1
|
Avalos-Hernandez A, Juarez-Navarro K, Ruiz-Baca E, Meneses-Morales I, Espino-Saldaña E, Martinez-Torres A, Lopez-Rodriguez A. Unlocking cellular traffic jams: olive oil-mediated rescue of CNG mutant channels. Front Pharmacol 2024; 15:1408156. [PMID: 39119605 PMCID: PMC11306028 DOI: 10.3389/fphar.2024.1408156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
One of the reasons to suggest olive oil consumption for a healthy life is its potential to induce robust lipidomic remodeling through membrane modification by dietary lipids. This remodeling might, in turn, modulate essential lipid-protein interactions while maintaining accurate transmembrane protein/domain orientation. Oleic acid, the primary compound in olive oil, has been suggested as a modulator of ion channel function. In this study, we explored whether this lipid could rescue the trafficking of mutated transmembrane proteins. In our initial approach, we supplemented the cell culture medium of HEK-293 cells expressing cyclic nucleotide channels tagged using green fluorescent protein (CNG-GFP) with olive oil or oleic acid. In addition to wild-type channels, we also expressed R272Q and R278W mutant channels, two non-functional intracellularly retained channels related to retinopathies. We used fluorescence microscopy and patch-clamp in the inside-out configuration to assess changes in the cell localization and function of the tested channels. Our results demonstrated that olive oil and oleic acid facilitated the transport of cyclic nucleotide-gated R272Q mutant channels towards the plasma membrane, rendering them electrophysiologically functional. Thus, our findings reveal a novel property of olive oil as a membrane protein traffic inductor.
Collapse
Affiliation(s)
| | - Karina Juarez-Navarro
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Ivan Meneses-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Edith Espino-Saldaña
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Campus Juriquilla, Juriquilla, Mexico
| | - Ataulfo Martinez-Torres
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Campus Juriquilla, Juriquilla, Mexico
| | | |
Collapse
|
2
|
Solaki M, Wissinger B, Kohl S, Reuter P. Functional evaluation allows ACMG/AMP-based re-classification of CNGA3 variants associated with achromatopsia. Genet Med 2023; 25:100979. [PMID: 37689994 DOI: 10.1016/j.gim.2023.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
PURPOSE CNGA3 encoding the main subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors is one of the major disease-associated genes for achromatopsia. Most CNGA3 variants are missense variants with the majority being functionally uncharacterized and therefore hampering genetic diagnosis. In light of potential gene therapy, objective variant pathogenicity assessment is essential. METHODS We established a medium-throughput aequorin-based luminescence bioassay allowing mutant CNGA3 channel function assessment via quantification of CNGA3 channel-mediated calcium influx in a cell culture system, thereby enabling American College of Medical Genetics and Genomics/Association for Molecular Pathology-based variant re-classification. RESULTS We provide functional read-out obtained for 150 yet uncharacterized CNGA3 missense substitutions of which 55 were previously categorized as variants of uncertain significance (VUS) identifying 25 as functionally normal and 125 as functionally abnormal. These data enabled the American College of Medical Genetics and Genomics/ Association for Molecular Pathology-based variant re-classification of 52/55 VUS as either benign, likely benign, or likely pathogenic reaching a VUS re-classification rate of 94.5%. CONCLUSION Our aequorin-based bioassay allows functionally ensured clinical variant interpretation for 150 CNGA3 missense variants enabling and supporting VUS re-classification and assuring molecular diagnosis to patients affected by CNGA3-associated achromatopsia, hereby identifying patients eligible for future gene therapy trials on this disease.
Collapse
Affiliation(s)
- Maria Solaki
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| | - Peggy Reuter
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies. Biomedicines 2023; 11:biomedicines11020269. [PMID: 36830806 PMCID: PMC9953513 DOI: 10.3390/biomedicines11020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies.
Collapse
|
4
|
Solaki M, Baumann B, Reuter P, Andreasson S, Audo I, Ayuso C, Balousha G, Benedicenti F, Birch D, Bitoun P, Blain D, Bocquet B, Branham K, Català-Mora J, De Baere E, Dollfus H, Falana M, Giorda R, Golovleva I, Gottlob I, Heckenlively JR, Jacobson SG, Jones K, Jägle H, Janecke AR, Kellner U, Liskova P, Lorenz B, Martorell-Sampol L, Messias A, Meunier I, Belga Ottoni Porto F, Papageorgiou E, Plomp AS, de Ravel TJL, Reiff CM, Renner AB, Rosenberg T, Rudolph G, Salati R, Sener EC, Sieving PA, Stanzial F, Traboulsi EI, Tsang SH, Varsanyi B, Weleber RG, Zobor D, Stingl K, Wissinger B, Kohl S. Comprehensive variant spectrum of the CNGA3 gene in patients affected by achromatopsia. Hum Mutat 2022; 43:832-858. [PMID: 35332618 DOI: 10.1002/humu.24371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.
