1
|
Parhizkar S, Holtzman DM. The night's watch: Exploring how sleep protects against neurodegeneration. Neuron 2025; 113:817-837. [PMID: 40054454 PMCID: PMC11925672 DOI: 10.1016/j.neuron.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/15/2024] [Accepted: 02/04/2025] [Indexed: 03/21/2025]
Abstract
Sleep loss is often regarded as an early manifestation of neurodegenerative diseases given its common occurrence and link to cognitive dysfunction. However, the precise mechanisms by which sleep disturbances contribute to neurodegeneration are not fully understood, nor is it clear why some individuals are more susceptible to these effects than others. This review addresses critical unanswered questions in the field, including whether sleep disturbances precede or result from neurodegenerative diseases, the functional significance of sleep changes during the preclinical disease phase, and the potential role of sleep homeostasis as an adaptive mechanism enhancing resilience against cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Samira Parhizkar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Gao Z, Guan J, Yin S, Liu F. The role of ATP in sleep-wake regulation: In adenosine-dependent and -independent manner. Sleep Med 2024; 119:147-154. [PMID: 38678758 DOI: 10.1016/j.sleep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/31/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
ATP plays a crucial role as an energy currency in the body's various physiological functions, including the regulation of the sleep-wake cycle. Evidence from genetics and pharmacology demonstrates a strong association between ATP metabolism and sleep. With the advent of new technologies such as optogenetics, genetically encoded biosensors, and novel ATP detection methods, the dynamic changes in ATP levels between different sleep states have been further uncovered. The classic mechanism for regulating sleep by ATP involves its conversion to adenosine, which increases sleep pressure when accumulated extracellularly. However, emerging evidence suggests that ATP can directly bind to P2 receptors and influence sleep-wake regulation through both adenosine-dependent and independent pathways. The outcome depends on the brain region where ATP acts and the expression type of P2 receptors. This review summarizes the experimental evidence on the relationship between ATP levels and changes in sleep states and outlines the mechanisms by which ATP is involved in regulating the sleep-wake cycle through both adenosine-dependent and independent pathways. Hopefully, this review will provide a comprehensive understanding of the current research basis and progress in this field and promote further investigations into the specific mechanisms of ATP in regulating sleep.
Collapse
Affiliation(s)
- Zhenfei Gao
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Zielinski MR, Gibbons AJ. Neuroinflammation, Sleep, and Circadian Rhythms. Front Cell Infect Microbiol 2022; 12:853096. [PMID: 35392608 PMCID: PMC8981587 DOI: 10.3389/fcimb.2022.853096] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Molecules involved in innate immunity affect sleep and circadian oscillators and vice versa. Sleep-inducing inflammatory molecules are activated by increased waking activity and pathogens. Pathologies that alter inflammatory molecules, such as traumatic brain injury, cancer, cardiovascular disease, and stroke often are associated with disturbed sleep and electroencephalogram power spectra. Moreover, sleep disorders, such as insomnia and sleep disordered breathing, are associated with increased dysregulation of inflammatory processes. Inflammatory molecules in both the central nervous system and periphery can alter sleep. Inflammation can also modulate cerebral vascular hemodynamics which is associated with alterations in electroencephalogram power spectra. However, further research is needed to determine the interactions of sleep regulatory inflammatory molecules and circadian clocks. The purpose of this review is to: 1) describe the role of the inflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha and nucleotide-binding domain and leucine-rich repeat protein-3 inflammasomes in sleep regulation, 2) to discuss the relationship between the vagus nerve in translating inflammatory signals between the periphery and central nervous system to alter sleep, and 3) to present information about the relationship between cerebral vascular hemodynamics and the electroencephalogram during sleep.
Collapse
Affiliation(s)
- Mark R. Zielinski
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States,Harvard Medical School, West Roxbury, MA, United States,*Correspondence: Mark R. Zielinski,
| | - Allison J. Gibbons
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
| |
Collapse
|
4
|
Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 2021; 28:70. [PMID: 34635103 PMCID: PMC8507231 DOI: 10.1186/s12929-021-00766-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
In modern societies, with an increase in the older population, age-related neurodegenerative diseases have progressively become greater socioeconomic burdens. To date, despite the tremendous effort devoted to understanding neurodegenerative diseases in recent decades, treatment to delay disease progression is largely ineffective and is in urgent demand. The development of new strategies targeting these pathological features is a timely topic. It is important to note that most degenerative diseases are associated with the accumulation of specific misfolded proteins, which is facilitated by several common features of neurodegenerative diseases (including poor energy homeostasis and mitochondrial dysfunction). Adenosine is a purine nucleoside and neuromodulator in the brain. It is also an essential component of energy production pathways, cellular metabolism, and gene regulation in brain cells. The levels of intracellular and extracellular adenosine are thus tightly controlled by a handful of proteins (including adenosine metabolic enzymes and transporters) to maintain proper adenosine homeostasis. Notably, disruption of adenosine homeostasis in the brain under various pathophysiological conditions has been documented. In the past two decades, adenosine receptors (particularly A1 and A2A adenosine receptors) have been actively investigated as important drug targets in major degenerative diseases. Unfortunately, except for an A2A antagonist (istradefylline) administered as an adjuvant treatment with levodopa for Parkinson's disease, no effective drug based on adenosine receptors has been developed for neurodegenerative diseases. In this review, we summarize the emerging findings on proteins involved in the control of adenosine homeostasis in the brain and discuss the challenges and future prospects for the development of new therapeutic treatments for neurodegenerative diseases and their associated disorders based on the understanding of adenosine homeostasis.
