexed: 06/16/2024] Open
Abstract
Memory retrieval can become difficult over time, but it is important to note that memories that appear to be forgotten might still be stored in the brain, as shown by their occasional spontaneous retrieval. Histamine in the central nervous system is a promising target for facilitating the recovery of memory retrieval. Our previous study demonstrated that histamine H3 receptor (H3R) inverse agonists/antagonists, activating histamine synthesis and release, enhance activity in the perirhinal cortex and help in retrieving forgotten long-term object recognition memories. However, it is unclear whether enhancing histaminergic activity alone is enough for the recovery of memory retrieval, considering that H3Rs are also located in other neuron types and affect the release of multiple neurotransmitters. In this study, we employed a chemogenetic method to determine whether specifically activating histamine neurons in the tuberomammillary nucleus facilitates memory retrieval. In the novel object recognition test, control mice did not show a preference for objects based on memory 1 week after training, but chemogenetic activation of histamine neurons before testing improved memory retrieval. This selective activation did not affect the locomotor activity or anxiety-related behavior. Administering an H2R antagonist directly into the perirhinal cortex inhibited the recovery of memory retrieval induced by the activation of histamine neurons. Furthermore, we utilized the Barnes maze test to investigate whether chemogenetic activation of histamine neurons influences the retrieval of forgotten spatial memories. Control mice explored all the holes in the maze equally 1 week after training, whereas mice with chemogenetically activated histamine neurons spent more time around the target hole. These findings indicate that chemogenetic activation of histamine neurons in the tuberomammillary nucleus can promote retrieval of seemingly forgotten object recognition and spatial memories.
Collapse
Affiliation(s)
- Yuto Yokoi
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Ayame Kubo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kyoka Nishimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuki Takamura
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yoshikazu Morishita
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroshi Nomura
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
3
|
Khouma A, Moeini MM, Plamondon J, Richard D, Caron A, Michael NJ. Histaminergic regulation of food intake. Front Endocrinol (Lausanne) 2023; 14:1202089. [PMID: 37448468 PMCID: PMC10338010 DOI: 10.3389/fendo.2023.1202089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Histamine is a biogenic amine that acts as a neuromodulator within the brain. In the hypothalamus, histaminergic signaling contributes to the regulation of numerous physiological and homeostatic processes, including the regulation of energy balance. Histaminergic neurons project extensively throughout the hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in key hypothalamic nuclei known to regulate energy homeostasis, including the paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate (ARC) nuclei. The activation of different histamine receptors is associated with differential effects on neuronal activity, mediated by their different G protein-coupling. Consequently, activation of H1R has opposing effects on food intake to that of H3R: H1R activation suppresses food intake, while H3R activation mediates an orexigenic response. The central histaminergic system has been implicated in atypical antipsychotic-induced weight gain and has been proposed as a potential therapeutic target for the treatment of obesity. It has also been demonstrated to interact with other major regulators of energy homeostasis, including the central melanocortin system and the adipose-derived hormone leptin. However, the exact mechanisms by which the histaminergic system contributes to the modification of these satiety signals remain underexplored. The present review focuses on recent advances in our understanding of the central histaminergic system's role in regulating feeding and highlights unanswered questions remaining in our knowledge of the functionality of this system.
Collapse
Affiliation(s)
- Axelle Khouma
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Moein Minbashi Moeini
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Julie Plamondon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Medicine, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Qin Y, Xu W, Li K, Luo Q, Chen X, Wang Y, Chen L, Sha S. Repeated inhibition of sigma-1 receptor suppresses GABAA receptor expression and long-term depression in the nucleus accumbens leading to depressive-like behaviors. Front Mol Neurosci 2022; 15:959224. [PMID: 36245919 PMCID: PMC9563353 DOI: 10.3389/fnmol.2022.959224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma-1 receptor (σ1R) downregulation in male mice is known to cause a depressive-like phenotype. The nucleus accumbens (NAc), a region associated with affective regulation, has high levels of σ1R. Here, we investigated the effect of repeated inhibition of σ1R in the NAc on depressive-like behaviors and synaptic plasticity by microinjecting σ1R antagonist NE-100 into NAc nuclei in mice (NE-100 mice); this was followed by behavioral tests and field potentials recordings. We first examined the effect of NE-100 administration on σ1R expression and found that cell surface levels of σ1R were significantly reduced in the NAc of NE-100 mice. Compared to control mice, NE-100 mice exhibited significantly prolonged immobility in forced swim test (FST) and tail suspension test (TST), impaired long-term depression (LTD) as well as multi-spike waveform field excitatory postsynaptic potential (fEPSP) with an extended duration and an increased paired-pulse ratio (PPR). Reduced levels of GABAA receptor (GABAAR)-α1, -α2, -β2, and -β3 subunits, membrane D2R, and PKC phosphorylation in the NAc were observed in NE-100 mice. Activation of GABAAR by muscimol corrected the extended fEPSP duration and increased PPR, restored LTD maintenance as well as alleviated depressive-like behaviors in NE-100 mice. The decline of PKC phosphorylation in the NAc of NE-100 mice was corrected by injecting NAc with quinpirole, a D2R agonist. Injections of quinpirole or PMA (a PKC activator) into NAc of NE-100 mice rescued the expression levels of GABAAR, and alleviated the increase in PPR and impairment in LTD; these effects were sensitive to GF109203X, a PKC inhibitor. Furthermore, injecting NAc with quinpirole or PMA relieved depressive-like behaviors in NE-100 mice. Collectively, these results indicate that repeated inhibition of σ1R in the NAc reduces D2R-mediated PKC phosphorylation and suppresses GABAAR expression, thus impairing LTD maintenance and leading to depressive-like behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Chen
- *Correspondence: Sha Sha Lei Chen
| | - Sha Sha
- *Correspondence: Sha Sha Lei Chen
| |
Collapse
|
5
|
Alhusaini M, Eissa N, Saad AK, Beiram R, Sadek B. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep-Wake Cycle Disorder. Front Pharmacol 2022; 13:861094. [PMID: 35721194 PMCID: PMC9198498 DOI: 10.3389/fphar.2022.861094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.
Collapse
Affiliation(s)
- Mera Alhusaini
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ali K Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Otsuka R, Naganuma F, Nakamura T, Miwa H, Nakayama-Naono R, Matsuzawa T, Komatsu Y, Sato Y, Takahashi Y, Tatsuoka-Kitano H, Yanai K, Yoshikawa T. Contribution of astrocytic histamine N-methyltransferase to histamine clearance and brain function in mice. Neuropharmacology 2022; 212:109065. [PMID: 35487272 DOI: 10.1016/j.neuropharm.2022.109065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/08/2022] [Accepted: 04/13/2022] [Indexed: 02/03/2023]
Abstract
Brain histamine acts as a neurotransmitter in the regulation of various brain activities. Previous studies have shown that histamine N-methyltransferase (HNMT), a histamine-metabolizing enzyme, controls brain histamine concentration and brain function. However, the relative contribution of astrocytic or neuronal HNMT to the regulation of the histaminergic system is still inconclusive. Here, we phenotyped astrocytes-specific HNMT knockout (cKO) mice to clarify the involvement of astrocytic HNMT in histamine clearance and brain function. First, we performed histological examinations using HNMT reporter mice and showed a wide distribution of HNMT in the brain and astrocytic HNMT expression. Then, we created cKO mice by Cre-loxP system and confirmed that HNMT expression in cKO primary astrocytes was robustly decreased. Although total HNMT level in the cortex was not substantially different between control and cKO brains, histamine concentration after histamine release was elevated in cKO cortex. In behavioral tests, impaired motor coordination and lower locomotor activity were observed in the cKO mice. However, anxiety-like behaviors, depression-like behaviors, and memory functions were not altered by astrocytic HNMT disruption. Although sleep analysis demonstrated that the quantity of wakefulness and sleep did not change, the increased power density of delta frequency during wakefulness indicated lower cortical activation in cKO mice. These results demonstrate that astrocytic HNMT contributes to histamine clearance after histamine release in the cortex and plays a role in the regulation of motor coordination, locomotor activity, and vigilance state.
