1
|
Lao-Peregrín C, Ballesteros JJ, Fernández M, Zamora-Moratalla A, Saavedra A, Gómez Lázaro M, Pérez-Navarro E, Burks D, Martín ED. Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling. Addict Biol 2017; 22:1706-1718. [PMID: 27457910 PMCID: PMC5697621 DOI: 10.1111/adb.12433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Abstract
Caffeine has cognitive‐enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor‐independent form of LTP (CAFLTP) in the CA1 region of the hippocampus by promoting calcium‐dependent secretion of BDNF, which subsequently activates TrkB‐mediated signaling required for the expression of CAFLTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAFLTP, a process that requires cytosolic free Ca2+. Consistent with the involvement of IRS2 signals in caffeine‐mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2−/− mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3‐kinase (PI3K) pathway. These findings indicate that TrkB‐IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.
Collapse
Affiliation(s)
- Cristina Lao-Peregrín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Jesús Javier Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Miriam Fernández
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - María Gómez Lázaro
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - Deborah Burks
- Centro de Investigación Príncipe Felipe, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM); Spain
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| |
Collapse
|
2
|
Puigdellívol M, Cherubini M, Brito V, Giralt A, Suelves N, Ballesteros J, Zamora-Moratalla A, Martín ED, Eipper BA, Alberch J, Ginés S. A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease. Hum Mol Genet 2015; 24:7265-85. [PMID: 26464483 DOI: 10.1093/hmg/ddv426] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023] Open
Abstract
Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Marta Cherubini
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Verónica Brito
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Albert Giralt
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Núria Suelves
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Jesús Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Jordi Alberch
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Silvia Ginés
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain,
| |
Collapse
|
3
|
Brito V, Giralt A, Enriquez-Barreto L, Puigdellívol M, Suelves N, Zamora-Moratalla A, Ballesteros JJ, Martín ED, Dominguez-Iturza N, Morales M, Alberch J, Ginés S. Neurotrophin receptor p75(NTR) mediates Huntington's disease-associated synaptic and memory dysfunction. J Clin Invest 2014; 124:4411-28. [PMID: 25180603 PMCID: PMC4191006 DOI: 10.1172/jci74809] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/29/2014] [Indexed: 12/13/2022] Open
Abstract
Learning and memory deficits are early clinical manifestations of Huntington's disease (HD). These cognitive impairments have been mainly associated with frontostriatal HD pathology; however, compelling evidence provided by several HD murine models suggests that the hippocampus may contribute to synaptic deficits and memory dysfunction in HD. The neurotrophin receptor p75(NTR) negatively regulates spine density, which is associated with learning and memory; therefore, we explored whether disturbed p75(NTR) function in the hippocampus could contribute to synaptic dysfunction and memory deficits in HD. Here, we determined that levels of p75(NTR) are markedly increased in the hippocampus of 2 distinct mouse models of HD and in HD patients. Normalization of p75(NTR) levels in HD mutant mice heterozygous for p75(NTR) prevented memory and synaptic plasticity deficits and ameliorated dendritic spine abnormalities, likely through normalization of the activity of the GTPase RhoA. Moreover, viral-mediated overexpression of p75(NTR) in the hippocampus of WT mice reproduced HD learning and memory deficits, while knockdown of p75(NTR) in the hippocampus of HD mice prevented cognitive decline. Together, these findings provide evidence of hippocampus-associated memory deficits in HD and demonstrate that p75(NTR) mediates synaptic, learning, and memory dysfunction in HD.