Collapse
|
5
|
Mamelak M. Sleep, Narcolepsy, and Sodium Oxybate. Curr Neuropharmacol 2021; 20:272-291. [PMID: 33827411 PMCID: PMC9413790 DOI: 10.2174/1570159x19666210407151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Sodium oxybate (SO) has been in use for many decades to treat narcolepsy with cataplexy. It functions as a weak GABAB agonist but also as an energy source for the brain as a result of its metabolism to succinate and as a powerful antioxidant because of its capacity to induce the formation of NADPH. Its actions at thalamic GABAB receptors can induce slow-wave activity, while its actions at GABAB receptors on monoaminergic neurons can induce or delay REM sleep. By altering the balance between monoaminergic and cholinergic neuronal activity, SO uniquely can induce and prevent cataplexy. The formation of NADPH may enhance sleep’s restorative process by accelerating the removal of the reactive oxygen species (ROS), which accumulate during wakefulness. SO improves alertness in normal subjects and in patients with narcolepsy. SO may allay severe psychological stress - an inflammatory state triggered by increased levels of ROS and characterized by cholinergic supersensitivity and monoaminergic deficiency. SO may be able to eliminate the inflammatory state and correct the cholinergic/ monoaminergic imbalance.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario. Canada
| |
Collapse
|
6
|
Lopes CR, Lourenço VS, Tomé ÂR, Cunha RA, Canas PM. Use of knockout mice to explore CNS effects of adenosine. Biochem Pharmacol 2020; 187:114367. [PMID: 33333075 DOI: 10.1016/j.bcp.2020.114367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
The initial exploration using pharmacological tools of the role of adenosine receptors in the brain, concluded that adenosine released as such acted on A1R to inhibit excitability and glutamate release from principal neurons throughout the brain and that adenosine A2A receptors (A2AR) were striatal-'specific' receptors controlling dopamine D2R. This indicted A1R as potential controllers of neurodegeneration and A2AR of psychiatric conditions. Global knockout of these two receptors questioned the key role of A1R and instead identified extra-striatal A2AR as robust controllers of neurodegeneration. Furthermore, transgenic lines with altered metabolic sources of adenosine revealed a coupling of ATP-derived adenosine to activate A2AR and a role of A1R as a hurdle to initiate neurodegeneration. Additionally, cell-selective knockout of A2AR unveiled the different roles of A2AR in different cell types (neurons/astrocytes) in different portions of the striatal circuits (dorsal versus lateral) and in different brain areas (hippocampus/striatum). Finally, a new transgenic mouse line with deletion of all adenosine receptors seems to indicate a major allostatic rather than homeostatic role of adenosine and may allow isolating P2R-mediated responses to unravel their role in the brain, a goal close to heart of Geoffrey Burnstock, to whom we affectionately dedicate this review.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Vanessa S Lourenço
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ângelo R Tomé
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paula M Canas
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
7
|
Garofalo S, Picard K, Limatola C, Nadjar A, Pascual O, Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol 2020; 10:687-712. [PMID: 32163207 DOI: 10.1002/cphy.c190022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Katherine Picard
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université Claude Bernard Lyon, Lyon, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Départment de médecine moleculaire, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
8
|
Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5'-nucleotidase (CD73). Am J Physiol Cell Physiol 2019; 317:C1079-C1092. [PMID: 31461341 DOI: 10.1152/ajpcell.00285.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ecto-5'-nucleotidase [cluster of differentiation 73 (CD73)] is a ubiquitously expressed glycosylphosphatidylinositol-anchored glycoprotein that converts extracellular adenosine 5'-monophosphate to adenosine. Anti-CD73 inhibitory antibodies are currently undergoing clinical testing for cancer immunotherapy. However, many protective physiological functions of CD73 need to be taken into account for new targeted therapies. This review examines CD73 functions in multiple organ systems and cell types, with a particular focus on novel findings from the last 5 years. Missense loss-of-function mutations in the CD73-encoding gene NT5E cause the rare disease "arterial calcifications due to deficiency of CD73." Aside from direct human disease involvement, cellular and animal model studies have revealed key functions of CD73 in tissue homeostasis and pathology across multiple organ systems. In the context of the central nervous system, CD73 is antinociceptive and protects against inflammatory damage, while also contributing to age-dependent decline in cortical plasticity. CD73 preserves barrier function in multiple tissues, a role that is most evident in the respiratory system, where it inhibits endothelial permeability in an adenosine-dependent manner. CD73 has important cardioprotective functions during myocardial infarction and heart failure. Under ischemia-reperfusion injury conditions, rapid and sustained induction of CD73 confers protection in the liver and kidney. In some cases, the mechanism by which CD73 mediates tissue injury is less clear. For example, CD73 has a promoting role in liver fibrosis but is protective in lung fibrosis. Future studies that integrate CD73 regulation and function at the cellular level with physiological responses will improve its utility as a disease target.
