1
|
Ferrini L, Bartolini E, Mancini A, Tancredi R, Ferrari AR, Calderoni S. EEG Abnormalities and Phenotypic Correlates in Preschoolers with Autism Spectrum Disorder: A Single-Center Study. J Clin Med 2025; 14:529. [PMID: 39860535 PMCID: PMC11766335 DOI: 10.3390/jcm14020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: The literature suggests the existence of an association between autism spectrum disorders (ASDs) and subclinical electroencephalographic abnormalities (SEAs), which show a heterogeneous prevalence rate (12.5-60.7%) within the pediatric ASD population. The aim of this study was to investigate the EEG findings in a cohort of ASD preschoolers and their correlation with the phenotypic characteristics. Methods: We retrospectively reviewed data on 141 ASD preschoolers evaluated in a tertiary care university hospital over the period 2008-2018. All participants underwent at least one standard polygraphic electroencephalogram (EEG) and a clinical multidisciplinary assessment with standardized instruments. Results: 77 patients (55%) showed SEAs, which were mainly represented by epileptiform discharges (p < 0.00001), especially focal and multifocal (p = 0.010). Abnormal EEG (p = 0.035) and epileptiform discharges (p = 0.014) were associated with seizure onset and were predominant in sleep (p < 0.00001). Patients with abnormal tracing (p = 0.031) and slow abnormalities (p < 0.001) were significantly younger. ASD severity was not found to be correlated with EEG results, which showed a potential, albeit non-significant, association with some psychometric parameters. Very similar results were found when patients were divided according to sex. Conclusions: EEG abnormalities appear to correlate more with ASD internalizing, externalizing and emotional comorbidities, rather than with ASD core symptoms; larger samples are needed to further investigate this association.
Collapse
Affiliation(s)
- Luca Ferrini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
- Tuscany PhD Programme in Neurosciences, NEUROFARBA Deparment, University of Florence, Viale Pieraccini, 6, 50139 Firenze, Italy
| | - Alice Mancini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
| | - Raffaella Tancredi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Sun B, Xu Y, Kat S, Sun A, Yin T, Zhao L, Su X, Chen J, Wang H, Gong X, Liu Q, Han G, Peng S, Li X, Liu J. Exploring the most discriminative brain structural abnormalities in ASD with multi-stage progressive feature refinement approach. Front Psychiatry 2024; 15:1463654. [PMID: 39483728 PMCID: PMC11524921 DOI: 10.3389/fpsyt.2024.1463654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by increasing prevalence, diverse impairments, and unclear origins and mechanisms. To gain a better grasp of the origins of ASD, it is essential to identify the most distinctive structural brain abnormalities in individuals with ASD. Methods A Multi-Stage Progressive Feature Refinement Approach was employed to identify the most pivotal structural magnetic resonance imaging (MRI) features that distinguish individuals with ASD from typically developing (TD) individuals. The study included 175 individuals with ASD and 69 TD individuals, all aged between 7 and 18 years, matched in terms of age and gender. Both cortical and subcortical features were integrated, with a particular focus on hippocampal subfields. Results Out of 317 features, 9 had the most significant impact on distinguishing ASD from TD individuals. These structural features, which include a specific hippocampal subfield, are closely related to the brain areas associated with the reward system. Conclusion Structural irregularities in the reward system may play a crucial role in the pathophysiology of ASD, and specific hippocampal subfields may also contribute uniquely, warranting further investigation.
Collapse
Affiliation(s)
- Bingxi Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yingying Xu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Siuching Kat
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Anlan Sun
- Yizhun Medical AI Co., Ltd, Algorithm and Development Department, Beijing, China
| | - Tingni Yin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Liyang Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xing Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jialu Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hui Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaoyun Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qinyi Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Gangqiang Han
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shuchen Peng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
3
|
Geng K, Wang Y, Fu W, Chen S, Yang Y. Episodic memory impairment and its influencing factors in individuals with autism spectrum disorder: systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01889-7. [PMID: 39269621 DOI: 10.1007/s00406-024-01889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Individuals with autism spectrum disorders (ASD) are considered to experience difficulties with episodic memory (EM), while studies on EM in ASD have shown inconsistent results. A meta-analysis of 65 episodic memory studies with a combined sample size of 1652 individuals with ASD and 1626 typically developing individuals was conducted to analyze factors that may affect EM in ASD. The results showed that ASD had a significant medium to large effect size decrease in EM ability. Age period, task type, and reporting method significantly reduced the observed heterogeneity while EM type did not reduce the observed heterogeneity. The results of the meta-regression revealed that it was verbal IQ rather than full-scale IQ that was significantly correlated with EM in individuals with ASD. These findings suggest that individuals with ASD have reduced EM abilities and the potential factors is still needed to be explored.
Collapse
Affiliation(s)
- Kangjie Geng
- Institute of Special Education, Faculty of Education, Beijing Normal University, Beijing, 100875, China
| | - Yan Wang
- Institute of Special Education, Faculty of Education, Beijing Normal University, Beijing, 100875, China.
| | - Wangqian Fu
- Institute of Special Education, Faculty of Education, Beijing Normal University, Beijing, 100875, China.
| | - Siting Chen
- Shenzhen Nanshan Resource Center for Special Education, Guangdong, 518052, China
| | - Yuqi Yang
- Shenzhen Baoan Xingguang School, Guangdong, 518101, China
| |
Collapse
|
4
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
5
|
Cengiz K, Rekik I. Cortical morphological networks for profiling autism spectrum disorder using tensor component analysis. Front Neurol 2024; 15:1391950. [PMID: 39026578 PMCID: PMC11254826 DOI: 10.3389/fneur.2024.1391950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
Atypical neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) can alter the cortex morphology at different levels: (i) a low-order level where cortical regions are examined individually, (ii) a high-order level where the relationship between two cortical regions is considered, and (iii) a multi-view high-order level where the relationship between regions is examined across multiple brain views. In this study, we propose to use the emerging multi-view cortical morphological network (CMN), which is derived from T1-w magnetic resonance imaging (MRI), to profile autistic and typical brains and pursue new ways of fingerprinting 'cortical morphology' at the intersection of 'network neuroscience'. Each CMN view models the pairwise morphological dissimilarity at the connection level using a specific cortical attribute (e.g., thickness). Specifically, we set out to identify the inherently most representative morphological connectivities shared across different views of the cortex in both autistic and normal control (NC) populations using tensor component analysis. We thus discover the connectional profiles of both populations shared across different CMNs of the left and right hemispheres, respectively. One of the most representative morphological cortical attributes for assessing the abnormal brain structures in patients with ASD is cortical thickness. The most representative morphological connectivities in multi-view CMN population of normal control and ASD subjects, respectively, and in both left and right hemispheres within the temporal, frontal, and insular lobes of individuals with ASD. These representative connectivities are corresponded to specific clinical features observed in individuals with ASD.
Collapse
Affiliation(s)
- Kubra Cengiz
- Faculty of Computer and Informatics, Istanbul Technical University, İstanbul, Türkiye
- BASIRA Lab, Imperial-X and Department of Computing, Imperial College London, London, United Kingdom
| | - Islem Rekik
- Faculty of Computer and Informatics, Istanbul Technical University, İstanbul, Türkiye
| |
Collapse
|
6
|
Dionísio A, Espírito A, Pereira AC, Mouga S, d'Almeida OC, Oliveira G, Castelo-Branco M. Neurochemical differences in core regions of the autistic brain: a multivoxel 1H-MRS study in children. Sci Rep 2024; 14:2374. [PMID: 38287121 PMCID: PMC10824733 DOI: 10.1038/s41598-024-52279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition which compromises various cognitive and behavioural domains. The understanding of the pathophysiology and molecular neurobiology of ASD is still an open critical research question. Here, we aimed to address ASD neurochemistry in the same time point at key regions that have been associated with its pathophysiology: the insula, hippocampus, putamen and thalamus. We conducted a multivoxel proton magnetic resonance spectroscopy (1H-MRS) study to non-invasively estimate the concentrations of total choline (GPC + PCh, tCho), total N-acetyl-aspartate (NAA + NAAG, tNAA) and Glx (Glu + Gln), presenting the results as ratios to total creatine while investigating replication for ratios to total choline as a secondary analysis. Twenty-two male children aged between 10 and 18 years diagnosed with ASD (none with intellectual disability, in spite of the expected lower IQ) and 22 age- and gender-matched typically developing (TD) controls were included. Aspartate ratios were significantly lower in the insula (tNAA/tCr: p = 0.010; tNAA/tCho: p = 0.012) and putamen (tNAA/tCr: p = 0.015) of ASD individuals in comparison with TD controls. The Glx ratios were significantly higher in the hippocampus of the ASD group (Glx/tCr: p = 0.027; Glx/tCho: p = 0.011). Differences in tNAA and Glx indices suggest that these metabolites might be neurochemical markers of region-specific atypical metabolism in ASD children, with a potential contribution for future advances in clinical monitoring and treatment.
