1
|
Wang J, Wei Y, Hu Q, Tang Y, Zhu H, Wang J. The efficacy and safety of dual-target rTMS over dorsolateral prefrontal cortex (DLPFC) and cerebellum in the treatment of negative symptoms in first-episode schizophrenia: Protocol for a multicenter, randomized, double-blind, sham-controlled study. Schizophr Res Cogn 2025; 39:100339. [PMID: 39687049 PMCID: PMC11646743 DOI: 10.1016/j.scog.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Background and objective The dorsolateral prefrontal cortex (DLPFC) - cerebellum circuit has been implicated in the pathogenesis of negative symptoms of schizophrenia (SZ). Both areas are considered separate targets for repetitive transcranial magnetic stimulation (rTMS) treatment, showing potential for improving negative symptoms. However, there is still a lack of research that targets both DLPFC and cerebellum simultaneously. In this study, we will explore the efficacy and safety of dual-target rTMS based on the DLPFC-cerebellum circuit in the treatment of negative symptoms in SZ. Methods The study is a multicenter randomized, double-blind, and sham-controlled trial. First-episode schizophrenia is treated with adjunctive 1 Hz rTMS to the right DLPFC and intermittent theta burst stimulation (iTBS) to the cerebellum delivered sequentially in 20 sessions (active group) or a sham condition (sham group) along with antipsychotics. Clinical symptoms are assessed using the Positive and Negative Symptom Scale (PANSS) at baseline (T0), at the middle of the TMS intervention (after 10 sessions, T1), at the end of the intervention (after 20 sessions, T2), and at a 4-week follow-up after the intervention concludes (T3). Subjects will undergo magnetic resonance imaging (MRI) scans twice: once at baseline (T0) and again at the end of TMS intervention (T2). Comparisons of improvements in negative symptoms are conducted between the active and sham groups. Alterations in functional connectivity (FC) are also compared between both groups. Pearson or Spearman correlation analysis is performed to estimate the relationship between FC alteration and clinical symptom remission (PANSS negative subscale reduction scores and response rates, etc) depending on whether the data follows a normal distribution. In addition, potential neuroimaging biomarkers based on MRI associated with TMS treatment will be explored. Discussion Positive results from this double-blind, sham-controlled, randomized study may optimize the TMS treatment strategy for SZ, particularly in managing negative symptoms. Clinicians can select TMS with increased confidence as a safe adjunctive treatment option. Furthermore, the findings of this trial may offer preliminary insights into the potential neuroimaging therapeutic mechanisms of TMS interventions targeting the prefrontal-cerebellar circuit.Trial registration: ClinicalTrials.govNCT04853485Primary sponsor: Jijun WANG (J. Wang), Principal Investigator: jijunwang27@163.com.
Collapse
Affiliation(s)
- Junjie Wang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030,China
| | - Qiang Hu
- Department of Psychiatry, Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030,China
| | - Hongliang Zhu
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030,China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai 200031, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
Liu Y, Sundman MH, Ugonna C, Chen YCA, Green JM, Haaheim LG, Siu HM, Chou YH. Reproducible routes: reliably navigating the connectome to enrich personalized brain stimulation strategies. Front Hum Neurosci 2024; 18:1477049. [PMID: 39568548 PMCID: PMC11576443 DOI: 10.3389/fnhum.2024.1477049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) technologies, such as repetitive transcranial magnetic stimulation (rTMS), offer significant therapeutic potential for a growing number of neuropsychiatric conditions. Concurrent with the expansion of this field is the swift evolution of rTMS methodologies, including approaches to optimize stimulation site planning. Traditional targeting methods, foundational to early successes in the field and still widely employed today, include using scalp-based heuristics or integrating structural MRI co-registration to align the transcranial magnetic stimulation (TMS) coil with anatomical landmarks. Recent evidence, however, supports refining and personalizing stimulation sites based on the target's structural and/or functional connectivity profile. These connectomic approaches harness the network-wide neuromodulatory effects of rTMS to reach deeper brain structures while also enabling a greater degree of personalization by accounting for heterogenous network topology. In this study, we acquired baseline multimodal magnetic resonance (MRI) at two time points to evaluate the reliability and reproducibility of distinct connectome-based strategies for stimulation site planning. Specifically, we compared the intra-individual difference between the optimal stimulation sites generated at each time point for (1) functional connectivity (FC) guided targets derived from resting-state functional MRI and (2) structural connectivity (SC) guided targets derived from diffusion tensor imaging. Our findings suggest superior reproducibility of SC-guided targets. We emphasize the necessity for further research to validate these findings across diverse patient populations, thereby advancing the personalization of rTMS treatments.
Collapse
Affiliation(s)
- Yilin Liu
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Mark H Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Chidi Ugonna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Yu-Chin Allison Chen
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Jacob M Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Lisbeth G Haaheim
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Hannah M Siu
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, Arizona Center on Aging, BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
付 蕊, 朱 海, 丁 冲, 徐 桂. [Comparative analysis of the impact of repetitive transcranial magnetic stimulation and burst transcranial magnetic stimulation at different frequencies on memory function and neuronal excitability of mice]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:935-944. [PMID: 39462661 PMCID: PMC11527750 DOI: 10.7507/1001-5515.202312017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/02/2024] [Indexed: 10/29/2024]
Abstract
Transcranial magnetic stimulation (TMS) as a non-invasive neuroregulatory technique has been applied in the clinical treatment of neurological and psychiatric diseases. However, the stimulation effects and neural regulatory mechanisms of TMS with different frequencies and modes are not yet clear. This article explores the effects of different frequency repetitive transcranial magnetic stimulation (rTMS) and burst transcranial magnetic stimulation (bTMS) on memory function and neuronal excitability in mice from the perspective of neuroelectrophysiology. In this experiment, 42 Kunming mice aged 8 weeks were randomly divided into pseudo stimulation group and stimulation groups. The stimulation group included rTMS stimulation groups with different frequencies (1, 5, 10 Hz), and bTMS stimulation groups with different frequencies (1, 5, 10 Hz). Among them, the stimulation group received continuous stimulation for 14 days. After the stimulation, the mice underwent new object recognition and platform jumping experiment to test their memory ability. Subsequently, brain slice patch clamp experiment was conducted to analyze the excitability of granulosa cells in the dentate gyrus (DG) of mice. The results showed that compared with the pseudo stimulation group, high-frequency (5, 10 Hz) rTMS and bTMS could improve the memory ability and neuronal excitability of mice, while low-frequency (1 Hz) rTMS and bTMS have no significant effect. For the two stimulation modes at the same frequency, their effects on memory function and neuronal excitability of mice have no significant difference. The results of this study suggest that high-frequency TMS can improve memory function in mice by increasing the excitability of hippocampal DG granule neurons. This article provides experimental and theoretical basis for the mechanism research and clinical application of TMS in improving cognitive function.
Collapse
Affiliation(s)
- 蕊 付
- 河北工业大学 河北省生物电磁与神经工程重点实验室(天津 300130)Key Laboratory of Bioelectromagnetic and Neural Engineering of Hebei Province, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 海军 朱
- 河北工业大学 河北省生物电磁与神经工程重点实验室(天津 300130)Key Laboratory of Bioelectromagnetic and Neural Engineering of Hebei Province, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 冲 丁
- 河北工业大学 河北省生物电磁与神经工程重点实验室(天津 300130)Key Laboratory of Bioelectromagnetic and Neural Engineering of Hebei Province, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 桂芝 徐
- 河北工业大学 河北省生物电磁与神经工程重点实验室(天津 300130)Key Laboratory of Bioelectromagnetic and Neural Engineering of Hebei Province, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P.R.China
| |
Collapse
|
4
|
Cappon DB, Pascual-Leone A. Toward Precision Noninvasive Brain Stimulation. Am J Psychiatry 2024; 181:795-805. [PMID: 39217436 DOI: 10.1176/appi.ajp.20240643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Davide B Cappon
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston; Department of Neurology, Harvard Medical School, Boston
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston; Department of Neurology, Harvard Medical School, Boston
| |
Collapse
|
5
|
Jin S, Wang J, He Y. The brain network hub degeneration in Alzheimer's disease. BIOPHYSICS REPORTS 2024; 10:213-229. [PMID: 39281195 PMCID: PMC11399886 DOI: 10.52601/bpr.2024.230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) has been conceptualized as a syndrome of brain network dysfunction. Recent imaging connectomics studies have provided unprecedented opportunities to map structural and functional brain networks in AD. By reviewing molecular, imaging, and computational modeling studies, we have shown that highly connected brain hubs are primarily distributed in the medial and lateral prefrontal, parietal, and temporal regions in healthy individuals and that the hubs are selectively and severely affected in AD as manifested by increased amyloid-beta deposition and regional atrophy, hypo-metabolism, and connectivity dysfunction. Furthermore, AD-related hub degeneration depends on the imaging modality with the most notable degeneration in the medial temporal hubs for morphological covariance networks, the prefrontal hubs for structural white matter networks, and in the medial parietal hubs for functional networks. Finally, the AD-related hub degeneration shows metabolic, molecular, and genetic correlates. Collectively, we conclude that the brain-network-hub-degeneration framework is promising to elucidate the biological mechanisms of network dysfunction in AD, which provides valuable information on potential diagnostic biomarkers and promising therapeutic targets for the disease.
Collapse
Affiliation(s)
- Suhui Jin
- Institute for Brain Research and Rehabilitation, Guangzhou 510631, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Yong He
- IDG/McGovern Institute for Brain Research, Beijing 100875, China
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Park AS, Thompson B. Non-invasive brain stimulation and vision rehabilitation: a clinical perspective. Clin Exp Optom 2024; 107:594-602. [PMID: 38772676 DOI: 10.1080/08164622.2024.2349565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Non-invasive brain stimulation techniques allow targeted modulation of brain regions and have emerged as a promising tool for vision rehabilitation. This review presents an overview of studies that have examined the use of non-invasive brain stimulation techniques for improving vision and visual functions. A description of the proposed neural mechanisms that underpin non-invasive brain stimulation effects is also provided. The clinical implications of non-invasive brain stimulation in vision rehabilitation are examined, including their safety, effectiveness, and potential applications in specific conditions such as amblyopia, post-stroke hemianopia, and central vision loss associated with age-related macular degeneration. Additionally, the future directions of research in this field are considered, including the need for larger and more rigorous clinical trials to validate the efficacy of these techniques. Overall, this review highlights the potential for brain stimulation techniques as a promising avenue for improving visual function in individuals with impaired vision and underscores the importance of continued research in this field.
