1
|
Mendoza-Salazar I, Fragozo A, González-Martínez AP, Trejo-Martínez I, Arreola R, Pavón L, Almagro JC, Vallejo-Castillo L, Aguilar-Alonso FA, Pérez-Tapia SM. Almost 50 Years of Monomeric Extracellular Ubiquitin (eUb). Pharmaceuticals (Basel) 2024; 17:185. [PMID: 38399400 PMCID: PMC10892293 DOI: 10.3390/ph17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Monomeric ubiquitin (Ub) is a 76-amino-acid highly conserved protein found in eukaryotes. The biological activity of Ub first described in the 1970s was extracellular, but it quickly gained relevance due to its intracellular role, i.e., post-translational modification of intracellular proteins (ubiquitination) that regulate numerous eukaryotic cellular processes. In the following years, the extracellular role of Ub was relegated to the background, until a correlation between higher survival rate and increased serum Ub concentrations in patients with sepsis and burns was observed. Although the mechanism of action (MoA) of extracellular ubiquitin (eUb) is not yet well understood, further studies have shown that it may ameliorate the inflammatory response in tissue injury and multiple sclerosis diseases. These observations, compounded with the high stability and low immunogenicity of eUb due to its high conservation in eukaryotes, have made this small protein a relevant candidate for biotherapeutic development. Here, we review the in vitro and in vivo effects of eUb on immunologic, cardiovascular, and nervous systems, and discuss the potential MoAs of eUb as an anti-inflammatory, antimicrobial, and cardio- and brain-protective agent.
Collapse
Affiliation(s)
- Ivette Mendoza-Salazar
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Aneth P. González-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ismael Trejo-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Rodrigo Arreola
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Mexico City 14370, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Juan C. Almagro
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- GlobalBio, Inc., 320 Concord Ave, Cambridge, MA 02138, USA
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Francisco A. Aguilar-Alonso
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Sonia M. Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| |
Collapse
|
2
|
R PA, Anbarasu A. Antimicrobial Peptides as Immunomodulators and Antimycobacterial Agents to Combat Mycobacterium tuberculosis: a Critical Review. Probiotics Antimicrob Proteins 2023; 15:1539-1566. [PMID: 36576687 DOI: 10.1007/s12602-022-10018-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) is a devastating disease foisting a significantly high morbidity, prepotent in low- and middle-income developing countries. Evolution of drug resistance among Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has made the TB treatment more complicated. The protracted nature of present TB treatment, persistent and tolerant Mtb populations, interaction with antiretroviral therapy and existing toxicity concerned with conventional anti-TB drugs are the four major challenges inflicted with emergence of drug-resistant mycobacterial strains, and the standard medications are unable to combat these strains. These factors emphasize an exigency to develop new drugs to overcome these barriers in current TB therapy. With this regard, antimycobacterial peptides derived from various sources such as human cells, bacterial sources, mycobacteriophages, fungal, plant and animal sources could be considered as antituberculosis leads as most of these peptides are associated with dual advantages of having both bactericidal activity towards Mtb as well as immuno-regulatory property. Some of the peptides possess the additional advantage of interacting synergistically with antituberculosis medications too, thereby increasing their efficiency, underscoring the vigour of antimicrobial peptides (AMPs) as best possible alternative therapeutic candidates or adjuvants in TB treatment. Albeit the beneficiary features of these peptides, few obstacles allied with them like cytotoxicity and proteolytic degradation are matter of concerns too. In this review, we have focused on structural hallmarks, targeting mechanisms and specific structural aspects contributing to antimycobacterial activity and discovered natural and synthetic antimycobacterial peptides along with their sources, anti-TB, immuno-regulatory properties, merits and demerits and possible delivery methods of AMPs.
Collapse
Affiliation(s)
- Preethi A R
- Medical & Biological Computing Laboratory, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore-632014, India
- Department of Biotechnology, SBST, VIT, Vellore-632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore-632014, India.