Collapse
Affiliation(s)
- Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Espírito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Andreia C Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Susana Mouga
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Centro de Desenvolvimento da Criança, Unidade de Neurodesenvolvimento e Autismo, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Otília C d'Almeida
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Guiomar Oliveira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Centro de Desenvolvimento da Criança, Unidade de Neurodesenvolvimento e Autismo, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
7
|
Del Casale A, Ferracuti S, Alcibiade A, Simone S, Modesti MN, Pompili M. Neuroanatomical correlates of autism spectrum disorders: A meta-analysis of structural magnetic resonance imaging (MRI) studies. Psychiatry Res Neuroimaging 2022; 325:111516. [PMID: 35882091 DOI: 10.1016/j.pscychresns.2022.111516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders correlated to various neuroanatomical modifications. We aimed to identify neuroanatomical changes assessed in magnetic resonance imaging (MRI) studies of autism spectrum disorder (ASD) through Activation Likelihood Estimate (ALE) meta-analysis. We included 19 peer-reviewed magnetic resonance imaging (MRI) studies that analyzed cortical volume in patients with ASD compared to healthy control subjects (HCs). The between-group analyses comparing subjects with ASD to HCs showed a volumetric reduction of a large cluster in the right brain, including the uncus/amygdala, parahippocampal gyrus, and entorhinal cortex, and putamen. The anomalies are primarily found in the right hemisphere, involved in social cognitive function, particularly impaired in ASD. These results correlate with several clinical aspects of ASD. These volumetric alterations can be considered a major correlate of disease in the context of multifactorial etiology. Further studies on brain lateralization in ASD are needed, considering the clinical phenotype variability of these disorders.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology, and Health Studies; Faculty of Medicine and Psychology; Sapienza University of Rome, Italy.
| | - Stefano Ferracuti
- Department of Human Neuroscience; Faculty of Medicine and Dentistry; Sapienza University of Rome, Italy
| | | | - Sara Simone
- Faculty of Medicine and Psychology; Sapienza University of Rome, Italy
| | | | - Maurizio Pompili
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS); Faculty of Medicine and Psychology; Sapienza University of Rome, Italy
| |
Collapse
|
8
|
The Episodic Memory Profile in Autism Spectrum Disorder: A Bayesian Meta-Analysis. Neuropsychol Rev 2021; 32:316-351. [PMID: 33954915 DOI: 10.1007/s11065-021-09493-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Although autism spectrum disorders (ASD) are commonly characterized by diminished episodic memory, the literature in this area is mixed. We address these inconsistent findings by employing multilevel Bayesian meta-analysis to quantify episodic memory differences between individuals with ASD and typically developing (TD) controls. We used meta-regression to evaluate the effects of test modality (e.g., word list, story recall), delay interval (immediate vs. delayed), retrieval demands (recognition vs. recall), and sensory modality (auditory vs. visual) on episodic memory in ASD. A total of 338 effect sizes from 113 empirical articles, including 5,632 unique participants (ASD = 2,777, TD = 2,855), were included. Results show that the memory deficits associated with ASD were larger for recall (g = -0.52, se = 0.04, 95% CrI [-0.60, -0.43]) compared to recognition (g = -0.25, se = 0.05, 95% CrI [-0.35, -0.14]) and differed based on the testing modality. For example, effect sizes were smallest for words (g = -0.28, se = 0.05, 95% CrI [-0.38, -0.18]), pictures (g = -0.38, se = 0.07, 95% CrI [-0.52, -0.24]), and figure reproduction (g = -0.49, se = 0.11, 95% CrI [-0.70, -0.27]). However, effect sizes for sentences (g = -0.59, se = 0.20, 95% CrI [-1.00, -0.21]), stories (Hedges' g = -0.54, se = 0.08, 95% CrI [-0.69, -0.38]) and staged events (g = -0.75, se = 0.10, 95% CrI [-0.95, -0.55]) were much larger. These findings suggest that ASD is associated with a small to medium reduction in scores on episodic memory tests relative to TD controls.
Collapse
|
9
|
Xie Y, Zhang X, Liu F, Qin W, Fu J, Xue K, Yu C. Brain mRNA Expression Associated with Cortical Volume Alterations in Autism Spectrum Disorder. Cell Rep 2021; 32:108137. [PMID: 32937121 DOI: 10.1016/j.celrep.2020.108137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/23/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous studies report abnormal cerebral cortex volume (CCV) in autism spectrum disorder (ASD); however, genes related to CCV abnormalities in ASD remain largely unknown. Here, we identify genes associated with CCV alterations in ASD by performing spatial correlations between the gene expression of 6 donated brains and neuroimaging data from 1,404 ASD patients and 1,499 controls. Based on spatial correlations between gene expression and CCV differences from two independent meta-analyses and between gene expression and individual CCV distributions of 404 patients and 496 controls, we identify 417 genes associated with both CCV differences and individual CCV distributions. These genes are enriched for genetic association signals and genes downregulated in the ASD post-mortem brain. The expression patterns of these genes are correlated with brain activation patterns of language-related neural processes frequently impaired in ASD. These findings highlight a model whereby genetic risk impacts gene expression (downregulated), which leads to CCV alterations in ASD.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Xue Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China.
| |
Collapse
|
10
|
Haghighat H, Mirzarezaee M, Araabi BN, Khadem A. Functional Networks Abnormalities in Autism Spectrum Disorder: Age-Related Hypo and Hyper Connectivity. Brain Topogr 2021; 34:306-322. [PMID: 33905003 DOI: 10.1007/s10548-021-00831-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by defects in social interaction. The past functional connectivity studies using resting-state fMRI have found both patterns of hypo-connectivity and hyper-connectivity in ASD and proposed the age as an important factor on functional connectivity disorders. However, this influence is not clearly characterized yet. Previous studies have often examined the functional connectivity disorders in particular brain regions in an age group or a mixture of age groups. The present study compares whole-brain within-connectivity and between-connectivity between ASD individuals and typically developing (TD) controls in three age groups including children (< 11 years), adolescents (11-18 years), and adults (> 18 years), each comprising 21 ASD individuals and 21 TD controls. The age groups were matched for age, Full IQ, and gender. Independent component analysis and dual regression were used to investigate within-connectivity. The full and partial correlations between ICs were used to investigate between-connectivity. Examination of the within-connectivity showed hyper-connectivity, especially in cerebellum and brainstem in ASD children but both hyper/hypo connectivity in adolescents and ASD adults. In ASD children, difference in the between-connectivity among default mode network (DMN), salience-executive network and fronto-parietal network were observed. There was also a negative correlation between DMN and temporal network. Full correlation comparison between ASD adolescents and TD individuals showed significant differences between cerebellum and DMN. Our results supported just the hyper-connectivity in childhood, but both hypo and hyper-connectivity after childhood and hypothesized that abnormal resting connections in ASD exist in the regions of the brain known to be involved in social cognition.
Collapse
Affiliation(s)
- Hossein Haghighat
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Mirzarezaee
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Babak Nadjar Araabi
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Alò R, Olivito I, Fazzari G, Zizza M, Di Vito A, Avolio E, Mandalà M, Bruno R, Barni T, Canonaco M, Facciolo RM. Correlation of distinct behaviors to the modified expression of cerebral Shank1,3 and BDNF in two autistic animal models. Behav Brain Res 2021; 404:113165. [PMID: 33577886 DOI: 10.1016/j.bbr.2021.113165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/27/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder featuring altered neuronal circuitry and consequently impaired social interactions, restrictive interests plus repetitive stereotypic activities. In the present study, differentiated behaviors of valproic (VPA) and propionic (PPA) acid-mediated autism rats were correlated to cerebral scaffolding proteins (Shank1,3) and BDNF expression variations. Sprague-Dawley offspring that received VPA during pregnancy displayed a notably diminished permanence (-78 %, p < 0.01) in the light chamber of light dark (LD) test, reduced exploratory tasks, i.e. grooming (-90 %) and rearing (-65 %). Moreover, they executed extremely greater climbing intervals (+300 %, p < 0.001) in novel cage (NC) test, plus exhibited an extremely reduced (-331 %) discrimination index in novel object recognition (NOR) test when compared to controls. PPA-treated postnatal days (PND) 12-16 rats also displayed anxiety-like behaviors, although in a less evident manner, as indicated by a moderate time (+55 %; p < 0.05) spent in dark chamber along with notable and moderate decreases in digging (-78 %) plus grooming (-52 %), respectively. Contextually, VPA- more than PPA supplied opposite Shank1,3 expression changes in cerebellum (CB; -62 %; +78 %), dorsomedial prefrontal cortex (DM-PFC; +95 % -76 %), respectively, while resulting extremely upregulated in hippocampus (HIP; +125 % - +155 %). Even BDNF resulted to be substantially and notably diminished in HIP (-85 %) and DM-PFC (-72 %), respectively, of VPA rats while it was only moderately reduced (-35 % to -45 %) in these same areas of PPA rats. The early altered brain-specific expression levels accounting for different behavioral performances may provide useful diagnostic indications and constitute valuable therapeutic strategies for autistic patients.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Anatomy & Cytology, Dept. of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende-Cosenza, Italy
| | - Ilaria Olivito
- Comparative Anatomy & Cytology, Dept. of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende-Cosenza, Italy
| | - Gilda Fazzari
- Comparative Anatomy & Cytology, Dept. of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende-Cosenza, Italy
| | - Merylin Zizza
- Comparative Anatomy & Cytology, Dept. of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende-Cosenza, Italy
| | - Anna Di Vito
- Dept. of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Ennio Avolio
- Comparative Anatomy & Cytology, Dept. of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende-Cosenza, Italy; Health Center srl, Biomedical and Nutritional Center, via Sabotino 66, 87100 Cosenza, Italy
| | - Maurizio Mandalà
- Vascular Physiology Lab., Dept. of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende-Cosenza, Italy
| | - Rosalinda Bruno
- Dept. of Pharmacy and Science of Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende-Cosenza, Italy
| | - Tullio Barni
- Dept. of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Marcello Canonaco
- Comparative Anatomy & Cytology, Dept. of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende-Cosenza, Italy.