Collapse
Affiliation(s)
- Adela Sy Park
- Centre for Eye & Vision Research, Hong Kong, Hong Kong
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| |
Collapse
|
7
|
Polverino A, Troisi Lopez E, Minino R, Romano A, Miranda A, Facchiano A, Cipriano L, Sorrentino P. Brain network topological changes in inflammatory bowel disease: an exploratory study. Eur J Neurosci 2024; 60:4409-4420. [PMID: 38858102 DOI: 10.1111/ejn.16442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although the aetio-pathogenesis of inflammatory bowel diseases (IBD) is not entirely clear, the interaction between genetic and adverse environmental factors may induce an intestinal dysbiosis, resulting in chronic inflammation having effects on the large-scale brain network. Here, we hypothesized inflammation-related changes in brain topology of IBD patients, regardless of the clinical form [ulcerative colitis (UC) or Crohn's disease (CD)]. To test this hypothesis, we analysed source-reconstructed magnetoencephalography (MEG) signals in 25 IBD patients (15 males, 10 females; mean age ± SD, 42.28 ± 13.15; mean education ± SD, 14.36 ± 3.58) and 28 healthy controls (HC) (16 males, 12 females; mean age ± SD, 45.18 ± 12.26; mean education ± SD, 16.25 ± 2.59), evaluating the brain topology. The betweenness centrality (BC) of the left hippocampus was higher in patients as compared with controls, in the gamma frequency band. It indicates how much a brain region is involved in the flow of information through the brain network. Furthermore, the comparison among UC, CD and HC showed statistically significant differences between UC and HC and between CD and HC, but not between the two clinical forms. Our results demonstrated that these topological changes were not dependent on the specific clinical form, but due to the inflammatory process itself. Broader future studies involving panels of inflammatory factors and metabolomic analyses on biological samples could help to monitor the brain involvement in IBD and to clarify the clinical impact.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute for Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Roberta Minino
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Antonella Romano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Agnese Miranda
- Hepato-Gastroenterology Unit, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Angela Facchiano
- Gastroenterology and Digestive Endoscopy Unit, Umberto I General Hospital, Nocera Inferiore, Italy
| | - Lorenzo Cipriano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| |
Collapse
|
8
|
Salabat D, Pourebrahimi A, Mayeli M, Cattarinussi G. The Therapeutic Role of Intermittent Theta Burst Stimulation in Schizophrenia: A Systematic Review and Meta-analysis. J ECT 2024; 40:78-87. [PMID: 38277616 DOI: 10.1097/yct.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
ABSTRACT Schizophrenia affects approximately 1% of the population worldwide. Multifactorial reasons, ranging from drug resistance to adverse effects of medications, have necessitated exploring further therapeutic options. Intermittent theta burst stimulation (iTBS) is a novel high-frequency form of transcranial magnetic stimulation, a safe procedure with minor adverse effects with faster and longer-lasting poststimulation effects with a potential role in treating symptoms; however, the exact target brain regions and symptoms are still controversial. Therefore, we aimed to systematically investigate the current literature regarding the therapeutic utilities of iTBS using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Twelve studies were included among which 9 found iTBS effective to some degree. These studies targeted the dorsolateral prefrontal cortex and the midline cerebellum. We performed a random-effects meta-analysis on studies that compared the effects of iTBS on schizophrenia symptoms measured by the Positive and Negative Syndrome Scale (PANSS) to sham treatment. Our results showed no significant difference between iTBS and sham in PANSS positive and negative scores, but a trend-level difference in PANSS general scores ( k = 6, P = 0.07), and a significant difference in PANSS total scores ( k = 6, P = 0.03). Analysis of the studies targeting the dorsolateral prefrontal cortex showed improvement in PANSS negative scores ( k = 5, standardized mean difference = -0.83, P = 0.049), but not in PANSS positive scores. Moderators (intensity, pulse, quality, sessions) did not affect the results. However, considering the small number of studies included in this meta-analysis, future works are required to further explore the effects of these factors and also find optimum target regions for positive symptoms.
Collapse
|
9
|
Chen C, Guo Z, Peng W, Wang S, Qiu S, Zhang J, Chen X, He H. Tracking the Immediate and Short-Term Effects of Continuous Theta Burst Stimulation on Dynamic Brain States. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1386-1396. [PMID: 38526882 DOI: 10.1109/tnsre.2024.3378712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Continuous Theta Burst Stimulation (cTBS) has been shown to modulate cortical oscillations and induce cortical inhibitory effects. Electroencephalography (EEG) studies have shown some immediate effects of cTBS on brain activity. To investigate both immediate effects and short-term effects of cTBS on dynamic brain changes, cTBS was applied to 22 healthy participants over their left motor cortex. We recorded eyes-open, resting-state EEG and performance in the Nine-Hole Peg Test (NHPT) before cTBS, immediately after cTBS, and 80 minutes after cTBS. We identified nine states using a Hidden Markov Model (HMM)-based approach to describe the process of dynamic brain changes. The spatial activation, temporal profiles of HMM states and behavioral performance of NHPT were assessed and compared. cTBS altered the temporal profiles of S1-S5 immediately after cTBS and the temporal profiles of S5, S6 and S7 80 min after cTBS. Moreover, cTBS improved motor function of the left hand. State 1 was characterized as the activation of right occipito-temporal area, and NHPT behavioral performance of the left hand positively correlated with the occurrence of state 1, and negatively correlated with the interval time of state 1 after cTBS. The transitions between S1 or S7 and other states showed dynamic reconfiguration during after-effect sustained time after cTBS. These results suggest that the dynamic characteristics of state 1 are potential biomarkers for characterizing the aftereffect changes of cTBS.
Collapse
|
10
|
Rodríguez A, Amaya-Pascasio L, Gutiérrez-Fernández M, García-Pinteño J, Moreno M, Martínez-Sánchez P. Non-invasive brain stimulation for functional recovery in animal models of stroke: A systematic review. Neurosci Biobehav Rev 2024; 156:105485. [PMID: 38042359 DOI: 10.1016/j.neubiorev.2023.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Motor and cognitive dysfunction occur frequently after stroke, severely affecting a patient´s quality of life. Recently, non-invasive brain stimulation (NIBS) has emerged as a promising treatment option for improving stroke recovery. In this context, animal models are needed to improve the therapeutic use of NIBS after stroke. A systematic review was conducted based on the PRISMA statement. Data from 26 studies comprising rodent models of ischemic stroke treated with different NIBS techniques were included. The SYRCLE tool was used to assess study bias. The results suggest that both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) improved overall neurological, motor, and cognitive functions and reduced infarct size both in the short- and long-term. For tDCS, it was observed that either ipsilesional inhibition or contralesional stimulation consistently led to functional recovery. Additionally, the application of early tDCS appeared to be more effective than late stimulation, and tDCS may be slightly superior to rTMS. The optimal stimulation protocol and the ideal time window for intervention remain unresolved. Future directions are discussed for improving study quality and increasing their translational potential.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Laura Amaya-Pascasio
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - José García-Pinteño
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, Faculty of Health Science, University of Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain.
| | - Patricia Martínez-Sánchez
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain; Department of Nursing, Physiotherapy and Medicine, Faculty of Health Science, University of Almería, Spain.
| |
Collapse
|
11
|
Mirzai N, Polet K, Morisot A, Hesse S, Pesce A, Louchart de la Chapelle S, Iakimova G. Can the Ability to Recognize Facial Emotions in Individuals With Neurodegenerative Disease be Improved? A Systematic Review and Meta-analysis. Cogn Behav Neurol 2023; 36:202-218. [PMID: 37410880 PMCID: PMC10683976 DOI: 10.1097/wnn.0000000000000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Facial emotion recognition (FER) is commonly impaired in individuals with neurodegenerative disease (NDD). This impairment has been linked to an increase in behavioral disorders and caregiver burden. OBJECTIVE To identify interventions targeting the improvement of FER ability in individuals with NDD and investigate the magnitude of the efficacy of the interventions. We also wanted to explore the duration of the effects of the intervention and their possible impacts on behavioral and psychological symptoms of dementia and caregiver burden. METHOD We included 15 studies with 604 individuals who had been diagnosed with NDD. The identified interventions were categorized into three types of approach (cognitive, neurostimulation, and pharmacological) as well as a combined approach (neurostimulation with pharmacological). RESULTS The three types of approaches pooled together had a significant large effect size for FER ability improvement (standard mean difference: 1.21, 95% CI = 0.11, 2.31, z = 2.15, P = 0.03). The improvement lasted post intervention, in tandem with a decrease in behavioral disorders and caregiver burden. CONCLUSION A combination of different approaches for FER ability improvement may be beneficial for individuals with NDD and their caregivers.
Collapse
Affiliation(s)
- Naz Mirzai
- Clinical Research Unit–Memory Clinic, Princess Grace Hospital, Monaco
- Cote d’Azur University, Laboratory of Clinical, Cognitive and Social Anthropology and Psychology, Nice, France
| | - Kévin Polet
- Clinical Research Unit–Memory Clinic, Princess Grace Hospital, Monaco
| | - Adeline Morisot
- Clinical Research Unit–Memory Clinic, Princess Grace Hospital, Monaco
- Public Health Department, Cote d’Azur University, University Hospital Center of Nice, Nice, France
| | - Solange Hesse
- Clinical Research Unit–Memory Clinic, Princess Grace Hospital, Monaco
| | - Alain Pesce
- Bibliographic Research Association for Neurosciences, Nice, France
| | | | - Galina Iakimova
- Cote d’Azur University, Laboratory of Clinical, Cognitive and Social Anthropology and Psychology, Nice, France
| |
Collapse
|
12
|
Ma L, Zhong G, Yang Z, Lu X, Fan L, Liu H, Chu C, Xiong H, Jiang T. In-vivoverified anatomically aware deep learning for real-time electric field simulation. J Neural Eng 2023; 20:066018. [PMID: 37939483 DOI: 10.1088/1741-2552/ad0add] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) has emerged as a prominent non-invasive technique for modulating brain function and treating mental disorders. By generating a high-precision magnetically evoked electric field (E-field) using a TMS coil, it enables targeted stimulation of specific brain regions. However, current computational methods employed for E-field simulations necessitate extensive preprocessing and simulation time, limiting their fast applications in the determining the optimal coil placement.Approach.We present an attentional deep learning network to simulate E-fields. This network takes individual magnetic resonance images and coil configurations as inputs, firstly transforming the images into explicit brain tissues and subsequently generating the local E-field distribution near the target brain region. Main results. Relative to the previous deep-learning simulation method, the presented method reduced the mean relative error in simulated E-field strength of gray matter by 21.1%, and increased the correlation between regional E-field strengths and corresponding electrophysiological responses by 35.0% when applied into another dataset.In-vivoTMS experiments further revealed that the optimal coil placements derived from presented method exhibit comparable stimulation performance on motor evoked potentials to those obtained using computational methods. The simplified preprocessing and increased simulation efficiency result in a significant reduction in the overall time cost of traditional TMS coil placement optimization, from several hours to mere minutes.Significance.The precision and efficiency of presented simulation method hold promise for its application in determining individualized coil placements in clinical practice, paving the way for personalized TMS treatments.