Collapse
Affiliation(s)
- Marquet Minor
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Nguyen J, Gibbons CM, Dykstra-Aiello C, Ellingsen R, Koh KMS, Taishi P, Krueger JM. Interleukin-1 receptor accessory proteins are required for normal homeostatic responses to sleep deprivation. J Appl Physiol (1985) 2019; 127:770-780. [PMID: 31295066 DOI: 10.1152/japplphysiol.00366.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1β (IL1) is a sleep regulatory substance. The IL1/IL1 type 1 receptor complex requires a receptor accessory protein (AcP) to signal. There are three isoforms of AcP. In the current experiments, mice lacking a neuron-specific isoform, called AcPb knockout (AcPb KO), or mice lacking AcP + AcPb isoforms (AcP KO) or wild-type (WT) mice were used. Spontaneous sleep and sleep responses to sleep deprivation (SD) between zeitgeber time (ZT) 20-ZT4 and ZT8-ZT16 were characterized. Furthermore, somatosensory cortical protein extracts were examined for phosphorylated (p) proto-oncogene tyrosine-protein kinase sarcoma (Src) and p38MAPK levels at ZT4 and ZT16 and after SD. Spontaneous sleep was similar in the three strains, except rapid eye movement sleep (REMS) duration between ZT12-ZT16 was greater in AcP KO than WT mice. After SD at ZT4, only WT mice had non-REMS (NREMS) rebounds. All mouse strains lacked an NREMS rebound after SD at ZT16. All strains after both SD periods had REMS rebounds. AcPb KO mice, but not AcP KO mice, had greater EEG delta wave (0.5-4 Hz) power during NREMS than WT mice. p-Src was very low at ZT16 but high at ZT4, whereas p-p38MAPK was low at ZT4 and high at ZT16. p-p38MAPK levels were not sensitive to SD. In contrast, p-Src levels were less after SD at the P = 0.08 level of significance in the strains lacking AcPb. We conclude that AcPb is required for NREMS responses to sleep loss, but not for SD-induced EEG delta wave or REMS responses.NEW & NOTEWORTHY Interleukin-1β (IL1), a well-characterized sleep regulatory substance, requires an IL1 receptor accessory protein (AcP); one of its isoforms is neuron-specific (called AcPb). We showed that in mice, AcPb is required for nonrapid eye movement sleep responses following 8 h of sleep loss ending 4 h after daybreak but did not affect rapid eye movement sleep rebound. Sleep loss reduced phosphorylation of proto-oncogene tyrosine-protein kinase sarcoma but not of the less sensitive p38MAPK, downstream IL1 signaling molecules.
Collapse
Affiliation(s)
- Joseph Nguyen
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| | - Cody M Gibbons
- School of Medicine University of Washington, Spokane, Washington
| | - Cheryl Dykstra-Aiello
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| | | | - Khia Min Sabrina Koh
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| | - Ping Taishi
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| | - James M Krueger
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| |
Collapse
|
11
|
Silvani A, Cerri M, Zoccoli G, Swoap SJ. Is Adenosine Action Common Ground for NREM Sleep, Torpor, and Other Hypometabolic States? Physiology (Bethesda) 2019; 33:182-196. [PMID: 29616880 DOI: 10.1152/physiol.00007.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review compares two states that lower energy expenditure: non-rapid eye movement (NREM) sleep and torpor. Knowledge on mechanisms common to these states, and particularly on the role of adenosine in NREM sleep, may ultimately open the possibility of inducing a synthetic torpor-like state in humans for medical applications and long-term space travel. To achieve this goal, it will be important, in perspective, to extend the study to other hypometabolic states, which, unlike torpor, can also be experienced by humans.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna , Bologna , Italy.,National Institute of Nuclear Physics (INFN), Section of Bologna, Bologna , Italy
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Steven J Swoap
- Department of Biology, Williams College , Williamstown, Massachusetts
| |
Collapse
|
12
|
Takeda TA, Miyazaki S, Kobayashi M, Nishino K, Goto T, Matsunaga M, Ooi M, Shirakawa H, Tani F, Kawamura T, Komai M, Kambe T. Zinc deficiency causes delayed ATP clearance and adenosine generation in rats and cell culture models. Commun Biol 2018; 1:113. [PMID: 30271993 PMCID: PMC6123718 DOI: 10.1038/s42003-018-0118-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
Zinc deficiency causes myriad pathophysiological symptoms, but why distinct phenotypes are generated by zinc deficiency remains unclear. Considering that several ectoenzymes involved in purinergic signaling through extracellular adenine-nucleotide hydrolysis possess zinc ions in their active sites, and disorders in purinergic signaling result in diverse diseases that are frequently similar to those caused by zinc deficiency, herein we examine whether zinc deficiency affects extracellular adenine-nucleotide metabolism. Zinc deficiency severely impairs the activities of major ectoenzymes (ENPP1, ENPP3, NT5E/CD73, and TNAP), and also strongly suppresses adenine-nucleotide hydrolysis in cell-membrane preparations or rat plasma, thereby increasing ATP and ADP levels and decreasing adenosine levels. Thus, zinc deficiency delays both extracellular ATP clearance and adenosine generation, and zinc modulates extracellular adenine-nucleotide metabolism. Since the finely tuned balance between extracellular adenine nucleotides and adenosine is critical for purinergic signaling, these findings provide a novel insight into why zinc deficiency results in diverse symptoms. Taka-aki Takeda et al. find that zinc deficiency impairs adenine nucleotide metabolism in both cell and rat models leading to delays in extracellular ATP clearance and adenosine generation. The results show that zinc deficiency affects purinergic signaling and may explain why zinc deficiency in humans results in diverse symptoms.