Collapse
Affiliation(s)
- Verónica Brito
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Albert Giralt
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Lilian Enriquez-Barreto
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Mar Puigdellívol
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Nuria Suelves
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Alfonsa Zamora-Moratalla
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Jesús J. Ballesteros
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Eduardo D. Martín
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Nuria Dominguez-Iturza
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Miguel Morales
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Jordi Alberch
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Sílvia Ginés
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
4
|
Anglada-Huguet M, Xifró X, Giralt A, Zamora-Moratalla A, Martín ED, Alberch J. Prostaglandin E2 EP1 receptor antagonist improves motor deficits and rescues memory decline in R6/1 mouse model of Huntington's disease. Mol Neurobiol 2013; 49:784-95. [PMID: 24198227 DOI: 10.1007/s12035-013-8556-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/19/2013] [Indexed: 01/11/2023]
Abstract
In this study, we evaluated the potential beneficial effects of antagonizing prostaglandin E2 (PGE2) EP1 receptor on motor and memory deficits in Huntington's disease (HD). To this aim, we implanted an osmotic mini-pump system to chronically administrate an EP1 receptor antagonist (SC-51089) in the R6/1 mouse model of HD, from 13 to 18 weeks of age, and used different paradigms to assess motor and memory function. SC-51089 administration ameliorated motor coordination and balance dysfunction in R6/1 mice as analyzed by rotarod, balance beam, and vertical pole tasks. Long-term memory deficit was also rescued after EP1 receptor antagonism as assessed by the T-maze spontaneous alternation and the novel object recognition tests. Additionally, treatment with SC-51089 improved the expression of specific synaptic markers and reduced the number of huntingtin nuclear inclusions in the striatum and hippocampus of 18-week-old R6/1 mice. Moreover, electrophysiological studies showed that hippocampal long-term potentiation was significantly recovered in R6/1 mice after EP1 receptor antagonism. Altogether, these results show that the antagonism of PGE2 EP1 receptor has a strong therapeutic effect on R6/1 mice and point out a new therapeutic candidate to treat motor and memory deficits in HD.
Collapse
Affiliation(s)
- Marta Anglada-Huguet
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Zhang S, Manahan-Vaughan D. Spatial olfactory learning contributes to place field formation in the hippocampus. ACTA ACUST UNITED AC 2013; 25:423-32. [PMID: 24008582 PMCID: PMC4380081 DOI: 10.1093/cercor/bht239] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Spatial encoding in the hippocampus is multifactorial, and it is well established that metric information about space is conferred by place cells that fire when an animal finds itself in a specific environmental location. Visuospatial contexts comprise a key element in the formation of place fields. Nevertheless, hippocampus does not only use visual cues to generate spatial representations. In the absence of visual input, both humans and other vertebrates studied in this context, are capable of generating very effective spatial representations. However, little is known about the relationship between nonvisual sensory modalities and the establishment of place fields. Substantial evidence exists that olfactory information can be used to learn spatial contexts. Here, we report that learning about a distinct odor constellation in an environment, where visual and auditory cues are suppressed, results in stable place fields that rotate when the odor constellations are rotated and remap when the odor constellations are shuffled. These data support that the hippocampus can use nonvisuospatial resources, and specifically can use spatial olfactory information, to generate spatial representations. Despite the less precise nature of olfactory stimuli compared with visual stimuli, these can substitute for visual inputs to enable the acquisition of metric information about space.
Collapse
Affiliation(s)
- Sijie Zhang
- Department of Neurophysiology, Medical Faculty and International Graduate School for Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty and International Graduate School for Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
6
|
Espadas I, Darmopil S, Vergaño-Vera E, Ortiz O, Oliva I, Vicario-Abejón C, Martín ED, Moratalla R. L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: insights into regulation and function. Neurobiol Dis 2012; 48:271-81. [PMID: 22820144 DOI: 10.1016/j.nbd.2012.07.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 12/17/2022] Open
Abstract
Tyrosine hydroxylase (TH)-immunoreactive (ir) neurons have been found in the striatum after dopamine depletion; however, little is known about the mechanism underlying their appearance or their functional significance. We previously showed an increase in striatal TH-ir neurons after L-DOPA treatment in mice with unilateral 6-OHDA lesions in the striatum. In the present study, we further examined the time-course and persistence of the effects of chronic L-DOPA treatment on the appearance and regulation of TH-ir neurons as well as their possible function. We found that the L-DOPA-induced increase in striatal TH-ir neurons is dose-dependent and persists for days after L-DOPA withdrawal, decreasing significantly 10 days after L-DOPA treatment ends. Using hemiparkinsonian D1 receptor knock-out (D1R-/-) and D2 receptor knock-out (D2R-/-) mice, we found that the D1R, but not the D2R, is required for the L-DOPA-induced appearance of TH-ir neurons in the dopamine-depleted striatum. Interestingly, our experiments in aphakia mice, which lack Pitx3 expression in the brain, indicate that the L-DOPA-dependent increase in the number of TH-ir neurons is independent of Pitx3, a transcription factor necessary for the development of mesencephalic dopaminergic neurons. To explore the possible function of L-DOPA-induced TH-ir neurons in the striatum, we examined dopamine overflow and forelimb use in L-DOPA-treated parkinsonian mice. These studies revealed a tight spatio-temporal correlation between the presence of striatal TH-ir neurons, the recovery of electrically stimulated dopamine overflow in the lesioned striatum, and the recovery of contralateral forelimb use with chronic L-DOPA treatment. Our results suggest that the presence of TH-ir neurons in the striatum may underlie the long-duration response to L-DOPA following withdrawal. Promotion of these neurons in the early stages of Parkinson's disease, when dopamine denervation is incomplete, may be beneficial for maintaining motor function.