Collapse
Affiliation(s)
- Liang Ma
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Gangliang Zhong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xuefeng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hao Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Research Center for Augmented Intelligence, Artificial Intelligence Research Institute, Zhejiang Lab, Hangzhou, Zhejiang Province 311100, People's Republic of China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, Hunan Province 425000, People's Republic of China
| |
Collapse
|
13
|
Corrêa FI, Carneiro Costa G, Leite Souza P, Marduy A, Parente J, Ferreira da Cruz S, de Souza Cunha M, Beber Freitas M, Correa Alves D, Silva SM, Ferrari Corrêa JC, Fregni F. Additive effect of transcranial direct current stimulation (tDCS) in combination with multicomponent training on elderly physical function capacity: a randomized, triple blind, controlled trial. Physiother Theory Pract 2023; 39:2352-2365. [PMID: 35619246 DOI: 10.1080/09593985.2022.2081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate the additive effect of Transcranial Direct Current Stimulation (tDCS) associated with multi-component training (MT) on the functional capacity (FC) of older adults and to assess whether these effects remain after the end of training. The secondary objectives were to evaluate the locomotion capacity, balance, functional independence, and quality of life and correlate them with functional capacity. METHODOLOGY Twenty-eight older adults were randomized into two groups: experimental (MT associated with active tDCS - a-tDCS) and control (MT associated with sham tDCS - s-tDCS). The FC was measured by the Glittre-ADL test, locomotion capacity by the 6-minute walk test, balance by the BESTest, functional independence by the FIM, and quality of life by the WHQOL. The assessments were performed pre-, post-intervention, and 30-day follow-up. RESULTS There was a significant decrease in the time to the Glittre-ADL test when comparing the a-tDCS and s-tDCS groups after the interventions (139.77 ± 21.62, 205.10 ± 43.02, p < .001) and at the 30-day follow-up (142.74 ± 17.12, 219.55 ± 54.05, p < .001), respectively. There was a moderate correlation between FC and locomotion capacity and balance. CONCLUSIONS The addition of tDCS potentiated the results of MT to impact FC, maintaining the positive results longer. Locomotion and balance influenced the improvement of functional capacity.
Collapse
Affiliation(s)
- Fernanda Ishida Corrêa
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Glaucio Carneiro Costa
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Paulo Leite Souza
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Anna Marduy
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao Parente
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefany Ferreira da Cruz
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Micaelly de Souza Cunha
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Maik Beber Freitas
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - David Correa Alves
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Soraia Micaela Silva
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | | | - Felipe Fregni
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Chang H, Sheng Y, Liu J, Yang H, Pan X, Liu H. Noninvasive Brain Imaging and Stimulation in Post-Stroke Motor Rehabilitation: A Review. IEEE Trans Cogn Dev Syst 2023; 15:1085-1101. [DOI: 10.1109/tcds.2022.3232581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hui Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yixuan Sheng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Jinbiao Liu
- Research Centre for Augmented Intelligence, Zhejiang Laboratory, Artificial Intelligence Research Institute, Hangzhou, China
| | - Hongyu Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Xiangyu Pan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
15
|
Tian L, Ma S, Li Y, Zhao MF, Xu C, Wang C, Zhang X, Gao L. Repetitive transcranial magnetic stimulation can improve the fixation of eyes rather than the fixation preference in children with autism spectrum disorder. Front Neurosci 2023; 17:1188648. [PMID: 37547145 PMCID: PMC10400712 DOI: 10.3389/fnins.2023.1188648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Background Transcranial magnetic stimulation (TMS) has been introduced into the intervention of autism spectrum disorders (ASD) as a possible new therapeutic option for modifying pathological neuroplasticity. However, the stimulating protocols of rTMS for ASD have not been approved unanimously, which affects the clinical popularization and application of rTMS. In addition, there is little research on the improvement of social processing of autistic children by rTMS. Methods We explored the clinical efficacy of rTMS and improvement of face processing with the protocol of left high-frequency and right low-frequency on bilateral dorsolateral prefrontal cortex (DLPFC), with a sample of 45 ASD participants aged 2-18. Results Our results showed that both the score on the Childhood Autism Rating Scale (CARS) and the fixations on the eyes of the human faces improved by two-session rTMS intervention, except for the percentage of eyes fixation. The mediation analysis indicated the item of "Adaptation to Change" of CARS mediated dominantly the improvement of eye-gaze behavior of ASD participants by rTMS. Conclusion Our study revealed the mechanism of rTMS in improving the eye-gaze behavior of the autism population, deepened the understanding of the function of rTMS in treating autistic social disorders, and provided a reference for combined treatment for ASD.
Collapse
Affiliation(s)
- Li Tian
- Tianjin Anding Hospital, Tianjin, China
| | - Shuai Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yin Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Meng-fei Zhao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chen Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Zheng Y, Tang S, Zheng H, Wang X, Liu L, Yang Y, Zhen Y, Zheng Z. Noise improves the association between effects of local stimulation and structural degree of brain networks. PLoS Comput Biol 2023; 19:e1010866. [PMID: 37167331 PMCID: PMC10205011 DOI: 10.1371/journal.pcbi.1010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Stimulation to local areas remarkably affects brain activity patterns, which can be exploited to investigate neural bases of cognitive function and modify pathological brain statuses. There has been growing interest in exploring the fundamental action mechanisms of local stimulation. Nevertheless, how noise amplitude, an essential element in neural dynamics, influences stimulation-induced brain states remains unknown. Here, we systematically examine the effects of local stimulation by using a large-scale biophysical model under different combinations of noise amplitudes and stimulation sites. We demonstrate that noise amplitude nonlinearly and heterogeneously tunes the stimulation effects from both regional and network perspectives. Furthermore, by incorporating the role of the anatomical network, we show that the peak frequencies of unstimulated areas at different stimulation sites averaged across noise amplitudes are highly positively related to structural connectivity. Crucially, the association between the overall changes in functional connectivity as well as the alterations in the constraints imposed by structural connectivity with the structural degree of stimulation sites is nonmonotonically influenced by the noise amplitude, with the association increasing in specific noise amplitude ranges. Moreover, the impacts of local stimulation of cognitive systems depend on the complex interplay between the noise amplitude and average structural degree. Overall, this work provides theoretical insights into how noise amplitude and network structure jointly modulate brain dynamics during stimulation and introduces possibilities for better predicting and controlling stimulation outcomes.
Collapse
Affiliation(s)
- Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing (BABEC), Beijing, China
| | - Xin Wang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| |
Collapse
|
17
|
Gupta D, Du X, Summerfelt A, Hong LE, Choa FS. Brain Connectivity Signature Extractions from TMS Invoked EEGs. SENSORS (BASEL, SWITZERLAND) 2023; 23:4078. [PMID: 37112420 PMCID: PMC10146617 DOI: 10.3390/s23084078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
(1) Background: The correlations between brain connectivity abnormality and psychiatric disorders have been continuously investigated and progressively recognized. Brain connectivity signatures are becoming exceedingly useful for identifying patients, monitoring mental health disorders, and treatment. By using electroencephalography (EEG)-based cortical source localization along with energy landscape analysis techniques, we can statistically analyze transcranial magnetic stimulation (TMS)-invoked EEG signals, for obtaining connectivity among different brain regions at a high spatiotemporal resolution. (2) Methods: In this study, we analyze EEG-based source localized alpha wave activity in response to TMS administered to three locations, namely, the left motor cortex (49 subjects), left prefrontal cortex (27 subjects), and the posterior cerebellum, or vermis (27 subjects) by using energy landscape analysis techniques to uncover connectivity signatures. We then perform two sample t-tests and use the (5 × 10-5) Bonferroni corrected p-valued cases for reporting six reliably stable signatures. (3) Results: Vermis stimulation invoked the highest number of connectivity signatures and the left motor cortex stimulation invoked a sensorimotor network state. In total, six out of 29 reliable, stable connectivity signatures are found and discussed. (4) Conclusions: We extend previous findings to localized cortical connectivity signatures for medical applications that serve as a baseline for future dense electrode studies.
Collapse
Affiliation(s)
- Deepa Gupta
- Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21227, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Fow-Sen Choa
- Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21227, USA
| |
Collapse
|
18
|
Chen HF, Sheng XN, Yang ZY, Shao PF, Xu HH, Qin RM, Zhao H, Bai F. Multi-networks connectivity at baseline predicts the clinical efficacy of left angular gyrus-navigated rTMS in the spectrum of Alzheimer's disease: A sham-controlled study. CNS Neurosci Ther 2023. [PMID: 36942495 DOI: 10.1111/cns.14177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) is effective in alleviating cognitive deficits in Alzheimer's disease (AD). However, the strategy for target determination and the mechanisms for cognitive improvement remain unclear. METHODS One hundred and thirteen elderly subjects were recruited in this study, including both cross-sectional (n = 79) and longitudinal experiments (the rTMS group: n = 24; the sham group: n = 10). The cross-sectional experiment explored the precise intervention target based on the cortical-hippocampal network. The longitudinal experiment investigated the clinical efficacy of neuro-navigated rTMS treatment over a four-week period and explored its underlying neural mechanism using seed-based and network-based analysis. Finally, we applied connectome-based predictive modeling to predict the rTMS response using these functional features at baseline. RESULTS RTMS at a targeted site of the left angular gyrus (MNI: -45, -67, 38) significantly induced cognitive improvement in memory and language function (p < 0.001). The improved cognition correlated with the default mode network (DMN) subsystems. Furthermore, the connectivity patterns of DMN subsystems (r = 0.52, p = 0.01) or large-scale networks (r = 0.85, p = 0.001) at baseline significantly predicted the Δ language cognition after the rTMS treatment. The connectivity patterns of DMN subsystems (r = 0.47, p = 0.019) or large-scale networks (r = 0.80, p = 0.001) at baseline could predict the Δ memory cognition after the rTMS treatment. CONCLUSION These findings suggest that neuro-navigated rTMS targeting the left angular gyrus could improve cognitive function in AD patients. Importantly, dynamic regulation of the intra- and inter-DMN at baseline may represent a potential predictor for favorable rTMS treatment response in patients with cognitive impairment.
Collapse
Affiliation(s)
- Hai-Feng Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiao-Ning Sheng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Zhi-Yuan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Peng-Fei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Heng-Heng Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruo-Meng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- Geriatric Medicine Center, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Zhang L, Li Q, Du Y, Gao Y, Bai T, Ji GJ, Tian Y, Wang K. Effect of high-definition transcranial direct current stimulation on improving depression and modulating functional activity in emotion-related cortical-subcortical regions in bipolar depression. J Affect Disord 2023; 323:570-580. [PMID: 36503046 DOI: 10.1016/j.jad.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Preliminary studies have suggested that transcranial direct current stimulation (tDCS) is effective for bipolar depression, However, brain correlates of the depression alleviating are unclear. To determine the efficacy and safety of tDCS as an add-on treatment for patients with bipolar depression and further to identify the effect of tDCS on the resting-state brain activities, we recruited fifty patients with bipolar depression to complete the double-blind, sham-controlled and randomized clinical trial. Fourteen sessions of tDCS were performed once a day for 14 days. The anode was placed over F3 with return electrodes placed at FP1, FZ, C3 and F7. Regional homogeneity (ReHo) was examined on 50 patients with bipolar depression before and after 14-day active or sham tDCS. Patients in the active group showed significantly superior alleviating the depression symptoms compared with those receiving sham. The active group after 14-day active tDCS showed increased ReHo values in the orbitofrontal cortex and middle frontal gyrus and decreased ReHo values in subcortical structures including hippocampus, parahippocampa gyrus, amygdala, putamen and lentiform nucleus. The reduction of depression severity showed positive correlation of increased ReHo values in the orbitofrontal cortex and middle frontal gyrus and negative correlation of altered ReHo values in the putamen and lentiform. TDCS was an effective and safe add-on intervention for this small bipolar depression sample. The reduction of depression induced by tDCS is associated with a modulation of neural synchronization in the cortical and subcortical structures (ReHo values) within an emotion-related brain network.