Collapse
Affiliation(s)
- Rina Otsuka
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Hideki Miwa
- Department of Neuropsychopharmacology, National Institute of Mental Health: National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Rumi Nakayama-Naono
- Division of Histology and Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Takuro Matsuzawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yurika Komatsu
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuki Sato
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuna Takahashi
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Haruna Tatsuoka-Kitano
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
7
|
Cocchi M, Mondo E, Romeo M, Traina G. The Inflammatory Conspiracy in Multiple Sclerosis: A Crossroads of Clues and Insights through Mast Cells, Platelets, Inflammation, Gut Microbiota, Mood Disorders and Stem Cells. Int J Mol Sci 2022; 23:ijms23063253. [PMID: 35328673 PMCID: PMC8950240 DOI: 10.3390/ijms23063253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple Sclerosis is a chronic neurological disease characterized by demyelination and axonal loss. This pathology, still largely of unknown etiology, carries within it a complex series of etiopathogenetic components of which it is difficult to trace the origin. An inflammatory state is likely to be the basis of the pathology. Crucial elements of the inflammatory process are the interactions between platelets and mast cells as well as the bacterial component of the intestinal microbiota. In addition, the involvement of mast cells in autoimmune demyelinating diseases has been shown. The present work tries to hang up on that Ariadne’s thread which, in the molecular complexity of the interactions between mast cells, platelets, microbiota and inflammation, characterizes Multiple Sclerosis and attempts to bring the pathology back to the causal determinism of psychopathological phenomenology. Therefore, we consider the possibility that the original error of Multiple Sclerosis can be investigated in the genetic origin of the depressive pathology.
Collapse
Affiliation(s)
- Massimo Cocchi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Elisabetta Mondo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence:
| |
Collapse
|
8
|
Wang Y, Zhang Y, Shi Z, Di T, Yu W, Chen L. Exposure of male mice to perfluorooctanoic acid induces anxiety-like behaviors by increasing corticotropin-releasing factor in the basolateral amygdala complex. CHEMOSPHERE 2022; 287:132170. [PMID: 34826932 DOI: 10.1016/j.chemosphere.2021.132170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA), a hazardous environmental pollutant, has been found to enhance hepatic synthesis of fibroblast growth factor 21 (FGF21). FGF21 can enter the brain and increase the expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus (PVN). In this study, adult male mice were orally administered PFOA to evaluate how it regulates emotion. Exposure of mice to PFOA (1 mg kg-1 bw) for 10 consecutive days (PFOA-mice) caused anxiety-like behaviors and a peroxisome proliferator-activated receptor α (PPARα)-dependent increase in hepatic FGF21 synthesis. The levels of CRF expression in not only PVN but also basolateral amygdala complex (BLA) neurons of PFOA-mice were increased via FGF receptor 1 (FGF-R1) activation. However, the microinjection of FGF-R1 or CRF 1 receptor (CRF-R1) antagonist in the BLA rather than the PVN of PFOA-mice could relieve their anxiety-like behaviors. In addition, external capsule-BLA synaptic transmission in PFOA-mice was enhanced by increasing CRF-R1-mediated presynaptic glutamate release, which was corrected by the blockade of PPARα, FGF-R1 and CRF-R1 or the inhibition of PKA. Furthermore, the threshold of frequency-dependent long-term potentiation (LTP) induction was decreased in the BLA of PFOA-mice, which depended on the activation of PPARα, FGF-R1, CRF-R1, PKA and NMDA receptor (NMDAR), whereas long-term depression (LTD) induction was unchanged. Thus, the results indicate that the exposure of male mice to PFOA (1 mg kg-1 bw) enhances CRF expression in BLA neurons by increasing hepatic FGF21 synthesis, which then enhances CRF-R1-mediated presynaptic glutamate release to facilitate NMDAR-dependent BLA-LTP induction, leading to the production of anxiety-like behaviors.
Collapse
Affiliation(s)
- Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhaochun Shi
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Tingting Di
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenfeng Yu
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China.
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Flores-Clemente C, Nicolás-Vázquez MI, Mera Jiménez E, Hernández-Rodríguez M. Inhibition of Astrocytic Histamine N-Methyltransferase as a Possible Target for the Treatment of Alzheimer's Disease. Biomolecules 2021; 11:1408. [PMID: 34680041 PMCID: PMC8533269 DOI: 10.3390/biom11101408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) represents the principal cause of dementia among the elderly. Great efforts have been established to understand the physiopathology of AD. Changes in neurotransmitter systems in patients with AD, including cholinergic, GABAergic, serotoninergic, noradrenergic, and histaminergic changes have been reported. Interestingly, changes in the histaminergic system have been related to cognitive impairment in AD patients. The principal pathological changes in the brains of AD patients, related to the histaminergic system, are neurofibrillary degeneration of the tuberomammillary nucleus, the main source of histamine in the brain, low histamine levels, and altered signaling of its receptors. The increase of histamine levels can be achieved by inhibiting its degrading enzyme, histamine N-methyltransferase (HNMT), a cytoplasmatic enzyme located in astrocytes. Thus, increasing histamine levels could be employed in AD patients as co-therapy due to their effects on cognitive functions, neuroplasticity, neuronal survival, neurogenesis, and the degradation of amyloid beta (Aβ) peptides. In this sense, the evaluation of the impact of HNMT inhibitors on animal models of AD would be interesting, consequently highlighting its relevance.
Collapse
Affiliation(s)
- Cecilia Flores-Clemente
- Laboratorio de Cultivo Celular, Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.F.-C.); (E.M.J.)
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular, Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.F.-C.); (E.M.J.)
| | - Maricarmen Hernández-Rodríguez
- Laboratorio de Cultivo Celular, Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.F.-C.); (E.M.J.)
| |
Collapse
|
10
|
Naganuma F, Nakamura T, Kuroyanagi H, Tanaka M, Yoshikawa T, Yanai K, Okamura N. Chemogenetic modulation of histaminergic neurons in the tuberomamillary nucleus alters territorial aggression and wakefulness. Sci Rep 2021; 11:17935. [PMID: 34504120 PMCID: PMC8429727 DOI: 10.1038/s41598-021-95497-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Designer receptor activated by designer drugs (DREADDs) techniques are widely used to modulate the activities of specific neuronal populations during behavioural tasks. However, DREADDs-induced modulation of histaminergic neurons in the tuberomamillary nucleus (HATMN neurons) has produced inconsistent effects on the sleep–wake cycle, possibly due to the use of Hdc-Cre mice driving Cre recombinase and DREADDs activity outside the targeted region. Moreover, previous DREADDs studies have not examined locomotor activity and aggressive behaviours, which are also regulated by brain histamine levels. In the present study, we investigated the effects of HATMN activation and inhibition on the locomotor activity, aggressive behaviours and sleep–wake cycle of Hdc-Cre mice with minimal non-target expression of Cre-recombinase. Chemoactivation of HATMN moderately enhanced locomotor activity in a novel open field. Activation of HATMN neurons significantly enhanced aggressive behaviour in the resident–intruder test. Wakefulness was increased and non-rapid eye movement (NREM) sleep decreased for an hour by HATMN chemoactivation. Conversely HATMN chemoinhibition decreased wakefulness and increased NREM sleep for 6 h. These changes in wakefulness induced by HATMN modulation were related to the maintenance of vigilance state. These results indicate the influences of HATMN neurons on exploratory activity, territorial aggression, and wake maintenance.
Collapse
Affiliation(s)
- Fumito Naganuma
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Tadaho Nakamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan.
