1
|
Mouhi HE, Abbassi M, Jalte M, Natiq A, Bouguenouch L, Chaouki S. The Genetic Facets of Dravet Syndrome: Recent Insights. ANNALS OF CHILD NEUROLOGY 2024; 32:67-82. [DOI: 10.26815/acn.2023.00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2025] Open
Abstract
Dravet syndrome (DS), previously known as severe myoclonic epilepsy of infancy, is a severe epileptic syndrome affecting children, with an incidence of 1/22,000 to 1/49,900 live births annually. Characterized by resistant and prolonged seizures, it often leads to intellectual impairment, with males being twice as susceptible as females. Its clinical features include recurrent seizures triggered by fever initially, but later occurring spontaneously, developmental delays, behavioral issues, and movement disorders. Sodium voltage-gated channel alpha subunit 1 (SCN1A) mutations, observed in about 90% of cases, are usually de novo, while mutations in other genes, such as protocadherin 19 (PCDH19), gamma-aminobutyric acid type A receptor subunit gamma 2 (GABRG2), and sodium voltage-gated channel alpha subunit 2 (SCN2A), can also contribute to the condition. Next-generation sequencing aids in identifying these genetic abnormalities. First-line treatments include anticonvulsant drugs such as valproate, clobazam, stiripentol, topiramate, and bromide. Second-line treatments for drug-resistant DS include stiripentol, fenfluramine, and cannabidiol. This literature review provides a comprehensive update on the genetic underpinnings of DS, highlighting SCN1A's predominant role and the emerging significance of other genes. Moreover, it emphasizes novel therapeutic approaches for drug-resistant forms, showcasing the efficacy of newer drugs such as stiripentol, fenfluramine, and cannabidiol. This synthesis contributes to our understanding of the genetic landscape of DS and informs clinicians about evolving treatment strategies for enhanced patient care.
Collapse
|
2
|
El Mouhi H, Amllal N, Abbassi M, Nedbour A, Jalte M, Lyahyai J, Chafai Elalaoui S, Bouguenouch L, Chaouki S. Identification of novel and de novo variant in the SCN1A gene confirms Dravet syndrome in Moroccan child: a case report. Mol Biol Rep 2024; 51:233. [PMID: 38282049 DOI: 10.1007/s11033-023-09200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024]
Abstract
Dravet syndrome is a severe form of epilepsy characterised by recurrent seizures and cognitive impairment. It is mainly caused by variant in the SCN1A gene in 90% of cases, which codes for the α subunit of the voltage-gated sodium channel. In this study, we present one suspected case of Dravet syndrome in Moroccan child that underwent exome analysis and were confirmed by Sanger sequencing. The variant was identified in the SCN1A gene, and is a new variant that has never been described in the literature. The variant was found de nova in our case, indicating that it was not inherited from the parents. The variant, SCN1A c.965-2A>G p.(?), is located at the splice site and results in an unknown modification of the protein. This variant is considered pathogenic on the basis of previous studies. These results contribute to our knowledge of the SCN1A gene mutations associated with Dravet syndrome and underline the importance of genetic analysis in the diagnosis and confirmation of this disorder. Further studies are needed to better understand the functional consequences of this variant and its implications for therapeutic strategies in Dravet syndrome.
Collapse
Affiliation(s)
- Hinde El Mouhi
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco.
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Fez, Morocco.
- Engineering Science and Technology Doctoral Study Center, Faculty of Sciences and Technologies, Sidi Mohammed Ben Abdellah University, Fez, Morocco.
| | - Nada Amllal
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Meriame Abbassi
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Fez, Morocco
- The Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Ayoub Nedbour
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Fez, Morocco
| | - Meryem Jalte
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Fez, Morocco
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAH), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Jaber Lyahyai
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | | | - Laila Bouguenouch
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Fez, Morocco
| | - Sana Chaouki
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy and Dental Medicine, Sidi Mohammed Ben Abdellah University, Fez, Morocco
- Department of Pediatrics, CHU Hassan II, Fez, Morocco
| |
Collapse
|
3
|
Schneider MF, Vogt M, Scheuermann J, Müller V, Fischer-Hentrich AHL, Kremer T, Lugert S, Metzger F, Kudernatsch M, Kluger G, Hartlieb T, Noachtar S, Vollmar C, Kunz M, Tonn JC, Coras R, Blümcke I, Pace C, Heinen F, Klein C, Potschka H, Borggraefe I. Brain expression profiles of two SCN1A antisense RNAs in children and adolescents with epilepsy. Transl Neurosci 2024; 15:20220330. [PMID: 38283997 PMCID: PMC10811528 DOI: 10.1515/tnsci-2022-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024] Open
Abstract
Objective Heterozygous mutations within the voltage-gated sodium channel α subunit (SCN1A) are responsible for the majority of cases of Dravet syndrome (DS), a severe developmental and epileptic encephalopathy. Development of novel therapeutic approaches is mandatory in order to directly target the molecular consequences of the genetic defect. The aim of the present study was to investigate whether cis-acting long non-coding RNAs (lncRNAs) of SCN1A are expressed in brain specimens of children and adolescent with epilepsy as these molecules comprise possible targets for precision-based therapy approaches. Methods We investigated SCN1A mRNA expression and expression of two SCN1A related antisense RNAs in brain tissues in different age groups of pediatric non-Dravet patients who underwent surgery for drug resistant epilepsy. The effect of different antisense oligonucleotides (ASOs) directed against SCN1A specific antisense RNAs on SCN1A expression was tested. Results The SCN1A related antisense RNAs SCN1A-dsAS (downstream antisense, RefSeq identifier: NR_110598) and SCN1A-usAS (upstream AS, SCN1A-AS, RefSeq identifier: NR_110260) were widely expressed in the brain of pediatric patients. Expression patterns revealed a negative correlation of SCN1A-dsAS and a positive correlation of lncRNA SCN1A-usAS with SCN1A mRNA expression. Transfection of SK-N-AS cells with an ASO targeted against SCN1A-dsAS was associated with a significant enhancement of SCN1A mRNA expression and reduction in SCN1A-dsAS transcripts. Conclusion These findings support the role of SCN1A-dsAS in the suppression of SCN1A mRNA generation. Considering the haploinsufficiency in genetic SCN1A related DS, SCN1A-dsAS is an interesting target candidate for the development of ASOs (AntagoNATs) based precision medicine therapeutic approaches aiming to enhance SCN1A expression in DS.
Collapse
Affiliation(s)
- Marius Frederik Schneider
- Division of Molecular Biology, Biomedical Center Munich, Ludwig Maximilians University, Munich, Germany
- International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | | | - Johanna Scheuermann
- Division of Molecular Biology, Biomedical Center Munich, Ludwig Maximilians University, Munich, Germany
| | - Veronika Müller
- Division of Molecular Biology, Biomedical Center Munich, Ludwig Maximilians University, Munich, Germany
| | | | - Thomas Kremer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sebastian Lugert
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Manfred Kudernatsch
- Clinic for Neurosurgery, Schoen-Klinik Vogtareuth, Germany
- Paracelsus Medical University, Salzburg, Austria
| | - Gerhard Kluger
- Paracelsus Medical University, Salzburg, Austria
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen-Klinik Vogtareuth, Germany
| | - Till Hartlieb
- Paracelsus Medical University, Salzburg, Austria
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen-Klinik Vogtareuth, Germany
| | - Soheyl Noachtar
- Department of Neurology, Comprehensive Epilepsy Center, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Christian Vollmar
- Department of Neurology, Comprehensive Epilepsy Center, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Comprehensive Epilepsy Center, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Mathias Kunz
- Department of Neurosurgery, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Jörg Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Claudia Pace
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilians University, Munich, Germany
| | - Florian Heinen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilians University, Munich, Germany
| | - Ingo Borggraefe
- Comprehensive Epilepsy Center, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
4
|
van Hugte EJH, Lewerissa EI, Wu KM, Scheefhals N, Parodi G, van Voorst TW, Puvogel S, Kogo N, Keller JM, Frega M, Schubert D, Schelhaas HJ, Verhoeven J, Majoie M, van Bokhoven H, Nadif Kasri N. SCN1A-deficient excitatory neuronal networks display mutation-specific phenotypes. Brain 2023; 146:5153-5167. [PMID: 37467479 PMCID: PMC10689919 DOI: 10.1093/brain/awad245] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Dravet syndrome is a severe epileptic encephalopathy, characterized by (febrile) seizures, behavioural problems and developmental delay. Eighty per cent of patients with Dravet syndrome have a mutation in SCN1A, encoding Nav1.1. Milder clinical phenotypes, such as GEFS+ (generalized epilepsy with febrile seizures plus), can also arise from SCN1A mutations. Predicting the clinical phenotypic outcome based on the type of mutation remains challenging, even when the same mutation is inherited within one family. This clinical and genetic heterogeneity adds to the difficulties of predicting disease progression and tailoring the prescription of anti-seizure medication. Understanding the neuropathology of different SCN1A mutations may help to predict the expected clinical phenotypes and inform the selection of best-fit treatments. Initially, the loss of Na+-current in inhibitory neurons was recognized specifically to result in disinhibition and consequently seizure generation. However, the extent to which excitatory neurons contribute to the pathophysiology is currently debated and might depend on the patient clinical phenotype or the specific SCN1A mutation. To examine the genotype-phenotype correlations of SCN1A mutations in relation to excitatory neurons, we investigated a panel of patient-derived excitatory neuronal networks differentiated on multi-electrode arrays. We included patients with different clinical phenotypes, harbouring various SCN1A mutations, along with a family in which the same mutation led to febrile seizures, GEFS+ or Dravet syndrome. We hitherto describe a previously unidentified functional excitatory neuronal network phenotype in the context of epilepsy, which corresponds to seizurogenic network prediction patterns elicited by proconvulsive compounds. We found that excitatory neuronal networks were affected differently, depending on the type of SCN1A mutation, but did not segregate according to clinical severity. Specifically, loss-of-function mutations could be distinguished from missense mutations, and mutations in the pore domain could be distinguished from mutations in the voltage sensing domain. Furthermore, all patients showed aggravated neuronal network responses at febrile temperatures compared with controls. Finally, retrospective drug screening revealed that anti-seizure medication affected GEFS+ patient- but not Dravet patient-derived neuronal networks in a patient-specific and clinically relevant manner. In conclusion, our results indicate a mutation-specific excitatory neuronal network phenotype, which recapitulates the foremost clinically relevant features, providing future opportunities for precision therapies.