- Department of Biotechnology, SBST, VIT, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Kumar R, Gandham S, Rana A, Maity HK, Sarkar U, Dey B. Divergent proinflammatory immune responses associated with the differential susceptibility of cattle breeds to tuberculosis. Front Immunol 2023; 14:1199092. [PMID: 37795082 PMCID: PMC10546398 DOI: 10.3389/fimmu.2023.1199092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Tuberculosis (TB) in the bovine is one of the most predominant chronic debilitating infectious diseases primarily caused by Mycobacterium bovis. Besides, the incidence of TB in humans due to M. bovis, and that in bovines (bovine TB, bTB) due to M. tuberculosis- indicates cattle as a major reservoir of zoonotic TB. While India accounts for the highest global burden of both TB and multidrug-resistant TB in humans, systematic evaluation of bTB prevalence in India is largely lacking. Recent reports emphasized markedly greater bTB prevalence in exotic and crossbred cattle compared to indigenous cattle breeds that represent more than one-third of the total cattle population in India, which is the largest globally. This study aimed at elucidating the immune responses underlying the differential bTB incidence in prominent indigenous (Sahiwal), and crossbred (Sahiwal x Holstein Friesian) cattle reared in India. Employing the standard Single Intradermal Tuberculin Test (SITT), and mycobacterial gene-targeting single as well as multiplex-PCR-based screening revealed higher incidences of bovine tuberculin reactors as well as Mycobacterium tuberculosis Complex specific PCR positivity amongst the crossbred cattle. Further, ex vivo mycobacterial infection in cultures of bovine peripheral blood mononuclear cells (PBMC) from SITT, and myco-PCR negative healthy cattle exhibited significantly higher intracellular growth of M. bovis BCG, and M. tuberculosis H37Ra in the crossbred cattle PBMCs compared to native cattle. In addition, native cattle PBMCs induced higher pro-inflammatory cytokines and signaling pathways, such as interferon-gamma (IFN-γ), interleukin-17 (IL-17), tank binding kinase-1 (TBK-1), and nitric oxide (NO) upon exposure to live mycobacterial infection in comparison to PBMCs from crossbred cattle that exhibited higher expression of IL-1β transcripts. Together, these findings highlight that differences in the innate immune responses of these cattle breeds might be contributing to the differential susceptibility to bTB infection, and the resultant disparity in bTB incidence amongst indigenous, and crossbred cattle.
Collapse
Affiliation(s)
- Rishi Kumar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sripratyusha Gandham
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Avi Rana
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Hemanta Kumar Maity
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Uttam Sarkar
- Department of Animal Genetics and Breeding, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Bappaditya Dey
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| |
Collapse
|
4
|
Lösslein AK, Lohrmann F, Scheuermann L, Gharun K, Neuber J, Kolter J, Forde AJ, Kleimeyer C, Poh YY, Mack M, Triantafyllopoulou A, Dunlap MD, Khader SA, Seidl M, Hölscher A, Hölscher C, Guan XL, Dorhoi A, Henneke P. Monocyte progenitors give rise to multinucleated giant cells. Nat Commun 2021; 12:2027. [PMID: 33795674 PMCID: PMC8016882 DOI: 10.1038/s41467-021-22103-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/23/2021] [Indexed: 01/12/2023] Open
Abstract
The immune response to mycobacteria is characterized by granuloma formation, which features multinucleated giant cells as a unique macrophage type. We previously found that multinucleated giant cells result from Toll-like receptor-induced DNA damage and cell autonomous cell cycle modifications. However, the giant cell progenitor identity remained unclear. Here, we show that the giant cell-forming potential is a particular trait of monocyte progenitors. Common monocyte progenitors potently produce cytokines in response to mycobacteria and their immune-active molecules. In addition, common monocyte progenitors accumulate cholesterol and lipids, which are prerequisites for giant cell transformation. Inducible monocyte progenitors are so far undescribed circulating common monocyte progenitor descendants with high giant cell-forming potential. Monocyte progenitors are induced in mycobacterial infections and localize to granulomas. Accordingly, they exhibit important immunological functions in mycobacterial infections. Moreover, their signature trait of high cholesterol metabolism may be piggy-backed by mycobacteria to create a permissive niche.