Collapse
Affiliation(s)
- Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Shiho Miyazaki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Miki Kobayashi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Katsutoshi Nishino
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Tomoko Goto
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.,Faculty of Human Life Science, Miyagi Gakuin Women's University, Sendai, 981-8557, Japan
| | - Mayu Matsunaga
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Minami Ooi
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Hitoshi Shirakawa
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Fumito Tani
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Michio Komai
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
13
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
14
|
Abstract
Several physiological functions of adenosine (Ado) appear to be mediated by four G protein-coupled Ado receptors. Ado is produced extracellularly from the catabolism of the excreted ATP, or intracellularly from AMP, and then released through its transporter. High level of intracellular Ado occurs only at low energy charge, as an intermediate of ATP breakdown, leading to hypoxanthine production. AMP, the direct precursor of Ado, is now considered as an important stress signal inside cell triggering metabolic regulation through activation of a specific AMP-dependent protein kinase. Intracellular Ado produced from AMP by allosterically regulated nucleotidases can be regarded as a stress signal as well. To study the receptor-independent effects of Ado, several experimental approaches have been proposed, such as inhibition or silencing of key enzymes of Ado metabolism, knockdown of Ado receptors in animals, the use of antagonists, or cell treatment with deoxyadenosine, which is substrate of the enzymes acting on Ado, but is unable to interact with Ado receptors. In this way, it was demonstrated that, among other functions, intracellular Ado modulates angiogenesis by regulating promoter methylation, induces hypothermia, promotes apoptosis in sympathetic neurons, and, in the case of oxygen and glucose deprivation, exerts a cytoprotective effect by replenishing the ATP pool.
Collapse
|
15
|
Zielinski MR, Gerashchenko D, Karpova SA, Konanki V, McCarley RW, Sutterwala FS, Strecker RE, Basheer R. The NLRP3 inflammasome modulates sleep and NREM sleep delta power induced by spontaneous wakefulness, sleep deprivation and lipopolysaccharide. Brain Behav Immun 2017; 62:137-150. [PMID: 28109896 PMCID: PMC5373953 DOI: 10.1016/j.bbi.2017.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 11/28/2022] Open
Abstract
Both sleep loss and pathogens can enhance brain inflammation, sleep, and sleep intensity as indicated by electroencephalogram delta (δ) power. The pro-inflammatory cytokine interleukin-1 beta (IL-1β) is increased in the cortex after sleep deprivation (SD) and in response to the Gram-negative bacterial cell-wall component lipopolysaccharide (LPS), although the exact mechanisms governing these effects are unknown. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome protein complex forms in response to changes in the local environment and, in turn, activates caspase-1 to convert IL-1β into its active form. SD enhances the cortical expression of the somnogenic cytokine IL-1β, although the underlying mechanism is, as yet, unidentified. Using NLRP3-gene knockout (KO) mice, we provide evidence that NLRP3 inflammasome activation is a crucial mechanism for the downstream pathway leading to increased IL-1β-enhanced sleep. NLRP3 KO mice exhibited reduced non-rapid eye movement (NREM) sleep during the light period. We also found that sleep amount and intensity (δ activity) were drastically attenuated in NLRP3 KO mice following SD (homeostatic sleep response), as well as after LPS administration, although they were enhanced by central administration of IL-1β. NLRP3, ASC, and IL1β mRNA, IL-1β protein, and caspase-1 activity were greater in the somatosensory cortex at the end of the wake-active period when sleep propensity was high and after SD in wild-type but not NLRP3 KO mice. Thus, our novel and converging findings suggest that the activation of the NLRP3 inflammasome can modulate sleep induced by both increased wakefulness and a bacterial component in the brain.
Collapse
Affiliation(s)
- Mark R Zielinski
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA.