| | - Hiroshi Kuroyanagi
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Masato Tanaka
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| |
Collapse
|
11
|
Zhao Z, Wang B, Mu L, Wang H, Luo J, Yang Y, Yang H, Li M, Zhou L, Tao C. Long-Term Exposure to Ceftriaxone Sodium Induces Alteration of Gut Microbiota Accompanied by Abnormal Behaviors in Mice. Front Cell Infect Microbiol 2020; 10:258. [PMID: 32714875 PMCID: PMC7344183 DOI: 10.3389/fcimb.2020.00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Growing evidence points out that a disturbance of gut microbiota may also disturb the gut–brain communication. However, it is not clear to what extent the alteration of microbiota composition can modulate brain function, affecting host behaviors. Here, we investigated the effects of gut microbiota depletion on emotional behaviors. Methods: Mice in the experimental group were orally administered ceftriaxone sodium solution (250 mg/ml, 0.2 ml/d) for 11 weeks. The open-field test and tail-suspension test were employed for the neurobehavioral assessment of the mice. Fecal samples were collected for 16s rDNA sequencing. The serum levels of cytokines and corticosterone were quantified using enzyme-linked immunosorbent assays. The immunohistochemistry method was used for the detection of brain-derived neurotrophic factor (BDNF) and c-Fos protein. Results: The gut microbiota for antibiotic-treated mice showed lower richness and diversity compared with normal controls. This effect was accompanied by increased anxiety-like, depression-like, and aggressive behaviors. We found these changes to be possibly associated with a dysregulation of the immune system, abnormal activity of the hypothalamic-pituitary-adrenal axis, and an alteration of neurochemistry. Conclusions: The findings demonstrate the indispensable role of microbiota in the gut–brain communication and suggest that the absence of conventional gut microbiota could affect the nervous system, influencing brain function.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liyuan Mu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongren Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingjing Luo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hui Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingyuan Li
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Zhou
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Reduced serotonin impairs long-term depression in basolateral amygdala complex and causes anxiety-like behaviors in a mouse model of perimenopause. Exp Neurol 2019; 321:113030. [DOI: 10.1016/j.expneurol.2019.113030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022]
|
13
|
Abdurakhmanova S, Semenova S, Piepponen TP, Panula P. Abnormal behavior, striatal dopamine turnover and opioid peptide gene expression in histamine‐deficient mice. GENES BRAIN AND BEHAVIOR 2019; 18:e12595. [DOI: 10.1111/gbb.12595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - T. Petteri Piepponen
- Division of Pharmacology and PharmacotherapyUniversity of Helsinki Helsinki Finland
| | - Pertti Panula
- Department of AnatomyUniversity of Helsinki Helsinki Finland
| |
Collapse
|
14
|
Pittenger C. The histidine decarboxylase model of tic pathophysiology: a new focus on the histamine H 3 receptor. Br J Pharmacol 2019; 177:570-579. [PMID: 30714121 DOI: 10.1111/bph.14606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Histamine dysregulation was implicated as a rare cause of Tourette syndrome and other tic disorders a decade ago by a landmark genetic study in a high density family pedigree, which implicated a hypomorphic mutation in the histidine decarboxylase (Hdc) gene as a rare but high penetrance genetic cause. Studies in Hdc knockout (KO) mice have confirmed that this mutation causes tic-relevant behavioural and neurochemical abnormalities that parallel what is seen in patients and thus validate the KO as a potentially informative model of tic pathophysiology. Recent studies have focused on the potential role of the histamine H3 receptor in this model, and by association in tic disorders and related neuropsychiatric conditions. The H3 receptor is up-regulated in the striatum in Hdc KO mice. As the H3 receptor has constitutive activity in the absence of ligand, this receptor up-regulation may have significant cellular effects despite the absence of neurotransmitter histamine in these mice. Activation in vivo of H3 receptors in wild type mice regulates signalling in striatal medium spiny neurons (MSNs) that interacts non-linearly with dopamine receptor signalling. Baseline signalling alterations in MSNs in Hdc KO mice resemble those seen after H3 receptor agonist treatment in wild type animals. H3 receptor agonist treatment in the KOs further accentuates most of these signalling abnormalities and produces behavioural stereotypy. Together, these data suggest the intriguing hypothesis that constitutive signalling by up-regulated H3 receptors explains many of the molecular and behavioural abnormalities seen in these animals. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
|
15
|
Hong J, Wang L, Zhang T, Zhang B, Chen L. Sigma-1 receptor knockout increases α-synuclein aggregation and phosphorylation with loss of dopaminergic neurons in substantia nigra. Neurobiol Aging 2017; 59:171-183. [PMID: 28870519 DOI: 10.1016/j.neurobiolaging.2017.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 01/17/2023]
Abstract
Sigma-1 receptor (σ1R) is expressed in dopaminergic neurons of substantia nigra. Here, we show that σ1R knockout (σ1R-/-) mice, at age 6-12 months, appeared with age-related loss of dopaminergic neurons and decline of motor coordination. Levels of α-synuclein (αSyn) oligomers and fibrillar αSyn in substantia nigra of σ1R-/- mice were age-dependently increased without the changes in αSyn monomers. The phosphorylation of αSyn monomers or oligomers in dopaminergic neurons was enhanced in σ1R-/- mice. Levels of phosphorylated eIF2a and C/EBP homologous protein expression were elevated in σ1R-/- mice with decline of proteasome activity. Inhibition of endoplasmic reticulum stress by salubrinal recovered the αSyn phosphorylation and proteasome activity and prevented early oligomerization of αSyn in σ1R-/- mice. Rifampicin reduced the late increase of αSyn oligomers in σ1R-/- mice. Rifampicin or salubrinal could reduce the loss of dopaminergic neurons in σ1R-/- mice and improved their motor coordination. The results indicate that the σ1R deficiency through enhanced aggregation and phosphorylation of αSyn causes the loss of dopaminergic neurons leading to the decline of motor coordination.
Collapse
Affiliation(s)
- Juan Hong
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ling Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Baofeng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Department of Physiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Di T, Zhang S, Hong J, Zhang T, Chen L. Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice. Front Mol Neurosci 2017; 10:287. [PMID: 28932185 PMCID: PMC5592243 DOI: 10.3389/fnmol.2017.00287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Sigma-1 receptor knockout (σ1R-KO) mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN), this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Here, we show that the levels of basal serum corticosterone (CORT), adrenocorticotropic hormone (ACTH) and corticotrophin releasing factor (CRF) as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT) mice. Acute mild restraint stress (AMRS) induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex)-induced reduction in level of CORT was markedly attenuated in σ1R-/- mice. The levels of glucocorticoid receptor (GR) and protein kinase C (PKC) phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB) in PVN than that in WT mice. Intracerebroventricular (i.c.v.) injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v.) of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST) and tail suspension test (TST). These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.
Collapse
Affiliation(s)
- Tingting Di
- State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Suyun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing, China
| | - Juan Hong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Tingting Zhang
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
17
|
Abdurakhmanova S, Chary K, Kettunen M, Sierra A, Panula P. Behavioral and stereological characterization of Hdc KO mice: Relation to Tourette syndrome. J Comp Neurol 2017; 525:3476-3487. [PMID: 28681514 DOI: 10.1002/cne.24279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023]
Abstract
A premature termination codon in the human histidine decarboxylase (Hdc) gene has been identified in a family suffering from Guilles de la Tourette syndrome (GTS). In the current study we investigated if mice lacking the histamine producing enzyme HDC share the morphological and cytological phenotype with GTS patients by using magnetic resonance (MRI) and diffusion tensor imaging (DTI), unbiased stereology and immunohistochemistry. Behavior of Hdc knock-out (Hdc KO) mice was assessed in an open field test. The results of stereological, volumetric and DTI analysis measurements showed no significant differences between control and Hdc KO mice. The numbers and distribution of GABAergic parvalbumin or nitric oxide-expressing and cholinergic interneurons were normal in Hdc KO mice. Cortical morphology and layering in adult Hdc KO mice were also preserved. In open field test Hdc KO mice showed impaired exploratory activity and habituation when introduced to novel environment. Our results indicate that Hdc deficiency in mice does not disturb the development of striatal and cortical interneurons and does not lead to the morphological and cytological phenotypes characterized by humans with GTS. Nevertheless, histamine deficiency leads to behavioral alterations probably due to neurotransmitter dysbalance on the level of the striatum.
Collapse
Affiliation(s)
| | - Karthik Chary
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Sanna MD, Ghelardini C, Thurmond RL, Masini E, Galeotti N. Behavioural phenotype of histamine H4 receptor knockout mice: Focus on central neuronal functions. Neuropharmacology 2017; 114:48-57. [DOI: 10.1016/j.neuropharm.2016.11.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/28/2016] [Accepted: 11/26/2016] [Indexed: 11/25/2022]
|
19
|
Li B, Zhang XY, Yang AH, Peng XC, Chen ZP, Zhou JY, Chan YS, Wang JJ, Zhu JN. Histamine Increases Neuronal Excitability and Sensitivity of the Lateral Vestibular Nucleus and Promotes Motor Behaviors via HCN Channel Coupled to H2 Receptor. Front Cell Neurosci 2017; 10:300. [PMID: 28119568 PMCID: PMC5222857 DOI: 10.3389/fncel.2016.00300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Histamine and histamine receptors in the central nervous system actively participate in the modulation of motor control. In clinic, histamine-related agents have traditionally been used to treat vestibular disorders. Immunohistochemical studies have revealed a distribution of histaminergic afferents in the brainstem vestibular nuclei, including the lateral vestibular nucleus (LVN), which is critical for adjustment of muscle tone and vestibular reflexes. However, the mechanisms underlying the effect of histamine on LVN neurons and the role of histamine and histaminergic afferents in the LVN in motor control are still largely unknown. Here, we show that histamine, in cellular and molecular levels, elicits the LVN neurons of rats an excitatory response, which is co-mediated by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and K+ channels linked to H2 receptors. Blockage of HCN channels coupled to H2 receptors decreases LVN neuronal sensitivity and changes their dynamic properties. Furthermore, in behavioral level, microinjection of histamine into bilateral LVNs significantly promotes motor performances of rats on both accelerating rota-rod and balance beam. This promotion is mimicked by selective H2 receptor agonist dimaprit, and blocked by selective H2 receptor antagonist ranitidine. More importantly, blockage of HCN channels to suppress endogenous histaminergic inputs in the LVN considerably attenuates motor balance and coordination, indicating a promotion role of hypothalamo-vestibular histaminergic circuit in motor control. All these results demonstrate that histamine H2 receptors and their coupled HCN channels mediate the histamine-induced increase in excitability and sensitivity of LVN neurons and contribute to the histaminergic improvement of the LVN-related motor behaviors. The findings suggest that histamine and the histaminergic afferents may directly modulate LVN neurons and play a critical role in the central vestibular-mediated motor reflexes and behaviors.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Ai-Hong Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing UniversityNanjing, China; Department of Medicine, Huaibei Vocational and Technical CollegeHuaibei, China
| | - Xiao-Chun Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Jia-Yuan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Ying-Shing Chan
- Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong Hong Kong, Hong Kong
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| |
Collapse
|
20
|
Pittenger C. Histidine Decarboxylase Knockout Mice as a Model of the Pathophysiology of Tourette Syndrome and Related Conditions. Handb Exp Pharmacol 2017; 241:189-215. [PMID: 28233179 PMCID: PMC5538774 DOI: 10.1007/164_2016_127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While the normal functions of histamine (HA) in the central nervous system have gradually come into focus over the past 30 years, the relationship of abnormalities in neurotransmitter HA to human disease has been slower to emerge. New insight came with the 2010 description of a rare nonsense mutation in the biosynthetic enzyme histidine decarboxylase (Hdc) that was associated with Tourette syndrome (TS) and related conditions in a single family pedigree. Subsequent genetic work has provided further support for abnormalities of HA signaling in sporadic TS. As a result of this genetic work, Hdc knockout mice, which were generated more than 15 years ago, have been reexamined as a model of the pathophysiology of TS and related conditions. Parallel work in these KO mice and in human carriers of the Hdc mutation has revealed abnormalities in the basal ganglia system and its modulation by dopamine (DA) and has confirmed the etiologic, face, and predictive validity of the model. The Hdc-KO model thus serves as a unique platform to probe the pathophysiology of TS and related conditions, and to generate specific hypotheses for subsequent testing in humans. This chapter summarizes the development and validation of this model and recent and ongoing work using it to further investigate pathophysiological changes that may contribute to these disorders.