Collapse
Affiliation(s)
- Anne Kathrin Lösslein
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- MOTI-VATE Graduate School, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florens Lohrmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM) and IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Kourosh Gharun
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jana Neuber
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aaron James Forde
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christian Kleimeyer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ying Yee Poh
- Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Matthias Mack
- University Hospital Regensburg, Internal Medicine II, Nephrology, Regensburg, Germany
| | - Antigoni Triantafyllopoulou
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Rheumatism Research Centre Berlin, Leibniz Association, Berlin, Germany
| | - Micah D Dunlap
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency and Institute for Clinical Pathology, Department of Pathology, Medical Center and Faculty of Medicine, Freiburg, Germany and Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, Duesseldorf, Germany
| | | | - Christoph Hölscher
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Borstel, Borstel, Germany
| | - Xue Li Guan
- Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Anca Dorhoi
- Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Immunology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Pediatrics and Adolescent Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Gharun K, Senges J, Seidl M, Lösslein A, Kolter J, Lohrmann F, Fliegauf M, Elgizouli M, Alber M, Vavra M, Schachtrup K, Illert AL, Gilleron M, Kirschning CJ, Triantafyllopoulou A, Henneke P. Mycobacteria exploit nitric oxide-induced transformation of macrophages into permissive giant cells. EMBO Rep 2017; 18:2144-2159. [PMID: 29097394 DOI: 10.15252/embr.201744121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
Immunity to mycobacteria involves the formation of granulomas, characterized by a unique macrophage (MΦ) species, so-called multinucleated giant cells (MGC). It remains unresolved whether MGC are beneficial to the host, that is, by prevention of bacterial spread, or whether they promote mycobacterial persistence. Here, we show that the prototypical antimycobacterial molecule nitric oxide (NO), which is produced by MGC in excessive amounts, is a double-edged sword. Next to its antibacterial capacity, NO propagates the transformation of MΦ into MGC, which are relatively permissive for mycobacterial persistence. The mechanism underlying MGC formation involves NO-induced DNA damage and impairment of p53 function. Moreover, MGC have an unsurpassed potential to engulf mycobacteria-infected apoptotic cells, which adds a further burden to their antimycobacterial capacity. Accordingly, mycobacteria take paradoxical advantage of antimicrobial cellular efforts by driving effector MΦ into a permissive MGC state.
Collapse
Affiliation(s)
- Kourosh Gharun
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Senges
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Lösslein
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florens Lohrmann
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Magdeldin Elgizouli
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Martina Vavra
- Division of Infectious Diseases, Department of Internal Medicine 2, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna L Illert
- Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carsten J Kirschning
- Institute of Medical Microbiology, Medical Center, University Duisburg-Essen, Essen, Germany
| | - Antigoni Triantafyllopoulou
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany .,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res 2017; 128:288-305. [PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü) Çukurova University, Adana, Turkey.
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Gülfer Yakıcı
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Çukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
7
|
Matsumoto M, Araki K, Hayashi K, Takeuchi Y, Shiozaki K, Suetake H, Yamamoto A. Adjuvant effect of recombinant interleukin-12 in the Nocardiosis formalin-killed vaccine of the amberjack Seriola dumerili. FISH & SHELLFISH IMMUNOLOGY 2017; 67:263-269. [PMID: 28602739 DOI: 10.1016/j.fsi.2017.06.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/13/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Nocardiosis causes serious economic damage in the fish farming of Japanese yellowtail fish. Nocardia seriolae identified as pathogenic bacterium is an intracellular-pathogen. In general, induction of cell-mediated immunity (CMI) is effective in infection defense against intracellular-pathogen. However, the conventional formalin-killed N. seriolae (FKC) vaccine induces humoral immunity. Interleukin-12 (IL-12) is Th1 type heterodimeric cytokine and induces cell differentiation in mammals. Our previous study showed that recombinant amberjack IL-12 has a role in CMI induction in vitro and could be a possible CMI inducing adjuvant. However, its adjuvant effect of fish IL-12 was not studied. In the present study, six types of amberjack recombinant IL-12 (rIL-12) were mixed and injected into amberjack with FKC. Firstly, we analyzed Th1- and Th2- related gene expression and monitored Th1/Th2 status followed by investigation of antibody titer. As a result, Th1-type immunity was induced in FKC + rIL-12 vaccinated fish. Secondly, we checked Th1/Th2 status of vaccinated fish after 10 days of N. seriolae infection using the expression of related genes. High T-bet/GATA-3 ratio was observed in FKC + rIL-12 vaccinated fish, suggesting that Th1 cells possesing antigen memory were induced against N. seriolae infection. Finally, the survival rate in challenge test showed that 88% of FKC + rIL-12 vaccinated fish was survived at 34 days after N. seriolae injection whereas PBS (control) and FKC only were exterminated. These result suggest that i) rIL-12 is viable CMI inducible adjuvant and ii) production of Th1 cells having antigen memory resulting from activation of IL-12 signaling pathway is important for defense against N. seriolae infection.