Collapse
Affiliation(s)
- Li Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
| | - Qun Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Yuan Du
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Yue Gao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Tongjian Bai
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanghua Tian
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Neurology, First Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Department of Neurology, First Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
| |
Collapse
|
20
|
Cabello-Toscano M, Vaqué-Alcázar L, Cattaneo G, Solana-Sánchez J, Bayes-Marin I, Abellaneda-Pérez K, Macià-Bros D, Mulet-Pons L, Portellano-Ortiz C, Fullana MA, Oleaga L, González S, Bargalló N, Tormos JM, Pascual-Leone A, Bartrés-Faz D. Functional Brain Connectivity Prior to the COVID-19 Outbreak Moderates the Effects of Coping and Perceived Stress on Mental Health Changes: A First Year of COVID-19 Pandemic Follow-up Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:200-209. [PMID: 35998824 PMCID: PMC9392559 DOI: 10.1016/j.bpsc.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The COVID-19 pandemic provides a unique opportunity to investigate the psychological impact of a global major adverse situation. Our aim was to examine, in a longitudinal prospective study, the demographic, psychological, and neurobiological factors associated with interindividual differences in resilience to the mental health impact of the pandemic. METHODS We included 2023 healthy participants (age: 54.32 ± 7.18 years, 65.69% female) from the Barcelona Brain Health Initiative cohort. A linear mixed model was used to characterize the change in anxiety and depression symptoms based on data collected both pre-pandemic and during the pandemic. During the pandemic, psychological variables assessing individual differences in perceived stress and coping strategies were obtained. In addition, in a subsample (n = 433, age 53.02 ± 7.04 years, 46.88% female) with pre-pandemic resting-state functional magnetic resonance imaging available, the system segregation of networks was calculated. Multivariate linear models were fitted to test associations between COVID-19-related changes in mental health and demographics, psychological features, and brain network status. RESULTS The whole sample showed a general increase in anxiety and depressive symptoms after the pandemic onset, and both age and sex were independent predictors. Coping strategies attenuated the impact of perceived stress on mental health. The system segregation of the frontoparietal control and default mode networks were found to modulate the impact of perceived stress on mental health. CONCLUSIONS Preventive strategies targeting the promotion of mental health at the individual level during similar adverse events in the future should consider intervening on sociodemographic and psychological factors as well as their interplay with neurobiological substrates.
Collapse
Affiliation(s)
- María Cabello-Toscano
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain; Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain; Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Ivet Bayes-Marin
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Dídac Macià-Bros
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Lídia Mulet-Pons
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Cristina Portellano-Ortiz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Miquel Angel Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain; Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centre for Biomedical Research on Mental Health, Barcelona, Spain
| | - Laura Oleaga
- Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sofía González
- Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Nuria Bargalló
- Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain; Centre for Biomedical Research on Mental Health, Barcelona, Spain; Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jose M Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain; Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Harvard Medical School, Boston Massachusetts; Department of Neurology, Harvard Medical School, Boston Massachusetts.
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
22
|
Shen QR, Hu MT, Feng W, Li KP, Wang W. Narrative Review of Noninvasive Brain Stimulation in Stroke Rehabilitation. Med Sci Monit 2022; 28:e938298. [PMID: 36457205 PMCID: PMC9724451 DOI: 10.12659/msm.938298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 09/02/2023] Open
Abstract
Stroke is a disease with a high incidence and disability rate, resulting in changes in neural network and corticoid-subcortical excitability and various functional disabilities. The aim of the present study was to discuss the current status of research and limitations and potential direction in the application of noninvasive brain stimulation (NIBS) on post-stroke patients. This literature review focused on clinical studies and reviews. Literature retrieval was conducted in PubMed, Cochrane, Scopus, and CNKI, using the following keywords: Repeated transcranial magnetic stimulation, Transcranial direct current stimulation, Transcranial alternating current stimulation, Transcranial alternating current stimulation, Transcranial focused ultrasound, Noninvasive vagus nerve stimulation, Stroke, and Rehabilitation. We selected 200 relevant publications from 1985 to 2022. An overview of recent research on the use of NIBS on post-stroke patients, including its mechanism, therapeutic parameters, effects, and safety, is presented. It was found that NIBS has positive therapeutic effects on dysfunctions of motor, sensory, cognitive, speech, swallowing, and depression after stroke, but standardized stimulus programs are still lacking. The literature suggests that rTMS and tDCS are more beneficial to post-stroke patients, while tFUS and tVNS are currently less studied for post-stroke rehabilitation, but are also potential interventions.
Collapse
Affiliation(s)
- Qian-ru Shen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Meng-ting Hu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Wei Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Wu Wang
- Department of Rehabilitation Therapy, The Second Rehabilitation Hospital of Shanghai, Shanghai, PR China
| |
Collapse
|
23
|
Alkhasli I, Mottaghy FM, Binkofski F, Sakreida K. Preconditioning prefrontal connectivity using transcranial direct current stimulation and transcranial magnetic stimulation. Front Hum Neurosci 2022; 16:929917. [PMID: 36034122 PMCID: PMC9403141 DOI: 10.3389/fnhum.2022.929917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) have been shown to modulate functional connectivity. Their specific effects seem to be dependent on the pre-existing neuronal state. We aimed to precondition frontal networks using tDCS and subsequently stimulate the left dorsolateral prefrontal cortex (lDLPFC) using TMS. Thirty healthy participants underwent excitatory, inhibitory, or sham tDCS for 10 min, as well as an excitatory intermittent theta-burst (iTBS) protocol (600 pulses, 190 s, 20 × 2-s trains), applied over the lDLPFC at 90% of the individual resting motor threshold. Functional connectivity was measured in three task-free resting state fMRI sessions, immediately before and after tDCS, as well as after iTBS. Testing the whole design did not yield any significant results. Analysis of the connectivity between the stimulation site and all other brain voxels, contrasting only the interaction effect between the experimental groups (excitatory vs. inhibitory) and the repeated measure (post-tDCS vs. post-TMS), revealed significantly affected voxels bilaterally in the anterior cingulate and paracingulate gyri, the caudate nuclei, the insula and operculum cortices, as well as the Heschl’s gyrus. Post-hoc ROI-to-ROI analyses between the significant clusters and the striatum showed post-tDCS, temporo-parietal-to-striatal and temporo-parietal-to-fronto-cingulate differences between the anodal and cathodal tDCSgroup, as well as post-TMS, striatal-to-temporo-parietal differences between the anodal and cathodal groups and frontostriatal and interhemispheric temporo-parietal cathodal-sham group differences. Excitatory iTBS to a tDCS-inhibited lDLPFC thus yielded more robust functional connectivity to various areas as compared to excitatory iTBS to a tDCS-enhanced DLPFC. Even considering reduced statistical power due to low subject numbers, results demonstrate complex, whole-brain stimulation effects. They are possibly facilitated by cortical homeostatic control mechanisms and show the feasibility of using tDCS to modulate subsequent TMS effects. This proof-of-principle study might stimulate further research into the principle of preconditioning that might be useful in the development of protocols using DLPFC as a stimulation site for the treatment of depression.
Collapse
Affiliation(s)
- Isabel Alkhasli
- Section Clinical Cognitive Sciences, Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4), Jülich, Germany
- JARA—BRAIN (Translational Brain Medicine), Jülich and Aachen, Germany
| | - Ferdinand Binkofski
- Section Clinical Cognitive Sciences, Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4), Jülich, Germany
- JARA—BRAIN (Translational Brain Medicine), Jülich and Aachen, Germany
- *Correspondence: Ferdinand Binkofski
| | - Katrin Sakreida
- Department of Neurosurgery, University Hospital, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Bagherzadeh H, Meng Q, Lu H, Hong E, Yang Y, Choa FS. High-Performance Magnetic-core Coils for Targeted Rodent Brain Stimulations. BME FRONTIERS 2022; 2022:9854846. [PMID: 37850171 PMCID: PMC10521704 DOI: 10.34133/2022/9854846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/14/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. There is a need to develop rodent coils capable of targeted brain stimulation for treating neuropsychiatric disorders and understanding brain mechanisms. We describe a novel rodent coil design to improve the focality for targeted stimulations in small rodent brains. Introduction. Transcranial magnetic stimulation (TMS) is becoming increasingly important for treating neuropsychiatric disorders and understanding brain mechanisms. Preclinical studies permit invasive manipulations and are essential for the mechanistic understanding of TMS effects and explorations of therapeutic outcomes in disease models. However, existing TMS tools lack focality for targeted stimulations. Notably, there has been limited fundamental research on developing coils capable of focal stimulation at deep brain regions on small animals like rodents. Methods. In this study, ferromagnetic cores are added to a novel angle-tuned coil design to enhance the coil performance regarding penetration depth and focality. Numerical simulations and experimental electric field measurements were conducted to optimize the coil design. Results. The proposed coil system demonstrated a significantly smaller stimulation spot size and enhanced electric field decay rate in comparison to existing coils. Adding the ferromagnetic core reduces the energy requirements up to 60% for rodent brain stimulation. The simulated results are validated with experimental measurements and demonstration of suprathreshold rodent limb excitation through targeted motor cortex activation. Conclusion. The newly developed coils are suitable tools for focal stimulations of the rodent brain due to their smaller stimulation spot size and improved electric field decay rate.
Collapse
Affiliation(s)
- Hedyeh Bagherzadeh
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Qinglei Meng
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elliott Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Fow-Sen Choa
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
25
|
Cappon D, den Boer T, Jordan C, Yu W, Metzger E, Pascual-Leone A. Transcranial magnetic stimulation (TMS) for geriatric depression. Ageing Res Rev 2022; 74:101531. [PMID: 34839043 PMCID: PMC8996329 DOI: 10.1016/j.arr.2021.101531] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The prevalence of treatment-resistant geriatric depression (GD) highlights the need for treatments that preserve cognitive functions and recognize polypharmacy in elderly, yet effectively reduce symptom burden. Transcranial magnetic stimulation (TMS) is a proven intervention for treatment-resistant depression in younger adults but the efficacy of TMS to treat depressed older adults is still unclear. This review provides an updated view on the efficacy of TMS treatment for GD, discusses methodological differences between trials in TMS application, and explores avenues for optimization of TMS treatment in the context of the ageing brain. METHODS A systematic review was conducted to identify published literature on the antidepressant efficacy of TMS for GD. Databases PubMed, Embase, and PsycINFO were searched for English language articles in peer-reviewed journals in March 2021. RESULTS Seven randomized controlled trials (RCTs) (total n = 260, active n = 148, control n = 112) and seven uncontrolled trials (total n = 160) were included. Overall, we found substantial variability in the clinical response, ranging from 6.7% to 54.3%. CONCLUSIONS The reviewed literature highlights large heterogeneity among studies both in terms of the employed TMS dosage and the observed clinical efficacy. This highlights the need for optimizing TMS dosage by recognizing the unique clinical features of GD. We showcase a set of novel approaches for the optimization of the TMS protocol for depression and discuss the possibility for a standardized TMS protocol tailored for the treatment of GD.