Collapse
Affiliation(s)
- Eline J H van Hugte
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Epileptology, ACE Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Elly I Lewerissa
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Ka Man Wu
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Nicky Scheefhals
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Giulia Parodi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, 16145 GE Genova, Italy
| | - Torben W van Voorst
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Sofia Puvogel
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Naoki Kogo
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Jason M Keller
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Helenius J Schelhaas
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
| | - Judith Verhoeven
- Department of Epileptology, ACE Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Marian Majoie
- Department of Epileptology, ACE Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
5
|
Li T, Ginkel M, Yee AX, Foster L, Chen J, Heyse S, Steigele S. An efficient and scalable data analysis solution for automated electrophysiology platforms. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:278-285. [PMID: 35058183 DOI: 10.1016/j.slasd.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion channels are drug targets for neurologic, cardiac, and immunologic diseases. Many disease-associated mutations and drugs modulate voltage-gated ion channel activation and inactivation, suggesting that characterizing state-dependent effects of test compounds at an early stage of drug development can be of great benefit. Historically, the effects of compounds on ion channel biophysical properties and voltage-dependent activation/inactivation could only be assessed by using low-throughput, manual patch clamp recording techniques. In recent years, automated patch clamp (APC) platforms have drastically increased in throughput. In contrast to their broad utilization in compound screening, APC platforms have rarely been used for mechanism of action studies, in large part due to the lack of sophisticated, scalable analysis methods for processing the large amount of data generated by APC platforms. In the current study, we developed a highly efficient and scalable software workflow to overcome this challenge. This method, to our knowledge the first of its kind, enables automated curve fitting and complex analysis of compound effects. Using voltage-gated sodium channels as an example, we were able to immediately assess the effects of test compounds on a spectrum of biophysical properties, including peak current, voltage-dependent steady state activation/inactivation, and time constants of activation and fast inactivation. Overall, this automated data analysis method provides a novel solution for in-depth analysis of large-scale APC data, and thus will significantly impact ion channel research and drug discovery.
Collapse
Affiliation(s)
- Tianbo Li
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA.
| | | | | | | | - Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
6
|
Genetics and gene therapy in Dravet syndrome. Epilepsy Behav 2022; 131:108043. [PMID: 34053869 DOI: 10.1016/j.yebeh.2021.108043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022]
Abstract
Dravet syndrome is a well-established electro-clinical condition first described in 1978. A main genetic cause was identified with the discovery of a loss-of-function SCN1A variant in 2001. Mechanisms underlying the phenotypic variations have subsequently been a main topic of research. Various genetic modifiers of clinical severities have been elucidated through many rigorous studies on genotype-phenotype correlations and the recent advances in next generation sequencing technology. Furthermore, a deeper understanding of the regulation of gene expression and remarkable progress on genome-editing technology using the CRISPR-Cas9 system provide significant opportunities to overcome hurdles of gene therapy, such as enhancing NaV1.1 expression. This article reviews the current understanding of genetic pathology and the status of research toward the development of gene therapy for Dravet syndrome. This article is part of the Special Issue "Severe Infantile Epilepsies".
Collapse
|
7
|
Metzner C, Mäki-Marttunen T, Karni G, McMahon-Cole H, Steuber V. The effect of alterations of schizophrenia-associated genes on gamma band oscillations. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:46. [PMID: 35854005 PMCID: PMC9261091 DOI: 10.1038/s41537-022-00255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Abnormalities in the synchronized oscillatory activity of neurons in general and, specifically in the gamma band, might play a crucial role in the pathophysiology of schizophrenia. While these changes in oscillatory activity have traditionally been linked to alterations at the synaptic level, we demonstrate here, using computational modeling, that common genetic variants of ion channels can contribute strongly to this effect. Our model of primary auditory cortex highlights multiple schizophrenia-associated genetic variants that reduce gamma power in an auditory steady-state response task. Furthermore, we show that combinations of several of these schizophrenia-associated variants can produce similar effects as the more traditionally considered synaptic changes. Overall, our study provides a mechanistic link between schizophrenia-associated common genetic variants, as identified by genome-wide association studies, and one of the most robust neurophysiological endophenotypes of schizophrenia.
Collapse
Affiliation(s)
- Christoph Metzner
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany.
- Biocomputation Research Group, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom.
| | | | - Gili Karni
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Minerva Schools at KGI, San Francisco, CA, USA
| | - Hana McMahon-Cole
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Minerva Schools at KGI, San Francisco, CA, USA
| | - Volker Steuber
- Biocomputation Research Group, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
8
|
Chen C, Fang F, Wang X, Lv J, Wang X, Jin H. Phenotypic and Genotypic Characteristics of SCN1A Associated Seizure Diseases. Front Mol Neurosci 2022; 15:821012. [PMID: 35571373 PMCID: PMC9096348 DOI: 10.3389/fnmol.2022.821012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Although SCN1A variants result in a wide range of phenotypes, genotype-phenotype associations are not well established. We aimed to explore the phenotypic characteristics of SCN1A associated seizure diseases and establish genotype-phenotype correlations. We retrospectively analyzed clinical data and results of genetic testing in 41 patients carrying SCN1A variants. Patients were divided into two groups based on their clinical manifestations: the Dravet Syndrome (DS) and non-DS groups. In the DS group, the age of seizure onset was significantly earlier and ranged from 3 to 11 months, with a median age of 6 months, than in the non-DS group, where it ranged from 7 months to 2 years, with a median age of 10 and a half months. In DS group, onset of seizures in 11 patients was febrile, in seven was afebrile, in two was febrile/afebrile and one patient developed fever post seizure. In the non-DS group, onset in all patients was febrile. While in the DS group, three patients had unilateral clonic seizures at onset, and the rest had generalized or secondary generalized seizures at onset, while in the non-DS group, all patients had generalized or secondary generalized seizures without unilateral clonic seizures. The duration of seizure in the DS group was significantly longer and ranged from 2 to 70 min (median, 20 min), than in the non-DS group where it ranged from 1 to 30 min (median, 5 min). Thirty-one patients harbored de novo variants, and nine patients had inherited variants. Localization of missense variants in the voltage sensor region (S4) or pore-forming region (S5–S6) was seen in seven of the 11 patients in the DS group and seven of the 17 patients in the non-DS group. The phenotypes of SCN1A-related seizure disease were diverse and spread over a continuous spectrum from mild to severe. The phenotypes demonstrate commonalities and individualistic differences and are not solely determined by variant location or type, but also due to functional changes, genetic modifiers as well as other known and unknown factors.
Collapse
|
9
|
Turón-Viñas E, Díaz-Gómez A, Coca E, Dougherty L, Ruiz C, Boronat S. Long-term Efficacy of Perampanel in a Child with Dravet Syndrome. Child Neurol Open 2021; 8:2329048X211050711. [PMID: 34692895 PMCID: PMC8532213 DOI: 10.1177/2329048x211050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Dravet syndrome is a genetic developmental and epileptic encephalopathy (DEE) mostly due to mutations in SCN1A gene. Perampanel is a selective and non-competitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist. There is increasing experience in the use of perampanel in this syndrome; however, there is still a lack of evidence of sustained benefit years after the beginning of the treatment. We report a twelve-year-old girl who was diagnosed with Dravet Syndrome when she was 2 years old and has been on perampanel since she was 7. Her genetic test showed a de novo previously described heterozygous SCN1A mutation in the 24th exon (c.4547C>A, p.Ser1516*). She received previous antiseizure drug combinations with little benefit. When perampanel was started, there was a complete resolution of her spontaneous seizures that has continued five years later. More studies are needed to investigate if there is an association between this excellent response and the genotype of our patient.
Collapse
Affiliation(s)
| | | | - Elisabet Coca
- Child Neurology Unit, Hospital Sant Pau, Barcelona, Spain
| | | | - Carlos Ruiz
- Child Neurology Unit, Hospital Sant Pau, Barcelona, Spain
| | - Susana Boronat
- Child Neurology Unit, Hospital Sant Pau, Barcelona, Spain
| |
Collapse
|
10
|
Singh AK, Dvorak NM, Tapia CM, Mosebarger A, Ali SR, Bullock Z, Chen H, Zhou J, Laezza F. Differential Modulation of the Voltage-Gated Na + Channel 1.6 by Peptides Derived From Fibroblast Growth Factor 14. Front Mol Biosci 2021; 8:742903. [PMID: 34557523 PMCID: PMC8452925 DOI: 10.3389/fmolb.2021.742903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated Na+ (Nav) channel is a primary molecular determinant of the initiation and propagation of the action potential. Despite the central role of the pore-forming α subunit in conferring this functionality, protein:protein interactions (PPI) between the α subunit and auxiliary proteins are necessary for the full physiological activity of Nav channels. In the central nervous system (CNS), one such PPI occurs between the C-terminal domain of the Nav1.6 channel and fibroblast growth factor 14 (FGF14). Given the primacy of this PPI in regulating the excitability of neurons in clinically relevant brain regions, peptides targeting the FGF14:Nav1.6 PPI interface could be of pre-clinical value. In this work, we pharmacologically evaluated peptides derived from FGF14 that correspond to residues that are at FGF14's PPI interface with the CTD of Nav1.6. These peptides, Pro-Leu-Glu-Val (PLEV) and Glu-Tyr-Tyr-Val (EYYV), which correspond to residues of the β12 sheet and β8-β9 loop of FGF14, respectively, were shown to inhibit FGF14:Nav1.6 complex assembly. In functional studies using whole-cell patch-clamp electrophysiology, PLEV and EYYV were shown to confer differential modulation of Nav1.6-mediated currents through mechanisms dependent upon the presence of FGF14. Crucially, these FGF14-dependent effects of PLEV and EYYV on Nav1.6-mediated currents were further shown to be dependent on the N-terminal domain of FGF14. Overall, these data suggest that the PLEV and EYYV peptides represent scaffolds to interrogate the Nav1.6 channel macromolecular complex in an effort to develop targeted pharmacological modulators.