Collapse
Affiliation(s)
- Maria Solaki
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Britta Baumann
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Peggy Reuter
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sten Andreasson
- Department of Ophthalmology, University Hospital Lund, Lund, Sweden
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET, and INSERM-DGOS CIC1423, Paris, France
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ghassan Balousha
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Francesco Benedicenti
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - David Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Pierre Bitoun
- Genetique Medicale, CHU Paris Nord, Hopital Jean Verdier, Bondy Cedex, France
| | | | - Beatrice Bocquet
- National Reference Centre for Inherited Sensory Diseases, Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaume Català-Mora
- Unitat de Distròfies Hereditàries de Retina Hospital Sant Joan de Déu, Barcelona, Esplugues de Llobregat, Spain
| | - Elfride De Baere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Helene Dollfus
- CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- U-1112, Inserm, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mohammed Falana
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Irina Golovleva
- Department of Medical Biosciences/Medical and Clinical Genetics, University of Umea, Umea, Sweden
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, UK
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel G Jacobson
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaylie Jones
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Andreas R Janecke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrich Kellner
- Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany
- RetinaScience, Bonn, 53192, Germany
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Ophthalmology, Universitaetsklinikum Bonn, Bonn, Germany
| | | | - André Messias
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Sensgene Care Network, France
| | | | - Eleni Papageorgiou
- Department of Ophthalmology, University Hospital of Larissa, Mezourlo, Larissa, Greece
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomy J L de Ravel
- Centre for Medical Genetics, University Hospital Brussels, Brussels, Belgium
| | | | | | - Thomas Rosenberg
- Department of Ophthalmology, National Eye Clinic, Glostrup Hospital, Glostrup, Denmark
| | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Roberto Salati
- Scientific Institute, IRCCS Eugenio Medea, Pediatric Ophthalmology Unit, Bosisio Parini, Lecco, Italy
| | - E Cumhur Sener
- Strabismus and Pediatric Ophthalmology, Private Practice, Ankara, Turkey
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, School of Medicine, University of California Davis, Sacramento, USA
| | - Franco Stanzial
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York City, New York, USA
| | - Balázs Varsanyi
- Department of Ophthalmology, Medical School, University of Pécs and Ganglion Medical Center, Pécs, Pécs, Hungary
| | - Richard G Weleber
- Oregon Health & Science University, Ophthalmic Genetics Service of the Casey Eye Institute, 515 SW Campus Drive, 97239, Portland, Oregon, USA
| | - Ditta Zobor
- Centre for Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
- Department of Ophthalmology, Semmelweis University Budapest, Budapest, Hungary
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Delineating the Molecular and Phenotypic Spectrum of the CNGA3-Related Cone Photoreceptor Disorder in Pakistani Families. Genes (Basel) 2022; 13:genes13040617. [PMID: 35456423 PMCID: PMC9031457 DOI: 10.3390/genes13040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Cone photoreceptor dysfunction represents a clinically heterogenous group of disorders characterized by nystagmus, photophobia, reduced central or color vision, and macular dystrophy. Here, we described the molecular findings and clinical manifestations of achromatopsia, a partial or total absence of color vision, co-segregating with three known missense variants of CNGA3 in three large consanguineous Pakistani families. Fundus examination and optical coherence tomography (OCT) imaging revealed myopia, thin retina, retinal pigment epithelial cells loss at fovea/perifovea, and macular atrophy. Combination of Sanger and whole exome sequencing revealed three known homozygous missense variants (c.827A>G, p.(Asn276Ser); c.847C>T, p.(Arg283Trp); c.1279C>T, p.(Arg427Cys)) in CNGA3, the α-subunit of the cyclic nucleotide-gated cation channel in cone photoreceptor cells. All three variants are predicted to replace evolutionary conserved amino acids, and to be pathogenic by specific in silico programs, consistent with the observed altered membrane targeting of CNGA3 in heterologous cells. Insights from our study will facilitate counseling regarding the molecular and phenotypic landscape of CNGA3-related cone dystrophies.
Collapse
|
6
|
Zheng X, Li H, Hu Z, Su D, Yang J. Structural and functional characterization of an achromatopsia-associated mutation in a phototransduction channel. Commun Biol 2022; 5:190. [PMID: 35233102 PMCID: PMC8888761 DOI: 10.1038/s42003-022-03120-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
Numerous missense mutations in cyclic nucleotide-gated (CNG) channels cause achromatopsia and retinitis pigmentosa, but the underlying pathogenic mechanisms are often unclear. We investigated the structural basis and molecular/cellular effects of R410W, an achromatopsia-associated, presumed loss-of-function mutation in human CNGA3. Cryo-EM structures of the Caenorhabditis elegans TAX-4 CNG channel carrying the analogous mutation, R421W, show that most apo channels are open. R421, located in the gating ring, interacts with the S4 segment in the closed state. R421W disrupts this interaction, destabilizes the closed state, and stabilizes the open state. CNGA3_R410W/CNGB3 and TAX4_R421W channels are spontaneously active without cGMP and induce cell death, suggesting cone degeneration triggered by spontaneous CNG channel activity as a possible cause of achromatopsia. Our study sheds new light on CNG channel allosteric gating, provides an impetus for a reevaluation of reported loss-of-function CNG channel missense disease mutations, and has implications for mutation-specific treatment of retinopathy.
Collapse
Affiliation(s)
- Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Huan Li
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Deyuan Su
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
7
|
Michalakis S, Gerhardt M, Rudolph G, Priglinger S, Priglinger C. Achromatopsia: Genetics and Gene Therapy. Mol Diagn Ther 2022; 26:51-59. [PMID: 34860352 PMCID: PMC8766373 DOI: 10.1007/s40291-021-00565-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/02/2023]
Abstract
Achromatopsia (ACHM), also known as rod monochromatism or total color blindness, is an autosomal recessively inherited retinal disorder that affects the cones of the retina, the type of photoreceptors responsible for high-acuity daylight vision. ACHM is caused by pathogenic variants in one of six cone photoreceptor-expressed genes. These mutations result in a functional loss and a slow progressive degeneration of cone photoreceptors. The loss of cone photoreceptor function manifests at birth or early in childhood and results in decreased visual acuity, lack of color discrimination, abnormal intolerance to light (photophobia), and rapid involuntary eye movement (nystagmus). Up to 90% of patients with ACHM carry mutations in CNGA3 or CNGB3, which are the genes encoding the alpha and beta subunits of the cone cyclic nucleotide-gated (CNG) channel, respectively. No authorized therapy for ACHM exists, but research activities have intensified over the past decade and have led to several preclinical gene therapy studies that have shown functional and morphological improvements in animal models of ACHM. These encouraging preclinical data helped advance multiple gene therapy programs for CNGA3- and CNGB3-linked ACHM into the clinical phase. Here, we provide an overview of the genetic and molecular basis of ACHM, summarize the gene therapy-related research activities, and provide an outlook for their clinical application.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany.