| | - Rosa Maria Facciolo
- Comparative Anatomy & Cytology, Dept. of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende-Cosenza, Italy
| |
Collapse
|
12
|
Lanka P, Rangaprakash D, Dretsch MN, Katz JS, Denney TS, Deshpande G. Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain Imaging Behav 2020; 14:2378-2416. [PMID: 31691160 PMCID: PMC7198352 DOI: 10.1007/s11682-019-00191-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are growing concerns about the generalizability of machine learning classifiers in neuroimaging. In order to evaluate this aspect across relatively large heterogeneous populations, we investigated four disorders: Autism spectrum disorder (N = 988), Attention deficit hyperactivity disorder (N = 930), Post-traumatic stress disorder (N = 87) and Alzheimer's disease (N = 132). We applied 18 different machine learning classifiers (based on diverse principles) wherein the training/validation and the hold-out test data belonged to samples with the same diagnosis but differing in either the age range or the acquisition site. Our results indicate that overfitting can be a huge problem in heterogeneous datasets, especially with fewer samples, leading to inflated measures of accuracy that fail to generalize well to the general clinical population. Further, different classifiers tended to perform well on different datasets. In order to address this, we propose a consensus-classifier by combining the predictive power of all 18 classifiers. The consensus-classifier was less sensitive to unmatched training/validation and holdout test data. Finally, we combined feature importance scores obtained from all classifiers to infer the discriminative ability of connectivity features. The functional connectivity patterns thus identified were robust to the classification algorithm used, age and acquisition site differences, and had diagnostic predictive ability in addition to univariate statistically significant group differences between the groups. A MATLAB toolbox called Machine Learning in NeuroImaging (MALINI), which implements all the 18 different classifiers along with the consensus classifier is available from Lanka et al. (2019) The toolbox can also be found at the following URL: https://github.com/pradlanka/malini .
Collapse
Affiliation(s)
- Pradyumna Lanka
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA
- Department of Psychological Sciences, University of California Merced, Merced, CA, USA
| | - D Rangaprakash
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA
- Departments of Radiology and Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Michael N Dretsch
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, USA
- US Army Medical Research Directorate-West, Walter Reed Army Institute for Research, Joint Base Lewis-McCord, WA, USA
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - Jeffrey S Katz
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA
- Department of Psychology, Auburn University, Auburn, AL, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Thomas S Denney
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA
- Department of Psychology, Auburn University, Auburn, AL, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA.
- Department of Psychology, Auburn University, Auburn, AL, USA.
- Alabama Advanced Imaging Consortium, Birmingham, AL, USA.
- Center for Neuroscience, Auburn University, Auburn, AL, USA.
- Center for Health Ecology and Equity Research, Auburn University, Auburn, AL, USA.
- Department of Psychiatry, National Institute of Mental and Neurosciences, Bangalore, India.
| |
Collapse
|
13
|
Dryburgh E, McKenna S, Rekik I. Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder. Brain Imaging Behav 2020; 14:1769-1778. [PMID: 31055763 PMCID: PMC7572331 DOI: 10.1007/s11682-019-00111-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decoding how intelligence is engrained in the human brain construct is vital in the understanding of particular neurological disorders. While the majority of existing studies focus on characterizing intelligence in neurotypical (NT) brains, investigating how neural correlates of intelligence scores are altered by atypical neurodevelopmental disorders, such as Autism Spectrum Disorders (ASD), is almost absent. To help fill this gap, we use a connectome-based predictive model (CPM) to predict intelligence scores from functional connectome data, derived from resting-state functional magnetic resonance imaging (rsfMRI). The utilized model learns how to select the most significant positive and negative brain connections, independently, to predict the target intelligence scores in NT and ASD populations, respectively. In the first step, using leave-one-out cross-validation we train a linear regressor robust to outliers to identify functional brain connections that best predict the target intelligence score (p - value < 0.01). Next, for each training subject, positive (respectively negative) connections are summed to produce single-subject positive (respectively negative) summary values. These are then paired with the target training scores to train two linear regressors: (a) a positive model which maps each positive summary value to the subject score, and (b) a negative model which maps each negative summary value to the target score. In the testing stage, by selecting the same connections for the left-out testing subject, we compute their positive and negative summary values, which are then fed to the trained negative and positive models for predicting the target score. This framework was applied to NT and ASD populations independently to identify significant functional connections coding for full-scale and verbal intelligence quotients in the brain.
Collapse
Affiliation(s)
- Elizabeth Dryburgh
- BASIRA Lab, CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Stephen McKenna
- CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Islem Rekik
- BASIRA Lab, CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, UK.
- Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
14
|
Mooney LN, Nordahl CW, Solomon M, Ghetti S. Children with ASD Show Impaired Item-Space Recollection, But Preserved Item-Color Recollection. Autism Res 2020; 13:1985-1997. [PMID: 32954661 DOI: 10.1002/aur.2394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023]
Abstract
Although individuals with autism spectrum disorder (ASD) have been often shown to display similar memory performance on semantic memory tasks compared to typically developing (TD) children, there is ongoing debate about whether and how their ability to remember specific past events (i.e., episodic memory) is impaired. We assessed a sample of 62 children with ASD and 72 TD children, ranging in age between 8 and 12 years on 2 memory tasks. Participants encoded a series of images and their association with either where they appeared on the screen (item-space association task) or with the color of an image's border (item-color association task). Children with ASD showed worse memory in the item-space association task compared to their TD peers, but comparable memory for the item-color association task. These differences persisted when age, intellectual quotient, and general item recognition memory were accounted for statistically. We interpret these results in light of evidence for specific deficits along the dorsal stream affecting processing of spatiotemporal information in ASD. Autism Res 2020, 13: 1985-1997. © 2020 International Society for Autism Research and Wiley Periodicals LLC LAY SUMMARY: Episodic memory requires the ability to bind contextual details (such as color, location, etc.) to an item or event in order to remember the past with specific detail. Here, we compared children with autism spectrum disorder (ASD) and typically developing (TD) children on tasks examining episodic memory. Children with ASD recalled more poorly previously seen items and their associated space-related details, but they performed comparably to TD children on color details. We discuss the possible mechanisms that contribute to worse spatial processing/recall in ASD.
Collapse
Affiliation(s)
- Lindsey N Mooney
- Department of Psychology, Center for Mind and Brain, University of California, Davis, California, USA
| | - Christine Wu Nordahl
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, California, USA
| | - Marjorie Solomon
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, California, USA
| | - Simona Ghetti
- Department of Psychology, Center for Mind and Brain, University of California, Davis, California, USA
| |
Collapse
|
15
|
Williams CM, Peyre H, Toro R, Beggiato A, Ramus F. Adjusting for allometric scaling in ABIDE I challenges subcortical volume differences in autism spectrum disorder. Hum Brain Mapp 2020; 41:4610-4629. [PMID: 32729664 PMCID: PMC7555078 DOI: 10.1002/hbm.25145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Inconsistencies across studies investigating subcortical correlates of autism spectrum disorder (ASD) may stem from small sample size, sample heterogeneity, and omitting or linearly adjusting for total brain volume (TBV). To properly adjust for TBV, brain allometry—the nonlinear scaling relationship between regional volumes and TBV—was considered when examining subcortical volumetric differences between typically developing (TD) and ASD individuals. Autism Brain Imaging Data Exchange I (ABIDE I; N = 654) data was analyzed with two methodological approaches: univariate linear mixed effects models and multivariate multiple group confirmatory factor analyses. Analyses were conducted on the entire sample and in subsamples based on age, sex, and full scale intelligence quotient (FSIQ). A similar ABIDE I study was replicated and the impact of different TBV adjustments on neuroanatomical group differences was investigated. No robust subcortical allometric or volumetric group differences were observed in the entire sample across methods. Exploratory analyses suggested that allometric scaling and volume group differences may exist in certain subgroups defined by age, sex, and/or FSIQ. The type of TBV adjustment influenced some reported volumetric and scaling group differences. This study supports the absence of robust volumetric differences between ASD and TD individuals in the investigated volumes when adjusting for brain allometry, expands the literature by finding no group difference in allometric scaling, and further suggests that differing TBV adjustments contribute to the variability of reported neuroanatomical differences in ASD.
Collapse
Affiliation(s)
- Camille Michèle Williams
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| | - Hugo Peyre
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France.,INSERM UMR 1141, Paris Diderot University, Paris, France.,Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- U1284, Center for Research and Interdisciplinarity (CRI), INSERM, Paris, France.,Unité Mixte de Recherche 3571, Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Anita Beggiato
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Unité Mixte de Recherche 3571, Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| |
Collapse
|
16
|
Semino S, Zanobini M, Usai MC. Visual memory profile in children with high functioning autism. APPLIED NEUROPSYCHOLOGY-CHILD 2019; 10:26-36. [PMID: 30998085 DOI: 10.1080/21622965.2019.1594231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Visual memory in children with high-functioning autism (HFA) is an area of debate. According to the few studies that have examined visual memory in children with autism, the memory profile appears to vary according to the memory process and type of stimuli, and contrasting results may be found. This study aims to analyze the visual memory profile of children with HFA. Fifteen children with HFA (mean age 9.6) and 15 typically developing children (TD; mean age 9.2) matched by chronological age and Leiter-R Brief IQ score took part in the study. Associative and recognition memory as well as visuospatial working memory were assessed. Impairments in face recognition and forward memory were found, whereas associative memory and shape recognition were preserved. The memory profile in children with Autism Spectrum Disorder (ASD) showed relatively stronger abilities in associative memory than in the other visual memory domains. The results support the hypothesis that the level of stimulus processing may influence memory performance by having a large impact on tasks and stimuli that require access to a semantic or global level of processing. In contrast to the TD population, children with ASD may have difficulty extracting underlying regularities from experiences and generalizing that information. Highlights Children with high-functioning autism (HFA) show preserved ability in associative memory and shape recognition. Face recognition appears to be a specific deficit in children with HFA. Associative memory appeared to be the strongest ability in the memory profile of children with autism spectrum disorder (ASD) and typically developing (TD) children.