Collapse
Affiliation(s)
- Megumi Matsumoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan
| | - Kyosuke Araki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Kazuma Hayashi
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Yutaka Takeuchi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Hiroaki Suetake
- Department of Marine Bioscience and Technology, Fukui Prefectural University, Fukui, Japan
| | - Atsushi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan.
| |
Collapse
|
8
|
Anti-tubercular peptides: A quest of future therapeutic weapon to combat tuberculosis. ASIAN PAC J TROP MED 2016; 9:1023-1034. [DOI: 10.1016/j.apjtm.2016.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/10/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022] Open
|
9
|
Pires D, Marques J, Pombo JP, Carmo N, Bettencourt P, Neyrolles O, Lugo-Villarino G, Anes E. Role of Cathepsins in Mycobacterium tuberculosis Survival in Human Macrophages. Sci Rep 2016; 6:32247. [PMID: 27572605 PMCID: PMC5004184 DOI: 10.1038/srep32247] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023] Open
Abstract
Cathepsins are proteolytic enzymes that function in the endocytic pathway, especially in lysosomes, where they contribute directly to pathogen killing or indirectly, by their involvement in the antigen presentation pathways. Mycobacterium tuberculosis (MTB) is a facultative intracellular pathogen that survives inside the macrophage phagosomes by inhibiting their maturation to phagolysosomes and thus avoiding a low pH and protease-rich environment. We previously showed that mycobacterial inhibition of the proinflammatory transcription factor NF-κB results in impaired delivery of lysosomal enzymes to phagosomes and reduced pathogen killing. Here, we elucidate how MTB also controls cathepsins and their inhibitors, cystatins, at the level of gene expression and proteolytic activity. MTB induced a general down-regulation of cathepsin expression in infected cells, and inhibited IFNγ-mediated increase of cathepsin mRNA. We further show that a decrease in cathepsins B, S and L favours bacterial survival within human primary macrophages. A siRNA knockdown screen of a large set of cathepsins revealed that almost half of these enzymes have a role in pathogen killing, while only cathepsin F coincided with MTB resilience. Overall, we show that cathepsins are important for the control of MTB infection, and as a response, it manipulates their expression and activity to favour its intracellular survival.
Collapse
Affiliation(s)
- David Pires
- Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Joana Marques
- Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - João Palma Pombo
- Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Nuno Carmo
- Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Paulo Bettencourt
- Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Olivier Neyrolles
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Elsa Anes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| |
Collapse
|
10
|
Bieri R, Bolz M, Ruf MT, Pluschke G. Interferon-γ Is a Crucial Activator of Early Host Immune Defense against Mycobacterium ulcerans Infection in Mice. PLoS Negl Trop Dis 2016; 10:e0004450. [PMID: 26863011 PMCID: PMC4749296 DOI: 10.1371/journal.pntd.0004450] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022] Open
Abstract
Buruli ulcer (BU), caused by infection with Mycobacterium ulcerans, is a chronic necrotizing human skin disease associated with the production of the cytotoxic macrolide exotoxin mycolactone. Despite extensive research, the type of immune responses elicited against this pathogen and the effector functions conferring protection against BU are not yet fully understood. While histopathological analyses of advanced BU lesions have demonstrated a mainly extracellular localization of the toxin producing acid fast bacilli, there is growing evidence for an early intra-macrophage growth phase of M. ulcerans. This has led us to investigate whether interferon-γ might play an important role in containing M. ulcerans infections. In an experimental Buruli ulcer mouse model we found that interferon-γ is indeed a critical regulator of early host immune defense against M. ulcerans infections. Interferon-γ knockout mice displayed a faster progression of the infection compared to wild-type mice. This accelerated progression was reflected in faster and more extensive tissue necrosis and oedema formation, as well as in a significantly higher bacterial burden after five weeks of infection, indicating that mice lacking interferon-γ have a reduced capacity to kill intracellular bacilli during the early intra-macrophage growth phase of M. ulcerans. This data demonstrates a prominent role of interferon-γ in early defense against M. ulcerans infection and supports the view that concepts for vaccine development against tuberculosis may also be valid for BU. Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a slow progressing ulcerative skin disease. The mode of transmission of M. ulcerans remains unknown and only little is known about the early stages of the disease and the nature of protective immune responses against this pathogen. Given the increasing evidence for an early intracellular growth phase of M. ulcerans, we aimed at evaluating the impact of cell-mediated immunity for immunological defense against M. ulcerans infections. By comparing wild-type and interferon-γ-deficient mice in a BU mouse model, we could demonstrate that interferon-γ is a critical regulator of early host immune defense against M. ulcerans infections, indicative for an important role of early intracellular multiplication of the pathogen. In mice lacking interferon-γ the bacterial burden increased faster, resulting in accelerated pathogenesis. The observed differences between the two mouse strains were most likely due to differences in the capacity of macrophages to kill intracellular bacilli during the early stages of infection.
Collapse
Affiliation(s)
- Raphael Bieri
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Bolz
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Gutsmann T. Interaction between antimicrobial peptides and mycobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1034-43. [PMID: 26851776 DOI: 10.1016/j.bbamem.2016.01.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 01/21/2023]
Abstract
Mycobacteria can cause different severe health problems, including tuberculosis (TB). The treatment of TB with conventional antibiotics is successful, however, the number of multi-drug and extensively-drug resistant Mycobacterium tuberculosis strains increases. Moreover, many classical antimycobacterial antibiotics have severe side effects. Therefore, antimicrobial peptides (AMPs) seem to be good candidates for new therapeutic strategies. On the one hand AMPs can be used as a single drug or in combination with conventional antibiotics to directly kill mycobacteria, or on the other hand to act as immunstimulatory agents. This review summarizes the findings on the role of endogenous human AMPs being involved in TB, the antimycobacterial activity of various AMPs, and the molecular modes of action. Most active AMPs interact with the mycobacterial cell envelope and in particular with the mycomembrane and the plasma membrane. The mycomembrane is a very rigid membrane probably leading to a lower activity of the AMPs against mycobacteria as compared to other Gram-negative or Gram-positive bacteria. For some AMPs also other targets have been identified. Because of the complex environment of intracellular mycobacteria being trapped in the phagosome, within the macrophage, within the granuloma, within the lung, the external administration of AMPs in the latent phase of TB is a challenge. However, in the acute phase the AMPs can attack mycobacteria in a direct way. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Thomas Gutsmann
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Priority Area Infections, Division of Biophysics, Parkallee 10, 23845 Borstel, Germany.
| |
Collapse
|
12
|
Guerra-Laso JM, Raposo-García S, García-García S, Diez-Tascón C, Rivero-Lezcano OM. Microarray analysis of Mycobacterium tuberculosis-infected monocytes reveals IL26 as a new candidate gene for tuberculosis susceptibility. Immunology 2015; 144:291-301. [PMID: 25157980 DOI: 10.1111/imm.12371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/29/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023] Open
Abstract
Differences in the activity of monocytes/macrophages, important target cells of Mycobacterium tuberculosis, might influence tuberculosis progression. With the purpose of identifying candidate genes for tuberculosis susceptibility we infected monocytes from both healthy elderly individuals (a tuberculosis susceptibility group) and elderly tuberculosis patients with M. tuberculosis, and performed a microarray experiment. We detected 78 differentially expressed transcripts and confirmed these results by quantitative PCR of selected genes. We found that monocytes from tuberculosis patients showed similar expression patterns for these genes, regardless of whether they were obtained from younger or older patients. Only one of the detected genes corresponded to a cytokine: IL26, a member of the interleukin-10 (IL-10) cytokine family which we found to be down-regulated in infected monocytes from tuberculosis patients. Non-infected monocytes secreted IL-26 constitutively but they reacted strongly to M. tuberculosis infection by decreasing IL-26 production. Furthermore, IL-26 serum concentrations appeared to be lower in the tuberculosis patients. When whole blood was infected, IL-26 inhibited the observed pathogen-killing capability. Although lymphocytes expressed IL26R, the receptor mRNA was not detected in either monocytes or neutrophils, suggesting that the inhibition of anti-mycobacterial activity may be mediated by lymphocytes. Additionally, IL-2 concentrations in infected blood were lower in the presence of IL-26. The negative influence of IL-26 on the anti-mycobacterial activity and its constitutive presence in both serum and monocyte supernatants prompt us to propose IL26 as a candidate gene for tuberculosis susceptibility.