Collapse
Affiliation(s)
- Davide Cappon
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Tim den Boer
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Caleb Jordan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Wanting Yu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Eran Metzger
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Guttmann Institut, Spain
| |
Collapse
|
26
|
Gao L, Wang C, Song XR, Tian L, Qu ZY, Han Y, Zhang X. The Sensory Abnormality Mediated Partially the Efficacy of Repetitive Transcranial Magnetic Stimulation on Treating Comorbid Sleep Disorder in Autism Spectrum Disorder Children. Front Psychiatry 2022; 12:820598. [PMID: 35140641 PMCID: PMC8818693 DOI: 10.3389/fpsyt.2021.820598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Sleep disorder emerges as a common comorbidity in children with autism spectrum disorder (ASD), and the interaction between the core symptoms of ASD and its sleep disorder remains unclear. Repetitive transcranial magnetic stimulation (rTMS) was used on the bilateral dorsolateral prefrontal cortex (DLPFC) to investigate the efficacy of rTMS on the core symptoms of ASD and comorbid sleep problems as well as the mediation role of the ASD symptoms between rTMS intervention and sleep improvement. A total of 41 Chinese children with ASD and who met the criteria in the fifth edition of the American Diagnostic and Statistical Manual of Mental Disorders were recruited, and 39 of them (mean age: 9.0 ± 4.4 years old; the male-female ratio was 3.9: 1) completed the study with the stimulating protocol of high frequency on the left DLPFC and low frequency on the right DLPFC. They were all assessed three times (before, at 4 weeks after, and at 8 weeks after the stimulation) by the Children's Sleep Habits Questionnaire (CSHQ), Strengths and Difficulties Questionnaire (SDQ), Childhood Autism Rating Scale, Repetitive Behavior Questionnaire-2, and Short Sensory Profile (SSP). The repeated-measures ANOVA showed that the main effect of "intervention time" of CSHQ (F = 25.103, P < 0.001), SSP (F = 6.345, P = 0.003), and SDQ (F = 9.975, P < 0.001) was statistically significant. By Bayesian mediation analysis, we only found that the total score of SSP mediated the treating efficacy of rTMS on CSHQ (αβ = 5.11 ± 1.51, 95% CI: 2.50-8.41). The percentage of mediation effect in total effect was 37.94%. Our results indicated the treating efficacy of rTMS modulation on bilateral DLPFC for both autistic symptoms and sleep disturbances. The sensory abnormality of ASD mediated the improvement of rTMS on sleep problems of ASD.
Collapse
Affiliation(s)
- Lei Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chen Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-rong Song
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Li Tian
- Department of Cerebral Functional Therapy, Tianjin Anding Hospital (Tianjin Mental Health Center), Tianjin, China
| | - Zhi-yi Qu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Yang Z, Sheng X, Qin R, Chen H, Shao P, Xu H, Yao W, Zhao H, Xu Y, Bai F. Cognitive Improvement via Left Angular Gyrus-Navigated Repetitive Transcranial Magnetic Stimulation Inducing the Neuroplasticity of Thalamic System in Amnesic Mild Cognitive Impairment Patients. J Alzheimers Dis 2022; 86:537-551. [PMID: 35068464 DOI: 10.3233/jad-215390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Stimulating superficial brain regions highly associated with the hippocampus by repetitive transcranial magnetic stimulation (rTMS) may improve memory of Alzheimer’s disease (AD) spectrum patients. Objective: We recruited 16 amnesic mild cognitive impairment (aMCI) and 6 AD patients in the study. All the patients were stimulated to the left angular gyrus, which was confirmed a strong link to the hippocampus through neuroimaging studies, by the neuro-navigated rTMS for four weeks. Methods: Automated fiber quantification using diffusion tensor imaging metrics and graph theory analysis on functional network were employed to detect the neuroplasticity of brain networks. Results: After neuro-navigated rTMS intervention, the episodic memory of aMCI patients and Montreal Cognitive Assessment score of two groups were significantly improved. Increased FA values of right anterior thalamic radiation among aMCI patients, while decreased functional network properties of thalamus subregions were observed, whereas similar changes not found in AD patients. It is worth noting that the improvement of cognition was associated with the neuroplasticity of thalamic system. Conclusion: We speculated that the rTMS intervention targeting left angular gyrus may be served as a strategy to improve cognitive impairment at the early stage of AD patients, supporting by the neuroplasticity of thalamic system.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaoning Sheng
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Hengheng Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
28
|
Soleimani G, Kupliki R, Bodurka J, Paulus M, Ekhtiari H. How structural and functional MRI can inform dual-site tACS parameters: A case study in a clinical population and its pragmatic implications. Brain Stimul 2022; 15:337-351. [PMID: 35042056 DOI: 10.1016/j.brs.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Abnormalities in frontoparietal network (FPN) were observed in many neuropsychiatric diseases including substance use disorders. A growing number of studies are using dual-site-tACS with frontoparietal synchronization to engage this network. However, a computational pathway to inform and optimize parameter space for frontoparietal synchronization is still lacking. In this case study, in a group of participants with methamphetamine use disorders, we proposed a computational pathway to extract optimal electrode montage while accounting for stimulation intensity using structural and functional MRI. METHODS Sixty methamphetamine users completed an fMRI drug cue-reactivity task. Four main steps were taken to define electrode montage and adjust stimulation intensity using 4x1 high-definition (HD) electrodes for a dual-site-tACS; (1) Frontal seed was defined based on the maximum electric fields (EF) predicted by simulation of HD montage over DLPFC (F3/F4 in EEG 10-20), (2) frontal seed-to-whole brain context-dependent correlation was calculated to determine connected regions to frontal seeds, (3) center of connected cluster in parietal cortex was selected as a location for placing the second set of HD electrodes to shape the informed montage, (4) individualized head models were used to determine optimal stimulation intensity considering underlying brain structure. The informed montage was compared to montages with large electrodes and classic frontoparietal HD montages (F3-P3/F4-P4) in terms of tACS-induced EF and ROI-to-ROI task-based/resting-state connectivity. RESULTS Compared to the large electrodes, HD frontoparietal montages allow for a finer control of the spatial peak fields in the main nodes of the FPN at the cost of lower maximum EF (large-pad/HD: max EF[V/m] = 0.37/0.11, number of cortical sub-regions that EF exceeds 50% of the max = 77/13). For defining stimulation targets based on EF patterns, using group-level head models compared to a single standard head model results in comparable but significantly different seed locations (6.43mm Euclidean distance between the locations of the frontal maximum EF in standard-space). As expected, significant task-based/resting-state connections were only found between frontal-parietal locations in the informed montage. Cue-induced craving score was correlated with frontoparietal connectivity only in the informed montage (r = -0.24). Stimulation intensity in the informed montage, and not in the classic HD montage, needs 40% reduction in the parietal site to reduce the disparity in EF between sites. CONCLUSION This study provides some empirical insights to montage and dose selection in dual-site-tACS using individual brain structures and functions and proposes a computational pathway to use head models and functional MRI to define (1) optimum electrode montage for targeting FPN in a context of interest (drug-cue-reactivity) and (2) proper transcranial stimulation intensity.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Rayus Kupliki
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research, Tulsa, OK, United States.
| |
Collapse
|
29
|
Basavaraju R, Ithal D, Thanki MV, Ramalingaiah AH, Thirthalli J, Reddy RP, Brady RO, Halko MA, Bolo NR, Keshavan MS, Pascual-Leone A, Mehta UM, Kesavan M. Intermittent theta burst stimulation of cerebellar vermis enhances fronto-cerebellar resting state functional connectivity in schizophrenia with predominant negative symptoms: A randomized controlled trial. Schizophr Res 2021; 238:108-120. [PMID: 34653740 PMCID: PMC8662658 DOI: 10.1016/j.schres.2021.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Negative symptoms of schizophrenia are substantially disabling and treatment resistant. Novel treatments like repetitive transcranial magnetic stimulation (TMS) need to be examined for the same using the experimental medicine approach that incorporates tests of mechanism of action in addition to clinical efficacy in trials. METHODS Study was a double-blind, parallel, randomized, sham-controlled trial recruiting schizophrenia with at least a moderate severity of negative symptoms. Participants were randomized to real or sham intermittent theta burst stimulation (iTBS) under MRI-guided neuro-navigation, targeting the cerebellar vermis area VII-B, at a stimulus intensity of 100% active motor threshold, two sessions/day for five days (total = 6000 pulses). Assessments were conducted at baseline (T0), day-6 (T1) and week-6 (T2) after initiation of intervention. Main outcomes were, a) Scale for the Assessment of Negative Symptoms (SANS) score (T0, T1, T2), b) fronto-cerebellar resting state functional connectivity (RSFC) (T0, T1). RESULTS Thirty participants were recruited in each arm. Negative symptoms improved in both arms (p < 0.001) but was not significantly different between the two arms (p = 0.602). RSFC significantly increased between the cerebellar vermis and the right inferior frontal gyrus (pcluster-FWER = 0.033), right pallidum (pcluster-FWER = 0.042) and right frontal pole (pcluster-FWER = 0.047) in the real arm with no change in the sham arm. CONCLUSION Cerebellar vermal iTBS engaged a target belonging to the class of cerebello-subcortical-cortical networks, implicated in negative symptoms of schizophrenia. However, this did not translate to a superior clinical efficacy. Future trials should employ enhanced midline cerebellar TMS stimulation parameters for longer durations that can potentiate and translate biological changes into clinical effects.
Collapse
Affiliation(s)
- Rakshathi Basavaraju
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Milind Vijay Thanki
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Arvinda Hanumanthapura Ramalingaiah
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Jagadisha Thirthalli
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Rajakumari P. Reddy
- Department of Clinical Psychology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Roscoe O. Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark A. Halko
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | - Nicolas R. Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain.
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore 560029, Karnataka, India.
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore 560029, Karnataka, India.
| |
Collapse
|
30
|
Using Brain Imaging to Improve Spatial Targeting of Transcranial Magnetic Stimulation for Depression. Biol Psychiatry 2021; 90:689-700. [PMID: 32800379 DOI: 10.1016/j.biopsych.2020.05.033] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/18/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an effective treatment for depression but is limited in that the optimal therapeutic target remains unknown. Early TMS trials lacked a focal target and thus positioned the TMS coil over the prefrontal cortex using scalp measurements. Over time, it became clear that this method leads to variation in the stimulation site and that this could contribute to heterogeneity in antidepressant response. Newer methods allow for precise positioning of the TMS coil over a specific brain location, but leveraging these precise methods requires a more precise therapeutic target. We review how neuroimaging is being used to identify a more focal therapeutic target for depression. We highlight recent studies showing that more effective TMS targets in the frontal cortex are functionally connected to deep limbic regions such as the subgenual cingulate cortex. We review how connectivity might be used to identify an optimal TMS target for use in all patients and potentially even a personalized target for each individual patient. We address the clinical implications of this emerging field and highlight critical questions for future research.