Collapse
Affiliation(s)
- Christopher Pittenger
- Departments of Psychiatry and Psychology, Yale Child Study Center, and Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, W315, New Haven, CT, 06519, USA.
| |
Collapse
|
21
|
Santangelo A, Provensi G, Costa A, Blandina P, Ricca V, Crescimanno G, Casarrubea M, Passani MB. Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: Partial reversal effect of the dopamine D2/D3 antagonist sulpiride. Neuropharmacology 2016; 113:533-542. [PMID: 27833003 DOI: 10.1016/j.neuropharm.2016.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 12/16/2022]
Abstract
Markers of histaminergic dysregulation were found in several neuropsychiatric disorders characterized by repetitive behaviours, thoughts and stereotypies. We analysed the effect of acute histamine depletion by means of i. c.v. injections of alpha-fluoromethylhistidine, a blocker of histidine decarboxylase, on the temporal organization of motor sequences of CD1 mice behaviour in the open-field test. An ethogram encompassing 9 behavioural components was employed. Durations and frequencies were only slightly affected by treatments. However, as revealed by multivariate t-pattern analysis, histamine depletion was associated with a striking increase in the number of behavioural patterns. We found 42 patterns of different composition occurring, on average, 520.90 ± 50.23 times per mouse in the histamine depleted (HD) group, whereas controls showed 12 different patterns occurring on average 223.30 ± 20.64 times. Exploratory and grooming behaviours clustered separately, and the increased pattern complexity involved exclusively exploratory patterns. To test the hypothesis of a histamine-dopamine interplay on behavioural pattern phenotype, non-sedative doses of the D2/D3 antagonist sulpiride (12.5-25-50 mg/kg) were additionally administered to different groups of HD mice. Sulpiride counterbalanced the enhancement of exploratory patterns of different composition, but it did not affect the mean number of patterns at none of the doses used. Our results provide new insights on the role of histamine on repetitive behavioural sequences of freely moving mice. Histamine deficiency is correlated with a general enhancement of pattern complexity. This study supports a putative involvement of histamine in the pathophysiology of tics and related disorders.
Collapse
Affiliation(s)
- Andrea Santangelo
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Viale Pieraccini 6, 50139, Firenze, Italy; S.O.D. Psichiatria, Azienda Ospedaliero-Universitaria Careggi, 50139 Firenze, Italy.
| | - Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Viale Pieraccini 6, 50139, Firenze, Italy
| | - Alessia Costa
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Viale Pieraccini 6, 50139, Firenze, Italy
| | - Patrizio Blandina
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Viale Pieraccini 6, 50139, Firenze, Italy
| | - Valdo Ricca
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Viale Pieraccini 6, 50139, Firenze, Italy; S.O.D. Psichiatria, Azienda Ospedaliero-Universitaria Careggi, 50139 Firenze, Italy
| | - Giuseppe Crescimanno
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università di Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Maurizio Casarrubea
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università di Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - M Beatrice Passani
- Maria Beatrice Passani Dipartimento di Scienze della Salute Università di Firenze, Viale Pieraccini 6, 50139, Firenze, Italy
| |
Collapse
|
22
|
Bolam JP, Ellender TJ. Histamine and the striatum. Neuropharmacology 2016; 106:74-84. [PMID: 26275849 PMCID: PMC4917894 DOI: 10.1016/j.neuropharm.2015.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/25/2022]
Abstract
The neuromodulator histamine is released throughout the brain during periods of wakefulness. Combined with an abundant expression of histamine receptors, this suggests potential widespread histaminergic control of neural circuit activity. However, the effect of histamine on many of these circuits is unknown. In this review we will discuss recent evidence for histaminergic modulation of the basal ganglia circuitry, and specifically its main input nucleus; the striatum. Furthermore, we will discuss recent findings of histaminergic dysfunction in several basal ganglia disorders, including in Parkinson's disease and most prominently, in Tourette's syndrome, which has led to a resurgence of interest in this neuromodulator. Combined, these recent observations not only suggest a central role for histamine in modulating basal ganglia activity and behaviour, but also as a possible target in treating basal ganglia disorders. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- J Paul Bolam
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom
| | - Tommas J Ellender
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom.
| |
Collapse
|
23
|
Provensi G, Costa A, Passani MB, Blandina P. Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse. Neuropharmacology 2016; 109:139-147. [PMID: 27291828 DOI: 10.1016/j.neuropharm.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023]
Abstract
Histaminergic H3 receptors (H3R) antagonists enhance cognition in preclinical models and modulate neurotransmission, in particular acetylcholine (ACh) release in the cortex and hippocampus, two brain areas involved in memory processing. The cognitive deficits seen in aging and Alzheimer's disease have been associated with brain cholinergic deficits. Donepezil is one of the acetylcholinesterase (AChE) inhibitor approved for use across the full spectrum of these cognitive disorders. We addressed the question if H3R antagonists and donepezil require an intact histamine neuronal system to exert their procognitive effects. The effect of the H3R antagonist ABT-239 and donepezil were evaluated in the object recognition test (ORT), and on the level of glycogen synthase kinase 3 beta (GSK-3β) phosphorylation in normal and histamine-depleted mice. Systemic administration of ABT-239 or donepezil ameliorated the cognitive performance in the ORT. However, these compounds were ineffective in either genetically (histidine decarboxylase knock-out, HDC-KO) or pharmacologically, by means of intracerebroventricular (i.c.v.) injections of the HDC irreversible inhibitor a-fluoromethylhistidine (a-FMHis), histamine-deficient mice. Western blot analysis revealed that ABT-239 or donepezil systemic treatments increased GSK-3β phosphorylation in cortical and hippocampal homogenates of normal, but not of histamine-depleted mice. Furthermore, administration of the PI3K inhibitor LY294002 that blocks GSK-3β phosphorylation, prevented the procognitive effects of both drugs in normal mice. Our results indicate that both donepezil and ABT-239 require the integrity of the brain histaminergic system to exert their procognitive effects and strongly suggest that impairments of PI3K/AKT/GSK-3β intracellular pathway activation is responsible for the inefficacy of both drugs in histamine-deficient animals.