Collapse
Affiliation(s)
- José M Guerra-Laso
- Servicios de Medicina Interna, Complejo Asistencial Universitario de León (CAULE), León, Spain
| | | | | | | | | |
Collapse
|
13
|
Innate Resistance to Tuberculosis in Man, Cattle and Laboratory Animal Models: Nipping Disease in the Bud? J Comp Pathol 2014; 151:291-308. [DOI: 10.1016/j.jcpa.2014.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 01/04/2023]
|
14
|
Jo EK, Yuk JM, Shin DM, Sasakawa C. Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol 2013; 4:97. [PMID: 23653625 PMCID: PMC3644824 DOI: 10.3389/fimmu.2013.00097] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/11/2013] [Indexed: 12/22/2022] Open
Abstract
As a fundamental intracellular catabolic process, autophagy is important and required for the elimination of protein aggregates and damaged cytosolic organelles during a variety of stress conditions. Autophagy is now being recognized as an essential component of innate immunity; i.e., the recognition, selective targeting, and elimination of microbes. Because of its crucial roles in the innate immune system, therapeutic targeting of bacteria by means of autophagy activation may prove a useful strategy to combat intracellular infections. However, important questions remain, including which molecules are critical in bacterial targeting by autophagy, and which mechanisms are involved in autophagic clearance of intracellular microbes. In this review, we discuss the roles of antibacterial autophagy in intracellular bacterial infections (Mycobacteria, Salmonella, Shigella, Listeria, and Legionella) and present recent evidence in support of molecular mechanisms driving autophagy to target bacteria and eliminate invading pathogens.
Collapse
Affiliation(s)
- Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University Daejeon, South Korea ; Infection Signaling Network Research Center, School of Medicine, Chungnam National University Daejeon, South Korea
| | | | | | | |
Collapse
|
15
|
Fine KL, Metcalfe MG, White E, Virji M, Karls RK, Quinn FD. Involvement of the autophagy pathway in trafficking of Mycobacterium tuberculosis bacilli through cultured human type II epithelial cells. Cell Microbiol 2012; 14:1402-14. [PMID: 22519722 DOI: 10.1111/j.1462-5822.2012.01804.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/26/2012] [Accepted: 04/15/2012] [Indexed: 11/29/2022]
Abstract
Interactions between Mycobacterium tuberculosis bacilli and alveolar macrophages have been extensively characterized, while similar analyses in epithelial cells have not been performed. In this study, we microscopically examined endosomal trafficking of M. tuberculosis strain Erdman in A549 cells, a human type II pneumocyte cell line. Immuno-electron microscopic (IEM) analyses indicate that M. tuberculosis bacilli are internalized to a compartment labelled first with Rab5 and then with Rab7 small GTPase proteins. This suggests that, unlike macrophages, M. tuberculosis bacilli traffic to late endosomes in epithelial cells. However, fusion of lysosomes with the bacteria-containing compartment appears to be inhibited, as illustrated by IEM studies employing LAMP-2 and cathepsin-L antibodies. Examination by transmission electron microscopy and IEM revealed M. tuberculosis-containing compartments surrounded by double membranes and labelled with antibodies against the autophagy marker Lc3, providing evidence for involvement and intersection of the autophagy and endosomal pathways. Interestingly, inhibition of the autophagy pathway using 3-methyladenine improved host cell viability and decreased numbers of viable intracellular bacteria recovered after 72 h post infection. Collectively, these data suggest that trafficking patterns for M. tuberculosis bacilli in alveolar epithelial cells differ from macrophages, and that autophagy is involved this process.