| | - Maximilian Gerhardt
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Günther Rudolph
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| |
Collapse
|
8
|
Spitschan M, Garbazza C, Kohl S, Cajochen C. Sleep and circadian phenotype in people without cone-mediated vision: a case series of five CNGB3 and two CNGA3 patients. Brain Commun 2021; 3:fcab159. [PMID: 34447932 PMCID: PMC8385249 DOI: 10.1093/braincomms/fcab159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 01/28/2023] Open
Abstract
Light exposure entrains the circadian clock through the intrinsically photosensitive retinal ganglion cells, which sense light in addition to the cone and rod photoreceptors. In congenital achromatopsia (prevalence 1:30-50 000), the cone system is non-functional, resulting in severe light avoidance and photophobia at daytime light levels. How this condition affects circadian and neuroendocrine responses to light is not known. In this case series of genetically confirmed congenital achromatopsia patients (n = 7; age 30-72 years; 6 women, 1 male), we examined survey-assessed sleep/circadian phenotype, self-reported visual function, sensitivity to light and use of spectral filters that modify chronic light exposure. In all but one patient, we measured rest-activity cycles using actigraphy over 3 weeks and measured the melatonin phase angle of entrainment using the dim-light melatonin onset. Owing to their light sensitivity, congenital achromatopsia patients used filters to reduce retinal illumination. Thus, congenital achromatopsia patients experienced severely attenuated light exposure. In aggregate, we found a tendency to a late chronotype. We found regular rest-activity patterns in all patients and normal phase angles of entrainment in participants with a measurable dim-light melatonin onset. Our results reveal that a functional cone system and exposure to daytime light intensities are not necessary for regular behavioural and hormonal entrainment, even when survey-assessed sleep and circadian phenotype indicated a tendency for a late chronotype and sleep problems in our congenital achromatopsia cohort.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
- Centre for Chronobiology, Psychiatry Hospital of the University of Basel (UPK), CH-4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, CH-4055 Basel, Switzerland
| | - Corrado Garbazza
- Centre for Chronobiology, Psychiatry Hospital of the University of Basel (UPK), CH-4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, CH-4055 Basel, Switzerland
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, D-72076 Tübingen, Germany
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatry Hospital of the University of Basel (UPK), CH-4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, CH-4055 Basel, Switzerland
| |
Collapse
|
9
|
Täger J, Wissinger B, Kohl S, Reuter P. Identification of Chemical and Pharmacological Chaperones for Correction of Trafficking-Deficient Mutant Cyclic Nucleotide-Gated A3 Channels. Mol Pharmacol 2021; 99:460-468. [PMID: 33827965 DOI: 10.1124/molpharm.120.000180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Trafficking deficiency caused by missense mutations is a well known phenomenon that occurs for mutant, misfolded proteins. Typically, the misfolded protein is retained by the protein quality-control system and degraded by the endoplasmic reticulum-associated protein degradation pathway and thus does not reach its destination, although residual function of the protein may be preserved. Chemical and pharmacological chaperones can improve the targeting of trafficking-deficient proteins and thus may be promising candidates for therapeutic applications. Here, we report the application of a cellular bioassay based on the bioluminescent calcium reporter aequorin to quantify surface expression of mutant CNGA3 channels associated with the autosomal recessively inherited retinal disease achromatopsia. A screening of 77 compounds enabled the identification of effective chemical and pharmacological chaperones that result in a 1.5- to 4.8-fold increase of surface expression of mutant CNGA3. Using selected compounds, we confirmed that the rescue of the defective trafficking is not limited to a single mutation in CNGA3. Active compounds and our structure-activity correlated data for the dihydropyridine compound class may provide valuable information for developing a treatment of the trafficking defect in achromatopsia. SIGNIFICANCE STATEMENT: This study describes a novel luminescence-based assay to detect the surface expression of mutant trafficking-deficient CNGA3 channels based on the calcium-sensitive photoprotein aequorin. Using this assay for a compound screening, this study identifies novel chemical and pharmacological chaperones that restore the surface localization of mutant trafficking-deficient CNGA3 channels. The results from this work may serve as starting point for the development of potent compounds that rescue trafficking deficiencies in the autosomal recessively inherited retinal disease achromatopsia.
Collapse
Affiliation(s)
- Joachim Täger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research (J.T., B.W., S.K., P.R.), and Graduate School of Cellular and Molecular Neuroscience (J.T.), University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research (J.T., B.W., S.K., P.R.), and Graduate School of Cellular and Molecular Neuroscience (J.T.), University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research (J.T., B.W., S.K., P.R.), and Graduate School of Cellular and Molecular Neuroscience (J.T.), University of Tübingen, Tübingen, Germany
| | - Peggy Reuter
- Molecular Genetics Laboratory, Institute for Ophthalmic Research (J.T., B.W., S.K., P.R.), and Graduate School of Cellular and Molecular Neuroscience (J.T.), University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Maggi J, Koller S, Bähr L, Feil S, Kivrak Pfiffner F, Hanson JVM, Maspoli A, Gerth-Kahlert C, Berger W. Long-Range PCR-Based NGS Applications to Diagnose Mendelian Retinal Diseases. Int J Mol Sci 2021; 22:ijms22041508. [PMID: 33546218 PMCID: PMC7913364 DOI: 10.3390/ijms22041508] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
The purpose of this study was to develop a flexible, cost-efficient, next-generation sequencing (NGS) protocol for genetic testing. Long-range polymerase chain reaction (PCR) amplicons of up to 20 kb in size were designed to amplify entire genomic regions for a panel (n = 35) of inherited retinal disease (IRD)-associated loci. Amplicons were pooled and sequenced by NGS. The analysis was applied to 227 probands diagnosed with IRD: (A) 108 previously molecularly diagnosed, (B) 94 without previous genetic testing, and (C) 25 undiagnosed after whole-exome sequencing (WES). The method was validated with 100% sensitivity on cohort A. Long-range PCR-based sequencing revealed likely causative variant(s) in 51% and 24% of proband from cohorts B and C, respectively. Breakpoints of 3 copy number variants (CNVs) could be characterized. Long-range PCR libraries spike-in extended coverage of WES. Read phasing confirmed compound heterozygosity in 5 probands. The proposed sequencing protocol provided deep coverage of the entire gene, including intronic and promoter regions. Our method can be used (i) as a first-tier assay to reduce genetic testing costs, (ii) to elucidate missing heritability cases, (iii) to characterize breakpoints of CNVs at nucleotide resolution, (iv) to extend WES data to non-coding regions by spiking-in long-range PCR libraries, and (v) to help with phasing of candidate variants.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Luzy Bähr
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Fatma Kivrak Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - James V. M. Hanson
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Alessandro Maspoli
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-556-33-50
| |
Collapse
|
11
|
Jacobson MA, Jones LJ, Colussi DJ, Tanaka JC. High-Throughput Ca 2+ Flux Assay To Monitor Cyclic Nucleotide-Gated Channel Activity and Characterize Achromatopsia Mutant Channel Function. ACS Chem Neurosci 2019; 10:3662-3670. [PMID: 31290651 DOI: 10.1021/acschemneuro.9b00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cone photoreceptor cyclic-nucleotide gated channels (CNG) are tetrameric proteins composed of subunits from CNGA3 and CNGB3. These channels transduce light information into electrical signals carried by both Na+ and Ca2+ ions. More than 100 mutations in the CNGA3 gene are associated with the inherited retinal disorder, achromatopsia 2 (ACHM2), which results in attenuation or loss of color vision, daylight blindness, and reduced visual acuity. Classical techniques to measure CNG channel function utilize patch clamp electrophysiology measuring Na currents in the absence of divalent cations, yet intracellular Ca2+ regulates both light and dark adaptation in photoreceptors. We developed a fluorescence-based, high-throughput Ca2+ flux assay using yellow fluorescent protein (YFP) tagged CNGA3 channels expressed in HEK293 cells which allow monitoring for folding defects in mutant channels. The cell permeant cGMP analog, 8-(4-chlorophenylthio)-cGMP (CPT-cGMP), was used to activate Ca2+ flux. The assay was validated using wild-type CNGA3 homomeric and heteromeric channels and ACHM2-associated homomeric mutant CNG channels, CNGA3-R427C, CNGA3-E590K, and CNGA3-L633P. Additionally, we examined two naturally occurring canine mutations causing day-blindness previously studied by patch clamp. We compared the CPT-cGMP K0.5 values of the channels with patch clamp values from previous studies. The assay provides a screen for modulation of gating and/or rescue of trafficking and/or misfolding defects in ACHM2-associated CNG channels. Importantly, the calcium flux assay is advantageous compared to patch clamp as it allows the ability to monitor CNG channel activity in the presence of calcium.