Collapse
|
31
|
Precise Modulation Strategies for Transcranial Magnetic Stimulation: Advances and Future Directions. Neurosci Bull 2021; 37:1718-1734. [PMID: 34609737 DOI: 10.1007/s12264-021-00781-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases. Unfortunately, current modulation strategies are only modestly effective. The literature provides strong evidence that the modulatory effects of TMS vary depending on device components and stimulation protocols. These differential effects are important when designing precise modulatory strategies for clinical or research applications. Developments in TMS have been accompanied by advances in combining TMS with neuroimaging techniques, including electroencephalography, functional near-infrared spectroscopy, functional magnetic resonance imaging, and positron emission tomography. Such studies appear particularly promising as they may not only allow us to probe affected brain areas during TMS but also seem to predict underlying research directions that may enable us to precisely target and remodel impaired cortices or circuits. However, few precise modulation strategies are available, and the long-term safety and efficacy of these strategies need to be confirmed. Here, we review the literature on possible technologies for precise modulation to highlight progress along with limitations with the goal of suggesting future directions for this field.
Collapse
|
32
|
Smits FM, Schutter DJLG, van Honk J, Geuze E. Does non-invasive brain stimulation modulate emotional stress reactivity? Soc Cogn Affect Neurosci 2021; 15:23-51. [PMID: 31993648 PMCID: PMC7171378 DOI: 10.1093/scan/nsaa011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive emotional responses to stressful events can detrimentally affect psychological functioning and mental health. Recent studies have provided evidence that non-invasive brain stimulation (NBS) targeting the prefrontal cortex (PFC) can affect the regulation of stress-related emotional responses. However, the reliability and effect sizes have not been systematically analyzed. In the present study, we reviewed and meta-analyzed the effects of repetitive transcranial magnetic (rTMS) and transcranial direct current stimulation (tDCS) over the PFC on acute emotional stress reactivity in healthy individuals. Forty sham-controlled single-session rTMS and tDCS studies were included. Separate random effects models were performed to estimate the mean effect sizes of emotional reactivity. Twelve rTMS studies together showed no evidence that rTMS over the PFC influenced emotional reactivity. Twenty-six anodal tDCS studies yielded a weak beneficial effect on stress-related emotional reactivity (Hedges’ g = −0.16, CI95% = [−0.33, 0.00]). These findings suggest that a single session of NBS is insufficient to induce reliable, clinically significant effects but also provide preliminary evidence that specific NBS methods can affect emotional reactivity. This may motivate further research into augmenting the efficacy of NBS protocols on stress-related processes.
Collapse
Affiliation(s)
- Fenne M Smits
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Jack van Honk
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Department of Psychiatry and Mental Health, University of Cape Town, Observatory, 7925, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Elbert Geuze
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
33
|
TMS-EEG Research to Elucidate the Pathophysiological Neural Bases in Patients with Schizophrenia: A Systematic Review. J Pers Med 2021; 11:jpm11050388. [PMID: 34068580 PMCID: PMC8150818 DOI: 10.3390/jpm11050388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental disorder, and its pathogenesis is complex. Recently, the glutamate hypothesis and the excitatory/inhibitory (E/I) imbalance hypothesis have been proposed as new pathological hypotheses for SCZ. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a non-invasive novel method that enables us to investigate the cortical activity in humans, and this modality is a suitable approach to evaluate these hypotheses. In this study, we systematically reviewed TMS-EEG studies that investigated the cortical dysfunction of SCZ to examine the emerging hypotheses for SCZ. The following search terms were set in this systematic review: (TMS or ‘transcranial magnetic stimulation’) and (EEG or electroencephalog*) and (schizophrenia). We inspected the articles written in English that examined humans and were published by March 2020 via MEDLINE, Embase, PsycINFO, and PubMed. The initial search generated 379 studies, and 14 articles were finally identified. The current review noted that patients with SCZ demonstrated the E/I deficits in the prefrontal cortex, whose dysfunctions were also associated with cognitive impairment and clinical severity. Moreover, TMS-induced gamma activity in the prefrontal cortex was related to positive symptoms, while theta/delta band activities were associated with negative symptoms in SCZ. Thus, this systematic review discusses aspects of the pathophysiological neural basis of SCZ that are not explained by the traditional dopamine hypothesis exclusively, based on the findings of previous TMS-EEG research, mainly in terms of the E/I imbalance hypothesis. In conclusion, TMS-EEG neurophysiology can be applied to establish objective biomarkers for better diagnosis as well as to develop new therapeutic strategies for patients with SCZ.
Collapse
|
34
|
Efficacy and safety of transcranial direct current stimulation as an add-on treatment for obsessive-compulsive disorder: a randomized, sham-controlled trial. Neuropsychopharmacology 2021; 46:1028-1034. [PMID: 33452434 PMCID: PMC8115679 DOI: 10.1038/s41386-020-00928-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a frequent, disabling disorder with high rates of treatment resistance. Transcranial direct current stimulation (tDCS) is a safe, tolerable noninvasive neuromodulation therapy with scarce evidence for OCD. This double-blind, randomized, and sham-controlled study investigates the efficacy of tDCS as add-on treatment for treatment-resistant OCD (failure to respond to at least one previous pharmacological treatment). On 20 consecutive weekdays (4 weeks), 43 patients with treatment-resistant OCD underwent 30 min active or sham tDCS sessions, followed by a 8 week follow-up. The cathode was positioned over the supplementary motor area (SMA) and the anode over the left deltoid. The primary outcome was the change in baseline Y-BOCS score at week 12. Secondary outcomes were changes in mood and anxiety and the occurrence of adverse events. Response was evaluated considering percent decrease of baseline Y-BOCS scores and the Improvement subscale of the Clinical Global Impression (CGI-I) between baseline and week 12. Patients that received active tDCS achieved a significant reduction of OCD symptoms than sham, with mean (SD) Y-BOCS score changes of 6.68 (5.83) and 2.84 (6.3) points, respectively (Cohen's d: 0.62 (0.06-1.18), p = 0.03). We found no between-group differences in responders (four patients in the active tDCS and one in the sham group). Active tDCS of the SMA was not superior to sham in reducing symptoms of depression or anxiety. Patients in both groups reported mild adverse events. Our results suggest that cathodal tDCS over the SMA is an effective add-on strategy in treatment-resistant OCD.
Collapse
|
35
|
Yang D, Shin YI, Hong KS. Systemic Review on Transcranial Electrical Stimulation Parameters and EEG/fNIRS Features for Brain Diseases. Front Neurosci 2021; 15:629323. [PMID: 33841079 PMCID: PMC8032955 DOI: 10.3389/fnins.2021.629323] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2021] [Indexed: 01/09/2023] Open
Abstract
Background Brain disorders are gradually becoming the leading cause of death worldwide. However, the lack of knowledge of brain disease’s underlying mechanisms and ineffective neuropharmacological therapy have led to further exploration of optimal treatments and brain monitoring techniques. Objective This study aims to review the current state of brain disorders, which utilize transcranial electrical stimulation (tES) and daily usable noninvasive neuroimaging techniques. Furthermore, the second goal of this study is to highlight available gaps and provide a comprehensive guideline for further investigation. Method A systematic search was conducted of the PubMed and Web of Science databases from January 2000 to October 2020 using relevant keywords. Electroencephalography (EEG) and functional near-infrared spectroscopy were selected as noninvasive neuroimaging modalities. Nine brain disorders were investigated in this study, including Alzheimer’s disease, depression, autism spectrum disorder, attention-deficit hyperactivity disorder, epilepsy, Parkinson’s disease, stroke, schizophrenia, and traumatic brain injury. Results Sixty-seven studies (1,385 participants) were included for quantitative analysis. Most of the articles (82.6%) employed transcranial direct current stimulation as an intervention method with modulation parameters of 1 mA intensity (47.2%) for 16–20 min (69.0%) duration of stimulation in a single session (36.8%). The frontal cortex (46.4%) and the cerebral cortex (47.8%) were used as a neuroimaging modality, with the power spectrum (45.7%) commonly extracted as a quantitative EEG feature. Conclusion An appropriate stimulation protocol applying tES as a therapy could be an effective treatment for cognitive and neurological brain disorders. However, the optimal tES criteria have not been defined; they vary across persons and disease types. Therefore, future work needs to investigate a closed-loop tES with monitoring by neuroimaging techniques to achieve personalized therapy for brain disorders.
Collapse
Affiliation(s)
- Dalin Yang
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| | - Keum-Shik Hong
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| |
Collapse
|
36
|
Phase-Dependent Deep Brain Stimulation: A Review. Brain Sci 2021; 11:brainsci11040414. [PMID: 33806170 PMCID: PMC8103241 DOI: 10.3390/brainsci11040414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Neural oscillations are repetitive patterns of neural activity in the central nervous systems. Oscillations of the neurons in different frequency bands are evident in electroencephalograms and local field potential measurements. These oscillations are understood to be one of the key mechanisms for carrying out normal functioning of the brain. Abnormality in any of these frequency bands of oscillations can lead to impairments in different cognitive and memory functions leading to different pathological conditions of the nervous system. However, the exact role of these neural oscillations in establishing various brain functions is still under investigation. Closed loop deep brain stimulation paradigms with neural oscillations as biomarkers could be used as a mechanism to understand the function of these oscillations. For making use of the neural oscillations as biomarkers to manipulate the frequency band of the oscillation, phase of the oscillation, and stimulation signal are of importance. This paper reviews recent trends in deep brain stimulation systems and their non-invasive counterparts, in the use of phase specific stimulation to manipulate individual neural oscillations. In particular, the paper reviews the methods adopted in different brain stimulation systems and devices for stimulating at a definite phase to further optimize closed loop brain stimulation strategies.
Collapse
|
37
|
Manenti R, Sandrini M, Gobbi E, Binetti G, Cotelli M. Effects of Transcranial Direct Current Stimulation on Episodic Memory in Amnestic Mild Cognitive Impairment: A Pilot Study. J Gerontol B Psychol Sci Soc Sci 2021; 75:1403-1413. [PMID: 30395314 DOI: 10.1093/geronb/gby134] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Episodic memory is impaired in amnestic mild cognitive impairment (aMCI), which is posited as a potential prodromal form of Alzheimer's disease. Reactivated existing memories become sensitive to modification during reconsolidation. There is evidence that the lateral prefrontal cortex (PFC) plays causal role in episodic memory reconsolidation. Transcranial direct current stimulation (tDCS) applied to the PFC after a contextual reminder enhanced episodic memory performance up to 1 month, conceivably through reconsolidation, in older adults with subjective memory complaints, a condition that may represent a "pre-mild cognitive impairment" stage. The aim of this pilot study was to test the effect of PFC-tDCS (anode over left lateral PFC, cathode over right supraorbital area) after a contextual reminder on episodic memory in older adults with aMCI. METHOD Older adults with aMCI learned a list of words. Twenty-four hours later, tDCS (Active or Sham) was applied after a contextual reminder. Memory retrieval (free recall and recognition) was tested 48 hrs and 1 month after the learning session. RESULTS Active tDCS enhanced recognition memory relative to Sham stimulation. DISCUSSION Modulating reconsolidation with PFC-tDCS might be a novel intervention to enhance episodic memories in aMCI.