Collapse
Affiliation(s)
- Kari L Fine
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
16
|
Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 2012; 36:514-32. [PMID: 22320122 PMCID: PMC3319523 DOI: 10.1111/j.1574-6976.2012.00331.x] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/22/2011] [Accepted: 01/31/2012] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) remains a major health threat, killing nearly 2 million individuals around this globe, annually. The only vaccine, developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination of chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable owing to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the cross-talk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, the enormous success of Mtb is based on three capacities: first, reprogramming of macrophages after primary infection/phagocytosis to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host-pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication, and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here, we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy, and highlight gaps in our understanding to be addressed in future research.
Collapse
Affiliation(s)
- Martin Gengenbacher
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
17
|
Mortaz E, Varahram M, Farnia P, Bahadori M, Masjedi MR. New Aspects in Immunopathology of Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/963879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of tuberculosis (TB) pathology and immunology has become extensively deeper and more refined since the identification of Mycobacterium tuberculosis (MTB) as the etiologic agent of disease by Dr. Robert Koch in 1882. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. TB, caused by MTB, is a major health problem in world, with 10 million new cases diagnosed each year. Innate immunity is shown playing an important role in the host defense against the MTB, and the first step in this process is recognition of MTB by cells of the innate immune system. Several classes of pattern recognition receptors (PPRs) are involved in the recognition of MTB, including toll-like receptors (TLRs), C-type lectin receptors (CLRs), and nod-like receptors (NLRs). Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down streams, proteins play the most prominent roles in the initiation of the immune response against MTB. Beside of TLRs signaling, recently the activation of inflammasome pathway in the pathogenesis of TB much appreciated. Knowledge about these signaling pathways is crucial for understanding the pathophysiology of TB, on one hand, and for the development of novel strategies of vaccination and treatment such as immunotherapy on the other. Given the critical role of TLRs/inflammasome signaling in innate immunity and initiation of the appropriate adaptive response, the regulation of these pathways is likely to be an important determinant of the clinical outcome of MTB infection. In this review paper we focused on the immune response, which is the recognition of MTB by inflammatory innate immune cells following infection.
Collapse
Affiliation(s)
- E. Mortaz
- Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | - M. Varahram
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University, Tehran, Iran
| | - P. Farnia
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University, Tehran, Iran
| | - M. Bahadori
- Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - MR Masjedi
- Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Ehrt S, Rhee K. Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. Curr Top Microbiol Immunol 2012; 374:163-88. [PMID: 23242856 DOI: 10.1007/82_2012_299] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolism is a widely recognized facet of all host-pathogen interactions. Knowledge of its roles in pathogenesis, however, remains comparatively incomplete. Existing studies have emphasized metabolism as a cell autonomous property of pathogens used to fuel replication in a quantitative, rather than qualitatively specific, manner. For Mycobacterium tuberculosis, however, matters could not be more different. M. tuberculosis is a chronic facultative intracellular pathogen that resides in humans as its only known host. Within humans, M. tuberculosis resides chiefly within the macrophage phagosome, the cell type, and compartment most committed to its eradication. M. tuberculosis has thus evolved its metabolic network to both maintain and propagate its survival as a species within a single host. The specific ways in which its metabolic network serves these distinct, through interdependent, functions, however, remain incompletely defined. Here, we review existing knowledge of the M. tuberculosis-host interaction, highlighting the distinct phases of its natural life cycle and the diverse microenvironments encountered therein.