Collapse
Affiliation(s)
- Marlene A Jacobson
- Department of Pharmaceutical Sciences, School of Pharmacy , Temple University , Philadelphia , Pennsylvania 19140 , United States
- Moulder Center for Drug Discovery Research, School of Pharmacy , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Laura J Jones
- Department of Biology, College of Science and Technology , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Dennis J Colussi
- Department of Pharmaceutical Sciences, School of Pharmacy , Temple University , Philadelphia , Pennsylvania 19140 , United States
- Moulder Center for Drug Discovery Research, School of Pharmacy , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Jacqueline C Tanaka
- Department of Biology, College of Science and Technology , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
12
|
Burkard M, Kohl S, Krätzig T, Tanimoto N, Brennenstuhl C, Bausch AE, Junger K, Reuter P, Sothilingam V, Beck SC, Huber G, Ding XQ, Mayer AK, Baumann B, Weisschuh N, Zobor D, Hahn GA, Kellner U, Venturelli S, Becirovic E, Charbel Issa P, Koenekoop RK, Rudolph G, Heckenlively J, Sieving P, Weleber RG, Hamel C, Zong X, Biel M, Lukowski R, Seeliger MW, Michalakis S, Wissinger B, Ruth P. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J Clin Invest 2018; 128:5663-5675. [PMID: 30418171 PMCID: PMC6264655 DOI: 10.1172/jci96098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide-gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3-/-) mice to obtain triallelic Cnga3+/- Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
- Department of Vegetative and Clinical Physiology
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Timm Krätzig
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Anne E. Bausch
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Katrin Junger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Peggy Reuter
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Gesine Huber
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Anja K. Mayer
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Britta Baumann
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Ditta Zobor
- Institute of Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Gesa-Astrid Hahn
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Ulrich Kellner
- Rare Retinal Disease Center, Augenzentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany
| | | | - Elvir Becirovic
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, OUH NHS Foundation Trust and the Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert K. Koenekoop
- McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Paul Sieving
- The National Eye Institute, Bethesda, Maryland, USA
| | - Richard G. Weleber
- Casey Eye Institute, Department of Ophthalmogenetics, Portland, Oregon, USA
| | - Christian Hamel
- INSERM U583, Institut des Neurosciences, Montpellier, France
| | - Xiangang Zong
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Matthias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| |
Collapse
|
13
|
Sun W, Zhang Q. Diseases associated with mutations in CNGA3: Genotype-phenotype correlation and diagnostic guideline. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:1-27. [PMID: 30711023 DOI: 10.1016/bs.pmbts.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Along with the molecular and functional characterization of CNGA3, knowledge about diseases associated with CNGA3 mutations has made great progress. So far, CNGA3 mutations are not only one of the most common causes of achromatopsia and cone dystrophy or cone-rod dystrophy but also one of the most commonly mutated genes among various forms of retinopathy. Understanding the clinical characteristics of CNGA3-associated retinal diseases may help clinical practice of infants or children with related diseases. Recognizing the importance of CNGA3 in inherited retinal diseases may enhance related research in searching for functional restoration or repair of CNGA3 defects.
Collapse
Affiliation(s)
- Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Täger J, Kohl S, Birch DG, Wheaton DKH, Wissinger B, Reuter P. An early nonsense mutation facilitates the expression of a short isoform of CNGA3 by alternative translation initiation. Exp Eye Res 2018; 171:48-53. [PMID: 29499183 DOI: 10.1016/j.exer.2018.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/24/2022]
Abstract
The cyclic nucleotide-gated (CNG) channel - composed of CNGA3 and CNGB3 subunits - mediates the influx of cations in cone photoreceptors after light stimulation and thus is a key element in cone phototransduction. Mutations in CNGA3 and CNGB3 are associated with achromatopsia, a rare autosomal recessive retinal disorder. Here, we demonstrate that the presence of an early nonsense mutation in CNGA3 induces the usage of a downstream alternative translation initiation site giving rise to a short CNGA3 isoform. The expression of this short isoform was verified by Western blot analysis and DAB staining of HEK293 cells and cone photoreceptor-like 661W cells expressing CNGA3-GST fusion constructs. Functionality of the short isoform was confirmed by a cellular calcium influx assay. Furthermore, patients carrying an early nonsense mutation were analyzed for residual cone photoreceptor function in order to identify a potential role of the short isoform to modify the clinical outcome in achromatopsia patients. Yet the results suggest that the short isoform is not able to compensate for the loss of the long isoform leaving the biological role of this variant unclear.