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Svetlana A Karpova
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Varun Konanki
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Robert W McCarley
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, Brockton, MA 02301, USA
| | - Fayyaz S Sutterwala
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert E Strecker
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Radhika Basheer
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| |
Collapse
|
16
|
Davis CJ, Zielinski MR, Dunbrasky D, Taishi P, Dinarello CA, Krueger JM. Interleukin 37 expression in mice alters sleep responses to inflammatory agents and influenza virus infection. Neurobiol Sleep Circadian Rhythms 2016; 3:1-9. [PMID: 28070566 PMCID: PMC5218600 DOI: 10.1016/j.nbscr.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple interactions between the immune system and sleep are known, including the effects of microbial challenge on sleep or the effects of sleep loss on facets of the immune response. Cytokines regulate, in part, sleep and immune responses. Here we examine the role of an anti-inflammatory cytokine, interleukin-37 (IL-37) on sleep in a mouse strain that expresses human IL-37b (IL37tg mice). Constitutive expression of the IL-37 gene in the brains of these mice under resting conditions is low; however, upon an inflammatory stimulus, expression increases dramatically. We measured sleep in three conditions; (a) under baseline conditions and after 6 h of sleep loss, (b) after bolus intraperitoneal administration of lipopolysaccharide (LPS) or IL-1β and (c) after intranasal influenza virus challenge. Under baseline conditions, the IL37tg mice had 7% more spontaneous non-rapid eye movement sleep (NREMS) during the light period than wild-type (WT) mice. After sleep deprivation both WT mice and IL37tg mice slept an extra 21% and 12%, respectively, during the first 6 h of recovery. NREMS responses after sleep deprivation did not significantly differ between WT mice and IL37tg mice. However, in response to either IL-1β or LPS, the increases in time spent in NREMS were about four-fold greater in the WT mice than in the IL37tg mice. In contrast, in response to a low dose of mouse-adapted H1N1 influenza virus, sleep responses developed slowly over the 6 day recording period. By day 6, NREMS increased by 10% and REMS increased by 18% in the IL37tg mice compared to the WT mice. Further, by day 4 IL37tg mice lost less weight, remained more active, and retained their body temperatures closer to baseline values than WT mice. We conclude that conditions that promote IL-37 expression attenuate morbidity to severe inflammatory challenge. Sleep responses to mild acute sleep deprivation are similar in mice transgenic for interleukin-37 (IL37tg) IL37tg and wild type (WT) mice. Sleep responses induced by either IL-β or LPS are greatly attenuated in IL37tg mice compared to WT mice. After influenza virus challenge, IL37tg mice have reduced morbidities and enhanced sleep responses.
Collapse
Affiliation(s)
- Christopher J Davis
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, USA 99210-1495
| | - Mark R Zielinski
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, USA 99210-1495; VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA 02312; Department of Psychiatry, Harvard Medical School, West Roxbury, MA, USA 02312
| | - Danielle Dunbrasky
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, USA 99210-1495
| | - Ping Taishi
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, USA 99210-1495
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA 80045; Radboud University Medical Center, Nijmegen, The Netherlands
| | - James M Krueger
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, USA 99210-1495
| |
Collapse
|
17
|
Kovalzon VM, Moiseenko LS, Ambaryan AV, Kurtenbach S, Shestopalov VI, Panchin YV. Sleep-wakefulness cycle and behavior in pannexin1 knockout mice. Behav Brain Res 2016; 318:24-27. [PMID: 27769744 DOI: 10.1016/j.bbr.2016.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023]
Abstract
Pannexins are membrane channel proteins that play a role in a number of critical biological processes (Panchin et al., 2000; Shestopalov, Panchin, 2008). Among other cellular functions, pannexin hemichannels serve as purine nucleoside conduits providing ATP efflux into the extracellular space (Dahl, 2015), where it is rapidly degraded to adenosine. Pannexin1 (Panx1) is abundantly expressed in the brain and has been shown to contribute to adenosine signaling in nervous system tissues (Prochnow et al., 2012). We hypothesized that pannexin1 may contribute to sleep-wake cycle regulation through extracellular adenosine, a well-established paracrine factor in slow wave sleep. To investigate this link, EEG and movement activity throughout the light/dark cycle were compared in Panx1-/- and Panx1+/+ mice. We found a significant increase in waking and a correspondent decrease in slow wave sleep percentages in the Panx1-/- animals. These changes were especially pronounced during the dark period. Furthermore, we found a significant increase in movement activity of Panx1-/- mice. These findings are consistent with the hypothesis that extracellular adenosine is relatively depleted in Panx1-/- animals due to the absence of the ATP-permeable hemichannels. At the same time, sleep rebound after a 6-h sleep deprivation remained unchanged in Panx1-/- mice as compared to the control animals. Behavioral tests revealed that Panx1-/- mice were significantly faster during their descent along the vertical pole but more sluggish during their run through the horizontal pole as compared to the control mice.
Collapse
Affiliation(s)
- V M Kovalzon
- Severtsov Institute Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - L S Moiseenko
- Severtsov Institute Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - A V Ambaryan
- Severtsov Institute Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - S Kurtenbach
- Bascom Palmer Eye Institute, University of Miami School Medicine, Miami, Florida, USA
| | - V I Shestopalov
- Bascom Palmer Eye Institute, University of Miami School Medicine, Miami, Florida, USA; Vavilov Institute for General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Y V Panchin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia; Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
18
|
Davis CJ, Taishi P, Honn KA, Koberstein JN, Krueger JM. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1004-R1012. [PMID: 27707719 DOI: 10.1152/ajpregu.00167.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling.
Collapse
Affiliation(s)
- Christopher J Davis
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington; .,Sleep and Performance Research Center, Washington State University-Spokane, Spokane, Washington.,Program in Neuroscience, Washington State University-Spokane, Spokane, Washington; and
| | - Ping Taishi
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington
| | - Kimberly A Honn
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington.,Sleep and Performance Research Center, Washington State University-Spokane, Spokane, Washington.,Elson S. Floyd College of Medicine, Department of Medical Education and Clinical Sciences, Washington State University-Spokane, Spokane, Washington
| | - John N Koberstein
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington
| | - James M Krueger
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington.,Program in Neuroscience, Washington State University-Spokane, Spokane, Washington; and
| |
Collapse
|
19
|
An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep. J Neurosci 2016; 36:3709-21. [PMID: 27030757 DOI: 10.1523/jneurosci.3906-15.2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. SIGNIFICANCE STATEMENT The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to sleep function.