Collapse
Affiliation(s)
- Sara Semino
- Department of Education, University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
17
|
Semino S, Ring M, Bowler DM, Gaigg SB. The Influence of task Demands, Verbal Ability and Executive Functions on Item and Source Memory in Autism Spectrum Disorder. J Autism Dev Disord 2019; 48:184-197. [PMID: 28921058 PMCID: PMC5760601 DOI: 10.1007/s10803-017-3299-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autism Spectrum Disorder (ASD) is generally associated with difficulties in contextual source memory but not single item memory. There are surprising inconsistencies in the literature, however, that the current study seeks to address by examining item and source memory in age and ability matched groups of 22 ASD and 21 comparison adults. Results show that group differences in source memory are moderated by task demands but not by individual differences in verbal ability, executive function or item memory. By contrast, unexpected group differences in item memory could largely be explained by individual differences in source memory. These observations shed light on the factors underlying inconsistent findings in the memory literature in ASD, which has important implications for theory and practice.
Collapse
Affiliation(s)
- Sara Semino
- Department of Educational Sciences, University of Genoa, Corso A. Podesta, 2, 16128, Genoa, Italy
| | - Melanie Ring
- Department of Child & Adolescent Psychiatry, Medical Faculty of the Technical University Dresden, Dresden, Germany
| | - Dermot M Bowler
- Autism Research Group, Department of Psychology, City, University of London, Northampton Square, London, EC1V 0HB, UK
| | - Sebastian B Gaigg
- Autism Research Group, Department of Psychology, City, University of London, Northampton Square, London, EC1V 0HB, UK.
| |
Collapse
|
18
|
Arbab T, Pennartz CMA, Battaglia FP. Impaired hippocampal representation of place in the Fmr1-knockout mouse model of fragile X syndrome. Sci Rep 2018; 8:8889. [PMID: 29892074 PMCID: PMC5995880 DOI: 10.1038/s41598-018-26853-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 04/19/2018] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is an X-chromosome linked intellectual disability and the most common known inherited single gene cause of autism spectrum disorder (ASD). Building upon demonstrated deficits in neuronal plasticity and spatial memory in FXS, we investigated how spatial information processing is affected in vivo in an FXS mouse model (Fmr1-KO). Healthy hippocampal neurons (so-called place cells) exhibit place-related activity during spatial exploration, and their firing fields tend to remain stable over time. In contrast, we find impaired stability and reduced specificity of Fmr1-KO spatial representations. This is a potential biomarker for the cognitive dysfunction observed in FXS, informative on the ability to integrate sensory information into an abstract representation and successfully retain this conceptual memory. Our results provide key insight into the biological mechanisms underlying cognitive disabilities in FXS and ASD, paving the way for a targeted approach to remedy these.
Collapse
Affiliation(s)
- Tara Arbab
- Cognitive and Systems Neuroscience, Swammerdam Institute, Center for Neuroscience, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. .,Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands. .,Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postal Box 22660, 1100 DD, Amsterdam, The Netherlands.
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience, Swammerdam Institute, Center for Neuroscience, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Postal Box 94216, 1090 GE, Amsterdam, The Netherlands
| | - Francesco P Battaglia
- Cognitive and Systems Neuroscience, Swammerdam Institute, Center for Neuroscience, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Radboud Universiteit Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Bi XA, Zhao J, Xu Q, Sun Q, Wang Z. Abnormal Functional Connectivity of Resting State Network Detection Based on Linear ICA Analysis in Autism Spectrum Disorder. Front Physiol 2018; 9:475. [PMID: 29867534 PMCID: PMC5952255 DOI: 10.3389/fphys.2018.00475] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/16/2018] [Indexed: 11/24/2022] Open
Abstract
Some functional magnetic resonance imaging (fMRI) researches in autism spectrum disorder (ASD) patients have shown that ASD patients have significant impairment in brain response. However, few researchers have studied the functional structure changes of the eight resting state networks (RSNs) in ASD patients. Therefore, research on statistical differences of RSNs between 42 healthy controls (HC) and 50 ASD patients has been studied using linear independent component analysis (ICA) in this paper. Our researches showed that there was abnormal functional connectivity (FC) of RSNs in ASD patients. The RSNs with the decreased FC and increased FC in ASD patients included default mode network (DMN), central executive network (CEN), core network (CN), visual network (VN), self-referential network (SRN) compared to HC. The RSNs with the increased FC in ASD patients included auditory network (AN), somato-motor network (SMN). The dorsal attention network (DAN) in ASD patients showed the decreased FC. Our findings indicate that the abnormal FC in RSNs extensively exists in ASD patients. Our results have important contribution for the study of neuro-pathophysiological mechanisms in ASD patients.
Collapse
Affiliation(s)
- Xia-An Bi
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| | - Junxia Zhao
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| | - Qian Xu
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| | - Qi Sun
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| | - Zhigang Wang
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| |
Collapse
|
20
|
Ciaramelli E, Spoglianti S, Bertossi E, Generali N, Telarucci F, Tancredi R, Muratori F, Igliozzi R. Construction of Past and Future Events in Children and Adolescents with ASD: Role of Self-relatedness and Relevance to Decision-Making. J Autism Dev Disord 2018; 48:2995-3009. [DOI: 10.1007/s10803-018-3577-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping. Eur Child Adolesc Psychiatry 2017; 26:933-945. [PMID: 28233073 DOI: 10.1007/s00787-017-0964-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023]
Abstract
The gray matter abnormalities revealed by magnetic resonance imaging are inconsistent, especially in pediatric individuals with autism spectrum disorder (ASD) (age < 18 years old), a phenomenon possibly related to the core pathophysiology of ASD. The purpose of our meta-analysis was to identify and map the specific gray matter abnormalities in pediatric ASD individuals thereby exploring the potential effects of clinical and demographic characteristics of these gray matter changes. A systematic search was conducted to identify voxel-based morphometry studies in pediatric individuals with ASD. The effect-size signed differential mapping method was used to quantitatively estimate the regional gray matter abnormalities in pediatric ASD individuals. Meta-regression was used to examine the associations among age, gender, intelligence quotient, symptom severity and gray matter changes. Fifteen studies including 364 pediatric individuals with ASD (male = 282, age = 10.3 ± 4.4 years) and 377 healthy controls (male = 289, age = 10.5 ± 4.2 years) were included. Pediatric ASD individuals showed significant gray matter increases in the right angular gyrus, left superior and middle frontal gyrus, left precuneus, left inferior occipital gyrus and right inferior temporal gyrus, most of which involving the default mode network, and decreases in the left cerebellum and left postcentral gyrus. The meta-regression analysis showed that the repetitive behavior scores of the Autism Diagnostic Interview-Revised were positively associated with increased gray matter volumes in the right angular gyrus. Increased rather than decreased gray matter volume, especially involving the angular gyrus and prefrontal cortex may be the core pathophysiology in the early course of ASD.
Collapse
|
22
|
Neuronal-expressed microRNA-targeted pseudogenes compete with coding genes in the human brain. Transl Psychiatry 2017; 7:e1199. [PMID: 28786976 PMCID: PMC5611730 DOI: 10.1038/tp.2017.163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs orchestrate brain functioning via interaction with microRNA recognition elements (MRE) on target transcripts. However, the global impact of potential competition on the microRNA pool between coding and non-coding brain transcripts that share MREs with them remains unexplored. Here we report that non-coding pseudogene transcripts carrying MREs (PSG+MRE) often show duplicated origin, evolutionary conservation and higher expression in human temporal lobe neurons than comparable duplicated MRE-deficient pseudogenes (PSG-MRE). PSG+MRE participate in neuronal RNA-induced silencing complexes (RISC), indicating functional involvement. Furthermore, downregulation cell culture experiments validated bidirectional co-regulation of PSG+MRE with MRE-sharing coding transcripts, frequently not their mother genes, and with targeted microRNAs; also, PSG+MRE single-nucleotide polymorphisms associated with schizophrenia, bipolar disorder and autism, suggesting interaction with mental diseases. Our findings indicate functional roles of duplicated PSG+MRE in brain development and cognition, supporting physiological impact of the reciprocal co-regulation of PSG+MRE with MRE-sharing coding transcripts in human brain neurons.