Collapse
Affiliation(s)
- Aditya K Singh
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Nolan M Dvorak
- Department of Pharmacology and Toxicology, Galveston, TX, United States.,Pharmacology and Toxicology Graduate Program, Galveston, TX, United States.,Presidential Scholarship Program, University of Texas Medical Branch, Galveston, TX, United States
| | - Cynthia M Tapia
- Department of Pharmacology and Toxicology, Galveston, TX, United States.,Presidential Scholarship Program, University of Texas Medical Branch, Galveston, TX, United States
| | - Angela Mosebarger
- Department of Pharmacology and Toxicology, Galveston, TX, United States.,Pharmacology and Toxicology Graduate Program, Galveston, TX, United States.,Presidential Scholarship Program, University of Texas Medical Branch, Galveston, TX, United States
| | - Syed R Ali
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Zaniqua Bullock
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Haiying Chen
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| |
Collapse
|
11
|
Jones LB, Peters CH, Rosch RE, Owers M, Hughes E, Pal DK, Ruben PC. The L1624Q Variant in SCN1A Causes Familial Epilepsy Through a Mixed Gain and Loss of Channel Function. Front Pharmacol 2021; 12:788192. [PMID: 34925043 PMCID: PMC8675213 DOI: 10.3389/fphar.2021.788192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Variants of the SCN1A gene encoding the neuronal voltage-gated sodium channel NaV1.1 cause over 85% of all cases of Dravet syndrome, a severe and often pharmacoresistent epileptic encephalopathy with mostly infantile onset. But with the increased availability of genetic testing for patients with epilepsy, variants in SCN1A have now also been described in a range of other epilepsy phenotypes. The vast majority of these epilepsy-associated variants are de novo, and most are either nonsense variants that truncate the channel or missense variants that are presumed to cause loss of channel function. However, biophysical analysis has revealed a significant subset of missense mutations that result in increased excitability, further complicating approaches to precision pharmacotherapy for patients with SCN1A variants and epilepsy. We describe clinical and biophysical data of a familial SCN1A variant encoding the NaV1.1 L1624Q mutant. This substitution is located on the extracellular linker between S3 and S4 of Domain IV of NaV1.1 and is a rare case of a familial SCN1A variant causing an autosomal dominant frontal lobe epilepsy. We expressed wild-type (WT) and L1642Q channels in CHO cells. Using patch-clamp to characterize channel properties at several temperatures, we show that the L1624Q variant increases persistent current, accelerates fast inactivation onset and decreases current density. While SCN1A-associated epilepsy is typically considered a loss-of-function disease, our results put L1624Q into a growing set of mixed gain and loss-of-function variants in SCN1A responsible for epilepsy.
Collapse
Affiliation(s)
- Laura B Jones
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard E Rosch
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.,Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Maxine Owers
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Elaine Hughes
- Department of Paediatric Neurosciences, King's College Hospital, London, United Kingdom.,Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, United Kingdom
| | - Deb K Pal
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
13
|
Kluckova D, Kolnikova M, Lacinova L, Jurkovicova-Tarabova B, Foltan T, Demko V, Kadasi L, Ficek A, Soltysova A. A Study among the Genotype, Functional Alternations, and Phenotype of 9 SCN1A Mutations in Epilepsy Patients. Sci Rep 2020; 10:10288. [PMID: 32581296 PMCID: PMC7314844 DOI: 10.1038/s41598-020-67215-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the voltage-gated sodium channel Nav1.1 (SCN1A) are linked to various epileptic phenotypes with different severities, however, the consequences of newly identified SCN1A variants on patient phenotype is uncertain so far. The functional impact of nine SCN1A variants, including five novel variants identified in this study, was studied using whole-cell patch-clamp recordings measurement of mutant Nav1.1 channels expressed in HEK293T mammalian cells. E78X, W384X, E1587K, and R1596C channels failed to produce measurable sodium currents, indicating complete loss of channel function. E788K and M909K variants resulted in partial loss of function by exhibiting reduced current density, depolarizing shifts of the activation and hyperpolarizing shifts of the inactivation curves, and slower recovery from inactivation. Hyperpolarizing shifts of the activation and inactivation curves were observed in D249E channels along with slower recovery from inactivation. Slower recovery from inactivation was observed in E78D and T1934I with reduced current density in T1934I channels. Various functional effects were observed with the lack of sodium current being mainly associated with severe phenotypes and milder symptoms with less damaging channel alteration. In vitro functional analysis is thus fundamental for elucidation of the molecular mechanisms of epilepsy, to guide patients' treatment, and finally indicate misdiagnosis of SCN1A related epilepsies.
Collapse
Affiliation(s)
- Daniela Kluckova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Miriam Kolnikova
- Department of Pediatric Neurology, Comenius University Medical School and National Institute of Children's Diseases, Limbova 1, Bratislava, 833 40, Slovakia
| | - Lubica Lacinova
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravská cesta 9, Bratislava, 840 05, Slovakia
| | - Bohumila Jurkovicova-Tarabova
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravská cesta 9, Bratislava, 840 05, Slovakia
| | - Tomas Foltan
- Department of Pediatric Neurology, Comenius University Medical School and National Institute of Children's Diseases, Limbova 1, Bratislava, 833 40, Slovakia
| | - Viktor Demko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Ludevit Kadasi
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia.
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
14
|
Weuring WJ, Singh S, Volkers L, Rook MB, van ‘t Slot RH, Bosma M, Inserra M, Vetter I, Verhoeven-Duif NM, Braun KPJ, Rivara M, Koeleman BPC. NaV1.1 and NaV1.6 selective compounds reduce the behavior phenotype and epileptiform activity in a novel zebrafish model for Dravet Syndrome. PLoS One 2020; 15:e0219106. [PMID: 32134913 PMCID: PMC7058281 DOI: 10.1371/journal.pone.0219106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/04/2020] [Indexed: 12/03/2022] Open
Abstract
Dravet syndrome is caused by dominant loss-of-function mutations in SCN1A which cause reduced activity of Nav1.1 leading to lack of neuronal inhibition. On the other hand, gain-of-function mutations in SCN8A can lead to a severe epileptic encephalopathy subtype by over activating NaV1.6 channels. These observations suggest that Nav1.1 and Nav1.6 represent two opposing sides of the neuronal balance between inhibition and activation. Here, we hypothesize that Dravet syndrome may be treated by either enhancing Nav1.1 or reducing Nav1.6 activity. To test this hypothesis we generated and characterized a novel DS zebrafish model and tested new compounds that selectively activate or inhibit the human NaV1.1 or NaV1.6 channel respectively. We used CRISPR/Cas9 to generate two separate Scn1Lab knockout lines as an alternative to previous zebrafish models generated by random mutagenesis or morpholino oligomers. Using an optimized locomotor assay, spontaneous burst movements were detected that were unique to Scn1Lab knockouts and disappear when introducing human SCN1A mRNA. Besides the behavioral phenotype, Scn1Lab knockouts show sudden, electrical discharges in the brain that indicate epileptic seizures in zebrafish. Scn1Lab knockouts showed increased sensitivity to the GABA antagonist pentylenetetrazole and a reduction in whole organism GABA levels. Drug screenings further validated a Dravet syndrome phenotype. We tested the NaV1.1 activator AA43279 and two novel NaV1.6 inhibitors MV1369 and MV1312 in the Scn1Lab knockouts. Both type of compounds significantly reduced the number of spontaneous burst movements and seizure activity. Our results show that selective inhibition of NaV1.6 could be just as efficient as selective activation of NaV1.1 and these approaches could prove to be novel potential treatment strategies for Dravet syndrome and other (genetic) epilepsies. Compounds tested in zebrafish however, should always be further validated in other model systems for efficacy in mammals and to screen for potential side effects.
Collapse
Affiliation(s)
- Wout J. Weuring
- Department of Genetics, Center for Molecular Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sakshi Singh
- Department of Genetics, Center for Molecular Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linda Volkers
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Centre Leiden, Leiden, the Netherlands
| | - Martin B. Rook
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ruben H. van ‘t Slot
- Department of Genetics, Center for Molecular Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marjolein Bosma
- Department of Genetics, Center for Molecular Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marco Inserra
- Centre for Pain Research & School of Pharmacy, University of Queensland, Brisbane, Australia
| | - Irina Vetter
- Centre for Pain Research & School of Pharmacy, University of Queensland, Brisbane, Australia
| | - Nanda M. Verhoeven-Duif
- Department of Genetics, Center for Molecular Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kees P. J. Braun
- Department of Neurology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Mirko Rivara
- Food and Drug Department, University of Parma, Parma, Italy
| | - Bobby P. C. Koeleman
- Department of Genetics, Center for Molecular Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Brunklaus A, Du J, Steckler F, Ghanty II, Johannesen KM, Fenger CD, Schorge S, Baez-Nieto D, Wang HR, Allen A, Pan JQ, Lerche H, Heyne H, Symonds JD, Zuberi SM, Sanders S, Sheidley BR, Craiu D, Olson HE, Weckhuysen S, DeJonge P, Helbig I, Van Esch H, Busa T, Milh M, Isidor B, Depienne C, Poduri A, Campbell AJ, Dimidschstein J, Møller RS, Lal D. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia 2020; 61:387-399. [PMID: 32090326 DOI: 10.1111/epi.16438] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Felix Steckler
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Ismael I Ghanty
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Katrine M Johannesen
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Christina Dühring Fenger
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Amplexa Genetics, Odense, Denmark
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.,School of Pharmacy, University College London, London, UK
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Hao-Ran Wang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Henrike Heyne
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Stephan Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Dana Craiu
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Pediatric Neurology Discipline, Bucharest, Romania.,Alexandru Obregia Hospital, Pediatric Neurology Clinic, Bucharest, Romania
| | - Heather E Olson
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Peter DeJonge
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neuropediatrics, University of Kiel, Kiel, Germany
| | - Hilde Van Esch
- Department of Human Genetics and Center for Human Genetics, Laboratory for Genetics of Cognition, University Hospitals Leuven, Leuven, Belgium
| | - Tiffany Busa
- Genetics Department, Timone Enfants University Hospital Center, Public Assistance-Marseille Hospitals, Marseille, France
| | - Matthieu Milh
- Medical Genetics and Functional Genomics, National Institute of Health and Medical Research, Mixed Unit of Research S910, Aix-Marseille University, Marseille, France.,Hematology Laboratory, Le Mans Hospital Center, Le Mans, France
| | - Bertrand Isidor
- Medical Genetics Department, Nantes University Hospital Center, Nantes, France
| | - Christel Depienne
- Institute of Human Genetics, Essen University Hospital, Essen, Germany.,Brain and Spinal Cord Institute, National Institute of Health and Medical Research, Unit 1127, National Center for Scientific Research, Mixed Unit of Research 7225, Sorbonne Universities, Pierre and Marie Curie University, Mixed Unit of Research S 1127, Brain & Spine Institute, Paris, France
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Rikke S Møller
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany.,Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
16
|
Jansen NA, Dehghani A, Linssen MML, Breukel C, Tolner EA, van den Maagdenberg AMJM. First FHM3 mouse model shows spontaneous cortical spreading depolarizations. Ann Clin Transl Neurol 2019; 7:132-138. [PMID: 31880072 PMCID: PMC6952313 DOI: 10.1002/acn3.50971] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 01/19/2023] Open
Abstract
Here we show, for the first time, spontaneous cortical spreading depolarization (CSD) events - the electrophysiological correlate of the migraine aura - in animals by using the first generated familial hemiplegic migraine type 3 (FHM3) transgenic mouse model. The mutant mice express L263V-mutated α1 subunits in voltage-gated NaV 1.1 sodium channels (Scn1aL263V ). CSDs consistently propagated from visual to motor cortex, recapitulating what has been shown in patients with migraine with aura. This model may be valuable for the preclinical study of migraine with aura and other diseases in which spreading depolarization is a prominent feature.