Collapse
|
20
|
Abstract
Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader's understanding of the functions of sleep.
Collapse
Affiliation(s)
- Mark R. Zielinski
- Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA and Harvard Medical School, Department of Psychiatry
| | - James T. McKenna
- Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA and Harvard Medical School, Department of Psychiatry
| | - Robert W. McCarley
- Veterans Affairs Boston Healthcare System, Brockton, MA 02301, USA and Harvard Medical School, Department of Psychiatry
| |
Collapse
|
21
|
Davis CJ, Dunbrasky D, Oonk M, Taishi P, Opp MR, Krueger JM. The neuron-specific interleukin-1 receptor accessory protein is required for homeostatic sleep and sleep responses to influenza viral challenge in mice. Brain Behav Immun 2015; 47:35-43. [PMID: 25449578 PMCID: PMC4418942 DOI: 10.1016/j.bbi.2014.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/14/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022] Open
Abstract
Interleukin-1β (IL1) is involved in sleep regulation and sleep responses induced by influenza virus. The IL1 receptor accessory protein (AcP) and an alternatively spliced isoform of AcP found primarily in neurons, AcPb, form part of the IL1 signaling complex. IL1-induced sleep responses depend on injection time. In rat cortex, both IL1 mRNA and AcPb mRNA peak at Zeitgeber Time (ZT) 0 then decline over the daylight hours. Sleep deprivation enhances cortical IL1 mRNA and AcPb mRNA levels, but not AcP mRNA. We used wild type (WT) and AcPb knockout (KO) mice and performed sleep deprivation between ZT10 and 20 or between ZT22 and 8 based on the time of day expression profiles of AcPb and IL1. We hypothesized that the magnitude of the responses to sleep loss would be strain- and time of day-dependent. In WT mice, NREMS and REMS rebounds occurred regardless of when they were deprived of sleep. In contrast, when AcPbKO mice were sleep deprived from ZT10 to 20 NREMS and REMS rebounds were absent. The AcPbKO mice expressed sleep rebound if sleep loss occurred from ZT22 to 8 although the NREMS responses were not as robust as those that occurred in WT mice. We also challenged mice with intranasal H1N1 influenza virus. WT mice exhibited the expected enhanced sleep responses. In contrast, the AcPbKO mice had less sleep after influenza challenge compared to their own baseline values and compared to WT mice. Body temperature and locomotor activity responses after viral challenge were lower and mortality was higher in AcPbKO than in WT mice. We conclude that neuron-specific AcPb plays a critical role in host defenses and sleep homeostasis.
Collapse
Affiliation(s)
- Christopher J. Davis
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210,Corresponding Author: Christopher J. Davis, P.O. Box 1495, Spokane, WA 99202, Phone No. 509-358-7820,
| | - Danielle Dunbrasky
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| | - Marcella Oonk
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| | - Ping Taishi
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| | - Mark R. Opp
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98104
| | - James M. Krueger
- College of Medical Sciences and the Sleep and Performance Research Center, Washington State University – Spokane, Spokane, WA 99210
| |
Collapse
|
22
|
Abstract
Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.
Collapse
Affiliation(s)
- Géraldine M Mang
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne-Dorigny, Switzerland,
| | | |
Collapse
|
23
|
Zielinski MR, Karpova SA, Yang X, Gerashchenko D. Substance P and the neurokinin-1 receptor regulate electroencephalogram non-rapid eye movement sleep slow-wave activity locally. Neuroscience 2014; 284:260-272. [PMID: 25301750 DOI: 10.1016/j.neuroscience.2014.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/07/2014] [Accepted: 08/19/2014] [Indexed: 11/17/2022]
Abstract
The neuropeptide substance P is an excitatory neurotransmitter produced by various cells including neurons and microglia that is involved in regulating inflammation and cerebral blood flow--functions that affect sleep and slow-wave activity (SWA). Substance P is the major ligand for the neurokinin-1 receptor (NK-1R), which is found throughout the brain including the cortex. The NK-1R is found on sleep-active cortical neurons expressing neuronal nitric oxide synthase whose activity is associated with SWA. We determined the effects of local cortical administration of a NK-1R agonist (substance P-fragment 1, 7) and a NK-1R antagonist (CP96345) on sleep and SWA in mice. The NK-1R agonist significantly enhanced SWA for several hours when applied locally to the cortex of the ipsilateral hemisphere as the electroencephalogram (EEG) electrode but not after application to the contralateral hemisphere when compared to saline vehicle control injections. In addition, a significant compensatory reduction in SWA was found after the NK-1R agonist-induced enhancements in SWA. Conversely, injections of the NK-1R antagonist into the cortex of the ipsilateral hemisphere of the EEG electrode attenuated SWA compared to vehicle injections but this effect was not found after injections of the NK-1R antagonist into contralateral hemisphere as the EEG electrode. Non-rapid eye movement sleep and rapid eye movement sleep duration responses after NK-1R agonist and antagonist injections were not significantly different from the responses to the vehicle. Our findings indicate that the substance P and the NK-1R are involved in regulating SWA locally.