Collapse
Affiliation(s)
- Joachim Täger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Peggy Reuter
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Hirji N, Aboshiha J, Georgiou M, Bainbridge J, Michaelides M. Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genet 2018; 39:149-157. [PMID: 29303385 DOI: 10.1080/13816810.2017.1418389] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Achromatopsia is an autosomal recessive condition, characterised by reduced visual acuity, impaired colour vision, photophobia and nystagmus. The symptoms can be profoundly disabling, and there is no cure currently available. However, the recent development of gene-based interventions may lead to improved outcomes in the future. This article aims to provide a comprehensive review of the clinical features of the condition, its genetic basis and the underlying pathogenesis. We also explore the insights derived from animal models, including the implications for gene supplementation approaches. Finally, we discuss current human gene therapy trials.
Collapse
Affiliation(s)
- Nashila Hirji
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| | - Jonathan Aboshiha
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| | - Michalis Georgiou
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| | - James Bainbridge
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| | - Michel Michaelides
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| |
Collapse
|
16
|
Gootwine E, Abu-Siam M, Obolensky A, Rosov A, Honig H, Nitzan T, Shirak A, Ezra-Elia R, Yamin E, Banin E, Averbukh E, Hauswirth WW, Ofri R, Seroussi E. Gene Augmentation Therapy for a Missense Substitution in the cGMP-Binding Domain of Ovine CNGA3 Gene Restores Vision in Day-Blind Sheep. Invest Ophthalmol Vis Sci 2017; 58:1577-1584. [PMID: 28282490 PMCID: PMC5361581 DOI: 10.1167/iovs.16-20986] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Applying CNGA3 gene augmentation therapy to cure a novel causative mutation underlying achromatopsia (ACHM) in sheep. Methods Impaired vision that spontaneously appeared in newborn lambs was characterized by behavioral, electroretinographic (ERG), and histologic techniques. Deep-sequencing reads of an affected lamb and an unaffected lamb were compared within conserved genomic regions orthologous to human genes involved in similar visual impairment. Observed nonsynonymous amino acid substitutions were classified by their deleteriousness score. The putative causative mutation was assessed by producing compound CNGA3 heterozygotes and applying gene augmentation therapy using the orthologous human cDNA. Results Behavioral assessment revealed day blindness, and subsequent ERG examination showed attenuated photopic responses. Histologic and immunohistochemical examination of affected sheep eyes did not reveal degeneration, and cone photoreceptors expressing CNGA3 were present. Bioinformatics and sequencing analyses suggested a c.1618G>A, p.Gly540Ser substitution in the GMP-binding domain of CNGA3 as the causative mutation. This was confirmed by genetic concordance test and by genetic complementation experiment: All five compound CNGA3 heterozygotes, carrying both p.Arg236* and p.Gly540Ser mutations in CNGA3, were day-blind. Furthermore, subretinal delivery of the intact human CNGA3 gene using an adeno-associated viral vector (AAV) restored photopic vision in two affected p.Gly540Ser homozygous rams. Conclusions The c.1618G>A, p.Gly540Ser substitution in CNGA3 was identified as the causative mutation for a novel form of ACHM in Awassi sheep. Gene augmentation therapy restored vision in the affected sheep. This novel mutation provides a large-animal model that is valid for most human CNGA3 ACHM patients; the majority of them carry missense rather than premature-termination mutations.
Collapse
Affiliation(s)
- Elisha Gootwine
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | | | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alex Rosov
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Hen Honig
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Tali Nitzan
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Andrey Shirak
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Raaya Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Esther Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Edward Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Eyal Seroussi
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
17
|
Chen XT, Huang H, Chen YH, Dong LJ, Li XR, Zhang XM. Achromatopsia caused by novel missense mutations in the CNGA3 gene. Int J Ophthalmol 2015; 8:910-5. [PMID: 26558200 DOI: 10.3980/j.issn.2222-3959.2015.05.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/14/2015] [Indexed: 11/02/2022] Open
Abstract
AIM To identify the genetic defects in a Chinese family with achromatopsia. METHODS A 2.5-year-old boy, who displayed nystagmus, photophobia, and hyperopia since early infancy, was clinically evaluated. To further confirm and localize the causative mutations in this family, targeted region capture and next-generation sequencing of candidate genes, such as CNGA3, CNGB3, GNAT2, PDE6C, and PDE6H were performed using a custom-made capture array. RESULTS Slit-lamp examination showed no specific findings in the anterior segments. The optic discs and maculae were normal on fundoscopy. The unaffected family members reported no ocular complaints. Clinical signs and symptoms were consistent with a clinical impression of autosomal recessive achromatopsia. The results of sequence analysis revealed two novel missense mutations in CNGA3, c.633T>A (p.D211E) and c.1006G>T (p.V336F), with an autosomal recessive mode of inheritance. CONCLUSION Genetic analysis of a Chinese family confirmed the clinical diagnosis of achromatopsia. Two novel mutations were identified in CNGA3, which extended the mutation spectrum of this disorder.
Collapse
Affiliation(s)
- Xi-Teng Chen
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Hui Huang
- BGI Health Service Co., Ltd. Airport Industrial Zone, Tianjin 300308, China
| | - Yan-Hua Chen
- BGI Health Service Co., Ltd. Airport Industrial Zone, Tianjin 300308, China
| | - Li-Jie Dong
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Xiao-Min Zhang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| |
Collapse
|
18
|
Liang X, Dong F, Li H, Li H, Yang L, Sui R. Novel CNGA3 mutations in Chinese patients with achromatopsia. Br J Ophthalmol 2015; 99:571-6. [PMID: 25637600 DOI: 10.1136/bjophthalmol-2014-305432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To study the clinical features and to identify the pathogenic mutations in Chinese patients with achromatopsia (ACHM). DESIGN Fifteen patients from 10 unrelated families were included in this study. Detailed ocular examinations were performed for the affected subjects, including best-corrected visual acuity (BCVA), colour vision, slit lamp, fundus, electroretinography, perimetry, and spectral domain optical coherent topography (SD-OCT). Peripheral blood samples were obtained from all of the patients and their family members for genomic DNA extraction. All exons of CNGA3, CNGB3, GNAT2, PDE6C and PDE6H were amplified by a PCR and screened for mutation by direct Sanger sequencing. The sequences were analysed using the Blat tool and then compared with the gene transcript. A segregation test was conducted in the patients' parents if they were available. The variants were compared with the database of the 1000 Genomes Project to exclude polymorphism. RESULTS Nystagmus, photophobia, and impaired colour discrimination were observed in all patients. The BCVA of the affected subjects ranged from 0.05-0.2. Severely depressed and non-recordable cone electroretinograms were observed. Noticeable structural changes including disruption or loss of the macular inner/outer segments (IS/OS) junction of the photoreceptors were observed with SD-OCT. CNGA3 mutations were identified in 13 patients from eight families. Sequencing revealed seven novel missense mutations, three novel deletion mutations, and four previously reported mutations among those patients. CONCLUSIONS CNGA3 mutation is the most frequent cause of ACHM in this cohort of patients. Ten novel mutations were identified in CNGA3. Genetic characterisation of patients with ACHM is important for genetic counselling and future gene therapies. This study reports the comprehensive clinical and genetic features of Chinese patients with ACHM.