Collapse
Affiliation(s)
- Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marco Sandrini
- Department of Psychology, University of Roehampton, London, UK
| | | | - Giuliano Binetti
- Molecular Markers Laboratory.,MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
38
|
Levy-Lamdan O, Zifman N, Sasson E, Efrati S, Hack DC, Tanne D, Dolev I, Fogel H. Evaluation of White Matter Integrity Utilizing the DELPHI (TMS-EEG) System. Front Neurosci 2020; 14:589107. [PMID: 33408607 PMCID: PMC7779791 DOI: 10.3389/fnins.2020.589107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Objective The aim of this study was to evaluate brain white matter (WM) fibers connectivity damage in stroke and traumatic brain injury (TBI) subjects by direct electrophysiological imaging (DELPHI) that analyzes transcranial magnetic stimulation (TMS)-evoked potentials (TEPs). Methods The study included 123 participants, out of which 53 subjects with WM-related pathologies (39 stroke, 14 TBI) and 70 healthy age-related controls. All subjects underwent DELPHI brain network evaluations of TMS-electroencephalogram (EEG)-evoked potentials and diffusion tensor imaging (DTI) scans for quantification of WM microstructure fractional anisotropy (FA). Results DELPHI output measures show a significant difference between the healthy and stroke/TBI groups. A multidimensional approach was able to classify healthy from unhealthy with a balanced accuracy of 0.81 ± 0.02 and area under the curve (AUC) of 0.88 ± 0.01. Moreover, a multivariant regression model of DELPHI output measures achieved prediction of WM microstructure changes measured by FA with the highest correlations observed for fibers proximal to the stimulation area, such as frontal corpus callosum (r = 0.7 ± 0.02), anterior internal capsule (r = 0.7 ± 0.02), and fronto-occipital fasciculus (r = 0.65 ± 0.03). Conclusion These results indicate that features of TMS-evoked response are correlated to WM microstructure changes observed in pathological conditions, such as stroke and TBI, and that a multidimensional approach combining these features in supervised learning methods serves as a strong indicator for abnormalities and changes in WM integrity.
Collapse
Affiliation(s)
| | - Noa Zifman
- QuantalX Neuroscience, Beer-Yaacov, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dallas C Hack
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - David Tanne
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Stroke and Cognition Institute, Rambam Healthcare Campus, Haifa, Israel
| | | | | |
Collapse
|
39
|
Yoosefee S, Amanat M, Salehi M, Mousavi SV, Behzadmanesh J, Safary V, Yoonesi A, Salehi B. The safety and efficacy of transcranial direct current stimulation as add-on therapy to fluoxetine in obsessive-compulsive disorder: a randomized, double-blind, sham-controlled, clinical trial. BMC Psychiatry 2020; 20:570. [PMID: 33256659 PMCID: PMC7708220 DOI: 10.1186/s12888-020-02979-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 11/22/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is an anxiety disorder that causes impairment in daily activities. This study aimed to assess the safety and efficacy of transcranial direct current stimulation (tDCS) as adjunctive therapy with fluoxetine in individuals diagnosed with moderate to severe OCD. METHODS This is a randomized, double-blind sham-controlled trial. Individuals with OCD who had baseline Yale-Brown obsessive-compulsive scale (Y-BOCS) of > 15 were enrolled. Eligible cases were randomly assigned in 1:1 ratio to receive either 20-min-period of stimulation with tDCS and fluoxetine (experimental arm) or fluoxetine only (sham control arm). The anodal electrode of tDCS was placed over the left dorsolateral prefrontal cortex (Fp3) and the cathodal electrode was placed over the right orbitofrontal cortex (F8). Two mA electrical stimulation with the tDCS was used for 20 min in individuals of experimental group. In the control group, electrodes were placed and stimulation was administered for 30 s to induce the same skin sensation as in experimental group. This procedure was performed three times per week for 8 weeks. Y-BOCS test was assessed at baseline, week 4 (after 12th stimulation), week 8 (after 24th stimulation), and 1 month after the last stimulation. The primary endpoints were the mean changes in Y-BOCS total score from baseline to the last visit. The secondary endpoints were the mean changes in obsession and compulsion sub-scores from baseline to the last visit. Adverse events were also assessed. Mixed design repeated measures analysis of variance assessed the endpoints. RESULTS Sixty individuals (30 in each group) were participated. All individuals in control group and 28 cases in experimental arm completed the trial. The mean Y-BOCS (F(1.85) = 30.83; P < 0.001), OCD obsession (F(2.23) = 25.01; P < 0.001), and compulsion (F(2.06) = 10.81; P < 0.001) scores decreased significantly during the study. No statistical differences were, however, detected between experimental and control groups (P > 0.05). The tDCS was well tolerated and no major adverse events were reported. CONCLUSION This study showed that among individuals with moderate to severe OCD, there was no significant difference regarding OC symptoms between cases used tDCS as adjunctive therapy with fluoxetine and individuals used fluoxetine only. TRIAL REGISTRATION IRCT2017030632904N1 . Registered 14 July 2017, http://irct.ir/user/trial/44193/view.
Collapse
Affiliation(s)
- Sadegh Yoosefee
- Neurosciences Research Center, Qom University of Medical Sciences, Qom, Iran
- Spiritual Health Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Man Amanat
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Salehi
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Vahid Mousavi
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Victoria Safary
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | - Ali Yoonesi
- Department of Neurosciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Salehi
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
40
|
Multi-day rTMS exerts site-specific effects on functional connectivity but does not influence associative memory performance. Cortex 2020; 132:423-440. [DOI: 10.1016/j.cortex.2020.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023]
|
41
|
Tremblay S, Tuominen L, Zayed V, Pascual-Leone A, Joutsa J. The study of noninvasive brain stimulation using molecular brain imaging: A systematic review. Neuroimage 2020; 219:117023. [DOI: 10.1016/j.neuroimage.2020.117023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
|
42
|
Papadopoulos L, Lynn CW, Battaglia D, Bassett DS. Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state. PLoS Comput Biol 2020; 16:e1008144. [PMID: 32886673 PMCID: PMC7537889 DOI: 10.1371/journal.pcbi.1008144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/06/2020] [Accepted: 07/12/2020] [Indexed: 01/09/2023] Open
Abstract
At the macroscale, the brain operates as a network of interconnected neuronal populations, which display coordinated rhythmic dynamics that support interareal communication. Understanding how stimulation of different brain areas impacts such activity is important for gaining basic insights into brain function and for further developing therapeutic neurmodulation. However, the complexity of brain structure and dynamics hinders predictions regarding the downstream effects of focal stimulation. More specifically, little is known about how the collective oscillatory regime of brain network activity—in concert with network structure—affects the outcomes of perturbations. Here, we combine human connectome data and biophysical modeling to begin filling these gaps. By tuning parameters that control collective system dynamics, we identify distinct states of simulated brain activity and investigate how the distributed effects of stimulation manifest at different dynamical working points. When baseline oscillations are weak, the stimulated area exhibits enhanced power and frequency, and due to network interactions, activity in this excited frequency band propagates to nearby regions. Notably, beyond these linear effects, we further find that focal stimulation causes more distributed modifications to interareal coherence in a band containing regions’ baseline oscillation frequencies. Importantly, depending on the dynamical state of the system, these broadband effects can be better predicted by functional rather than structural connectivity, emphasizing a complex interplay between anatomical organization, dynamics, and response to perturbation. In contrast, when the network operates in a regime of strong regional oscillations, stimulation causes only slight shifts in power and frequency, and structural connectivity becomes most predictive of stimulation-induced changes in network activity patterns. In sum, this work builds upon and extends previous computational studies investigating the impacts of stimulation, and underscores the fact that both the stimulation site, and, crucially, the regime of brain network dynamics, can influence the network-wide responses to local perturbations. Stimulation can be used to alter brain activity and is a therapeutic option for certain neurological conditions. However, predicting the distributed effects of local perturbations is difficult. Previous studies show that responses to stimulation depend on anatomical (or structural) coupling. In addition to structure, here we consider how stimulation effects also depend on the brain’s collective dynamical (or functional) state, arising from the coordination of rhythmic activity across large-scale networks. In a whole-brain computational model, we show that global responses to regional stimulation can indeed be contingent upon and differ across various dynamical working points. Notably, depending on the network’s oscillatory regime, stimulation can accelerate the activity of the stimulated site, and lead to widespread effects at both the new, excited frequency, as well as in a much broader frequency range including areas’ baseline frequencies. While structural connectivity is a good predictor of “excited band” changes, in some states “baseline band” effects can be better predicted by functional connectivity, which depends upon the system’s oscillatory regime. By integrating and extending past efforts, our results thus indicate that dynamical—in additional to structural—brain organization plays a role in governing how focal stimulation modulates interactions between distributed network elements.
Collapse
Affiliation(s)
- Lia Papadopoulos
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher W. Lynn
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Demian Battaglia
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France
| | - Danielle S. Bassett
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
43
|
Fitzsimmons SMDD, Douw L, van den Heuvel OA, van der Werf YD, Vriend C. Resting-state and task-based centrality of dorsolateral prefrontal cortex predict resilience to 1 Hz repetitive transcranial magnetic stimulation. Hum Brain Mapp 2020; 41:3161-3171. [PMID: 32395892 PMCID: PMC7336158 DOI: 10.1002/hbm.25005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is used to investigate normal brain function in healthy participants and as a treatment for brain disorders. Various subject factors can influence individual response to rTMS, including brain network properties. A previous study by our group showed that “virtually lesioning” the left dorsolateral prefrontal cortex (dlPFC; important for cognitive flexibility) using 1 Hz rTMS reduced performance on a set‐shifting task. We aimed to determine whether this behavioural response was related to topological features of pre‐TMS resting‐state and task‐based functional networks. 1 Hz (inhibitory) rTMS was applied to the left dlPFC in 16 healthy participants, and to the vertex in 17 participants as a control condition. Participants performed a set‐shifting task during fMRI at baseline and directly after a single rTMS session 1–2 weeks later. Functional network topology measures were calculated from resting‐state and task‐based fMRI scans using graph theoretical analysis. The dlPFC‐stimulated group, but not the vertex group, showed reduced setshifting performance after rTMS, associated with lower task‐based betweenness centrality (BC) of the dlPFC at baseline (p = .030) and a smaller reduction in task‐based BC after rTMS (p = .024). Reduced repeat trial accuracy after rTMS was associated with higher baseline resting state node strength of the dlPFC (p = .017). Our results suggest that behavioural response to 1 Hz rTMS to the dlPFC is dependent on baseline functional network features. Individuals with more globally integrated stimulated regions show greater resilience to rTMS effects, while individuals with more locally well‐connected regions show greater vulnerability.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
| | - Linda Douw
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
| |
Collapse
|
44
|
Analyzing the advantages of subcutaneous over transcutaneous electrical stimulation for activating brainwaves. Sci Rep 2020; 10:7360. [PMID: 32355172 PMCID: PMC7193608 DOI: 10.1038/s41598-020-64378-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Transcranial electrical stimulation (TES) is a widely accepted neuromodulation modality for treating brain disorders. However, its clinical efficacy is fundamentally limited due to the current shunting effect of the scalp and safety issues. A newer electrical stimulation technique called subcutaneous electrical stimulation (SES) promises to overcome the limitations of TES by applying currents directly at the site of the disorder through the skull. While SES seems promising, the electrophysiological effect of SES compared to TES is still unknown, thus limiting its broader application. Here we comprehensively analyze the SES and TES to demonstrate the effectiveness and advantages of SES. Beagles were bilaterally implanted with subdural strips for intracranial electroencephalography and electric field recording. For the intracerebral electric field prediction, we designed a 3D electromagnetic simulation framework and simulated TES and SES. In the beagle model, SES induces three to four-fold larger cerebral electric fields compared to TES, and significant changes in power ratio of brainwaves were observed only in SES. Our prediction framework suggests that the field penetration of SES would be several-fold larger than TES in human brains. These results demonstrate that the SES would significantly enhance the neuromodulatory effects compared to conventional TES and overcome the TES limitations.