Collapse
Affiliation(s)
- M R Zielinski
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA.
| | - S A Karpova
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - X Yang
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA; Department of Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - D Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| |
Collapse
|
24
|
Chronic sleep restriction disrupts sleep homeostasis and behavioral sensitivity to alcohol by reducing the extracellular accumulation of adenosine. J Neurosci 2014; 34:1879-91. [PMID: 24478367 DOI: 10.1523/jneurosci.2870-12.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep impairments are comorbid with a variety of neurological and psychiatric disorders including depression, epilepsy, and alcohol abuse. Despite the prevalence of these disorders, the cellular mechanisms underlying the interaction between sleep disruption and behavior remain poorly understood. In this study, the impact of chronic sleep loss on sleep homeostasis was examined in C57BL/6J mice following 3 d of sleep restriction. The electroencephalographic power of slow-wave activity (SWA; 0.5-4 Hz) in nonrapid eye movement (NREM) sleep and adenosine tone were measured during and after sleep restriction, and following subsequent acute sleep deprivation. During the first day of sleep restriction, SWA and adenosine tone increased, indicating a homeostatic response to sleep loss. On subsequent days, SWA declined, and this was accompanied by a corresponding reduction in adenosine tone caused by a loss of one source of extracellular adenosine. Furthermore, the response to acute sleep deprivation (6 h) was significantly attenuated in sleep-restricted mice. These effects were long-lasting with reduced SWA and adenosine tone persisting for at least 2 weeks. To investigate the behavioral consequences of chronic sleep restriction, sensitivity to the motor-impairing effects of alcohol was also examined. Sleep-restricted mice were significantly less sensitive to alcohol when tested 24 h after sleep restriction, an effect that persisted for 4 weeks. Intracerebroventricular infusion of an adenosine A1 receptor antagonist produced a similar decrease in sensitivity to alcohol. These results suggest that chronic sleep restriction induces a sustained impairment in adenosine-regulated sleep homeostasis and consequentially impacts the response to alcohol.
Collapse
|
25
|
Zielinski MR, Kim Y, Karpova SA, Winston S, McCarley RW, Strecker RE, Gerashchenko D. Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction. Neuroscience 2013; 247:35-42. [PMID: 23685166 PMCID: PMC3801181 DOI: 10.1016/j.neuroscience.2013.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/07/2023]
Abstract
Non-rapid eye movement (NREM) sleep electroencephalographic (EEG) delta power (~0.5-4 Hz), also known as slow wave activity (SWA), is typically enhanced after acute sleep deprivation (SD) but not after chronic sleep restriction (CSR). Recently, sleep-active cortical neurons expressing neuronal nitric oxide synthase (nNOS) were identified and associated with enhanced SWA after short acute bouts of SD (i.e., 6h). However, the relationship between cortical nNOS neuronal activity and SWA during CSR is unknown. We compared the activity of cortical neurons expressing nNOS (via c-Fos and nNOS immuno-reactivity, respectively) and sleep in rats in three conditions: (1) after 18-h of acute SD; (2) after five consecutive days of sleep restriction (SR) (18-h SD per day with 6h ad libitum sleep opportunity per day); (3) and time-of-day matched ad libitum sleep controls. Cortical nNOS neuronal activity was enhanced during sleep after both 18-h SD and 5 days of SR treatments compared to control treatments. SWA and NREM sleep delta energy (the product of NREM sleep duration and SWA) were positively correlated with enhanced cortical nNOS neuronal activity after 18-h SD but not 5days of SR. That neurons expressing nNOS were active after longer amounts of acute SD (18h vs. 6h reported in the literature) and were correlated with SWA further suggest that these cells might regulate SWA. However, since these neurons were active after CSR when SWA was not enhanced, these findings suggest that mechanisms downstream of their activation are altered during CSR.
Collapse
Affiliation(s)
- M R Zielinski
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Zielinski MR, Dunbrasky DL, Taishi P, Souza G, Krueger JM. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice. Sleep 2013; 36:1227-38, 1238A. [PMID: 23904683 DOI: 10.5665/sleep.2892] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
STUDY OBJECTIVE Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. DESIGN We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. MEASUREMENTS AND RESULTS Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. CONCLUSIONS We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.
Collapse
Affiliation(s)
- Mark R Zielinski
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99210-1495, USA
| | | | | | | | | |
Collapse
|
27
|
Zielinski MR, Davis JM, Fadel JR, Youngstedt SD. Influence of chronic moderate sleep restriction and exercise training on anxiety, spatial memory, and associated neurobiological measures in mice. Behav Brain Res 2013; 250:74-80. [PMID: 23644185 DOI: 10.1016/j.bbr.2013.04.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/03/2013] [Accepted: 04/22/2013] [Indexed: 02/08/2023]
Abstract
Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (∼4h loss/day) vs. ad libitum sleep] × 2 [exercise (1h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction.