Collapse
|
23
|
Williams DL, Minshew NJ, Goldstein G, Mazefsky CA. Long-term memory in older children/adolescents and adults with autism spectrum disorder. Autism Res 2017; 10:1523-1532. [DOI: 10.1002/aur.1801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Diane L. Williams
- Department of Speech-Language Pathology; Duquesne University; Pittsburgh Pennsylvania
| | - Nancy J. Minshew
- Departments of Psychiatry and Neurology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | | | - Carla A. Mazefsky
- Department of Psychiatry; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
24
|
Scharkowski F, Frotscher M, Lutz D, Korte M, Michaelsen-Preusse K. Altered Connectivity and Synapse Maturation of the Hippocampal Mossy Fiber Pathway in a Mouse Model of the Fragile X Syndrome. Cereb Cortex 2017; 28:852-867. [DOI: 10.1093/cercor/bhw408] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- F Scharkowski
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Michael Frotscher
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - David Lutz
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
- Helmholtz Centre for Infection Research, AG NIND, 38124 Braunschweig, Germany
| | | |
Collapse
|
25
|
Mychasiuk R, Rho JM. Genetic modifications associated with ketogenic diet treatment in the BTBR T+Tf/J mouse model of autism spectrum disorder. Autism Res 2016; 10:456-471. [PMID: 27529337 DOI: 10.1002/aur.1682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder characterized by hallmark behavioral features. The spectrum of disorders that fall within the ASD umbrella encompass a distinct but overlapping symptom complex that likely results from an array of molecular and genetic aberrations rather than a single genetic mutation. The ketogenic diet (KD) is a high-fat low-carbohydrate anti-seizure and neuroprotective diet that has demonstrated efficacy in the treatment of ASD-like behaviors in animal and human studies. METHODS We investigated changes in mRNA and gene expression in the BTBR mouse model of ASD that may contribute to the behavioral phenotype. In addition, we sought to examine changes in gene expression following KD treatment in BTBR mice. RESULTS Despite significant behavioral abnormalities, expression changes in BTBR mice did not differ substantially from controls; only 33 genes were differentially expressed in the temporal cortex, and 48 in the hippocampus. Examination of these differentially expressed genes suggested deficits in the stress response and in neuronal signaling/communication. After treatment with the KD, both brain regions demonstrated improvements in ASD deficits associated with myelin formation and white matter development. CONCLUSIONS Although our study supports many of the previously known impairments associated with ASD, such as excessive myelin formation and impaired GABAergic transmission, the RNAseq data and pathway analysis utilized here identified new therapeutic targets for analysis, such as Vitamin D pathways and cAMP signaling. Autism Res 2017, 10: 456-471. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richelle Mychasiuk
- Departments of Psychology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Yang X, Si T, Gong Q, Qiu L, Jia Z, Zhou M, Zhao Y, Hu X, Wu M, Zhu H. Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder: A meta-analysis of voxel-based morphometry studies. Aust N Z J Psychiatry 2016; 50:741-53. [PMID: 26769980 DOI: 10.1177/0004867415623858] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is increasing evidence that children with autism spectrum disorder are accompanied by specific anatomical alterations. However, the anatomical abnormalities in adults with autism spectrum disorder are poorly understood. This study was aimed to identify the neuroanatomical substrates underlying the pathophysiology of adults with autism spectrum disorder. We also investigated the relationship between neuroanatomical alterations and clinical and demographic characteristics. METHODS A total of 13 datasets were enrolled, of which 12 studies compared whole-brain differences of 382 adult patients with autism and 393 healthy control subjects. We conducted a meta-analysis to quantitatively estimate regional gray matter volume abnormalities in individuals with autism using the effect-size signed differential mapping. RESULTS The voxel-wise meta-analysis revealed that relative to controls, adults with autism spectrum disorder had significantly increased gray matter volume in the middle temporal gyrus, superior temporal gyrus, postcentral gyrus and parahippocampal gyrus, and reduced gray matter volume in the anterior cingulate cortex and cerebellum. Variations in gray matter volume were significantly associated with the mean age and mean total IQ score of the patients, as well as with the percentage of male patients with autism. CONCLUSION These findings confirmed that the neuroanatomical alterations in the fronto-temporal cortices, limbic system and cerebellum in adult individuals with autism were different from the children and young adolescent's autism. The effects of demographic characteristics on the brain morphological changes allow us to further clarify the neurobiological mechanisms and developmental trajectory in adult population with autism spectrum disorder.
Collapse
Affiliation(s)
- Xun Yang
- School of Sociality and Psychology, Southwest University for Nationalities, Chengdu, China Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tianjing Si
- School of Sociality and Psychology, Southwest University for Nationalities, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China Department of Psychology, School of Public Administration, Sichuan University, Chengdu, China
| | - Lihua Qiu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China Department of Radiology, The Second People's Hospital of Yibin, Yibin, China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Mi Zhou
- School of Sociality and Psychology, Southwest University for Nationalities, Chengdu, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Solomon M, McCauley JB, Iosif AM, Carter CS, Ragland JD. Cognitive control and episodic memory in adolescents with autism spectrum disorders. Neuropsychologia 2016; 89:31-41. [PMID: 27184119 DOI: 10.1016/j.neuropsychologia.2016.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 11/25/2022]
Abstract
INTRODUCTION To further investigate manifestations of episodic memory impairments in adolescents, we examined the role of encoding on recognition of stimuli in conditions designed to emphasize their item-specific versus relational characteristics in a group of 12-18 year olds with autism spectrum disorders (ASD). We also examined how strategic learning and memory processes, verbal abilities, attention, and age were associated with recognition in this group. MATERIALS AND METHOD Twenty two high functioning adolescents with ASD (mean age=15 years; SD=1.8; range=12.2-17.9), and 26 age, gender, and IQ-matched adolescents with typical development (TYP) (mean age=14.7 years; SD=1.9; range=12.3-17.8) completed the Relational and Item-Specific Encoding task (RiSE), the California Verbal Learning Test-Children's Version (CVLT-C), the Wechsler Abbreviated Scales of Intelligence, and the Connors' Parent Rating Scale-Revised. Univariate statistical analyses were performed. RESULTS The ASD group showed poorer performance on strategic memory assessed by the CVLT-C. Surprisingly, on the RiSE, ASD showed poorer discriminability for objects encoded in item-specific versus relational encoding conditions and were more impaired in familiarity (after relational encoding) than in recollection. ASD also did not show the hypothesized association between item and associative recognition and CVLT-C performance found in TYP. Instead, in the ASD group recognition was associated with increased age. CONCLUSIONS Findings from the RiSE task demonstrated that adolescents with ASD do not always exhibit impaired memory for relational information as commonly believed. Instead, memory was worse when cognitive control demands were high, when encoding focused on specific item features, and when familiarity was used to retrieve relational information. Recognition also was better in older participants. This suggests that learning and memory deficits in adolescents with ASD, may not be due primarily to failed relational binding processes in the hippocampus but, rather to disrupted strategic memory and familiarity processes associated with the prefrontal and perirhinal cortices. These findings demonstrate the importance and utility of using well-validated cognitive neuroscience tasks and of considering the ages of participants when comparing the neural underpinnings of different memory processes in both typical and atypical populations.
Collapse
Affiliation(s)
- Marjorie Solomon
- Department of Psychiatry & Behavioral Sciences, University of California-Davis, 2230 Stockton Blvd., Sacramento, CA 95817, United States; Imaging Research Center, University of California-Davis, 4701 X Street, Sacramento, CA 95817, United States; MIND Institute, 2825 50th Street, Sacramento, CA 95817, United States.
| | - James B McCauley
- Department of Psychiatry & Behavioral Sciences, University of California-Davis, 2230 Stockton Blvd., Sacramento, CA 95817, United States; MIND Institute, 2825 50th Street, Sacramento, CA 95817, United States; Department of Human Ecology, University of California-Davis, 131 Hunt Hall, Davis, Sacramento, CA 95618, United States.
| | - Ana-Maria Iosif
- Department of Public Health Sciences, University of California-Davis, One Shields Ave, Davis, CA 95616, United States.
| | - Cameron S Carter
- Department of Psychiatry & Behavioral Sciences, University of California-Davis, 2230 Stockton Blvd., Sacramento, CA 95817, United States; Imaging Research Center, University of California-Davis, 4701 X Street, Sacramento, CA 95817, United States; Center for Neuroscience, University of California-Davis, 1544 Newton Ct, Davis, CA 95618, United States.
| | - J Daniel Ragland
- Department of Psychiatry & Behavioral Sciences, University of California-Davis, 2230 Stockton Blvd., Sacramento, CA 95817, United States; Imaging Research Center, University of California-Davis, 4701 X Street, Sacramento, CA 95817, United States.
| |
Collapse
|
28
|
Pasciuto E, Borrie SC, Kanellopoulos AK, Santos AR, Cappuyns E, D'Andrea L, Pacini L, Bagni C. Autism Spectrum Disorders: Translating human deficits into mouse behavior. Neurobiol Learn Mem 2015. [PMID: 26220900 DOI: 10.1016/j.nlm.2015.07.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autism Spectrum Disorders are a heterogeneous group of neurodevelopmental disorders, with rising incidence but little effective therapeutic intervention available. Currently two main clinical features are described to diagnose ASDs: impaired social interaction and communication, and repetitive behaviors. Much work has focused on understanding underlying causes of ASD by generating animal models of the disease, in the hope of discovering signaling pathways and cellular targets for drug intervention. Here we review how ASD behavioral phenotypes can be modeled in the mouse, the most common animal model currently in use in this field, and discuss examples of genetic mouse models of ASD with behavioral features that recapitulate various symptoms of ASD.