Collapse
Affiliation(s)
- Nico A Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anisa Dehghani
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Margot M L Linssen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Brunklaus A, Schorge S, Smith AD, Ghanty I, Stewart K, Gardiner S, Du J, Pérez‐Palma E, Symonds JD, Collier AC, Lal D, Zuberi SM. SCN1A
variants from bench to bedside—improved clinical prediction from functional characterization. Hum Mutat 2019; 41:363-374. [PMID: 31782251 DOI: 10.1002/humu.23943] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas Brunklaus
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of NeurologyUniversity College LondonLondon UK
- School of PharmacyUniversity College LondonLondon UK
| | - Alexander D. Smith
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouver British Columbia Canada
| | - Ismael Ghanty
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Kirsty Stewart
- West of Scotland Genetic Services, Level 2B, Laboratory MedicineQueen Elizabeth University HospitalGlasgow UK
| | - Sarah Gardiner
- West of Scotland Genetic Services, Level 2B, Laboratory MedicineQueen Elizabeth University HospitalGlasgow UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
| | - Eduardo Pérez‐Palma
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
| | - Joseph D. Symonds
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Abby C. Collier
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouver British Columbia Canada
| | - Dennis Lal
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridge Massachusetts
- Analytic and Translational Genetics UnitMassachusetts General HospitalBoston Massachusetts
- Epilepsy Center, Neurological InstituteCleveland ClinicCleveland Ohio
- Genomic Medicine InstituteLerner Research Institute Cleveland ClinicCleveland Ohio
| | - Sameer M. Zuberi
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| |
Collapse
|
18
|
Dong S, Liu Y, Xu J, Hu Y, Huang L, Wang Z. Synthesis and Evaluation of N-substituted (Z)-5-(Benzo[d][1,3]dioxol-5- ylmethylene)-2-Thioxothiazolidin-4-one Derivatives and 5-Substituted- Thioxothiazolidindione Derivatives as Potent Anticonvulsant Agents. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:798-807. [PMID: 31742497 DOI: 10.2174/1871527318666191119125515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epilepsy is a serious and common neurological disorder threatening the health of humans. Despite enormous progress in epileptic research, the anti-epileptic drugs present many limitations. These limitations prompted the development of more safer and effective AEDs. METHODS A series of N-substituted (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)- 2-thioxothiazolidin-4- one derivatives and 5-substituted-thioxothiazolidindione derivatives were designed, synthesized and tested for anticonvulsant activity against maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ). Neurotoxicity was determined by the rotarod test. RESULTS Among them, the most potent 4e displayed high protection against MES-induced seizures with an ED50 value of 9.7 mg/kg and TD50 value of 263.3 mg/kg, which provided 4e with a high protective index (TD50/ED50) of 27.1 comparable to reference antiepileptic drugs. 4e clearly inhibits the NaV1.1 channel in vitro. The molecular docking study was conducted to exploit the results. CONCLUSION Stiripentol is a good lead compound for further structural modification. Compound 4e was synthesized, which displayed remarkable anticonvulsant activities, and the NaV1.1 channel inhibition was involved in the mechanism of action of 4e.
Collapse
Affiliation(s)
- Shiyang Dong
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yanhua Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jun Xu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yue Hu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Limin Huang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
19
|
Mäki-Marttunen T, Devor A, Phillips WA, Dale AM, Andreassen OA, Einevoll GT. Computational Modeling of Genetic Contributions to Excitability and Neural Coding in Layer V Pyramidal Cells: Applications to Schizophrenia Pathology. Front Comput Neurosci 2019; 13:66. [PMID: 31616272 PMCID: PMC6775251 DOI: 10.3389/fncom.2019.00066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Pyramidal cells in layer V of the neocortex are one of the most widely studied neuron types in the mammalian brain. Due to their role as integrators of feedforward and cortical feedback inputs, they are well-positioned to contribute to the symptoms and pathology in mental disorders-such as schizophrenia-that are characterized by a mismatch between the internal perception and external inputs. In this modeling study, we analyze the input/output properties of layer V pyramidal cells and their sensitivity to modeled genetic variants in schizophrenia-associated genes. We show that the excitability of layer V pyramidal cells and the way they integrate inputs in space and time are altered by many types of variants in ion-channel and Ca2+ transporter-encoding genes that have been identified as risk genes by recent genome-wide association studies. We also show that the variability in the output patterns of spiking and Ca2+ transients in layer V pyramidal cells is altered by these model variants. Importantly, we show that many of the predicted effects are robust to noise and qualitatively similar across different computational models of layer V pyramidal cells. Our modeling framework reveals several aspects of single-neuron excitability that can be linked to known schizophrenia-related phenotypes and existing hypotheses on disease mechanisms. In particular, our models predict that single-cell steady-state firing rate is positively correlated with the coding capacity of the neuron and negatively correlated with the amplitude of a prepulse-mediated adaptation and sensitivity to coincidence of stimuli in the apical dendrite and the perisomatic region of a layer V pyramidal cell. These results help to uncover the voltage-gated ion-channel and Ca2+ transporter-associated genetic underpinnings of schizophrenia phenotypes and biomarkers.
Collapse
Affiliation(s)
| | - Anna Devor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.,Department of Radiology, University of California San Diego, La Jolla, CA, United States.,Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Anders M Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.,Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Nastou KC, Batskinis MA, Litou ZI, Hamodrakas SJ, Iconomidou VA. Analysis of Single-Nucleotide Polymorphisms in Human Voltage-Gated Ion Channels. J Proteome Res 2019; 18:2310-2320. [DOI: 10.1021/acs.jproteome.9b00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katerina C. Nastou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Michail A. Batskinis
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Zoi I. Litou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| |
Collapse
|
21
|
Nissenkorn A, Almog Y, Adler I, Safrin M, Brusel M, Marom M, Bercovich S, Yakubovich D, Tzadok M, Ben-Zeev B, Rubinstein M. In vivo, in vitro and in silico correlations of four de novo SCN1A missense mutations. PLoS One 2019; 14:e0211901. [PMID: 30735520 PMCID: PMC6368302 DOI: 10.1371/journal.pone.0211901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
Mutations in the SCN1A gene, which encodes for the voltage-gated sodium channel NaV1.1, cause Dravet syndrome, a severe developmental and epileptic encephalopathy. Genetic testing of this gene is recommended early in life. However, predicting the outcome of de novo missense SCN1A mutations is difficult, since milder epileptic syndromes may also be associated. In this study, we correlated clinical severity with functional in vitro electrophysiological testing of channel activity and bioinformatics prediction of damaging mutational effects. Three patients, bearing the mutations p.Gly177Ala, p.Ser259Arg and p.Glu1923Arg, showed frequent intractable seizures that had started early in life, with cognitive and behavioral deterioration, consistent with classical Dravet phenotypes. These mutations failed to produce measurable sodium currents in a mammalian expression system, indicating complete loss of channel function. A fourth patient, who harbored the mutation p.Met1267Ile, though presenting with seizures early in life, showed lower seizure burden and higher cognitive function, matching borderland Dravet phenotypes. In correlation with this, functional analysis demonstrated the presence of sodium currents, but with partial loss of function. In contrast, six bioinformatics tools for predicting mutational pathogenicity suggested similar impact for all mutations. Likewise, homology modeling of the secondary and tertiary structures failed to reveal misfolding. In conclusion, functional studies using patch clamp are suggested as a prognostic tool, whereby detectable currents imply milder phenotypes and absence of currents indicate an unfavorable prognosis. Future development of automated patch clamp systems will facilitate the inclusion of such functional testing as part of personalized patient diagnostic schemes.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Service for Rare Disorders, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
- Pediatric Neurology Unit, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Almog
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Adler
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mary Safrin
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Brusel
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Milit Marom
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shayel Bercovich
- The Arrow Project, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Daniel Yakubovich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neonatal Intensive Care, Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Michal Tzadok
- Pediatric Neurology Unit, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bruria Ben-Zeev
- Pediatric Neurology Unit, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
22
|
Mäki-Marttunen T, Krull F, Bettella F, Hagen E, Næss S, Ness TV, Moberget T, Elvsåshagen T, Metzner C, Devor A, Edwards AG, Fyhn M, Djurovic S, Dale AM, Andreassen OA, Einevoll GT. Alterations in Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. Cereb Cortex 2019; 29:875-891. [PMID: 30475994 PMCID: PMC6319172 DOI: 10.1093/cercor/bhy291] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies have implicated many ion channels in schizophrenia pathophysiology. Although the functions of these channels are relatively well characterized by single-cell studies, the contributions of common variation in these channels to neurophysiological biomarkers and symptoms of schizophrenia remain elusive. Here, using computational modeling, we show that a common biomarker of schizophrenia, namely, an increase in delta-oscillation power, may be a direct consequence of altered expression or kinetics of voltage-gated ion channels or calcium transporters. Our model of a circuit of layer V pyramidal cells highlights multiple types of schizophrenia-related variants that contribute to altered dynamics in the delta-frequency band. Moreover, our model predicts that the same membrane mechanisms that increase the layer V pyramidal cell network gain and response to delta-frequency oscillations may also cause a deficit in a single-cell correlate of the prepulse inhibition, which is a behavioral biomarker highly associated with schizophrenia.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Simula Research Laboratory, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Florian Krull
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen Hagen
- Department of Physics, University of Oslo, Oslo, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Solveig Næss
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Torbjørn V Ness
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir Moberget
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Christoph Metzner
- Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, UK
| | - Anna Devor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Gaute T Einevoll
- Department of Physics, University of Oslo, Oslo, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
23
|