Collapse
Affiliation(s)
- Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia and Tossicologia, Universitá di Firenze, Viale G. Pieraccini 6, 50139, Firenze, Italy
| | - Alessia Costa
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia and Tossicologia, Universitá di Firenze, Viale G. Pieraccini 6, 50139, Firenze, Italy
| | - M Beatrice Passani
- Dipartimento di Scienze della Salute, Sezione di Farmacologia e Oncologia, Universitá di Firenze, Viale G. Pieraccini 6, 50139, Firenze, Italy
| | - Patrizio Blandina
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia and Tossicologia, Universitá di Firenze, Viale G. Pieraccini 6, 50139, Firenze, Italy.
| |
Collapse
|
24
|
Parmentier R, Zhao Y, Perier M, Akaoka H, Lintunen M, Hou Y, Panula P, Watanabe T, Franco P, Lin JS. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model. Neuropharmacology 2015; 106:20-34. [PMID: 26723880 DOI: 10.1016/j.neuropharm.2015.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Using knockout (KO) mice lacking the histamine (HA)-synthesizing enzyme (histidine decarboxylase, HDC), we have previously shown the importance of histaminergic neurons in maintaining wakefulness (W) under behavioral challenges. Since the central actions of HA are mediated by several receptor subtypes, it remains to be determined which one(s) could be responsible for such a role. We have therefore compared the cortical-EEG, sleep and W under baseline conditions or behavioral/pharmacological stimuli in littermate wild-type (WT) and H1-receptor KO (H1-/-) mice. We found that H1-/- mice shared several characteristics with HDC KO mice, i.e. 1) a decrease in W after lights-off despite its normal baseline daily amount; 2) a decreased EEG slow wave sleep (SWS)/W power ratio; 3) inability to maintain W in response to behavioral challenges demonstrated by a decreased sleep latency when facing various stimuli. These effects were mediated by central H1-receptors. Indeed, in WT mice, injection of triprolidine, a brain-penetrating H1-receptor antagonist increased SWS, whereas ciproxifan (H3-receptor antagonist/inverse agonist) elicited W; all these injections had no effect in H1-/- mice. Finally, H1-/- mice showed markedly greater changes in EEG power (notably in the 0.8-5 Hz band) and sleep-wake cycle than in WT mice after application of a cholinergic antagonist or an indirect agonist, i.e., scopolamine or physostigmine. Hence, the role of HA in wake-promotion is largely ensured by H1-receptors. An upregulated cholinergic system may account for a quasi-normal daily amount of W in HDC or H1-receptor KO mice and likely constitutes a major compensatory mechanism when the brain is facing deficiency of an activating system. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Régis Parmentier
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Yan Zhao
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France; Department of Physiology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Magali Perier
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Hideo Akaoka
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Minnamaija Lintunen
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Yiping Hou
- Department of Neuroscience, Anatomy, Histology & Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Takeshi Watanabe
- Unit for Immune Surveillance Research, Research Center for Allergy and Immunology, RIKEN Institute, Tsurumi-ku, Yokohama, Japan
| | - Patricia Franco
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Jian-Sheng Lin
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France.
| |
Collapse
|
25
|
Viggiano A, Cacciola G, Widmer DAJ, Viggiano D. Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: Evidence from gene expression data. Psychiatry Res 2015; 228:729-40. [PMID: 26089015 DOI: 10.1016/j.psychres.2015.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
The relationship between genes and anxious behavior, is nor linear nor monotonic. To address this problem, we analyzed with a meta-analytic method the literature data of the behavior of knockout mice, retrieving 33 genes whose deletion was accompanied by increased anxious behavior, 34 genes related to decreased anxious behavior and 48 genes not involved in anxiety. We correlated the anxious behavior resulting from the deletion of these genes to their brain expression, using the Allen Brain Atlas and Gene Expression Omnibus (GEO) database. The main finding is that the genes accompanied, after deletion, by a modification of the anxious behavior, have lower expression in the cerebral cortex, the amygdala and the ventral striatum. The lower expression level was putatively due to their selective presence in a neuronal subpopulation. This difference was replicated also using a database of human gene expression, further showing that the differential expression pertained, in humans, a temporal window of young postnatal age (4 months up to 4 years) but was not evident at fetal or adult human stages. Finally, using gene enrichment analysis we also show that presynaptic genes are involved in the emergence of anxiety and postsynaptic genes in the reduction of anxiety after gene deletion.
Collapse
Affiliation(s)
- Adela Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Giovanna Cacciola
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy; Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Italy.
| |
Collapse
|
26
|
Rapanelli M, Pittenger C. Histamine and histamine receptors in Tourette syndrome and other neuropsychiatric conditions. Neuropharmacology 2015; 106:85-90. [PMID: 26282120 DOI: 10.1016/j.neuropharm.2015.08.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023]
Abstract
The potential contributions of dysregulation of the brain's histaminergic modulatory system to neuropsychiatric disease, and the potential of histamine-targeting medications as therapeutic agents, are gradually coming into focus. The H3R receptor, which is expressed primarily in the central nervous system, is a promising pharmacotherapeutic target. Recent evidence for a contribution of histamine dysregulation to Tourette syndrome and tic disorders is particularly strong; although specific mutations in histamine-associated genes are rare, they have led to informative studies in animal models that may pave the way for therapeutic advances. A controlled study of an H3R antagonist in Tourette syndrome is ongoing. Preclinical studies of H3R antagonists in schizophrenia, attention deficit disorder, and narcolepsy have all shown promise. Recently reported controlled studies have been disappointing in schizophrenia and attention deficit disorder, but the H3R antagonist pitolisant shows promise in the treatment of narcolepsy and excessive daytime sleepiness and is currently under regulatory review for these conditions. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
| | - Christopher Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA; Department of Child Study Center, Yale University, New Haven, CT, USA; Department of Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Hong J, Sha S, Zhou L, Wang C, Yin J, Chen L. Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons. Cell Death Dis 2015; 6:e1832. [PMID: 26203861 PMCID: PMC4650739 DOI: 10.1038/cddis.2015.194] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/19/2015] [Accepted: 06/15/2015] [Indexed: 11/21/2022]
Abstract
Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinson's disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/- and σ1R-/-) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/- or σ1R-/- mice (MPTP-σ1R+/- or MPTP-σ1R-/- mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/- mice treated with the σ1R agonist PRE084 or MPTP-σ1R-/- mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/- mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/- mice or σ1R-/- mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R-/- mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R-/- mice. The number of activated astrocytes in MPTP-σ1R-/- mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of dopaminergic neurons and parkinsonism.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Anisoles/pharmacology
- Astrocytes/metabolism
- Astrocytes/pathology
- Cell Death/genetics
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Gene Expression Regulation
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Microglia/pathology
- Morpholines/pharmacology
- Neuroprotective Agents/pharmacology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/genetics
- Parkinson Disease, Secondary/metabolism
- Pars Compacta/metabolism
- Pars Compacta/pathology
- Phenols/pharmacology
- Phosphorylation
- Piperidines/pharmacology
- Propylamines/pharmacology
- Psychomotor Performance
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, sigma/agonists
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- Signal Transduction
- Vesicular Monoamine Transport Proteins/genetics
- Vesicular Monoamine Transport Proteins/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- J Hong
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - S Sha
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - L Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - C Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - J Yin
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - L Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Zlomuzica A, Dere D, Binder S, De Souza Silva MA, Huston JP, Dere E. Neuronal histamine and cognitive symptoms in Alzheimer's disease. Neuropharmacology 2015; 106:135-45. [PMID: 26025658 DOI: 10.1016/j.neuropharm.2015.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/11/2015] [Accepted: 05/03/2015] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by extracellular amyloid plaque deposits, mainly composed of amyloid-beta peptide and intracellular neurofibrillary tangles consisting of aggregated hyperphosphorylated tau protein. Amyloid-beta represents a neurotoxic proteolytic cleavage product of amyloid precursor protein. The progressive cognitive decline that is associated with Alzheimer's disease has been mainly attributed to a deficit in cholinergic neurotransmission due to the continuous degeneration of cholinergic neurons e.g. in the basal forebrain. There is evidence suggesting that other neurotransmitter systems including neuronal histamine also contribute to the development and maintenance of Alzheimer's disease-related cognitive deficits. Pathological changes in the neuronal histaminergic system of such patients are highly predictive of ensuing cognitive deficits. Furthermore, histamine-related drugs, including histamine 3 receptor antagonists, have been demonstrated to alleviate cognitive symptoms in Alzheimer's disease. This review summarizes findings from animal and clinical research on the relationship between the neuronal histaminergic system and cognitive deterioration in Alzheimer's disease. The significance of the neuronal histaminergic system as a promising target for the development of more effective drugs for the treatment of cognitive symptoms is discussed. Furthermore, the option to use histamine-related agents as neurogenesis-stimulating therapy that counteracts progressive brain atrophy in Alzheimer's disease is considered. This article is part of a Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Mental Health Research and Treatment Center, Ruhr University Bochum, Germany
| | - Dorothea Dere
- Center for Psychological Consultation and Psychotherapy, Georg-August University Göttingen, Germany
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Germany
| | - Maria Angelica De Souza Silva
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Joseph P Huston
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany; UFR des Sciences de la Vie (927), Université Pierre et Marie Curie Paris 6, France.
| |
Collapse
|
29
|
Xu M, Li L, Ohtsu H, Pittenger C. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear. Neurosci Lett 2015; 595:50-3. [PMID: 25841792 DOI: 10.1016/j.neulet.2015.03.067] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/02/2015] [Accepted: 03/31/2015] [Indexed: 11/19/2022]
Abstract
Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders.