Collapse
|
45
|
Sabbagh M, Sadowsky C, Tousi B, Agronin ME, Alva G, Armon C, Bernick C, Keegan AP, Karantzoulis S, Baror E, Ploznik M, Pascual-Leone A. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer's disease. Alzheimers Dement 2020; 16:641-650. [PMID: 31879235 DOI: 10.1016/j.jalz.2019.08.197] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION This clinical trial evaluates the efficacy and safety of a 6-week course of daily neuroAD™ therapy. METHODS 131 subjects between 60 and 90 years old, unmedicated for Alzheimer's disease (AD), or on stable doses of an acetylcholinesterase inhibitor and/or memantine, with Mini-Mental State Examination scores between 18 and 26, clinical dementia rating scale scores of 1 or 2, enrolled for a prospective, randomized, double-blind, sham-controlled, multicenter clinical trial. Structural brain MRIs were obtained for transcranial magnetic stimulation targeting. Baseline Alzheimer's disease assessment scale-cognitive (ADAS-Cog) and Clinical Global Impression of Change were assessed. 129 participants were randomized to active treatment plus standard of care (SOC) or sham treatments plus SOC. RESULTS Subjects with baseline ADAS-Cog ≤ 30 (~85% of study population) showed a statistically significant benefit favoring active over sham. Responder analysis showed 31.7% participants in the active group with ≤ -4 point improvement on ADAS-Cog versus 15.4% in the sham group. DISCUSSION neuroAD™ Therapy System provides a low-risk therapeutic benefit for patients with milder AD (baseline ADAS-Cog ≤30) beyond pharmacologic SOC.
Collapse
Affiliation(s)
- Marwan Sabbagh
- Camille and Larry Ruvo Chair for Brain Health, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Carl Sadowsky
- Premier Research Institute and NOVA SE University, Fort Lauderdale, FL, USA
| | - Babak Tousi
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | - Marc E Agronin
- Behavioral Health and Clinical Research, Miami Jewish Health Systems, Miami, FL, USA
| | | | - Carmel Armon
- Department of Neurology, Tel Aviv University Sackler School of Medicine and Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | | | | | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life Department of Neurology, Harvard Medical School, Boston, MA, USA
- Guttmann Brain Health Institut, Institut Gutmann, Universitat Autonoma, Barcelona, Spain
| |
Collapse
|
46
|
Individualized perturbation of the human connectome reveals reproducible biomarkers of network dynamics relevant to cognition. Proc Natl Acad Sci U S A 2020; 117:8115-8125. [PMID: 32193345 DOI: 10.1073/pnas.1911240117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Large-scale brain networks are often described using resting-state functional magnetic resonance imaging (fMRI). However, the blood oxygenation level-dependent (BOLD) signal provides an indirect measure of neuronal firing and reflects slow-evolving hemodynamic activity that fails to capture the faster timescale of normal physiological function. Here we used fMRI-guided transcranial magnetic stimulation (TMS) and simultaneous electroencephalography (EEG) to characterize individual brain dynamics within discrete brain networks at high temporal resolution. TMS was used to induce controlled perturbations to individually defined nodes of the default mode network (DMN) and the dorsal attention network (DAN). Source-level EEG propagation patterns were network-specific and highly reproducible across sessions 1 month apart. Additionally, individual differences in high-order cognitive abilities were significantly correlated with the specificity of TMS propagation patterns across DAN and DMN, but not with resting-state EEG dynamics. Findings illustrate the potential of TMS-EEG perturbation-based biomarkers to characterize network-level individual brain dynamics at high temporal resolution, and potentially provide further insight on their behavioral significance.
Collapse
|
47
|
Rapinesi C, Kotzalidis GD, Ferracuti S, Sani G, Girardi P, Del Casale A. Brain Stimulation in Obsessive-Compulsive Disorder (OCD): A Systematic Review. Curr Neuropharmacol 2020; 17:787-807. [PMID: 30963971 PMCID: PMC7059162 DOI: 10.2174/1570159x17666190409142555] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is a highly prevalent, severe, and chronic disease. There is a need for alternative strategies for treatment-resistant OCD. Objective This review aims to assess the effect of brain stimulation techniques in OCD. Method We included papers published in peer-reviewed journals dealing with brain stimulation techniques in OCD. We conducted treatment-specific searches for OCD (Technique AND ((randomized OR randomised) AND control* AND trial) AND (magnetic AND stimulation OR (rTMS OR dTMS)) AND (obsess* OR compuls* OR OCD)) on six databases, i.e., PubMed, Cochrane, Scopus, CINAHL, PsycINFO, and Web of Science to identify randomised controlled trials and ClinicalTrials.gov for possible additional results. Results Different add-on stimulation techniques could be effective for severely ill OCD patients unresponsive to drugs and/or behavioural therapy. Most evidence regarded deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS), while there is less evidence regarding transcranial direct current stimulation (tDCS), electroconvulsive therapy, and vagus nerve stimulation (for these last two there are no sham-controlled studies). Low-frequency TMS may be more effective over the supplementary motor area or the orbitofrontal cortex. DBS showed best results when targeting the crossroad between the nucleus accumbens and the ventral capsule or the subthalamic nucleus. Cathodal tDCS may be better than anodal in treating OCD. Limitations. We had to include methodologically inconsistent underpowered studies. Conclusion Different brain stimulation techniques are promising as an add-on treatment of
refractory OCD, although studies frequently reported inconsistent results. TMS, DBS, and tDCS could possibly find some use with adequate testing, but their standard methodology still needs to be established.
Collapse
Affiliation(s)
- Chiara Rapinesi
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy
| | - Georgios D Kotzalidis
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Sapienza University; Risk Management Unit, "Sant'Andrea" University Hospital, Rome, Italy
| | - Gabriele Sani
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy.,"Lucio Bini" Center, "Aretaeus Onlus", Rome, Italy
| | - Paolo Girardi
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy.,"Lucio Bini" Center, "Aretaeus Onlus", Rome, Italy
| | - Antonio Del Casale
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University; "Sant'Andrea" University Hospital, Rome, Italy
| |
Collapse
|
48
|
Ishida T, Dierks T, Strik W, Morishima Y. Converging Resting State Networks Unravels Potential Remote Effects of Transcranial Magnetic Stimulation for Major Depression. Front Psychiatry 2020; 11:836. [PMID: 32973580 PMCID: PMC7468386 DOI: 10.3389/fpsyt.2020.00836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Despite being a commonly used protocol to treat major depressive disorder (MDD), the underlying mechanism of repetitive transcranial magnetic stimulation (rTMS) on dorsolateral prefrontal cortex (DLPFC) remains unclear. In the current study, we investigated the resting-state fMRI data of 100 healthy subjects by exploring three overlapping functional networks associated with the psychopathologically MDD-related areas (the nucleus accumbens, amygdala, and ventromedial prefrontal cortex). Our results showed that these networks converged at the bilateral DLPFC, which suggested that rTMS over DLPFC might improve MDD by remotely modulating the MDD-related areas synergistically. Additionally, they functionally converged at the DMPFC and bilateral insula which are known to be associated with MDD. These two areas could also be potential targets for rTMS treatment. Dynamic causal modelling (DCM) and Granger causality analysis (GCA) revealed that all pairwise connections among bilateral DLPFC, DMPFC, bilateral insula, and three psychopathologically MDD-related areas contained significant causality. The DCM results also suggested that most of the functional interactions between MDD-related areas and bilateral DLPFC, DMPFC, and bilateral insula can predominantly be explained by the effective connectivity from the psychopathologically MDD-related areas to the rTMS stimulation sites. Finally, we found the conventional functional connectivity to be a more representative measure to obtain connectivity parameters compared to GCA and DCM analysis. Our research helped inspecting the convergence of the functional networks related to a psychiatry disorder. The results identified potential targets for brain stimulation treatment and contributed to the optimization of patient-specific brain stimulation protocols.
Collapse
Affiliation(s)
- Takuya Ishida
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Japan.,Department of Neuropsychiatry, Graduate School of Wakayama Medical University, Kimiidera, Japan.,Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas Dierks
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Werner Strik
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
49
|
Wertheim J, Colzato LS, Nitsche MA, Ragni M. Enhancing spatial reasoning by anodal transcranial direct current stimulation over the right posterior parietal cortex. Exp Brain Res 2019; 238:181-192. [DOI: 10.1007/s00221-019-05699-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023]
|
50
|
Zifman N, Levy-Lamdan O, Suzin G, Efrati S, Tanne D, Fogel H, Dolev I. Introducing a Novel Approach for Evaluation and Monitoring of Brain Health Across Life Span Using Direct Non-invasive Brain Network Electrophysiology. Front Aging Neurosci 2019; 11:248. [PMID: 31551761 PMCID: PMC6745309 DOI: 10.3389/fnagi.2019.00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Evaluation and monitoring of brain health throughout aging by direct electrophysiological imaging (DELPHI) which analyzes TMS (transcranial magnetic stimulation) evoked potentials. Methods Transcranial magnetic stimulation evoked potentials formation, coherence and history dependency, measured using electroencephalogram (EEG), was extracted from 80 healthy subjects in different age groups, 25–85 years old, and 20 subjects diagnosed with mild dementia (MD), over 70 years old. Subjects brain health was evaluated using MRI scans, neurocognitive evaluation, and computerized testing and compared to DELPHI analysis of brain network functionality. Results A significant decrease in signal coherence is observed with age in connectivity maps, mostly in inter-hemispheric temporal, and parietal areas. MD patients display a pronounced decrease in global and inter-hemispheric frontal connectivity compared to healthy controls. Early and late signal slope ratio also display a significant, age dependent, change with pronounced early slope, phase shift, between normal healthy aging, and MD. History dependent analysis demonstrates a binary step function classification of healthy brain vs. abnormal aging subjects mostly for late slope. DELPHI measures demonstrate high reproducibility with reliability coefficients of around 0.9. Conclusion These results indicate that features of evoked response, as charge transfer, slopes of response, and plasticity are altered during abnormal aging and that these fundamental properties of network functionality can be directly evaluated and monitored using DELPHI.
Collapse
Affiliation(s)
- Noa Zifman
- QuantalX Neuroscience, Tel Aviv-Yafo, Israel
| | | | - Gil Suzin
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Ramle, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Ramle, Israel.,Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - David Tanne
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Stroke and Cognition Institute, Rambam Healthcare Campus, Haifa, Israel
| | - Hilla Fogel
- QuantalX Neuroscience, Tel Aviv-Yafo, Israel
| | | |
Collapse
|