Ali SR, Liu Z, Nenov MN, Folorunso O, Singh A, Scala F, Chen H, James TF, Alshammari M, Panova-Elektronova NI, White MA, Zhou J, Laezza F. Functional Modulation of Voltage-Gated Sodium Channels by a FGF14-Based Peptidomimetic. ACS Chem Neurosci 2018; 9:976-987. [PMID: 29359916 DOI: 10.1021/acschemneuro.7b00399] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Protein-protein interactions (PPI) offer unexploited opportunities for CNS drug discovery and neurochemical probe development. Here, we present ZL181, a novel peptidomimetic targeting the PPI interface of the voltage-gated Na+ channel Nav1.6 and its regulatory protein fibroblast growth factor 14 (FGF14). ZL181 binds to FGF14 and inhibits its interaction with the Nav1.6 channel C-tail. In HEK-Nav1.6 expressing cells, ZL181 acts synergistically with FGF14 to suppress Nav1.6 current density and to slow kinetics of fast inactivation, but antagonizes FGF14 modulation of steady-state inactivation that is regulated by the N-terminal tail of the protein. In medium spiny neurons in the nucleus accumbens, ZL181 suppresses excitability by a mechanism that is dependent upon expression of FGF14 and is consistent with a state-dependent inhibition of FGF14. Overall, ZL181 and derivatives could lay the ground for developing allosteric modulators of Nav channels that are of interest for a broad range of CNS disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Musaad Alshammari
- King Saud University Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
24
|
Wang T, Dong S, Chen X, Qian K, Wang H, Quan H, Zhang Z, Zuo Y, Huang L, Li D, Yang M, Yang S, Jin Y, Wang Z. Design, synthesis, biological evaluation, homology modeling and docking studies of (E)-3-(benzo[d][1,3]dioxol-5-ylmethylene) pyrrolidin-2-one derivatives as potent anticonvulsant agents. Bioorg Med Chem Lett 2018; 28:1324-1329. [PMID: 29548572 DOI: 10.1016/j.bmcl.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/18/2018] [Accepted: 03/05/2018] [Indexed: 11/15/2022]
Abstract
A series of (E)-3-(benzo[d][1,3]dioxol-5-ylmethylene)pyrrolidin-2-one derivatives were designed, synthesized, and evaluated for their anticonvulsant activities. In the preliminary screening, compounds 5, 6a-6f and 6h-6i showed promising anticonvulsant activities in MES model, while 6f and 6g represented protection against seizures at doses of 100 mg/kg and 0.5 h in scPTZ model. The most active compound 6d had a high-degree protection against the MES-induced seizures with ED50 value of 4.3 mg/kg and TD50 value of 160.9 mg/kg after intraperitoneal (i.p.) injection in mice, which provided 6d in a high protective index (TD50/ED50) of 37.4 comparable to the reference drugs. Beyond that, 6d has been selected and evaluated in vitro experiment to estimate the activation impact. Apparently, 6d clearly inhibits the Nav1.1 channel. Our preliminary results provide new insights for the development of small-molecule activators targeting specifically Nav1.1 channels to design potential drugs for treating epilepsy. The computational parameters, such as homology modeling, docking study, and ADME prediction, were made to exploit the results.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330006, China
| | - Shiyang Dong
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaodong Chen
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Kun Qian
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Huayu Wang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hexiu Quan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330006, China; Basic Medical College, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhongli Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yueming Zuo
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Liping Huang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dongxun Li
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330006, China
| | - Ming Yang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Shilin Yang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330006, China
| | - Yi Jin
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330006, China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
25
|
Büren C, Kamp MA, Munoz-Bendix C, Steiger HJ, Windolf J, Dibué-Adjei M. Can the combination of hyperthermia, seizures and ion channel dysfunction cause fatal post-ictal cerebral edema in patients with SCN1A mutations? EPILEPSY & BEHAVIOR CASE REPORTS 2017; 9:29-32. [PMID: 29692967 PMCID: PMC5913039 DOI: 10.1016/j.ebcr.2017.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 10/31/2022]
Abstract
A 21-year-old male with an SCN1A mutation died of cerebral herniation 3 h after a seizure occurring during physical activity. Cases of fatal cerebral edema in patients with SCN1A mutations after fever and status epilepticus have been recently reported raising the question whether sodium channel dysfunction may contribute to cerebral edema and thereby contribute to the increased premature mortality in Dravet Syndrome. We report on our patient and discuss whether the combination of hyperthermia and ion channel dysfunction may not only trigger seizures but also a fatal pathophysiological cascade of cerebral edema and herniation leading to cardiorespiratory collapse.
Collapse
Affiliation(s)
- Carina Büren
- Department for Trauma- and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Marcel Alexander Kamp
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Christopher Munoz-Bendix
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Joachim Windolf
- Department for Trauma- and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Maxine Dibué-Adjei
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany.,LivaNova Deutschland GmbH (a LivaNova PLC-owned subsidiary), Lindberghstr 25, D-80939 Munich, Germany
| |
Collapse
|
26
|
Mäki-Marttunen T, Lines GT, Edwards AG, Tveito A, Dale AM, Einevoll GT, Andreassen OA. Pleiotropic effects of schizophrenia-associated genetic variants in neuron firing and cardiac pacemaking revealed by computational modeling. Transl Psychiatry 2017; 7:5. [PMID: 30446648 PMCID: PMC5802468 DOI: 10.1038/s41398-017-0007-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia patients have an increased risk of cardiac dysfunction. A possible factor underlying this comorbidity are the common variants in the large set of genes that have recently been discovered in genome-wide association studies (GWASs) as risk genes of schizophrenia. Many of these genes control the cell electrogenesis and calcium homeostasis. We applied biophysically detailed models of layer V pyramidal cells and sinoatrial node cells to study the contribution of schizophrenia-associated genes on cellular excitability. By including data from functional genomics literature to simulate the effects of common variants of these genes, we showed that variants of voltage-gated Na+ channel or hyperpolarization-activated cation channel-encoding genes cause qualitatively similar effects on layer V pyramidal cell and sinoatrial node cell excitability. By contrast, variants of Ca2+ channel or transporter-encoding genes mostly have opposite effects on cellular excitability in the two cell types. We also show that the variants may crucially affect the propagation of the cardiac action potential in the sinus node. These results may help explain some of the cardiac comorbidity in schizophrenia, and may facilitate generation of effective antipsychotic medications without cardiac side-effects such as arrhythmia.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Simula Research Laboratory and Center for Cardiological Innovation, Oslo, Norway.
| | - Glenn T. Lines
- Simula Research Laboratory and Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Simula Research Laboratory and Center for Cardiological Innovation, Oslo, Norway
| | - Aslak Tveito
- Simula Research Laboratory and Center for Cardiological Innovation, Oslo, Norway
| | - Anders M. Dale
- 0000 0001 2107 4242grid.266100.3Multimodal Imaging Laboratory, UC San Diego, La Jolla, CA USA ,0000 0001 2107 4242grid.266100.3Department of Neurosciences, University of California San Diego, La Jolla, CA USA ,0000 0001 2107 4242grid.266100.3Department of Radiology, University of California, San Diego, La Jolla, CA USA
| | - Gaute T. Einevoll
- 0000 0004 0607 975Xgrid.19477.3cDepartment of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway ,0000 0004 1936 8921grid.5510.1Department of Physics, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- 0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
27
|
Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci Bull 2017; 33:455-477. [PMID: 28488083 DOI: 10.1007/s12264-017-0134-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 01/29/2023] Open
Abstract
Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.
Collapse
|
28
|
Lamar T, Vanoye CG, Calhoun J, Wong JC, Dutton SBB, Jorge BS, Velinov M, Escayg A, Kearney JA. SCN3A deficiency associated with increased seizure susceptibility. Neurobiol Dis 2017; 102:38-48. [PMID: 28235671 DOI: 10.1016/j.nbd.2017.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
Mutations in voltage-gated sodium channels expressed highly in the brain (SCN1A, SCN2A, SCN3A, and SCN8A) are responsible for an increasing number of epilepsy syndromes. In particular, mutations in the SCN3A gene, encoding the pore-forming Nav1.3 α subunit, have been identified in patients with focal epilepsy. Biophysical characterization of epilepsy-associated SCN3A variants suggests that both gain- and loss-of-function SCN3A mutations may lead to increased seizure susceptibility. In this report, we identified a novel SCN3A variant (L247P) by whole exome sequencing of a child with focal epilepsy, developmental delay, and autonomic nervous system dysfunction. Voltage clamp analysis showed no detectable sodium current in a heterologous expression system expressing the SCN3A-L247P variant. Furthermore, cell surface biotinylation demonstrated a reduction in the amount of SCN3A-L247P at the cell surface, suggesting the SCN3A-L247P variant is a trafficking-deficient mutant. To further explore the possible clinical consequences of reduced SCN3A activity, we investigated the effect of a hypomorphic Scn3a allele (Scn3aHyp) on seizure susceptibility and behavior using a gene trap mouse line. Heterozygous Scn3a mutant mice (Scn3a+/Hyp) did not exhibit spontaneous seizures nor were they susceptible to hyperthermia-induced seizures. However, they displayed increased susceptibility to electroconvulsive (6Hz) and chemiconvulsive (flurothyl and kainic acid) induced seizures. Scn3a+/Hyp mice also exhibited deficits in locomotor activity and motor learning. Taken together, these results provide evidence that loss-of-function of SCN3A caused by reduced protein expression or deficient trafficking to the plasma membrane may contribute to increased seizure susceptibility.
Collapse
Affiliation(s)
- Tyra Lamar
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey Calhoun
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | - Benjamin S Jorge
- Neuroscience Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Milen Velinov
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Møller RS, Larsen LHG, Johannesen KM, Talvik I, Talvik T, Vaher U, Miranda MJ, Farooq M, Nielsen JEK, Svendsen LL, Kjelgaard DB, Linnet KM, Hao Q, Uldall P, Frangu M, Tommerup N, Baig SM, Abdullah U, Born AP, Gellert P, Nikanorova M, Olofsson K, Jepsen B, Marjanovic D, Al-Zehhawi LIK, Peñalva SJ, Krag-Olsen B, Brusgaard K, Hjalgrim H, Rubboli G, Pal DK, Dahl HA. Gene Panel Testing in Epileptic Encephalopathies and Familial Epilepsies. Mol Syndromol 2016; 7:210-219. [PMID: 27781031 DOI: 10.1159/000448369] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In recent years, several genes have been causally associated with epilepsy. However, making a genetic diagnosis in a patient can still be difficult, since extensive phenotypic and genetic heterogeneity has been observed in many monogenic epilepsies. This study aimed to analyze the genetic basis of a wide spectrum of epilepsies with age of onset spanning from the neonatal period to adulthood. A gene panel targeting 46 epilepsy genes was used on a cohort of 216 patients consecutively referred for panel testing. The patients had a range of different epilepsies from benign neonatal seizures to epileptic encephalopathies (EEs). Potentially causative variants were evaluated by literature and database searches, submitted to bioinformatic prediction algorithms, and validated by Sanger sequencing. If possible, parents were included for segregation analysis. We identified a presumed disease-causing variant in 49 (23%) of the 216 patients. The variants were found in 19 different genes including SCN1A, STXBP1, CDKL5, SCN2A, SCN8A, GABRA1, KCNA2, and STX1B. Patients with neonatal-onset epilepsies had the highest rate of positive findings (57%). The overall yield for patients with EEs was 32%, compared to 17% among patients with generalized epilepsies and 16% in patients with focal or multifocal epilepsies. By the use of a gene panel consisting of 46 epilepsy genes, we were able to find a disease-causing genetic variation in 23% of the analyzed patients. The highest yield was found among patients with neonatal-onset epilepsies and EEs.