Collapse
Affiliation(s)
- Isabel Espadas
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dopamine D1 receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiol Dis 2012; 45:810-20. [DOI: 10.1016/j.nbd.2011.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022] Open
|
8
|
Conditional BDNF release under pathological conditions improves Huntington's disease pathology by delaying neuronal dysfunction. Mol Neurodegener 2011; 6:71. [PMID: 21985529 PMCID: PMC3205049 DOI: 10.1186/1750-1326-6-71] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/10/2011] [Indexed: 01/05/2023] Open
Abstract
Background Brain-Derived Neurotrophic Factor (BDNF) is the main candidate for neuroprotective therapy for Huntington's disease (HD), but its conditional administration is one of its most challenging problems. Results Here we used transgenic mice that over-express BDNF under the control of the Glial Fibrillary Acidic Protein (GFAP) promoter (pGFAP-BDNF mice) to test whether up-regulation and release of BDNF, dependent on astrogliosis, could be protective in HD. Thus, we cross-mated pGFAP-BDNF mice with R6/2 mice to generate a double-mutant mouse with mutant huntingtin protein and with a conditional over-expression of BDNF, only under pathological conditions. In these R6/2:pGFAP-BDNF animals, the decrease in striatal BDNF levels induced by mutant huntingtin was prevented in comparison to R6/2 animals at 12 weeks of age. The recovery of the neurotrophin levels in R6/2:pGFAP-BDNF mice correlated with an improvement in several motor coordination tasks and with a significant delay in anxiety and clasping alterations. Therefore, we next examined a possible improvement in cortico-striatal connectivity in R62:pGFAP-BDNF mice. Interestingly, we found that the over-expression of BDNF prevented the decrease of cortico-striatal presynaptic (VGLUT1) and postsynaptic (PSD-95) markers in the R6/2:pGFAP-BDNF striatum. Electrophysiological studies also showed that basal synaptic transmission and synaptic fatigue both improved in R6/2:pGAP-BDNF mice. Conclusions These results indicate that the conditional administration of BDNF under the GFAP promoter could become a therapeutic strategy for HD due to its positive effects on synaptic plasticity.
Collapse
|
9
|
Granado N, Lastres-Becker I, Ares-Santos S, Oliva I, Martin E, Cuadrado A, Moratalla R. Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia 2011; 59:1850-63. [PMID: 21882243 DOI: 10.1002/glia.21229] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/20/2011] [Indexed: 12/22/2022]
Abstract
Oxidative stress that correlates with damage to nigrostriatal dopaminergic neurons and reactive gliosis in the basal ganglia is a hallmark of methamphetamine (METH) toxicity. In this study, we analyzed the protective role of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2), a master regulator of redox homeostasis, in METH-induced neurotoxicity. We found that Nrf2 deficiency exacerbated METH-induced damage to dopamine neurons, shown by an increase in loss of tyrosine hydroxylase (TH)- and dopamine transporter (DAT)-containing fibers in striatum. Consistent with these effects, Nrf2 deficiency potentiated glial activation, indicated by increased striatal expression of markers for microglia (Mac-1 and Iba-1) and astroglia (GFAP) one day after METH administration. At the same time, Nrf2 inactivation dramatically potentiated the increase in TNFα mRNA and IL-15 protein expression in GFAP+ cells in the striatum. In sharp contrast to the potentiation of striatal damage, Nrf2 deficiency did not affect METH-induced dopaminergic neuron death or expression of glial markers or proinflammatory molecules in the substantia nigra. This study uncovers a new role for Nrf2 in protection against METH-induced inflammatory and oxidative stress and striatal degeneration.