Collapse
Affiliation(s)
- Meiyu Xu
- Department of Psychiatry, Yale Univeristy, New Haven, CT, USA
| | - Lina Li
- Department of Psychiatry, Yale Univeristy, New Haven, CT, USA
| | - Hiroshi Ohtsu
- Tohoku University, Graduate School of Engineering, Sendai, Japan
| | - Christopher Pittenger
- Department of Psychiatry, Yale Univeristy, New Haven, CT, USA; Department of Psychology, Yale Univeristy, New Haven, CT, USA; Child Study Center, Yale Univeristy, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale Univeristy, New Haven, CT, USA.
| |
Collapse
|
30
|
Modulation of behavior by the histaminergic system: Lessons from HDC-, H3R- and H4R-deficient mice. Neurosci Biobehav Rev 2014; 47:101-21. [DOI: 10.1016/j.neubiorev.2014.07.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/02/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022]
|
31
|
Yoshikawa T, Nakamura T, Shibakusa T, Sugita M, Naganuma F, Iida T, Miura Y, Mohsen A, Harada R, Yanai K. Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice. J Nutr 2014; 144:1637-41. [PMID: 25056690 DOI: 10.3945/jn.114.196105] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the importance of dietary L-histidine as a precursor of brain histamine and the histaminergic nervous system. C57BL/6J male mice at 8 wk of age were assigned to 2 different diets for at least 2 wk: the control (Con) diet (5.08 g L-histidine/kg diet) or the low L-histidine diet (LHD) (1.28 g L-histidine/kg diet). We measured the histamine concentration in the brain areas of Con diet-fed mice (Con group) and LHD-fed mice (LHD group). The histamine concentration was significantly lower in the LHD group [Con group vs. LHD group: histamine in cortex (means ± SEs): 13.9 ± 1.25 vs. 9.36 ± 0.549 ng/g tissue; P = 0.002]. Our in vivo microdialysis assays revealed that histamine release stimulated by high K(+) from the hypothalamus in the LHD group was 60% of that in the Con group (P = 0.012). However, the concentrations of other monoamines and their metabolites were not changed by the LHD. The open-field tests showed that the LHD group spent a shorter amount of time in the central zone (87.6 ± 14.1 vs. 50.0 ± 6.03 s/10 min; P = 0.019), and the light/dark box tests demonstrated that the LHD group spent a shorter amount of time in the light box (198 ± 8.19 vs. 162 ± 14.1 s/10 min; P = 0.048), suggesting that the LHD induced anxiety-like behaviors. However, locomotor activity, memory functions, and social interaction did not differ between the 2 groups. The results of the present study demonstrated that insufficient intake of histidine reduced the brain histamine content, leading to anxiety-like behaviors in the mice.
Collapse
Affiliation(s)
- Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | | | - Mayu Sugita
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Yamato Miura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Attayeb Mohsen
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| |
Collapse
|
32
|
Baldan LC, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, Anderson GM, Loring E, Gorczyca R, Billingslea E, Wasylink S, Panza KE, Ercan-Sencicek AG, Krusong K, Leventhal BL, Ohtsu H, Bloch MH, Hughes ZA, Krystal JH, Mayes L, de Araujo I, Ding YS, State MW, Pittenger C. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 2014; 81:77-90. [PMID: 24411733 DOI: 10.1016/j.neuron.2013.10.052] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 11/25/2022]
Abstract
Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine (DA) D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal DA levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. DA D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm histidine decarboxylase deficiency as a rare cause of TS and identify HA-DA interactions in the basal ganglia as an important locus of pathology.
Collapse
Affiliation(s)
| | - Kyle A Williams
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine
| | | | | | | | - Michael Crowley
- Department of Child Study Center, Yale University School of Medicine
| | - George M Anderson
- Department of Child Study Center, Yale University School of Medicine.,Department of Laboratory Medicine, Yale University School of Medicine
| | - Erin Loring
- Department of Child Study Center, Yale University School of Medicine.,Department of Genetics, Yale University School of Medicine.,Department of Program on Neurogenetics, Yale University School of Medicine
| | | | | | | | - Kaitlyn E Panza
- Department of Child Study Center, Yale University School of Medicine
| | - A Gulhan Ercan-Sencicek
- Department of Child Study Center, Yale University School of Medicine.,Department of Genetics, Yale University School of Medicine
| | - Kuakarun Krusong
- Department of Psychiatry, Yale University School of Medicine.,Dept. of Biochem., Faculty of Science, Chulalongkorn Univ., Bangkok, Thailand
| | - Bennett L Leventhal
- Nathan S. Kline Institute for Psychiatric Research.,New York University Dept of Child and Adolescent Psychiatry
| | - Hiroshi Ohtsu
- Tohoku University, Graduate School of Engineering, Sendai, Japan
| | - Michael H Bloch
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine
| | - Zoë A Hughes
- Neuroscience Research Unit, Pfizer, Inc., Cambridge, MA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine
| | - Linda Mayes
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine.,Department of Pediatrics, Yale University School of Medicine.,Department of Psychology, Yale University School of Medicine
| | - Ivan de Araujo
- Department of Psychiatry, Yale University School of Medicine.,John B. Pierce Laboratory, New Haven, CT
| | - Yu-Shin Ding
- Department of Diagnostic Radiology, Yale University School of Medicine
| | - Matthew W State
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine.,Department of Genetics, Yale University School of Medicine.,Department of Program on Neurogenetics, Yale University School of Medicine
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine.,Department of Child Study Center, Yale University School of Medicine.,Department of Psychology, Yale University School of Medicine.,Integrated Neuroscience Research Program; New Haven, CT 06520
| |
Collapse
|
33
|
Samotaeva IS, Birioukova LM, Midzyanovskaya IS, Kuznetsova GD, Bazyan AS, Tuomisto L. Metoprine induced behavioral modifications and brain regional histamine increase in WAG/Rij and Wistar rats. Epilepsy Res 2012; 101:148-56. [DOI: 10.1016/j.eplepsyres.2012.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 03/05/2012] [Accepted: 03/19/2012] [Indexed: 11/26/2022]
|
34
|
Abuhamdah RMA, van Rensburg R, Lethbridge NL, Ennaceur A, Chazot PL. Effects of methimepip and JNJ-5207852 in Wistar rats exposed to an open-field with and without object and in Balb/c mice exposed to a radial-arm maze. Front Syst Neurosci 2012; 6:54. [PMID: 22811660 PMCID: PMC3397409 DOI: 10.3389/fnsys.2012.00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/26/2012] [Indexed: 12/16/2022] Open
Abstract
The role of the histamine H3 receptor (H3R) in anxiety is controversial, due to limitations in drug selectivity and limited validity of behavioral tests used in previous studies. In the present report, we describe two experiments. In the first one, Wistar rats were treated with an H3R agonist (methimepip), and exposed to an open-field. In the second one, Balb/c mice were treated with H3R agonist (methimepip) or antagonist (JNJ-5207852), and exposed to an open space 3D maze which is a modified version of the radial-arm maze. C57BL/6J saline treated mice were included for comparisons. When exposed to an empty open field, Wistar rats spent more time in the outer area and made very low number of brief crossings in the central area. However, when an object occupied the central area, rats crossed frequently into and spent a long time in the central area. Administration of a range of different doses of methimepip (selective H3R agonist) reduced the entries into the central area with a novel object, indicating enhanced avoidance response. In the 3D maze, both Balb/c and C57BL/6J saline-treated mice crossed frequently onto the bridges that radiate from the central platform but only C57BL/6J mice crossed onto the arms which extend the bridges. This suggests that Balb/c mice are more anxious than C57BL/6J mice. Neither methimepip nor JNJ-5207852 (selective H3R antagonist/inverse agonist) induced entry into the arms of the maze, indicative of lack of anxiolytic effects.
Collapse
|
35
|
Torrealba F, Riveros ME, Contreras M, Valdes JL. Histamine and motivation. Front Syst Neurosci 2012; 6:51. [PMID: 22783171 PMCID: PMC3389384 DOI: 10.3389/fnsys.2012.00051] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/08/2012] [Indexed: 12/21/2022] Open
Abstract
Brain histamine may affect a variety of different behavioral and physiological functions; however, its role in promoting wakefulness has overshadowed its other important functions. Here, we review evidence indicating that brain histamine plays a central role in motivation and emphasize its differential involvement in the appetitive and consummatory phases of motivated behaviors. We discuss the inputs that control histaminergic neurons of the tuberomamillary nucleus (TMN) of the hypothalamus, which determine the distinct role of these neurons in appetitive behavior, sleep/wake cycles, and food anticipatory responses. Moreover, we review evidence supporting the dysfunction of histaminergic neurons and the cortical input of histamine in regulating specific forms of decreased motivation (apathy). In addition, we discuss the relationship between the histamine system and drug addiction in the context of motivation.