Collapse
Affiliation(s)
- Xiaofang Liang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fangtian Dong
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Huajin Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Homozygous missense variant in the human CNGA3 channel causes cone-rod dystrophy. Eur J Hum Genet 2014; 23:473-80. [PMID: 25052312 DOI: 10.1038/ejhg.2014.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 12/30/2022] Open
Abstract
We assessed a large consanguineous Pakistani family (PKAB157) segregating early onset low vision problems. Funduscopic and electroretinographic evaluation of affected individuals revealed juvenile cone-rod dystrophy (CRD) with maculopathy. Other clinical symptoms included loss of color discrimination, photophobia and nystagmus. Whole-exome sequencing, segregation and haplotype analyses demonstrated that a transition variant (c.955T>C; p.(Cys319Arg)) in CNGA3 co-segregated with the CRD phenotype in family PKAB157. The ability of CNGA3 channel to influx calcium in response to agonist, when expressed either alone or together with the wild-type CNGB3 subunit in HEK293 cells, was completely abolished due to p.Cys319Arg variant. Western blotting and immunolocalization studies suggest that a decreased channel density in the HEK293 cell membrane due to impaired folding and/or trafficking of the CNGA3 protein is the main pathogenic effect of the p.Cys319Arg variant. Mutant alleles of the human cone photoreceptor cyclic nucleotide-gated channel (CNGA3) are frequently associated with achromatopsia. In rare cases, variants in CNGA3 are also associated with cone dystrophy, Leber's congenital amaurosis and oligo cone trichromacy. The identification of predicted p.(Cys319Arg) missense variant in CNGA3 expands the repertoire of the known genetic causes of CRD and phenotypic spectrum of CNGA3 alleles.
Collapse
|
20
|
Roosing S, Thiadens AAHJ, Hoyng CB, Klaver CCW, den Hollander AI, Cremers FPM. Causes and consequences of inherited cone disorders. Prog Retin Eye Res 2014; 42:1-26. [PMID: 24857951 DOI: 10.1016/j.preteyeres.2014.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
Abstract
Hereditary cone disorders (CDs) are characterized by defects of the cone photoreceptors or retinal pigment epithelium underlying the macula, and include achromatopsia (ACHM), cone dystrophy (COD), cone-rod dystrophy (CRD), color vision impairment, Stargardt disease (STGD) and other maculopathies. Forty-two genes have been implicated in non-syndromic inherited CDs. Mutations in the 5 genes implicated in ACHM explain ∼93% of the cases. On the contrary, only 21% of CRDs (17 genes) and 25% of CODs (8 genes) have been elucidated. The fact that the large majority of COD and CRD-associated genes are yet to be discovered hints towards the existence of unknown cone-specific or cone-sensitive processes. The ACHM-associated genes encode proteins that fulfill crucial roles in the cone phototransduction cascade, which is the most frequently compromised (10 genes) process in CDs. Another 7 CD-associated proteins are required for transport processes towards or through the connecting cilium. The remaining CD-associated proteins are involved in cell membrane morphogenesis and maintenance, synaptic transduction, and the retinoid cycle. Further novel genes are likely to be identified in the near future by combining large-scale DNA sequencing and transcriptomics technologies. For 31 of 42 CD-associated genes, mammalian models are available, 14 of which have successfully been used for gene augmentation studies. However, gene augmentation for CDs should ideally be developed in large mammalian models with cone-rich areas, which are currently available for only 11 CD genes. Future research will aim to elucidate the remaining causative genes, identify the molecular mechanisms of CD, and develop novel therapies aimed at preventing vision loss in individuals with CD in the future.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Tanaka N, Delemotte L, Klein ML, Komáromy AM, Tanaka JC. A cyclic nucleotide-gated channel mutation associated with canine daylight blindness provides insight into a role for the S2 segment tri-Asp motif in channel biogenesis. PLoS One 2014; 9:e88768. [PMID: 24586388 PMCID: PMC3931646 DOI: 10.1371/journal.pone.0088768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022] Open
Abstract
Cone cyclic nucleotide-gated channels are tetramers formed by CNGA3 and CNGB3 subunits; CNGA3 subunits function as homotetrameric channels but CNGB3 exhibits channel function only when co-expressed with CNGA3. An aspartatic acid (Asp) to asparagine (Asn) missense mutation at position 262 in the canine CNGB3 (D262N) subunit results in loss of cone function (daylight blindness), suggesting an important role for this aspartic acid residue in channel biogenesis and/or function. Asp 262 is located in a conserved region of the second transmembrane segment containing three Asp residues designated the Tri-Asp motif. This motif is conserved in all CNG channels. Here we examine mutations in canine CNGA3 homomeric channels using a combination of experimental and computational approaches. Mutations of these conserved Asp residues result in the absence of nucleotide-activated currents in heterologous expression. A fluorescent tag on CNGA3 shows mislocalization of mutant channels. Co-expressing CNGB3 Tri-Asp mutants with wild type CNGA3 results in some functional channels, however, their electrophysiological characterization matches the properties of homomeric CNGA3 channels. This failure to record heteromeric currents suggests that Asp/Asn mutations affect heteromeric subunit assembly. A homology model of S1-S6 of the CNGA3 channel was generated and relaxed in a membrane using molecular dynamics simulations. The model predicts that the Tri-Asp motif is involved in non-specific salt bridge pairings with positive residues of S3/S4. We propose that the D262N mutation in dogs with CNGB3-day blindness results in the loss of these inter-helical interactions altering the electrostatic equilibrium within in the S1-S4 bundle. Because residues analogous to Tri-Asp in the voltage-gated Shaker potassium channel family were implicated in monomer folding, we hypothesize that destabilizing these electrostatic interactions impairs the monomer folding state in D262N mutant CNG channels during biogenesis.