Collapse
Affiliation(s)
- E Pasciuto
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - S C Borrie
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - A K Kanellopoulos
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - A R Santos
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - E Cappuyns
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - L D'Andrea
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy
| | - L Pacini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy
| | - C Bagni
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium; University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy.
| |
Collapse
|
29
|
Foti F, De Crescenzo F, Vivanti G, Menghini D, Vicari S. Implicit learning in individuals with autism spectrum disorders: a meta-analysis. Psychol Med 2015; 45:897-910. [PMID: 25126858 DOI: 10.1017/s0033291714001950] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Individuals with autism spectrum disorders (ASDs) are characterized by social communication difficulties and behavioural rigidity. Difficulties in learning from others are one of the most devastating features of this group of conditions. Nevertheless, the nature of learning difficulties in ASDs is still unclear. Given the relevance of implicit learning for social and communicative functioning, a link has been hypothesized between ASDs and implicit learning deficit. However, studies that have employed formal testing of implicit learning in ASDs provided mixed results. METHOD We undertook a systematic search of studies that examined implicit learning in ASDs using serial reaction time (SRT), alternating serial reaction time (ASRT), pursuit rotor (PR), and contextual cueing (CC) tasks, and synthesized the data using meta-analysis. A total of 11 studies were identified, representing data from 407 individuals with ASDs and typically developing comparison participants. RESULTS The results indicate that individuals with ASDs do not differ in any task considered [SRT and ASRT task: standardized mean difference (SMD) -0.18, 95% confidence interval (CI) -0.71 to 0.36; PR task: SMD -0.34, 95% CI -1.04 to 0.36; CC task: SMD 0.27, 95% CI -0.07 to 0.60]. CONCLUSIONS Based on our synthesis of the existing literature, we conclude that individuals with ASDs can learn implicitly, supporting the hypothesis that implicit learning deficits do not represent a core feature in ASDs.
Collapse
Affiliation(s)
- F Foti
- Department of Psychology,'Sapienza' University of Rome,Italy
| | - F De Crescenzo
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| | - G Vivanti
- Olga Tennison Autism Research Centre, School of Psychological Science,La Trobe University,Melbourne, VIC,Australia
| | - D Menghini
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| | - S Vicari
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| |
Collapse
|
30
|
Kastellakis G, Cai DJ, Mednick SC, Silva AJ, Poirazi P. Synaptic clustering within dendrites: an emerging theory of memory formation. Prog Neurobiol 2015; 126:19-35. [PMID: 25576663 PMCID: PMC4361279 DOI: 10.1016/j.pneurobio.2014.12.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 11/30/2022]
Abstract
It is generally accepted that complex memories are stored in distributed representations throughout the brain, however the mechanisms underlying these representations are not understood. Here, we review recent findings regarding the subcellular mechanisms implicated in memory formation, which provide evidence for a dendrite-centered theory of memory. Plasticity-related phenomena which affect synaptic properties, such as synaptic tagging and capture, synaptic clustering, branch strength potentiation and spinogenesis provide the foundation for a model of memory storage that relies heavily on processes operating at the dendrite level. The emerging picture suggests that clusters of functionally related synapses may serve as key computational and memory storage units in the brain. We discuss both experimental evidence and theoretical models that support this hypothesis and explore its advantages for neuronal function.
Collapse
Affiliation(s)
- George Kastellakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1385, GR 70013 Heraklion, Greece
| | - Denise J Cai
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, 2554 Gonda Center, Los Angeles, CA 90095, United States
| | - Sara C Mednick
- Department of Psychology, University of California, 900 University Avenue, Riverside, CA 92521, United States
| | - Alcino J Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, 2554 Gonda Center, Los Angeles, CA 90095, United States
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1385, GR 70013 Heraklion, Greece.
| |
Collapse
|
31
|
Gaigg SB, Bowler DM, Ecker C, Calvo-Merino B, Murphy DG. Episodic Recollection Difficulties in ASD Result from Atypical Relational Encoding: Behavioral and Neural Evidence. Autism Res 2015; 8:317-27. [PMID: 25630307 PMCID: PMC4949632 DOI: 10.1002/aur.1448] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/25/2014] [Indexed: 12/02/2022]
Abstract
Memory functioning in Autism Spectrum Disorder (ASD) is characterized by impairments in the encoding of relational but not item information and difficulties in the recollection of contextually rich episodic memories but not in the retrieval of relatively context‐free memories through processes of familiarity. The neural underpinnings of this profile and the extent to which encoding difficulties contribute to retrieval difficulties in ASD remain unclear. Using a paradigm developed by Addis and McAndrews [2006; Neuroimage, 33, 1194–1206] we asked adults with and without a diagnosis of ASD to study word‐triplets during functional Magnetic Resonance Imaging (fMRI) scanning that varied in the number of category relations amongst component words. Performance at test confirmed attenuated recollection in the context of preserved familiarity based retrieval in ASD. The results also showed that recollection but not familiarity based retrieval increases as a function of category relations in word triads for both groups, indicating a close link between the encoding of relational information and recollection. This link was further supported by the imaging results, where blood oxygen level dependent (BOLD) signal responses in overlapping regions of the inferior prefrontal cortex were sensitive to the relational encoding manipulation as well as the contrast between recollection versus familiarity based retrieval. Interestingly, however, there was no evidence of prefrontal signal differentiation for this latter contrast in the ASD group for whom signal changes in a left hippocampal region were also marginally attenuated. Together, these observations suggest that attenuated levels of episodic recollection in ASD are, at least in part, attributable to anomalies in relational encoding processes. Autism Res2015, 8: 317–327. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sebastian B Gaigg
- Department of Psychology, City University London, London, EC1V, 0HB, UK
| | - Dermot M Bowler
- Department of Psychology, City University London, London, EC1V, 0HB, UK
| | - Christine Ecker
- Institute of Psychiatry, King's College London, London, SE5, 8AF, UK
| | | | - Declan G Murphy
- Institute of Psychiatry, King's College London, London, SE5, 8AF, UK
| |
Collapse
|
32
|
Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. NEUROIMAGE-CLINICAL 2014; 7:525-36. [PMID: 25844306 PMCID: PMC4375647 DOI: 10.1016/j.nicl.2014.11.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal-temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations.
Collapse
|
33
|
David N, Schultz J, Milne E, Schunke O, Schöttle D, Münchau A, Siegel M, Vogeley K, Engel AK. Right temporoparietal gray matter predicts accuracy of social perception in the autism spectrum. J Autism Dev Disord 2014; 44:1433-46. [PMID: 24305776 DOI: 10.1007/s10803-013-2008-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Individuals with an autism spectrum disorder (ASD) show hallmark deficits in social perception. These difficulties might also reflect fundamental deficits in integrating visual signals. We contrasted predictions of a social perception and a spatial-temporal integration deficit account. Participants with ASD and matched controls performed two tasks: the first required spatiotemporal integration of global motion signals without social meaning, the second required processing of socially relevant local motion. The ASD group only showed differences to controls in social motion evaluation. In addition, gray matter volume in the temporal-parietal junction correlated positively with accuracy in social motion perception in the ASD group. Our findings suggest that social-perceptual difficulties in ASD cannot be reduced to deficits in spatial-temporal integration.
Collapse
Affiliation(s)
- Nicole David
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Goodman J, Marsh R, Peterson BS, Packard MG. Annual research review: The neurobehavioral development of multiple memory systems--implications for childhood and adolescent psychiatric disorders. J Child Psychol Psychiatry 2014; 55:582-610. [PMID: 24286520 PMCID: PMC4244838 DOI: 10.1111/jcpp.12169] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2013] [Indexed: 01/26/2023]
Abstract
Extensive evidence indicates that mammalian memory is organized into multiple brains systems, including a 'cognitive' memory system that depends on the hippocampus and a stimulus-response 'habit' memory system that depends on the dorsolateral striatum. Dorsal striatal-dependent habit memory may in part influence the development and expression of some human psychopathologies, particularly those characterized by strong habit-like behavioral features. The present review considers this hypothesis as it pertains to psychopathologies that typically emerge during childhood and adolescence. These disorders include Tourette syndrome, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, eating disorders, and autism spectrum disorders. Human and nonhuman animal research shows that the typical development of memory systems comprises the early maturation of striatal-dependent habit memory and the relatively late maturation of hippocampal-dependent cognitive memory. We speculate that the differing rates of development of these memory systems may in part contribute to the early emergence of habit-like symptoms in childhood and adolescence. In addition, abnormalities in hippocampal and striatal brain regions have been observed consistently in youth with these disorders, suggesting that the aberrant development of memory systems may also contribute to the emergence of habit-like symptoms as core pathological features of these illnesses. Considering these disorders within the context of multiple memory systems may help elucidate the pathogenesis of habit-like symptoms in childhood and adolescence, and lead to novel treatments that lessen the habit-like behavioral features of these disorders.
Collapse
Affiliation(s)
- Jarid Goodman
- The Department of Psychology, Texas A&M University, College Station, TX, USA
| | - Rachel Marsh
- The MRI Unit and Division of Child & Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute and the College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bradley S. Peterson
- The MRI Unit and Division of Child & Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute and the College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mark G. Packard
- The Department of Psychology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
35
|
Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci 2014; 8:92. [PMID: 24904314 PMCID: PMC4033133 DOI: 10.3389/fnsys.2014.00092] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/30/2014] [Indexed: 01/18/2023] Open
Abstract
Differences in cerebellar structure have been identified in autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and developmental dyslexia. However, it is not clear if different cerebellar regions are involved in each disorder, and thus whether cerebellar anatomical differences reflect a generic developmental vulnerability or disorder-specific characteristics. To clarify this, we conducted an anatomic likelihood estimate (ALE) meta-analysis on voxel-based morphometry (VBM) studies which compared ASD (17 studies), ADHD (10 studies), and dyslexic (10 studies) participants with age-matched typically-developing (TD) controls. A second ALE analysis included studies in which the cerebellum was a region of interest (ROI). There were no regions of significantly increased gray matter (GM) in the cerebellum in ASD, ADHD, or dyslexia. Data from ASD studies revealed reduced GM in the inferior cerebellar vermis (lobule IX), left lobule VIIIB, and right Crus I. In ADHD, significantly decreased GM was found bilaterally in lobule IX, whereas participants with developmental dyslexia showed GM decreases in left lobule VI. There was no overlap between the cerebellar clusters identified in each disorder. We evaluated the functional significance of the regions revealed in both whole-brain and cerebellar ROI ALE analyses using Buckner and colleagues' 7-network functional connectivity map available in the SUIT cerebellar atlas. The cerebellar regions identified in ASD showed functional connectivity with frontoparietal, default mode, somatomotor, and limbic networks; in ADHD, the clusters were part of dorsal and ventral attention networks; and in dyslexia, the clusters involved ventral attention, frontoparietal, and default mode networks. The results suggest that different cerebellar regions are affected in ASD, ADHD, and dyslexia, and these cerebellar regions participate in functional networks that are consistent with the characteristic symptoms of each disorder.