Collapse
Affiliation(s)
- Rikke S Møller
- Danish Epilepsy Centre, University of Southern Denmark, Denmark; Institute for Regional Health Services, University of Southern Denmark, Denmark
| | | | - Katrine M Johannesen
- Danish Epilepsy Centre, University of Southern Denmark, Denmark; Institute for Regional Health Services, University of Southern Denmark, Denmark
| | - Inga Talvik
- Tallinn Children's Hospital, Tallinn, Estonia; Tartu University Hospital, Children's Clinic, Tartu, Estonia
| | - Tiina Talvik
- Tartu University Hospital, Children's Clinic, Tartu, Estonia; Department of Paediatrics, University of Tartu, Tartu, Estonia
| | - Ulvi Vaher
- Tartu University Hospital, Children's Clinic, Tartu, Estonia; Department of Paediatrics, University of Tartu, Tartu, Estonia
| | - Maria J Miranda
- Department of Pediatrics, Pediatric Neurology, Herlev University Hospital, Copenhagen University, Herlev, Denmark
| | - Muhammad Farooq
- Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark; Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS, Faisalabad, Pakistan
| | - Jens E K Nielsen
- Department of Clinical Medicine, Section of Gynaecology, Obstetrics and Paediatrics, Roskilde Hospital, Roskilde, Denmark
| | | | | | - Karen M Linnet
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Qin Hao
- Amplexa Genetics, Odense, Denmark
| | - Peter Uldall
- Danish Epilepsy Centre, University of Southern Denmark, Denmark
| | - Mimoza Frangu
- Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS, Faisalabad, Pakistan
| | - Uzma Abdullah
- Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark; Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS, Faisalabad, Pakistan
| | - Alfred P Born
- Department of Paediatrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Pia Gellert
- Danish Epilepsy Centre, University of Southern Denmark, Denmark
| | - Marina Nikanorova
- Danish Epilepsy Centre, University of Southern Denmark, Denmark; Institute for Regional Health Services, University of Southern Denmark, Denmark
| | - Kern Olofsson
- Danish Epilepsy Centre, University of Southern Denmark, Denmark
| | - Birgit Jepsen
- Danish Epilepsy Centre, University of Southern Denmark, Denmark
| | | | - Lana I K Al-Zehhawi
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bente Krag-Olsen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Helle Hjalgrim
- Danish Epilepsy Centre, University of Southern Denmark, Denmark; Institute for Regional Health Services, University of Southern Denmark, Denmark
| | - Guido Rubboli
- Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark
| | - Deb K Pal
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | |
Collapse
|
30
|
Ghovanloo MR, Aimar K, Ghadiry-Tavi R, Yu A, Ruben PC. Physiology and Pathophysiology of Sodium Channel Inactivation. CURRENT TOPICS IN MEMBRANES 2016; 78:479-509. [PMID: 27586293 DOI: 10.1016/bs.ctm.2016.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels are present in different tissues within the human body, predominantly nerve, muscle, and heart. The sodium channel is composed of four similar domains, each containing six transmembrane segments. Each domain can be functionally organized into a voltage-sensing region and a pore region. The sodium channel may exist in resting, activated, fast inactivated, or slow inactivated states. Upon depolarization, when the channel opens, the fast inactivation gate is in its open state. Within the time frame of milliseconds, this gate closes and blocks the channel pore from conducting any more sodium ions. Repetitive or continuous stimulations of sodium channels result in a rate-dependent decrease of sodium current. This process may continue until the channel fully shuts down. This collapse is known as slow inactivation. This chapter reviews what is known to date regarding, sodium channel inactivation with a focus on various mutations within each NaV subtype and with clinical implications.
Collapse
Affiliation(s)
- M-R Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - K Aimar
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - R Ghadiry-Tavi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - A Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - P C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
31
|
Lehnert S, Hartmann S, Hessler S, Adelsberger H, Huth T, Alzheimer C. Ion channel regulation by β-secretase BACE1 - enzymatic and non-enzymatic effects beyond Alzheimer's disease. Channels (Austin) 2016; 10:365-378. [PMID: 27253079 DOI: 10.1080/19336950.2016.1196307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
β-site APP-cleaving enzyme 1 (BACE1) has become infamous for its pivotal role in the pathogenesis of Alzheimer's disease (AD). Consequently, BACE1 represents a prime target in drug development. Despite its detrimental involvement in AD, it should be quite obvious that BACE1 is not primarily present in the brain to drive mental decline. In fact, additional functions have been identified. In this review, we focus on the regulation of ion channels, specifically voltage-gated sodium and KCNQ potassium channels, by BACE1. These studies provide evidence for a highly unexpected feature in the functional repertoire of BACE1. Although capable of cleaving accessory channel subunits, BACE1 exerts many of its physiologically significant effects through direct, non-enzymatic interactions with main channel subunits. We discuss how the underlying mechanisms can be conceived and develop scenarios how the regulation of ion conductances by BACE1 might shape electric activity in the intact and diseased brain and heart.
Collapse
Affiliation(s)
- Sandra Lehnert
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Stephanie Hartmann
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Sabine Hessler
- b School of Psychology , University of Sussex , Brighton , UK
| | - Helmuth Adelsberger
- c Institute of Neuroscience, Technische Universität München , München , Germany
| | - Tobias Huth
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Christian Alzheimer
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
32
|
Chen H, Zeng Q, Yao C, Cai Z, Wei T, Huang Z, Su J. Src family tyrosine kinase inhibitors suppress Nav1.1 expression in cultured rat spiral ganglion neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:185-93. [PMID: 26790420 DOI: 10.1007/s00359-016-1066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022]
Abstract
Src family kinases regulate neuronal voltage-gated Na(+) channels, which generate action potentials. The mechanisms of action, however, remain poorly understood. The aim of the present study was to further elucidate the effects of Src family kinases on Nav1.1 mRNA and protein expression in spiral ganglion neurons. Immunofluorescence staining techniques detected Nav1.1 expression in the spiral ganglion neurons. Additionally, quantitative PCR and western blot techniques were used to analyze Nav1.1 mRNA and protein expression, respectively, in spiral ganglion neurons following exposure to Src family kinase inhibitors PP2 (1 and 10 μM) and SU6656 (0.1 and 1 μM) for different lengths of time (6 and 24 h). In the spiral ganglion neurons, Nav1.1 protein expression was detected in the somas and axons. The Src family kinase inhibitors PP2 and SU6665 significantly decreased Nav1.1 mRNA and protein expression (p < 0.05), respectively, in the spiral ganglion neurons, and changes in expression were not dependent on time or dose (p > 0.05).
Collapse
Affiliation(s)
- Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qingjiao Zeng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chen Yao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zheng Cai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingjia Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhihui Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
33
|
Wu YW, Sullivan J, McDaniel SS, Meisler MH, Walsh EM, Li SX, Kuzniewicz MW. Incidence of Dravet Syndrome in a US Population. Pediatrics 2015; 136:e1310-5. [PMID: 26438699 PMCID: PMC4621800 DOI: 10.1542/peds.2015-1807] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE De novo mutations of the gene sodium channel 1α (SCN1A) are the major cause of Dravet syndrome, an infantile epileptic encephalopathy. US incidence of DS has been estimated at 1 in 40 000, but no US epidemiologic studies have been performed since the advent of genetic testing. METHODS In a retrospective, population-based cohort of all infants born at Kaiser Permanente Northern California during 2007-2010, we electronically identified patients who received ≥2 seizure diagnoses before age 12 months and who were also prescribed anticonvulsants at 24 months. A child neurologist reviewed records to identify infants who met 4 of 5 criteria for clinical Dravet syndrome: normal development before seizure onset; ≥2 seizures before age 12 months; myoclonic, hemiclonic, or generalized tonic-clonic seizures; ≥2 seizures lasting >10 minutes; and refractory seizures after age 2 years. SCN1A gene sequencing was performed as part of routine clinical care. RESULTS Eight infants met the study criteria for clinical Dravet syndrome, yielding an incidence of 1 per 15 700. Six of these infants (incidence of 1 per 20 900) had a de novo SCN1A missense mutation that is likely to be pathogenic. One infant had an inherited SCN1A variant that is unlikely to be pathogenic. All 8 experienced febrile seizures, and 6 had prolonged seizures lasting >10 minutes by age 1 year. CONCLUSIONS Dravet syndrome due to an SCN1A mutation is twice as common in the United States as previously thought. Genetic testing should be considered in children with ≥2 prolonged febrile seizures by 1 year of age.
Collapse
Affiliation(s)
- Yvonne W. Wu
- Departments of Neurology and,Pediatrics, University of California, San Francisco, San Francisco, California
| | - Joseph Sullivan
- Departments of Neurology and,Pediatrics, University of California, San Francisco, San Francisco, California
| | | | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | | | | | - Michael W. Kuzniewicz
- Research, and,Neonatology, Kaiser Permanente Northern California, Oakland, California; and
| |
Collapse
|
34
|
Abstract
The voltage sensitive domain (VSD) is a pivotal structure of voltage-gated ion channels (VGICs) and plays an essential role in the generation of electrochemical signals by neurons, striated muscle cells, and endocrine cells. The VSD is not unique to VGICs. Recent studies have shown that a VSD regulates a phosphatase. Similarly, Hv1, a voltage-sensitive protein that lacks an apparent pore domain, is a self-contained voltage sensor that operates as an H⁺ channel. VSDs are formed by four transmembrane helices (S1-S4). The S4 helix is positively charged due to the presence of arginine and lysine residues. It is surrounded by two water crevices that extend into the membrane from both the extracellular and intracellular milieus. A hydrophobic septum disrupts communication between these water crevices thus preventing the permeation of ions. The septum is maintained by interactions between the charged residues of the S4 segment and the gating charge transfer center. Mutating the charged residue of the S4 segment allows the water crevices to communicate and generate gating pore or omega pore. Gating pore currents have been reported to underlie several neuronal and striated muscle channelopathies. Depending on which charged residue on the S4 segment is mutated, gating pores are permeant either at depolarized or hyperpolarized voltages. Gating pores are cation selective and seem to converge toward Eisenmann's first or second selectivity sequences. Most gating pores are blocked by guanidine derivatives as well as trivalent and quadrivalent cations. Gating pores can be used to study the movement of the voltage sensor and could serve as targets for novel small therapeutic molecules.