Collapse
Affiliation(s)
- Fernando Torrealba
- Facultad de Ciencias Biológicas, Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile
| | | | | | | |
Collapse
|
36
|
Lei J, Deng X, Zhang J, Su L, Xu H, Liang H, Huang X, Song Z, Deng H. Mutation screening of the HDC gene in Chinese Han patients with Tourette syndrome. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:72-6. [PMID: 22095709 DOI: 10.1002/ajmg.b.32003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/21/2011] [Indexed: 11/07/2022]
Abstract
Tourette Syndrome (TS) is a complex neuropsychiatric disorder characterized by vocal and motor tics. While environmental causes have been proposed to play a role, genetic factors are believed to be the main determinants of the disorder and its clinical manifestations. Recently, a heterozygous W317X mutation in the histidine decarboxylase gene (HDC) was reported to be responsible for TS in a two-generation pedigree. To investigate whether the HDC gene play a role in TS in Chinese Han population, we performed genetic analysis of the coding region of the HDC gene in 100 Chinese Han patients with TS. Three variants were found including a C > T transition (IVS1 + 52C > T), a novel C > A transition (c.426C > A) in exon 4, and a novel G > A transition (c.1743G > A) in exon 12, both predicted with no amino acid change. Extended analysis was conducted in a total of 120 TS patients and 240 sex, age, and ethnicity matched healthy controls. No significant differences in genotypic and allele distribution between patients and controls for these three variants (P = 0.274, P = 1.000 and P = 0.632 for genotypic distribution, respectively; P = 0.143, P = 1.000 and P = 0.582 for allele distribution, respectively) were observed, suggesting variants in the HDC gene may play little or no role in TS susceptibility in Chinese Han population.
Collapse
Affiliation(s)
- Jing Lei
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Protective effects of histamine H3-receptor ligands in schizophrenic behaviors in experimental models. Pharmacol Rep 2012; 64:191-204. [DOI: 10.1016/s1734-1140(12)70746-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 08/31/2011] [Indexed: 11/24/2022]
|
38
|
Genetic animal models of Tourette syndrome: The long and winding road from lab to clinic. Transl Neurosci 2012. [DOI: 10.2478/s13380-012-0020-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractTourette syndrome (TS) is a disabling neuropsychiatric disorder characterised by persistent motor and vocal tics. TS is a highly comorbid state, hence, patients might experience anxiety, obsessions, compulsions, sleep abnormalities, depression, emotional liability, learning problems, and attention deficits in addition to tics. In spite of its complex heterogeneous genetic aetiology, recent studies highlighted a strong link between TS and genetic lesions in the HDC (L-histidine decarboxylase) gene, which encodes the enzyme that synthetises histamine, and the SLITRK1 (SLIT and TRK-like family member 1) gene, which encodes a transmembrane protein that was found to regulate neurite outgrowth. In addition to validating the contribution of a specific genetic aberration to the development of a particular pathology, animal models are crucial to dissect the function of disease-linked proteins, expose disease pathways through examination of genetic modifiers and discover as well as assess therapeutic strategies. Mice with a knockout of either Hdc or Slitrk1 exhibit anxiety and those lacking Hdc, display dopamine agonist-triggered stereotypic movements. However, the mouse knockouts do not spontaneously display tics, which are recognised as the hallmark of TS. In this review, we explore the features of the present genetic animal models of TS and identify reasons for their poor resemblance to the human condition. Importantly, we highlight ways forward aimed at developing a valuable genetic model of TS or a model that has good predictive validity in developing therapeutic drugs for the treatment of tics, hence potentially accelerating the arduous journey from lab to clinic.
Collapse
|
39
|
Histaminergic mechanisms for modulation of memory systems. Neural Plast 2011; 2011:328602. [PMID: 21876818 PMCID: PMC3160014 DOI: 10.1155/2011/328602] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/29/2011] [Indexed: 12/31/2022] Open
Abstract
Encoding for several memory types requires neural changes and the activity of distinct regions across the brain. These areas receive broad projections originating in nuclei located in the brainstem which are capable of modulating the activity of a particular area. The histaminergic system is one of the major modulatory systems, and it regulates basic homeostatic and higher functions including arousal, circadian, and feeding rhythms, and cognition. There is now evidence that histamine can modulate learning in different types of behavioral tasks, but the exact course of modulation and its mechanisms are controversial. In the present paper we review the involvement of the histaminergic system and the effects histaminergic receptor agonists/antagonists have on the performance of tasks associated with the main memory types as well as evidence provided by studies with knockout models. Thus, we aim to summarize the possible effects histamine has on modulation of circuits involved in memory formation.
Collapse
|
40
|
Ohtsu H. Histamine synthesis and lessons learned from histidine decarboxylase deficient mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 709:21-31. [PMID: 21618884 DOI: 10.1007/978-1-4419-8056-4_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This chapter summarizes the information about the transcriptional regulation of histidine decarboxylase (HDC), which is the catabolic enzyme of histamine synthesis, and the activity of histamine in vivo as clarified using HDC gene deficient mice (HDC-KO). The research of the regulatory mechanism of histamine synthesis has been focused on transcriptional and posttranslational aspects. The generation ofHDC-KO mice clarified several new pathophysiological functions of histamine. It is now recognized that the activity of histamine is not limited to allergic, peptic and neurological functions as in the old paradigm, but extends to other fields such as cardiology, immunology and infectious diseases. Therefore, this chapter will focus on these newly revealed functions of histamine. For example, histamine was known to be involved in the effector phase of allergic responses, but a role has now been shown in the sensitization phases and in innate immunity. In the allergic bronchial asthma model using HDC-KO mice it was found that histamine positively controls eosinophilia, but not bronchial hypersensitivity. The effect on eosinophils was afterwards shown to be mediated through the activity of the histamine H4 receptor. The recent advances in the understanding of histamine synthesis and the activity of HDC have dramatically expanded our understanding of the scope of histamine function.
Collapse
Affiliation(s)
- Hiroshi Ohtsu
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
41
|
Acevedo SF, Raber J. Histamine-dependent behavioral response to methamphetamine in 12-month-old male mice. Brain Res 2011; 1393:23-30. [PMID: 21466792 DOI: 10.1016/j.brainres.2011.03.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/02/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
Methamphetamine (MA) use is a large problem across the United States. Effects of MA include hyperactivity and increased anxiety. Using a mouse model system, we examined behavioral performance in the open field and elevated zero maze and shock-startle response of 12-month-old wild-type mice injected with MA once (1 mg/kg) 30 min prior to behavioral testing. MA treatment resulted in behavioral sensitization in the open field, consistent with studies in younger mice. There was an increased activity in the elevated zero maze and an increased shock-startle response 30 and 60 min post-injection. Since histamine mediates some effects of MA in the brain, we assessed whether 12-month-old mice lacking histidine decarboxylase (Hdc⁻/⁻), the enzyme required to synthesize histamine, respond differently to MA than wild-type (Hdc+/+) mice. Compared to saline treatment, acute and repeated MA administration increased activity in the open field and measures of anxiety, though more so in Hdc⁻/⁻ than Hdc+/+ mice. In the elevated zero maze, opposite effects of MA on activity and measures of anxiety were seen in Hdc+/+ mice. In contrast, MA similarly increased the shock-startle response in Hdc⁻/⁻ and Hdc+/+ mice, compared to saline-treated genotype-matched mice. These results are similar to those in younger mice, suggesting that the effects are not age-dependent. Overall, single or repeated MA treatment causes histamine-dependent changes in 12-month-old mice in the open field and elevated zero maze, but not in the shock-startle response.
Collapse
Affiliation(s)
- Summer F Acevedo
- Department of Behavioural Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
42
|
Manchanda RK, Jaggi AS, Singh N. Ameliorative potential of sodium cromoglycate and diethyldithiocarbamic acid in restraint stress-induced behavioral alterations in rats. Pharmacol Rep 2011; 63:54-63. [DOI: 10.1016/s1734-1140(11)70398-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 09/30/2010] [Indexed: 01/06/2023]
|
43
|
Dere E, Zlomuzica A, De Souza Silva M, Ruocco L, Sadile A, Huston J. Neuronal histamine and the interplay of memory, reinforcement and emotions. Behav Brain Res 2010; 215:209-20. [DOI: 10.1016/j.bbr.2009.12.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/26/2009] [Indexed: 10/20/2022]
|
44
|
Ercan-Sencicek AG, Stillman AA, Ghosh AK, Bilguvar K, O'Roak BJ, Mason CE, Abbott T, Gupta A, King RA, Pauls DL, Tischfield JA, Heiman GA, Singer HS, Gilbert DL, Hoekstra PJ, Morgan TM, Loring E, Yasuno K, Fernandez T, Sanders S, Louvi A, Cho JH, Mane S, Colangelo CM, Biederer T, Lifton RP, Gunel M, State MW. L-histidine decarboxylase and Tourette's syndrome. N Engl J Med 2010; 362:1901-8. [PMID: 20445167 PMCID: PMC2894694 DOI: 10.1056/nejmoa0907006] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tourette's syndrome is a common developmental neuropsychiatric disorder characterized by chronic motor and vocal tics. Despite a strong genetic contribution, inheritance is complex, and risk alleles have proven difficult to identify. Here, we describe an analysis of linkage in a two-generation pedigree leading to the identification of a rare functional mutation in the HDC gene encoding L-histidine decarboxylase, the rate-limiting enzyme in histamine biosynthesis. Our findings, together with previously published data from model systems, point to a role for histaminergic neurotransmission in the mechanism and modulation of Tourette's syndrome and tics.