Collapse
Affiliation(s)
- Naoto Tanaka
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Lucie Delemotte
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael L. Klein
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania, United States of America
| | - András M. Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (AK); (JT)
| | - Jacqueline C. Tanaka
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (AK); (JT)
| |
Collapse
|
22
|
Reuter P, Kohl S, Bernd A, Wissinger B. Erbliche Ionenkanalerkrankungen der Netzhaut. MED GENET-BERLIN 2013. [DOI: 10.1007/s11825-013-0422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Zusammenfassung
Retinale Ionenkanalerkrankungen sind klinisch und genetisch sehr heterogen. Die bisher identifizierten krankheitsassoziierten Ionenkanäle umfassen zyklisch nukleotidgesteuerte (CNG-)Kanäle, spannungsgesteuerte Kalium- und Kalziumkanäle, einen einwärtsrektifizierenden Kaliumkanal, einen kalziumaktivierten Chloridkanal und den transienten Rezeptorpotenzialionenkanal TRPM1. Dieses breite Spektrum spiegelt sich auch in der resultierenden Pathophysiologie wieder. Mutationen in retinalen Ionenkanälen können die Detektion von Lichtreizen bzw. deren Umwandlung in ein elektrisches Signal oder die Weiterleitung des Signals von den Fotorezeptoren zu nachgeschalteten Neuronen beeinträchtigen. Einige Erkrankungen werden auch durch Mutationen in Ionenkanälen, die im retinalen Pigmentepithel lokalisiert sind, hervorgerufen. Dieses ist mit seinen unterstützenden Aufgaben für eine normale Netzhautfunktion essenziell.
Collapse
Affiliation(s)
- P. Reuter
- Aff1 grid.411544.1 0000000101968249 Molekulargenetisches Labor Forschungsinstitut für Augenheilkunde, Universitätsklinikum Tübingen Röntgenweg 11 72076 Tübingen Deutschland
| | - S. Kohl
- Aff1 grid.411544.1 0000000101968249 Molekulargenetisches Labor Forschungsinstitut für Augenheilkunde, Universitätsklinikum Tübingen Röntgenweg 11 72076 Tübingen Deutschland
| | - A. Bernd
- Aff2 grid.411544.1 0000000101968249 Universitätsaugenklinik Tübingen Tübingen Deutschland
| | - B. Wissinger
- Aff1 grid.411544.1 0000000101968249 Molekulargenetisches Labor Forschungsinstitut für Augenheilkunde, Universitätsklinikum Tübingen Röntgenweg 11 72076 Tübingen Deutschland
| |
Collapse
|
23
|
Fahim AT, Khan NW, Zahid S, Schachar IH, Branham K, Kohl S, Wissinger B, Elner VM, Heckenlively JR, Jayasundera T. Diagnostic fundus autofluorescence patterns in achromatopsia. Am J Ophthalmol 2013; 156:1211-1219.e2. [PMID: 23972307 DOI: 10.1016/j.ajo.2013.06.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 01/10/2023]
Abstract
PURPOSE To describe the unique diagnostic fundus autofluorescence (FAF) patterns in patients with achromatopsia and the associated findings on optical coherence tomography (OCT). DESIGN Observational case series. METHODS We evaluated 10 patients with achromatopsia by means of best-corrected visual acuity (BCVA), ophthalmoscopy, Goldmann visual field, full-field electroretinography (ffERG), OCT, and FAF photography. FAF patterns were compared with patient age and foveal changes on OCT. RESULTS Patients fell into two dichotomous age groups at the time of evaluation: six patients ranged from 11 to 23 years of age, and 3 patients ranged from 52 to 63 years of age. All patients had severely reduced photopic ffERG responses, including those exhibiting preserved foveal structure on OCT. The younger patients had absent to mild foveal atrophy on OCT, and four of the six demonstrated foveal and parafoveal hyperfluorescence on FAF. In addition, a 7-month-old child with compound heterozygous mutations in CNGA3 demonstrated similar foveal hyperfluorescence. The older patients demonstrated advanced foveal atrophy and punched-out foveal hypofluorescence with discrete borders on FAF imaging corresponding to the area of outer retinal cavitation on OCT. CONCLUSIONS Foveal hyperfluorescence is an early sign of achromatopsia that can aid in clinical diagnosis. In our cohort, patients with achromatopsia demonstrated age-dependent changes in FAF, which are likely to be progressive and to correlate with foveal atrophy and cavitation on OCT. This finding may be useful in charting the natural course of the disease and in defining a therapeutic window for treatment.
Collapse
Affiliation(s)
- Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lopez-Rodriguez A, Holmgren M. Restoration of proper trafficking to the cell surface for membrane proteins harboring cysteine mutations. PLoS One 2012; 7:e47693. [PMID: 23082193 PMCID: PMC3474720 DOI: 10.1371/journal.pone.0047693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
A common phenotype for many genetic diseases is that the cell is unable to deliver full-length membrane proteins to the cell surface. For some forms of autism, hereditary spherocytosis and color blindness, the culprits are single point mutations to cysteine. We have studied two inheritable cysteine mutants of cyclic nucleotide-gated channels that produce achromatopsia, a common form of severe color blindness. By taking advantage of the reactivity of cysteine’s sulfhydryl group, we modified these mutants with chemical reagents that attach moieties with similar chemistries to the wild-type amino acids’ side chains. We show that these modifications restored proper delivery to the cell membrane. Once there, the channels exhibited normal functional properties. This strategy might provide a unique opportunity to assess the chemical nature of membrane protein traffic problems.