Collapse
|
35
|
Electroencephalographic features of patients with SCN1A-positive Dravet syndrome. Brain Dev 2015; 37:599-611. [PMID: 25459968 DOI: 10.1016/j.braindev.2014.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/13/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study was to characterize the awake EEG features of patients with SCN1A-positive Dravet syndrome. METHODS Between January 2002 and December 2012, clinical data of 37 SCN1A-positive Dravet syndrome patients were collected. The first interictal awake EEG features, hot water bath test induced ictal seizure patterns and the concomitant EEG results, as well as follow-up interictal awake EEG recordings were analyzed. RESULTS Thirty-seven interictal awake EEG recordings showed 43.2% had normal features, 43.2% had nonspecific findings, and 13.5% had abnormal epileptiform discharges. Ictal pleomorphic seizure types with a median number of three were recorded in 26 patients. In total, 42.3% exhibited myoclonic seizures as their first recognizable seizure type with simultaneous EEG findings characterized by generalized or focal spikes, generalized 2-3.5Hz spike and wave discharges, or generalized 2-3Hz high voltage slow waves, and 30.8% manifested atypical absence seizures with concomitant EEG results showing generalized or focal spikes. Fifteen patients had 45 follow-up interictal awake EEGs during a period of six years. The follow-up awake EEG recordings revealed 42.2% had normal features, 42.2% showed nonspecific findings, and 15.6% disclosed epileptiform discharges. CONCLUSIONS The initial and follow-up interictal awake EEG recordings showed normal results and nonspecific features in the majority of SCN1A-positive Dravet syndrome patients. Ictal electroencephalographic seizure types and concomitant EEG pictures were quite diverse and polymorphous. A low detection rate of interictal epileptiform abnormalities at awake stage might make patient management more challenging.
Collapse
|
36
|
Patchala J, Jegga AG. Concept Modeling-based Drug Repositioning. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2015; 2015:222-6. [PMID: 26306277 PMCID: PMC4525261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our hypothesis is that drugs and diseases sharing similar biomedical and genomic concepts are likely to be related, and thus repositioning opportunities can be identified by ranking drugs based on the incidence of shared similar concepts with diseases and vice versa. To test this, we constructed a probabilistic topic model based on the Unified Medical Language System (UMLS) concepts that appear in the disease and drug related abstracts in MEDLINE. The resulting probabilistic topic associations were used to measure the similarity between disease and drugs. The success of the proposed model is evaluated using a set of repositioned drugs, and comparing a drug's ranking based on its similarity to the original and new indication. We then applied the model to rare disorders and compared them to all approved drugs to facilitate "systematically serendipitous" discovery of relationships between rare diseases and existing drugs, some of which could be potential repositioning candidates.
Collapse
Affiliation(s)
- Jagadeesh Patchala
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Anil G Jegga
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, USA,Division of Biomedical Informatics, University of Cincinnati, Cincinnati, Ohio, USA,Department of Pediatrics, Cincinnati Children’s Hospital and Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Guo F, Zhou PD, Gao QH, Gong J, Feng R, Xu XX, Liu SY, Hu HY, Zhao MM, Adam HC, Cai JQ, Hao LY. Low-Mg(2+) treatment increases sensitivity of voltage-gated Na(+) channels to Ca(2+)/calmodulin-mediated modulation in cultured hippocampal neurons. Am J Physiol Cell Physiol 2015; 308:C594-605. [PMID: 25652447 DOI: 10.1152/ajpcell.00174.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
Abstract
Culture of hippocampal neurons in low-Mg(2+) medium (low-Mg(2+) neurons) results in induction of continuous seizure activity. However, the underlying mechanism of the contribution of low Mg(2+) to hyperexcitability of neurons has not been clarified. Our data, obtained using the patch-clamp technique, show that voltage-gated Na(+) channel (VGSC) activity, which is associated with a persistent, noninactivating Na(+) current (INa,P), was modulated by calmodulin (CaM) in a concentration-dependent manner in normal and low-Mg(2+) neurons, but the channel activity was more sensitive to Ca(2+)/CaM regulation in low-Mg(2+) than normal neurons. The increased sensitivity of VGSCs in low-Mg(2+) neurons was partially retained when CaM12 and CaM34, CaM mutants with disabled binding sites in the N or C lobe, were used but was diminished when CaM1234, a CaM mutant in which all four Ca(2+) sites are disabled, was used, indicating that functional Ca(2+)-binding sites from either lobe of CaM are required for modulation of VGSCs in low-Mg(2+) neurons. Furthermore, the number of neurons exhibiting colocalization of CaM with the VGSC subtypes NaV1.1, NaV1.2, and NaV1.3 was significantly higher in low- Mg(2+) than normal neurons, as shown by immunofluorescence. Our main finding is that low-Mg(2+) treatment increases sensitivity of VGSCs to Ca(2+)/CaM-mediated regulation. Our data reveal that CaM, as a core regulating factor, connects the functional roles of the three main intracellular ions, Na(+), Ca(2+), and Mg(2+), by modulating VGSCs and provides a possible explanation for the seizure discharge observed in low-Mg(2+) neurons.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Pei-Dong Zhou
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Qing-Hua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jian Gong
- Department of Clinical Pharmacy, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiao-Xue Xu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China; and
| | - Shu-Yuan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hui-Yuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Mei-Mi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hogan-Cann Adam
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ji-Qun Cai
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
38
|
Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014; 515:209-15. [PMID: 25363760 PMCID: PMC4402723 DOI: 10.1038/nature13772] [Citation(s) in RCA: 1943] [Impact Index Per Article: 176.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.
Collapse
|
39
|
Hsu WCJ, Nilsson CL, Laezza F. Role of the axonal initial segment in psychiatric disorders: function, dysfunction, and intervention. Front Psychiatry 2014; 5:109. [PMID: 25191280 PMCID: PMC4139700 DOI: 10.3389/fpsyt.2014.00109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
The progress of developing effective interventions against psychiatric disorders has been limited due to a lack of understanding of the underlying cellular and functional mechanisms. Recent research findings focused on exploring novel causes of psychiatric disorders have highlighted the importance of the axonal initial segment (AIS), a highly specialized neuronal structure critical for spike initiation of the action potential. In particular, the role of voltage-gated sodium channels, and their interactions with other protein partners in a tightly regulated macromolecular complex has been emphasized as a key component in the regulation of neuronal excitability. Deficits and excesses of excitability have been linked to the pathogenesis of brain disorders. Identification of the factors and regulatory pathways involved in proper AIS function, or its disruption, can lead to the development of novel interventions that target these mechanistic interactions, increasing treatment efficacy while reducing deleterious off-target effects for psychiatric disorders.
Collapse
Affiliation(s)
- Wei-Chun Jim Hsu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- M.D.–Ph.D. Combined Degree Program, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Carol Lynn Nilsson
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Center for Addiction Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Center for Biomedical Engineering, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
40
|
Volkers L, Kahlig KM, Das JHG, van Kempen MJA, Lindhout D, Koeleman BPC, Rook MB. Febrile temperatures unmask biophysical defects in Nav1.1 epilepsy mutations supportive of seizure initiation. ACTA ACUST UNITED AC 2014; 142:641-53. [PMID: 24277604 PMCID: PMC3840920 DOI: 10.1085/jgp.201311042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Generalized epilepsy with febrile seizures plus (GEFS+) is an early onset febrile epileptic syndrome with therapeutic responsive (a)febrile seizures continuing later in life. Dravet syndrome (DS) or severe myoclonic epilepsy of infancy has a complex phenotype including febrile generalized or hemiclonic convulsions before the age of 1, followed by intractable myoclonic, complex partial, or absence seizures. Both diseases can result from mutations in the Nav1.1 sodium channel, and initially, seizures are typically triggered by fever. We previously characterized two Nav1.1 mutants—R859H (GEFS+) and R865G (DS)—at room temperature and reported a mixture of biophysical gating defects that could not easily predict the phenotype presentation as either GEFS+ or DS. In this study, we extend the characterization of Nav1.1 wild-type, R859H, and R865G channels to physiological (37°C) and febrile (40°C) temperatures. At physiological temperature, a variety of biophysical defects were detected in both mutants, including a hyperpolarized shift in the voltage dependence of activation and a delayed recovery from fast and slow inactivation. Interestingly, at 40°C we also detected additional gating defects for both R859H and R865G mutants. The GEFS+ mutant R859H showed a loss of function in the voltage dependence of inactivation and an increased channel use-dependency at 40°C with no reduction in peak current density. The DS mutant R865G exhibited reduced peak sodium currents, enhanced entry into slow inactivation, and increased use-dependency at 40°C. Our results suggest that fever-induced temperatures exacerbate the gating defects of R859H or R865G mutants and may predispose mutation carriers to febrile seizures.
Collapse
Affiliation(s)
- Linda Volkers
- Department of Medical Genetics, Division of Biomedical Genetics, and 2 Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3508 AB Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Electrophysiological Differences between the Same Pore Region Mutation in SCN1A and SCN3A. Mol Neurobiol 2014; 51:1263-70. [PMID: 24990319 DOI: 10.1007/s12035-014-8802-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
Abstract
Mutations in the sodium channel gene, SCN1A (NaV1.1), have been linked to a spectrum of epilepsy syndromes, and many of these mutations occur in the pore region of the channel. Electrophysiological characterization has revealed that most SCN1A mutations in the pore region result in complete loss of function. SCN3A mutations have also been identified in patients with epilepsy; however, mutations in this pore region maintain some degree of electrophysiological function. It is thus speculated that compared to SCN3A disruptions, SCN1A mutations have a more pronounced effect on electrophysiological function. In this study, we identified a novel mutation, N302S, in the SCN3A pore region of a child with epilepsy. To investigate if mutations at the pore regions of SCN3A and SCN1A have different impacts on channel function, we studied the electrophysiological properties of N302S in NaV1.3 and its homologous mutation (with the same amino acid substitution) in NaV1.1 (N301S). Functional analysis demonstrated that SCN1A-N301S had no measurable sodium current, indicating a complete loss of function, while SCN3A-N302S slightly reduced channel activity. This observation indicates that the same pore region mutation affects SCN1A more than SCN3A. Our study further revealed a huge difference in electrophysiological function between SCN1A and SCN3A mutations in the pore region; this might explain the more common SCN1A mutations detected in patients with epilepsy and the more severe phenotypes associated with these mutations.