Collapse
|
45
|
Mignogna P, Viggiano D. Brain distribution of genes related to changes in locomotor activity. Physiol Behav 2010; 99:618-26. [PMID: 20138074 DOI: 10.1016/j.physbeh.2010.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 11/19/2009] [Accepted: 01/26/2010] [Indexed: 02/09/2023]
Abstract
The relationship between genes and behavior, and particularly the hyperactive behavior, is clearly not linear nor monotonic. To address this problem, a database of the locomotor behavior obtained from thousands of mutant mice has been previously retrieved from the literature. Data showed that the percent of genes in the genome related to locomotor hyperactivity is probably more than 1.56%. These genes do not belong to a single neurotransmitter system or biochemical pathway. Indeed, they are probably required for the correct development of a specific neuronal network necessary to decrease locomotor activity. The present paper analyzes the brain expression pattern of the genes whose deletion is accompanied by changes in locomotor behavior. Using literature data concerning knockout mice, 46 genes whose deletion was accompanied by increased locomotor behavior, 24 genes related to decreased locomotor behavior and 23 genes not involved in locomotor behavior (but important for other brain functions) have been identified. These three groups of genes belonged to overlapping neurotransmitter systems or cellular functions. Therefore, we postulated that a better predictor of the locomotor behavior resulting from gene deletion might be the brain expression pattern. To this aim we correlated the brain expression of the genes and the locomotor activity resulting from the deletion of the same genes, using two databases (Allen Brain Atlas and SymAtlas). The results showed that the deletion of genes with higher expression level in the brain had higher probability to be accompanied by increased behavioral activity. Moreover the genes that were accompanied by locomotor hyperactivity when deleted, were more expressed in the cerebral cortex, amygdala and hippocampus compared to the genes unrelated to locomotor activity. Therefore, the prediction of the behavioral effect of a gene should take into consideration its brain distribution. Moreover, data confirmed that genes highly expressed in the brain are more likely to induce hyperactivity when deleted. Finally, it is suggested that gene mutations linked to specific behavioral abnormalities (e.g. inattention) might probably be associated to hyperactivity if the same gene has elevated brain expression.
Collapse
Affiliation(s)
- Pasquale Mignogna
- Department of Health Sciences, University of Molise, Campobasso, 86100, Italy
| | | |
Collapse
|
46
|
Gong YX, Zhang WP, Shou WT, Zhong K, Chen Z. Morphine induces conditioned place preference behavior in histidine decarboxylase knockout mice. Neurosci Lett 2010; 468:115-9. [DOI: 10.1016/j.neulet.2009.10.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/11/2009] [Accepted: 10/24/2009] [Indexed: 12/23/2022]
|
47
|
Nuutinen S, Karlstedt K, Aitta-Aho T, Korpi ER, Panula P. Histamine and H3 receptor-dependent mechanisms regulate ethanol stimulation and conditioned place preference in mice. Psychopharmacology (Berl) 2010; 208:75-86. [PMID: 19911169 DOI: 10.1007/s00213-009-1710-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 10/21/2009] [Indexed: 12/31/2022]
Abstract
RATIONALE Neuronal histamine has a prominent role in sleep-wake control and body homeostasis, but a number of studies suggest that histamine has also a role in higher brain functions including drug reward. OBJECTIVE The present experiments characterized the involvement of histamine and its H3 receptor in ethanol-related behaviors in mice. MATERIALS AND METHODS Male histidine decarboxylase knockout (HDC KO) and control mice were used to study the role of histamine in ethanol-induced stimulation of locomotor activity, impairment of motor coordination, and conditioned place preference (CPP). Male C57BL/6Sca mice were used to study the effects of H3 receptor antagonist in the effects of ethanol on locomotor activity. RESULTS The HDC KO mice displayed a weaker stimulatory response to acute ethanol than the wild-type (WT) mice. No differences between genotypes were found after ethanol administration on accelerating rotarod. The HDC KO mice showed stronger ethanol-induced CPP than the WT mice. Binding of the GABA(A) receptor ligand [(3)H]Ro15-4513 was not markedly changed in HDC KO mouse brain and thus could not explain altered responses in KO mice. Ethanol increased the activity of C57BL/6Sca mice, and H3 receptor antagonist ciproxifan inhibited this stimulation. In CPP paradigm ciproxifan, an H3 receptor inverse agonist potentiated ethanol reward. CONCLUSIONS Histaminergic neurotransmission seems to be necessary for the stimulatory effect of ethanol to occur, whereas lack of histamine leads to changes that enhance the conditioned reward by ethanol. Our findings also suggest a role for histamine H3 receptor in modulation of the ethanol stimulation and reward.
Collapse
Affiliation(s)
- Saara Nuutinen
- Neuroscience Center, Institute of Biomedicine/Anatomy, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, Helsinki, FIN-00014, Finland.
| | | | | | | | | |
Collapse
|
48
|
Nishimura T, Kubosaki A, Ito Y, Notkins AL. Disturbances in the secretion of neurotransmitters in IA-2/IA-2beta null mice: changes in behavior, learning and lifespan. Neuroscience 2009; 159:427-37. [PMID: 19361477 DOI: 10.1016/j.neuroscience.2009.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 12/24/2008] [Accepted: 01/07/2009] [Indexed: 11/15/2022]
Abstract
Islet-associated protein 2 (IA-2) and IA-2beta are major autoantigens in type 1 diabetes and transmembrane proteins in dense core secretory vesicles (DCV) of neuroendocrine cells. The deletion of these genes results in a decrease in insulin secretion. The present study was initiated to test the hypothesis that this deletion not only affects the secretion of insulin, but has a more global effect on neuroendocrine secretion that leads to disturbances in behavior and learning. Measurement of neurotransmitters showed that norepinephrine, dopamine and 5-HT were significantly decreased in the brain of double knockout (DKO) mice (P<0.05 to <0.001). In tests evaluating anxiety-like behavior and conditioned-learning, the DKO mice showed a highly significant increase in anxiety-like behavior (P<0.01 to <0.001) and impairment of conditioned learning (P<0.01) as compared to WT mice. The DKO mice also displayed an increase in spontaneous and induced seizures (P<0.01) and age-related death. Contrary to the generally held view that IA-2 and IA-2beta are expressed exclusively in DCV, subcellular fractionation studies revealed that IA-2beta, but not IA-2, co-purifies with fractions rich in synaptic vesicles (SV), and that the secretion of dopamine, GABA and glutamate from the synaptosomes of the DKO mice was significantly decreased as was the number of SV (P<0.01). Taken together, these findings show that IA-2beta is present in both DCV and SV, and that the deletion of IA-2/IA-2beta has a global effect on the secretion of neurotransmitters. The impairment of secretion leads to behavioral and learning disturbances, seizures and reduced lifespan.
Collapse
Affiliation(s)
- T Nishimura
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4322, USA
| | | | | | | |
Collapse
|
49
|
Alvarez EO. The role of histamine on cognition. Behav Brain Res 2008; 199:183-9. [PMID: 19126417 DOI: 10.1016/j.bbr.2008.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/07/2008] [Indexed: 12/01/2022]
Abstract
Histamine was intensively studied at the beginning of the 20th century because of its important role in allergic and inflammation processes. In those days it was very difficult that researchers could envisage another impacting function for the imidazolamine in the living systems. Once the imidazolamine was found located in neuron compartment in the brain, increasing evidence supported many regulatory functions including its possible role in memory and learning. The specific participation of histamine in cognitive functions followed a slow and unclear pathway because the many different experimental learning models, pharmacologic approaches, systemic and localized applications of the histamine active compounds into the brain used by researchers showed facilitating or inhibitory effects on learning, generating an active issue that has extended up to present time. In this review, all these aspects are analyzed and discussed considering the many intracellular different mechanisms discovered for histamine, the specific histamine receptors and the compartmentalizing proprieties of the brain that might explain the apparent inconsistent effects of the imidazolamine in learning. In addition, a hypothetical physiologic role for histamine in memory is proposed under the standard theories of learning in experimental animals and humans.
Collapse
Affiliation(s)
- Edgardo O Alvarez
- Area de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Laboratorio de Neuropsicofarmacología Experimental, IMBECU-CONICET, 5500 Mendoza, Argentina.
| |
Collapse
|
50
|
Abstract
Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.
Collapse
|