Collapse
|
10
|
Granado N, Ares-Santos S, Oliva I, O´Shea E, Martin ED, Colado MI, Moratalla R. Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 2011; 42:391-403. [DOI: 10.1016/j.nbd.2011.01.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 01/28/2011] [Indexed: 11/25/2022] Open
|
11
|
Yoshimura H. The potential of caffeine for functional modification from cortical synapses to neuron networks in the brain. Curr Neuropharmacol 2010; 3:309-16. [PMID: 18369398 DOI: 10.2174/157015905774322543] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/08/2005] [Indexed: 11/22/2022] Open
Abstract
Structure and function of the brain are use-dependent variables based on "synapse plasticity". Since synapses are driven by chemical transmitters, synaptic functions are liable to be modified by extrinsic chemicals displaying affinities for synaptic receptors or modulators. Caffeine is a widely used chemical substance that can invade synapses, and has several biochemical and metabolic actions on synaptic activities. This review focuses on the actions of caffeine on changes in structure and function in the region of the hippocampal formation and neocortex, which exhibit high synapse plasticity. At the synapse level, various synaptic receptors and channel activities are modulated by caffeine via mobilization of intracellular calcium, inhibition of phosphodiesterase, antagonism of adenosine receptors and GABA receptors. These actions of caffeine enable neurons to induce plastic changes in the properties of synaptic activities, such as synaptic transmission efficiency and morphology. At the network level, caffeine has the ability to activate cortical neural oscillators that deliver repetitive N-methyl-D-aspartate receptor-dependent signals to surrounding areas, causing strengthening of long-range inter-cortical communications. Caffeine might thus allow reorganization of cortical network functions via synaptic mobilizations.
Collapse
Affiliation(s)
- Hiroshi Yoshimura
- Departments of Oral and Maxillofacial Surgery, Kanazawa Medical University, Uchinada-cho 920-0293, Japan.
| |
Collapse
|
12
|
Bjelobaba I, Stojiljkovic M, Pekovic S, Dacic S, Lavrnja I, Stojkov D, Rakic L, Nedeljkovic N. Immunohistological determination of ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1) and 5'-nucleotidase in rat hippocampus reveals overlapping distribution. Cell Mol Neurobiol 2007; 27:731-43. [PMID: 17619139 PMCID: PMC11517217 DOI: 10.1007/s10571-007-9159-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 05/21/2007] [Indexed: 11/29/2022]
Abstract
Distribution of two enzymes involved in the ectonucleotidase enzyme chain, ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5'-nucleotidase, was assessed by immunohistochemistry in the rat hippocampus. Obtained results have shown co-expression of the enzymes in the hippocampal region, as well as wide and strikingly similar cellular distribution. Both enzymes were expressed at the surface of pyramidal neurons in the CA1 and CA2 sections, while cells in the CA3 section were faintly stained. The granule cell layer of the dentate gyrus was moderately stained for NTPDase1, as well as for ecto-5'-nucleotidase. Glial association for ecto-5'-nucleotidase was also observed, and fiber tracts were intensively stained for both enzymes. This is the first comparative study of NTPDase1 and ecto-5'-nucleotidase distribution in the rat hippocampus. Obtained results suggest that the broad overlapping distribution of these enzymes in neurons and glial cells reflects the functional importance of ectonucleotidase actions in the nervous system.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Mirjana Stojiljkovic
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
- Institute of Physiology and Biochemistry, Faculty of Biology, University Belgrade, Studentski trg 3, 11001 Belgrade, Serbia
| | - Sanja Pekovic
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Sanja Dacic
- Institute of Physiology and Biochemistry, Faculty of Biology, University Belgrade, Studentski trg 3, 11001 Belgrade, Serbia
| | - Irena Lavrnja
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Danijela Stojkov
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Ljubisav Rakic
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Institute of Physiology and Biochemistry, Faculty of Biology, University Belgrade, Studentski trg 3, 11001 Belgrade, Serbia
| |
Collapse
|
13
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|