Collapse
|
42
|
Gilchrist J, Dutton S, Diaz-Bustamante M, McPherson A, Olivares N, Kalia J, Escayg A, Bosmans F. Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. ACS Chem Biol 2014; 9:1204-12. [PMID: 24635129 PMCID: PMC4027953 DOI: 10.1021/cb500108p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Here, we report the discovery of a novel anticonvulsant drug with a molecular organization based on the unique scaffold of rufinamide, an anti-epileptic compound used in a clinical setting to treat severe epilepsy disorders such as Lennox-Gastaut syndrome. Although accumulating evidence supports a working mechanism through voltage-gated sodium (Nav) channels, we found that a clinically relevant rufinamide concentration inhibits human (h)Nav1.1 activation, a distinct working mechanism among anticonvulsants and a feature worth exploring for treating a growing number of debilitating disorders involving hNav1.1. Subsequent structure-activity relationship experiments with related N-benzyl triazole compounds on four brain hNav channel isoforms revealed a novel drug variant that (1) shifts hNav1.1 opening to more depolarized voltages without further alterations in the gating properties of hNav1.1, hNav1.2, hNav1.3, and hNav1.6; (2) increases the threshold to action potential initiation in hippocampal neurons; and (3) greatly reduces the frequency of seizures in three animal models. Altogether, our results provide novel molecular insights into the rational development of Nav channel-targeting molecules based on the unique rufinamide scaffold, an outcome that may be exploited to design drugs for treating disorders involving particular Nav channel isoforms while limiting adverse effects.
Collapse
Affiliation(s)
- John Gilchrist
- Department
of Physiology, Johns Hopkins University,
School of Medicine, Baltimore, Maryland 21205, United States
| | - Stacey Dutton
- Department
of Human Genetics, Emory University, School
of Medicine, Atlanta, Georgia 30022, United
States
| | - Marcelo Diaz-Bustamante
- Lieber
Institute for Brain Development, Johns Hopkins
University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Annie McPherson
- Department
of Human Genetics, Emory University, School
of Medicine, Atlanta, Georgia 30022, United
States
| | - Nicolas Olivares
- Lieber
Institute for Brain Development, Johns Hopkins
University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeet Kalia
- Indian
Institute of Science Education and Research Pune, Pune, Maharashtra 411 008, India
| | - Andrew Escayg
- Department
of Human Genetics, Emory University, School
of Medicine, Atlanta, Georgia 30022, United
States
| | - Frank Bosmans
- Department
of Physiology, Johns Hopkins University,
School of Medicine, Baltimore, Maryland 21205, United States
- Solomon
H. Snyder Department of Neuroscience, Johns
Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
43
|
The SCN1A gene variants and epileptic encephalopathies. J Hum Genet 2013; 58:573-80. [PMID: 23884151 DOI: 10.1038/jhg.2013.77] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 02/02/2023]
Abstract
The voltage-gated sodium channels are fundamental units that evoke the action potential in excitable cells such as neurons. These channels are integral membrane proteins typically consisting of one α-subunit, which forms the larger central pore of the channel, and two smaller auxiliary β-subunits, which modulate the channel functions. Genetic alterations in the SCN1A gene coding for the α-subunit of the neuronal voltage-gated sodium ion channel, type 1 (NaV 1.1), is associated with a spectrum of seizure-related disorders in human, ranging from a relatively milder form of febrile seizures to a more severe epileptic condition known as the Dravet syndrome. Among the epilepsy genes, the SCN1A gene perhaps known to have the largest number of disease-associated alleles. Here we present a meta-analysis on the SCN1A gene variants and provide comprehensive information on epilepsy-associated gene variants, their frequency, the predicted effect on the protein, the ethnicity of the affected along with the inheritance pattern and the associated epileptic phenotype. We also summarize our current understanding on the pathophysiology of the SCN1A gene defects, disease mechanism, genetic modifiers and their clinical and diagnostic relevance.
Collapse
|
44
|
Guo F, Xu X, Cai J, Hu H, Sun W, He G, Shao D, Wang L, Chen T, Shaw C, Zhu T, Hao L. The up-regulation of voltage-gated sodium channels subtypes coincides with an increased sodium current in hippocampal neuronal culture model. Neurochem Int 2013; 62:287-95. [DOI: 10.1016/j.neuint.2013.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/06/2012] [Accepted: 01/06/2013] [Indexed: 01/24/2023]
|
45
|
Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, Rugiero F, Wood JN. Neurological perspectives on voltage-gated sodium channels. Brain 2012; 135:2585-612. [PMID: 22961543 PMCID: PMC3437034 DOI: 10.1093/brain/aws225] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism, migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the development of selective sodium channel inhibitors.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sapio MR, Salzmann A, Vessaz M, Crespel A, Lyons PJ, Malafosse A, Fricker LD. Naturally occurring carboxypeptidase A6 mutations: effect on enzyme function and association with epilepsy. J Biol Chem 2012; 287:42900-9. [PMID: 23105115 DOI: 10.1074/jbc.m112.414094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Carboxypeptidase A6 (CPA6) is a member of the A/B subfamily of M14 metallocarboxypeptidases that is expressed in brain and many other tissues during development. Recently, two mutations in human CPA6 were associated with febrile seizures and/or temporal lobe epilepsy. In this study we screened for additional CPA6 mutations in patients with febrile seizures and focal epilepsy, which encompasses the temporal lobe epilepsy subtype. Mutations found from this analysis as well as CPA6 mutations reported in databases of single nucleotide polymorphisms were further screened by analysis of the modeled proCPA6 protein structure and the functional role of the mutated amino acid. The point mutations predicted to affect activity and/or protein folding were tested by expression of the mutant in HEK293 cells and analysis of the resulting CPA6 protein. Common polymorphisms in CPA6 were also included in this analysis. Several mutations resulted in reduced enzyme activity or CPA6 protein levels in the extracellular matrix. The mutants with reduced extracellular CPA6 protein levels showed normal levels of 50-kDa proCPA6 in the cell, and this could be converted into 37-kDa CPA6 by trypsin, suggesting that protein folding was not greatly affected by the mutations. Interestingly, three of the mutations that reduced extracellular CPA6 protein levels were found in patients with epilepsy. Taken together, these results provide further evidence for the involvement of CPA6 mutations in human epilepsy and reveal additional rare mutations that inactivate CPA6 and could, therefore, also be associated with epileptic phenotypes.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Neuroscience, Albert Einstein College of Medicine,Bronx, New York 10461,USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Thompson CH, Porter JC, Kahlig KM, Daniels MA, George AL. Nontruncating SCN1A mutations associated with severe myoclonic epilepsy of infancy impair cell surface expression. J Biol Chem 2012; 287:42001-8. [PMID: 23086956 DOI: 10.1074/jbc.m112.421883] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in SCN1A, encoding the voltage-gated sodium channel Na(V)1.1, are the most common cause of severe myoclonic epilepsy of infancy (SMEI) or Dravet syndrome. SMEI is most often associated with premature truncations of Na(V)1.1 that cause loss of function, but nontruncating mutations also occur. We hypothesized that some nontruncating mutations might impair trafficking of Na(V)1.1 to the plasma membrane. Here we demonstrated that seven nontruncating missense or in-frame deletion mutations (L986F, delF1289, R1648C, F1661S, G1674R, and G1979E) exhibited reduced cell surface expression relative to wild type (WT) Na(V)1.1 consistent with impaired trafficking. We tested whether two commonly prescribed antiepileptic drugs (phenytoin, lamotrigine), as well as the cystic fibrosis transmembrane conductance regulator (CFTR) trafficking corrector VRT-325, could rescue cell surface and functional expression of two representative Na(V)1.1 mutants (R1648C, G1674R). Treatment of cells with phenytoin increased cell surface expression of WT-Na(V)1.1 and both mutant channels, whereas lamotrigine only increased surface expression of R1648C. VRT-325 did not alter surface expression of WT-Na(V)1.1 or mutant channels. Although phenytoin increased surface expression of G1674R, channel function was not restored, suggesting that this mutation also causes an intrinsic loss of function. Both phenytoin and lamotrigine increased functional expression of R1648C, but lamotrigine also increased persistent sodium current evoked by this mutation. Our findings indicate that certain nontruncating SCN1A mutations associated with SMEI have impaired cell surface expression and that some alleles may be amenable to pharmacological rescue of this defect. However, rescue of dysfunctional Na(V)1.1 channels to the plasma membrane could contribute to exacerbating rather than ameliorating the disease.
Collapse
|
48
|
Veeramah K, O'Brien J, Meisler M, Cheng X, Dib-Hajj S, Waxman S, Talwar D, Girirajan S, Eichler E, Restifo L, Erickson R, Hammer M. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 2012; 90:502-10. [PMID: 22365152 PMCID: PMC3309181 DOI: 10.1016/j.ajhg.2012.01.006] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 12/25/2022] Open
Abstract
Individuals with severe, sporadic disorders of infantile onset represent an important class of disease for which discovery of the underlying genetic architecture is not amenable to traditional genetic analysis. Full-genome sequencing of affected individuals and their parents provides a powerful alternative strategy for gene discovery. We performed whole-genome sequencing (WGS) on a family quartet containing an affected proband and her unaffected parents and sibling. The 15-year-old female proband had a severe epileptic encephalopathy consisting of early-onset seizures, features of autism, intellectual disability, ataxia, and sudden unexplained death in epilepsy. We discovered a de novo heterozygous missense mutation (c.5302A>G [p.Asn1768Asp]) in the voltage-gated sodium-channel gene SCN8A in the proband. This mutation alters an evolutionarily conserved residue in Nav1.6, one of the most abundant sodium channels in the brain. Analysis of the biophysical properties of the mutant channel demonstrated a dramatic increase in persistent sodium current, incomplete channel inactivation, and a depolarizing shift in the voltage dependence of steady-state fast inactivation. Current-clamp analysis in hippocampal neurons transfected with p.Asn1768Asp channels revealed increased spontaneous firing, paroxysmal-depolarizing-shift-like complexes, and an increased firing frequency, consistent with a dominant gain-of-function phenotype in the heterozygous proband. This work identifies SCN8A as the fifth sodium-channel gene to be mutated in epilepsy and demonstrates the value of WGS for the identification of pathogenic mutations causing severe, sporadic neurological disorders.
Collapse
Affiliation(s)
- Krishna R. Veeramah
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Janelle E. O'Brien
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520-8018, USA
| | | | - Stephen G. Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520-8018, USA
| | - Dinesh Talwar
- Department of Pediatrics, Arizona Health Science Center, Tucson, AZ 85724, USA
- Department of Neurology, Arizona Health Science Center, Tucson, AZ 85724, USA
- Center for Neurosciences, Tucson, AZ 85718, USA
| | - Santhosh Girirajan
- Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Evan E. Eichler
- Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Linda L. Restifo
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, Arizona Health Science Center, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, Arizona Health Science Center, Tucson, AZ 85724, USA
| | - Robert P. Erickson
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Pediatrics, Arizona Health Science Center, Tucson, AZ 85724, USA
| | - Michael F. Hammer
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|