Collapse
Affiliation(s)
- Mark R Zielinski
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury,MA 02132, United States.
| | | | | | | |
Collapse
|
28
|
A novel telemetric system to measure polysomnographic biopotentials in freely moving animals. J Neurosci Methods 2013; 216:79-86. [PMID: 23563323 DOI: 10.1016/j.jneumeth.2013.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/17/2013] [Accepted: 03/26/2013] [Indexed: 12/20/2022]
Abstract
Mice are by far the most widely used species for scientific research and have been used in many studies involving biopotentials, such as the electroencephalogram (EEG) and electromyogram (EMG) signals monitored for sleep analysis. Unfortunately, current methods for the analysis of these signals involve either tethered systems that are restrictive and heavy for the animal or wireless systems that use transponders that are large relative to the animal and require invasive surgery for implantation; as a result, natural behavior/activity is altered. Here, we propose a novel and inexpensive system for measuring electroencephalographic signals and other biopotentials in mice that allows for natural movement. We also evaluate the new system for the analysis of sleep architecture and EEG power during both spontaneous sleep and the sleep that follows sleep deprivation in mice. Using our new system, vigilance states including non-rapid eye movement sleep (NREMS), rapid eye movement sleep (REMS), and wakefulness, as well as EEG power and NREMS EEG delta power in the 0.5-4 Hz range (an indicator of sleep intensity) showed the diurnal rhythms typically found in mice. These values were also similar to values obtained in mice using telemetry transponders. Mice that used the new system also demonstrated enhanced NREMS EEG delta power responses that are typical following sleep deprivation and few signal artifacts. Moreover, similar movement activity counts were found when using the new system compared to a wireless system. This novel system for measuring biopotentials can be used for polysomnography, infusion, microdialysis, and optogenetic studies, reduces artifacts, and allows for a more natural moving environment and a more accurate investigation of biological systems and pharmaceutical development.
Collapse
|
29
|
Ingiosi AM, Opp MR, Krueger JM. Sleep and immune function: glial contributions and consequences of aging. Curr Opin Neurobiol 2013; 23:806-11. [PMID: 23452941 DOI: 10.1016/j.conb.2013.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 11/18/2022]
Abstract
The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | | | | |
Collapse
|
30
|
Zielinski MR, Souza G, Taishi P, Bohnet SG, Krueger JM. Olfactory bulb and hypothalamic acute-phase responses to influenza virus: effects of immunization. Neuroimmunomodulation 2013; 20:323-33. [PMID: 23948712 PMCID: PMC3874867 DOI: 10.1159/000351716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/20/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Within hours of intranasal challenge, mouse-adapted H1N1 A/Puerto Rico/8/34 (PR8) influenza genomic RNA is found in the olfactory bulb (OB) and OB pro-inflammatory cytokines are up-regulated. Severing the olfactory tract delays the acute-phase response (APR) and the APR is attenuated by immunization. OBJECTIVES To determine if immunization affects OB localization of influenza or the molecular brain mechanisms regulating APR. METHODS Male mice were immunized with PR8 influenza, then OB viral RNA, APR, and influenza-related cytokine responses were determined after homologous viral challenge. RESULTS Immunization did not prevent influenza OB viral invasion within 24 h of viral challenge. However, it greatly attenuated OB viral RNA 6 days after viral challenge and the APR including hypothermia and body weight loss responses. Within the OB, 24 h after influenza challenge, prior immunization blocked virus-induced up-regulation of toll-like receptor 7 and interferon (IFN) γ mRNAs. At this time, hypothalamic (HT) growth hormone-releasing hormone receptor and tumor necrosis factor-α mRNAs were greatly enhanced in immunized but not in positive control mice. By 6 days after viral challenge, OB and HT mRNAs returned towards baseline values. In the lung, mRNA up-regulation was greater than that in the brain and maximized 6 days after challenge. Lung IFNγ mRNA decreased at 24 h but increased 6 days after challenge in the positive compared to negative controls. Immunization prevented the up-regulation of most of the flu-related mRNAs measured in lungs. CONCLUSION Collectively, these data suggest a role for OB and HT involvement in immunization protection against influenza infection.
Collapse
Affiliation(s)
- Mark R Zielinski
- Sleep and Performance Research Center and WWAMI Medical Education Program, Washington State University, Spokane, Wash., USA
| | | | | | | | | |
Collapse
|
31
|
Blutstein T, Haydon PG. The Importance of astrocyte-derived purines in the modulation of sleep. Glia 2012; 61:129-39. [PMID: 23027687 DOI: 10.1002/glia.22422] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/28/2012] [Indexed: 12/17/2022]
Abstract
Sleep is an evolutionarily conserved phenomenon that is clearly essential for survival, but we have limited understanding of how and why it is so important. Adenosine triphosphate (ATP)/adenosine signaling has been known to be important in the regulation of sleep and recent evidence suggests a critical role for gliotransmission in the modulation of sleep homeostasis. Herein, we review the regulation of ATP/adenosine in the nervous system and provide evidence of a critical role for astrocyte-derived adenosine in the regulation of sleep homeostasis and the modulation of synaptic transmission. Further understanding of the role of glial cells in the regulation of sleep may provide new targets for pharmaceutical intervention in the treatment of brain dysfunctions, specifically those that are comorbid with sleep disruptions.
Collapse
Affiliation(s)
- Tamara Blutstein
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, Massachusetts 02111, USA
| | | |
Collapse
|