Collapse
|
36
|
Li X, Qu F, Xie W, Wang F, Liu H, Song S, Chen T, Zhang Y, Zhu S, Wang Y, Guo C, Tang TS. Transcriptomic analyses of neurotoxic effects in mouse brain after intermittent neonatal administration of thimerosal. Toxicol Sci 2014; 139:452-65. [PMID: 24675092 DOI: 10.1093/toxsci/kfu049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Thimerosal is a vaccine antimicrobial preservative which has long been suspected an iatrogenic factor possibly contributing to neurodevelopmental disorders including autism. The association between infant vaccine thimerosal exposure and autism remains an open question. Although thimerosal has been removed from mandatory childhood vaccines in the United States, thimerosal-preserved vaccines are still widely used outside of the United States especially in developing countries. Notably, thimerosal-containing vaccines are being given to the newborns within the first 12-24 h after birth in some countries. To examine the possible neurotoxic effects of early neonatal exposure to a higher level of thimerosal, FVB mice were subcutaneously injected with thimerosal-mercury at a dose which is 20× higher than that used for regular Chinese infant immunization during the first 4 months of life. Thimerosal-treated mice exhibited neural development delay, social interaction deficiency, and inclination of depression. Apparent neuropathological changes were also observed in adult mice neonatally treated with thimerosal. High-throughput RNA sequencing of autistic-behaved mice brains revealed the alternation of a number of canonical pathways involving neuronal development, neuronal synaptic function, and the dysregulation of endocrine system. Intriguingly, the elevation of anterior pituitary secreting hormones occurred exclusively in male but not in female thimerosal-treated mice, demonstrating for the first time the gender bias of thimerosal-mercury toxicity with regard to endocrine system. Our results indicate that higher dose of neonatal thimerosal-mercury (20× higher than that used in human) is capable of inducing long-lasting substantial dysregulation of neurodevelopment, synaptic function, and endocrine system, which could be the causal involvements of autistic-like behavior in mice.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives. Psychopharmacology (Berl) 2014; 231:1125-46. [PMID: 24048469 DOI: 10.1007/s00213-013-3268-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/27/2013] [Indexed: 12/14/2022]
Abstract
The establishment of robust and replicable behavioural testing paradigms with translational value for psychiatric diseases is a major step forward in developing and testing etiology-directed treatment for these complex disorders. Based on the existing literature, we have generated an inventory of applied rodent behavioural testing paradigms relevant to autism spectrum disorders (ASD). This inventory focused on previously used paradigms that assess behavioural domains that are affected in ASD, such as social interaction, social communication, repetitive behaviours and behavioural inflexibility, cognition as well as anxiety behaviour. A wide range of behavioural testing paradigms for rodents were identified. However, the level of face and construct validity is highly variable. The predictive validity of these paradigms is unknown, as etiology-directed treatments for ASD are currently not on the market. To optimise these studies, future efforts should address aspects of reproducibility and take into account data about the neurodevelopmental underpinnings and trajectory of ASD. In addition, with the increasing knowledge of processes underlying ASD, such as sensory information processes and synaptic plasticity, phenotyping efforts should include multi-level automated analysis of, for example, representative task-related behavioural and electrophysiological read-outs.
Collapse
|
38
|
Maras KL, Memon A, Lambrechts A, Bowler DM. Recall of a live and personally experienced eyewitness event by adults with autism spectrum disorder. J Autism Dev Disord 2014; 43:1798-810. [PMID: 23229454 DOI: 10.1007/s10803-012-1729-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to (a) extend previous eyewitness research in autism spectrum disorder (ASD) using a live and personally experienced event; (b) examine whether witnesses with ASD demonstrate a facilitative effect in memory for self- over other-performed actions; (c) explore source monitoring abilities by witnesses with ASD in discriminating who performed which actions within the event. Eighteen high-functioning adults with ASD and 18 age- and IQ-matched typical counterparts participated in a live first aid scenario in which they and the experimenter each performed a number of actions. Participants were subsequently interviewed for their memory of the event using a standard interview procedure with free recall followed by questioning. The ASD group recalled just as many correct details as the comparison group from the event overall, however they made more errors. This was the case across both free recall and questioning phases. Both groups showed a self-enactment effect across both interview phases, recalling more actions that they had performed themselves than actions that the experimenter had performed. However, the ASD group were more likely than their typical comparisons to confuse the source of self-performed actions in free recall, but not in questioning, which may indicate executive functioning difficulties with unsupported test procedures. Findings are discussed in terms of their theoretical and practical implications.
Collapse
Affiliation(s)
- Katie L Maras
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| | | | | | | |
Collapse
|
39
|
Ni Chuileann S, Quigley J. Assessing recollection and familiarity in low functioning autism. J Autism Dev Disord 2014; 43:1406-22. [PMID: 23108988 DOI: 10.1007/s10803-012-1697-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methods to assess recollection and familiarity separately in autism spectrum disorder were recently developed and piloted (Bigham et al. in J Autism Dev Disord 40:878-889, 2010). The preliminary data obtained via these methods showed that whereas recollection was mildly impaired in high functioning autism, familiarity was spared. The current study set out to replicate the methods of assessment for recollection and familiarity devised by Bigham and her colleagues with individuals diagnosed with low functioning autism (LFA). Three critical modifications to the original paradigms were made within the current study. The modifications and implications of the findings for individuals with LFA will be discussed.
Collapse
|
40
|
Souchay C, Guillery-Girard B, Pauly-Takacs K, Wojcik DZ, Eustache F. Subjective experience of episodic memory and metacognition: a neurodevelopmental approach. Front Behav Neurosci 2013; 7:212. [PMID: 24399944 PMCID: PMC3872323 DOI: 10.3389/fnbeh.2013.00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/10/2013] [Indexed: 12/21/2022] Open
Abstract
Episodic retrieval is characterized by the subjective experience of remembering. This experience enables the co-ordination of memory retrieval processes and can be acted on metacognitively. In successful retrieval, the feeling of remembering may be accompanied by recall of important contextual information. On the other hand, when people fail (or struggle) to retrieve information, other feelings, thoughts, and information may come to mind. In this review, we examine the subjective and metacognitive basis of episodic memory function from a neurodevelopmental perspective, looking at recollection paradigms (such as source memory, and the report of recollective experience) and metacognitive paradigms such as the feeling of knowing). We start by considering healthy development, and provide a brief review of the development of episodic memory, with a particular focus on the ability of children to report first-person experiences of remembering. We then consider neurodevelopmental disorders (NDDs) such as amnesia acquired in infancy, autism, Williams syndrome, Down syndrome, or 22q11.2 deletion syndrome. This review shows that different episodic processes develop at different rates, and that across a broad set of different NDDs there are various types of episodic memory impairment, each with possibly a different character. This literature is in agreement with the idea that episodic memory is a multifaceted process.
Collapse
Affiliation(s)
- Céline Souchay
- LEAD UMR CNRS 5022, Université de Bourgogne, Dijon, France
- Department of Experimental Psychology, University of Bristol, Bristol, UK
| | - Bérengère Guillery-Girard
- U1077, INSERM, Caen, France
- UMR-S1077, Université de Caen Basse-Normandie, Caen, France
- UMR-S1077, Ecole Pratique des Hautes Etudes, Caen, France
- UMR-S1077, CHU de Caen, Caen, France
| | - Katalin Pauly-Takacs
- School of Social, Psychological and Communication Sciences, Leeds Metropolitan University, Leeds, UK
| | | | - Francis Eustache
- U1077, INSERM, Caen, France
- UMR-S1077, Université de Caen Basse-Normandie, Caen, France
- UMR-S1077, Ecole Pratique des Hautes Etudes, Caen, France
- UMR-S1077, CHU de Caen, Caen, France
| |
Collapse
|
41
|
Catani M, Dell'acqua F, Thiebaut de Schotten M. A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev 2013; 37:1724-37. [PMID: 23850593 DOI: 10.1016/j.neubiorev.2013.07.001] [Citation(s) in RCA: 442] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/15/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology.
Collapse
Affiliation(s)
- Marco Catani
- Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, UK.
| | | | | |
Collapse
|
42
|
Souchay C, Wojcik DZ, Williams HL, Crathern S, Clarke P. Recollection in adolescents with Autism Spectrum Disorder. Cortex 2013; 49:1598-609. [PMID: 23107379 DOI: 10.1016/j.cortex.2012.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 11/26/2022]
Affiliation(s)
- Celine Souchay
- LEAD-CNRS UMR 5022, Universite de Bourgogne, Pole AAFE, Dijon, France.
| | | | | | | | | |
Collapse
|
43
|
Goh S, Peterson BS. Imaging evidence for disturbances in multiple learning and memory systems in persons with autism spectrum disorders. Dev Med Child Neurol 2012; 54:208-13. [PMID: 22269006 DOI: 10.1111/j.1469-8749.2011.04153.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM The aim of this article is to review neuroimaging studies of autism spectrum disorders (ASD) that examine declarative, socio-emotional, and procedural learning and memory systems. METHOD We conducted a search of PubMed from 1996 to 2010 using the terms 'autism,''learning,''memory,' and 'neuroimaging.' We limited our review to studies correlating learning and memory function with neuroimaging features of the brain. RESULTS The early literature supports the following preliminary hypotheses: (1) abnormalities of hippocampal subregions may contribute to autistic deficits in episodic and relational memory; (2) disturbances to an amygdala-based network (which may include the fusiform gyrus, superior temporal cortex, and mirror neuron system) may contribute to autistic deficits in socio-emotional learning and memory; and (3) abnormalities of the striatum may contribute to developmental dyspraxia in individuals with ASD. INTERPRETATION Characterizing the disturbances to learning and memory systems in ASD can inform our understanding of the neural bases of autistic behaviors and the phenotypic heterogeneity of ASD.