Collapse
Affiliation(s)
- Angelica Lopez-Rodriguez
- Neurophysiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Miguel Holmgren
- Neurophysiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: .
| |
Collapse
|
25
|
Saqib MAN, Awan BM, Sarfraz M, Khan MN, Rashid S, Ansar M. Genetic analysis of four Pakistani families with achromatopsia and a novel S4 motif mutation of CNGA3. Jpn J Ophthalmol 2011; 55:676-80. [PMID: 21912902 DOI: 10.1007/s10384-011-0070-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 06/22/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND To identify the causative variants of achromatopsia (ACHM) in four Pakistani families presenting autosomal recessive ACHM. METHODS Four families (50, 55, 70 and 74) exhibiting features of achromatopsia were subjected to homozygosity mapping with STS markers flanking known ACHM loci. Mutation screening was done for two of the families linked to CNGA3 and CNGB3 by direct sequencing of the coding regions and exon-intron boundaries of genes to find the pathogenic variant. RESULTS Homozygosity mapping showed co-segregation of CNGA3 in family 50 and CNGB3 in family 74. Sequencing of coding regions of CNGA3 in family 50 revealed a novel missense mutation, c.827A>G, in exon 7, which results in p.N276S substitution. N276S is located in the S4 motif of the CNGA3 protein and is conserved in all channel proteins. Bioinformatics analysis showed that the N276S substitution altered the channel conformation by shifting the helix. No pathogenic variation was identified in any affected members of family 74 in the coding sequence of CNGB3. The other two families, 55 and 70, were not linked to any known ACHM loci, indicating further heterogeneity of the ACHM phenotype. CONCLUSIONS We describe a novel S4 motif mutation of CNGA3 in a Pakistani family.
Collapse
Affiliation(s)
- Muhammad Arif Nadeem Saqib
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | | | | | |
Collapse
|
26
|
Carvalho LS, Xu J, Pearson RA, Smith AJ, Bainbridge JW, Morris LM, Fliesler SJ, Ding XQ, Ali RR. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet 2011; 20:3161-75. [PMID: 21576125 PMCID: PMC3140821 DOI: 10.1093/hmg/ddr218] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mutations in the CNGB3 gene account for >50% of all known cases of achromatopsia. Although of early onset, its stationary character and the potential for rapid assessment of restoration of retinal function following therapy renders achromatopsia a very attractive candidate for gene therapy. Here we tested the efficacy of an rAAV2/8 vector containing a human cone arrestin promoter and a human CNGB3 cDNA in CNGB3 deficient mice. Following subretinal delivery of the vector, CNGB3 was detected in both M- and S-cones and resulted in increased levels of CNGA3, increased cone density and survival, improved cone outer segment structure and normal subcellular compartmentalization of cone opsins. Therapy also resulted in long-term improvement of retinal function, with restoration of cone ERG amplitudes of up to 90% of wild-type and a significant improvement in visual acuity. Remarkably, successful restoration of cone function was observed even when treatment was initiated at 6 months of age; however, restoration of normal visual acuity was only possible in younger animals (e.g. 2–4 weeks old). This study represents achievement of the most substantial restoration of visual function reported to date in an animal model of achromatopsia using a human gene construct, which has the potential to be utilized in clinical trials.
Collapse
Affiliation(s)
- Livia S Carvalho
- The Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Koeppen K, Reuter P, Ladewig T, Kohl S, Baumann B, Jacobson SG, Plomp AS, Hamel CP, Janecke AR, Wissinger B. Dissecting the pathogenic mechanisms of mutations in the pore region of the human cone photoreceptor cyclic nucleotide-gated channel. Hum Mutat 2010; 31:830-9. [PMID: 20506298 DOI: 10.1002/humu.21283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The CNGA3 gene encodes the A3 subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, an essential component of the phototransduction cascade. Certain mutations in CNGA3 cause autosomal recessive achromatopsia, a retinal disorder characterized by severely reduced visual acuity, lack of color discrimination, photophobia, and nystagmus. We identified three novel mutations in the pore-forming region of CNGA3 (L363P, G367V, and E376K) in patients diagnosed with achromatopsia. We assessed the expression and function of channels with these three new and two previously described mutations (S341P and P372S) in a heterologous HEK293 cell expression system using Western blot, subcellular localization on the basis of immunocytochemistry, calcium imaging, and patch clamp recordings. In this first comparative functional analysis of disease-associated mutations in the pore of a CNG channel, we found impaired surface expression of S341P, L363P, and P372S mutants and reduced macroscopic currents for channels with the mutations S341P, G367V, and E376K. Calcium imaging and patch clamp experiments after incubation at 37 degrees C revealed nonfunctional homo- and heteromeric channels in all five mutants, but incubation at 27 degrees C combined with coexpression of the B3 subunit restored residual function of channels with the mutations S341P, G367V, and E376K.
Collapse
Affiliation(s)
- Katja Koeppen
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Matveev AV, Fitzgerald JB, Xu J, Malykhina AP, Rodgers KK, Ding XQ. The disease-causing mutations in the carboxyl terminus of the cone cyclic nucleotide-gated channel CNGA3 subunit alter the local secondary structure and interfere with the channel active conformational change. Biochemistry 2010; 49:1628-39. [PMID: 20088482 DOI: 10.1021/bi901960u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The cone photoreceptor cyclic nucleotide-gated (CNG) channel plays a pivotal role in phototransducton. Mutations in the channel subunits are associated with achromatopsia and progressive cone dystrophy in humans. More than 50 mutations have been identified in the channel CNGA3 subunit, with 50% of them located in the carboxyl (C) terminus. This study investigates the defects of the two frequently occurring mutations, R377W and F488L, in the C-terminus of CNGA3. Ratiometric measurement of the intracellular Ca(2+) concentration and electrophysiological recordings showed the loss of functional activity of the mutant channels in an HEK293 heterologous expression system. Immunofluorescence labeling revealed an apparent cytosolic aggregation of the mutant channels compared to the wild type (WT). The R377W and F488L mutants, expressed and purified from Escherichia coli as glutathione S-transferase (GST) fused to the CNGA3 C-terminal domain, showed no negative effects on interactions with the channel subunits. Circular dichroism spectrum analyses were performed to examine the structural impact of the mutations. Although the R377W and F488L C-termini mutants retained stable, folded structures, the secondary structures of both mutants differed from the WT protein. Furthermore, the WT C-terminus exhibited a significant decrease in alpha-helical content in response to the channel ligands, while this allosteric transition was diminished in the two mutants. This is the first study showing the structural impact of the disease-causing mutations in the cone CNG channel subunit. The observed alterations in the local secondary structure and active conformational change may confer an adverse effect on the channel's activity and cellular processing.
Collapse
Affiliation(s)
- Alexander V Matveev
- Department of Cell Biology, University ofOklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Reicher S, Seroussi E, Gootwine E. A mutation in gene CNGA3 is associated with day blindness in sheep. Genomics 2010; 95:101-4. [DOI: 10.1016/j.ygeno.2009.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/09/2009] [Accepted: 10/21/2009] [Indexed: 11/26/2022]
|