Collapse
Affiliation(s)
- Suzanne Goh
- Division of Child and Adolescent Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
44
|
Transitive inference in adults with autism spectrum disorders. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2011; 11:437-49. [PMID: 21656344 DOI: 10.3758/s13415-011-0040-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Individuals with autism spectrum disorders (ASDs) exhibit intact rote learning with impaired generalization. A transitive inference paradigm, involving training on four sequentially presented stimulus pairs containing overlapping items, with subsequent testing on two novel pairs, was used to investigate this pattern of learning in 27 young adults with ASDs and 31 matched neurotypical individuals (TYPs). On the basis of findings about memory and neuropathology, we hypothesized that individuals with ASDs would use a relational flexibility/conjunctive strategy reliant on an intact hippocampus, versus an associative strength/value transfer strategy requiring intact interactions between the prefrontal cortex and the striatum. Hypotheses were largely confirmed. ASDs demonstrated reduced interference from intervening pairs in early training; only TYPs formed a serial position curve by test; and ASDs exhibited impairments on the novel test pair consisting of end items with intact performance on the inner test pair. However, comparable serial position curves formed for both groups by the end of the first block.
Collapse
|
45
|
Duerden EG, Mak-Fan KM, Taylor MJ, Roberts SW. Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta-analysis. Autism Res 2011; 5:49-66. [PMID: 22139976 DOI: 10.1002/aur.235] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 09/19/2011] [Accepted: 10/20/2011] [Indexed: 01/08/2023]
Abstract
Structural alterations in brain morphology have been inconsistently reported in children compared to adults with autism spectrum disorder (ASD). We assessed these differences by performing meta-analysis on the data from 19 voxel-based morphometry studies. Common findings across the age groups were grey matter reduction in left putamen and medial prefrontal cortex (mPFC) and grey matter increases in the lateral PFC, while white matter decreases were seen mainly in the children in frontostriatal pathways. In the ASD sample, children/adolescents were more likely than adults to have increased grey matter in bilateral fusiform gyrus, right cingulate and insula. Results show that clear maturational differences exist in social cognition and limbic processing regions only in children/adolescents and not in adults with ASD, and may underlie the emotional regulation that improves with age in this population.
Collapse
Affiliation(s)
- Emma G Duerden
- Autism Research Unit, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
46
|
Abstract
Hippocampal atrophy and developmental positional variants may co-occur in various neurological disorders. We propose a surface-based framework to analyze independently volume and positioning. After extracting the spherical harmonics combined with point distribution models (SPHARM-PDM) from manual labels, we computed displacement vectors between individual surfaces and the template. Then, we computed surface-based Jacobian determinants (SJD) from these vectors to localize volume changes. To analyze positional variants, we constructed a mean meridian axis (MEMAX), inheriting the shape-constrained point correspondences of SPHARM, on which we compute local curvatures and position vectors. We validated our method on synthetic shapes, and a large database of healthy subjects and patients with temporal lobe epilepsy. Our comprehensive analysis showed that in patients atrophy and positional changes co-occurred at the level of the posterior hippocampus. Indeed, in this region, while SPHARM-PDM showed mirrored deformations, SJD detected atrophy, and shape analysis of MEMAX unveiled medial positioning due to bending.
Collapse
|
47
|
Yu KK, Cheung C, Chua SE, McAlonan GM. Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. J Psychiatry Neurosci 2011; 36:412-21. [PMID: 21406158 PMCID: PMC3201995 DOI: 10.1503/jpn.100138] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The question of whether Asperger syndrome can be distinguished from autism has attracted much debate and may even incur delay in diagnosis and intervention. Accordingly, there has been a proposal for Asperger syndrome to be subsumed under autism in the forthcoming Diagnostic and Statistical Manual of Mental Disorders, fifth edition, in 2013. One approach to resolve this question has been to adopt the criterion of absence of clinically significant language or cognitive delay--essentially, the "absence of language delay." To our knowledge, this is the first meta-analysis of magnetic resonance imaging (MRI) studies of people with autism to compare absence with presence of language delay. It capitalizes on the voxel-based morphometry (VBM) approach to systematically explore the whole brain for anatomic correlates of delay and no delay in language acquisition in people with autism spectrum disorders. METHODS We conducted a systematic search for VBM MRI studies of grey matter volume in people with autism. Studies with a majority (at least 70%) of participants with autism diagnoses and a history of language delay were assigned to the autism group (n = 151, control n = 190). Those with a majority (at least 70%) of individuals with autism diagnoses and no language delay were assigned to the Asperger syndrome group (n = 149, control n = 214). We entered study coordinates into anatomic likelihood estimation meta-analysis software with sampling size weighting to compare grey matter summary maps driven by Asperger syndrome or autism. RESULTS The summary autism grey matter map showed lower volumes in the cerebellum, right uncus, dorsal hippocampus and middle temporal gyrus compared with controls; grey matter volumes were greater in the bilateral caudate, prefrontal lobe and ventral temporal lobe. The summary Asperger syndrome map indicated lower grey matter volumes in the bilateral amygdala/hippocampal gyrus and prefrontal lobe, left occipital gyrus, right cerebellum, putamen and precuneus compared with controls; grey matter volumes were greater in more limited regions, including the bilateral inferior parietal lobule and the left fusiform gyrus. Both Asperger syndrome and autism studies reported volume increase in clusters in the ventral temporal lobe of the left hemisphere. LIMITATIONS We assigned studies to autism and Asperger syndrome groups for separate analyses of the data and did not carry out a direct statistical group comparison. In addition, studies available for analysis did not capture the entire spectrum, therefore we cannot be certain that our findings apply to a wider population than that sampled. CONCLUSION Whereas grey matter differences in people with Asperger syndrome compared with controls are sparser than those reported in studies of people with autism, the distribution and direction of differences in each category are distinctive.
Collapse
Affiliation(s)
| | | | | | - Gráinne M. McAlonan
- Correspondence to: Dr. G.M. McAlonan, Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong;
| |
Collapse
|
48
|
Murphy CM, Deeley Q, Daly E, Ecker C, O'Brien F, Hallahan B, Loth E, Toal F, Reed S, Hales S, Robertson D, Craig M, Mullins D, Barker G, Lavender T, Johnston P, Murphy K, Murphy D. Anatomy and aging of the amygdala and hippocampus in autism spectrum disorder: an in vivo magnetic resonance imaging study of Asperger syndrome. Autism Res 2011; 5:3-12. [DOI: 10.1002/aur.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 07/20/2011] [Indexed: 11/08/2022]
|
49
|
Nickl-Jockschat T, Habel U, Michel TM, Manning J, Laird AR, Fox PT, Schneider F, Eickhoff SB. Brain structure anomalies in autism spectrum disorder--a meta-analysis of VBM studies using anatomic likelihood estimation. Hum Brain Mapp 2011; 33:1470-89. [PMID: 21692142 DOI: 10.1002/hbm.21299] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 11/07/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive developmental disorders with characteristic core symptoms such as impairments in social interaction, deviance in communication, repetitive and stereotyped behavior, and impaired motor skills. Anomalies of brain structure have repeatedly been hypothesized to play a major role in the etiopathogenesis of the disorder. Our objective was to perform unbiased meta-analysis on brain structure changes as reported in the current ASD literature. We thus conducted a comprehensive search for morphometric studies by Pubmed query and literature review. We used a revised version of the activation likelihood estimation (ALE) approach for coordinate-based meta-analysis of neuroimaging results. Probabilistic cytoarchitectonic maps were applied to compare the localization of the obtained significant effects to histological areas. Each of the significant ALE clusters was analyzed separately for age effects on gray and white matter density changes. We found six significant clusters of convergence indicating disturbances in the brain structure of ASD patients, including the lateral occipital lobe, the pericentral region, the medial temporal lobe, the basal ganglia, and proximate to the right parietal operculum. Our study provides the first quantitative summary of brain structure changes reported in literature on autism spectrum disorders. In contrast to the rather small sample sizes of the original studies, our meta-analysis encompasses data of 277 ASD patients and 303 healthy controls. This unbiased summary provided evidence for consistent structural abnormalities in spite of heterogeneous diagnostic criteria and voxel-based morphometry (VBM) methodology, but also hinted at a dependency of VBM findings on the age of the patients.
Collapse
|
50
|
Mengotti P, D’Agostini S, Terlevic R, De Colle C, Biasizzo E, Londero D, Ferro A, Rambaldelli G, Balestrieri M, Zanini S, Fabbro F, Molteni M, Brambilla P. Altered white matter integrity and development in children with autism: A combined voxel-based morphometry and diffusion imaging study. Brain Res Bull 2011; 84:189-95. [DOI: 10.1016/j.brainresbull.2010.12.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 11/04/2010] [Accepted: 12/06/2010] [Indexed: 11/26/2022]
|