Collapse
Affiliation(s)
- Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA,
| | | |
Collapse
|
19
|
Herbst S, Schaible UE, Schneider BE. Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS One 2011; 6:e19105. [PMID: 21559306 PMCID: PMC3085516 DOI: 10.1371/journal.pone.0019105] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/17/2011] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium tuberculosis is an intracellular pathogen of macrophages and escapes the macrophages' bactericidal effectors by interfering with phagosome-lysosome fusion. IFN-γ activation renders the macrophages capable of killing intracellular mycobacteria by overcoming the phagosome maturation block, nutrient deprivation and exposure to microbicidal effectors including nitric oxide (NO). While the importance about NO for the control of mycobacterial infection in murine macrophages is well documented, the underlying mechanism has not been revealed yet. In this study we show that IFN-γ induced apoptosis in mycobacteria-infected macrophages, which was strictly dependent on NO. Subsequently, NO-mediated apoptosis resulted in the killing of intracellular mycobacteria independent of autophagy. In fact, killing of mycobacteria was susceptible to the autophagy inhibitor 3-methyladenine (3-MA). However, 3-MA also suppressed NO production, which is an important off-target effect to be considered in autophagy studies using 3-MA. Inhibition of caspase 3/7 activation, as well as NO production, abolished apoptosis and elimination of mycobacteria by IFN-γ activated macrophages. In line with the finding that drug-induced apoptosis kills intracellular mycobacteria in the absence of NO, we identified NO-mediated apoptosis as a new defense mechanism of activated macrophages against M. tuberculosis.
Collapse
Affiliation(s)
- Susanne Herbst
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ulrich E. Schaible
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
- * E-mail:
| | - Bianca E. Schneider
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
| |
Collapse
|
20
|
Majetschak M. Extracellular ubiquitin: immune modulator and endogenous opponent of damage-associated molecular pattern molecules. J Leukoc Biol 2010; 89:205-19. [PMID: 20689098 DOI: 10.1189/jlb.0510316] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin is a post-translational protein modifier and plays essential roles in all aspects of biology. Although the discovery of ubiquitin introduced this highly conserved protein as a molecule with extracellular actions, the identification of ubiquitin as the ATP-dependent proteolysis factor 1 has focused subsequent research on its important intracellular functions. Little attention has since been paid to its role outside of the cell. During recent years, multiple observations suggest that extracellular ubiquitin can modulate immune responses and that exogenous ubiquitin has therapeutic potential to attenuate exuberant inflammation and organ injury. These observations have not been integrated into a comprehensive assessment of its possible role as an endogenous immune modulator. This review recapitulates the current knowledge about extracellular ubiquitin and discusses an emerging facet of its role in biology during infectious and noninfectious inflammation. The synopsis of these data along with the recent identification of ubiquitin as a CXCR4 agonist suggest that extracellular ubiquitin may have pleiotropic roles in the immune system and functions as an endogenous opponent of DAMPs. Functions of extracellular ubiquitin could constitute an evolutionary conserved control mechanism aimed to balance the immune response and prevent exuberant inflammation. Further characterization of its mechanism of action and cellular signaling pathways is expected to provide novel insights into the regulation of the innate immune response and opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Matthias Majetschak
- Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.
| |
Collapse
|
21
|
Tischler AD, McKinney JD. Contrasting persistence strategies in Salmonella and Mycobacterium. Curr Opin Microbiol 2010; 13:93-9. [PMID: 20056478 DOI: 10.1016/j.mib.2009.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 12/16/2022]
Abstract
Long-term survival of persistent bacterial pathogens in mammalian hosts critically depends on their ability to avoid elimination by innate and adaptive immune responses. The persistent human pathogens that cause typhoid fever and tuberculosis exemplify alternative strategies for survival in the host: immune evasion and immune adaptation, respectively. Salmonella enterica serotype Typhi evades host innate immune responses and inflammation by expressing factors that interfere with its detection as a Gram-negative bacterium, enabling persistent colonization of an immunologically privileged niche, the gallbladder. In contrast, Mycobacterium tuberculosis has adapted to survive within phagocytic cells, which typically eliminate invading microbes, by deploying stress resistance mechanisms that counteract the harsh environment of the phagolysosome.
Collapse
Affiliation(s)
- Anna D Tischler
- Global Health Institute, Swiss Federal Institute of Technology (EPFL), EPFL/SV/GHI/UPKIN, Station 19, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
22
|
Abstract
Autophagy is a homeostatic mechanism for the catabolism of cytosolic constituents, including organelles, in times of stress and nutrient deprivation. In addition, autophagy has been linked to innate and adaptive immune responses to numerous infectious microorganisms, including mycobacteria. This review explores the role of autophagy in the responses of antigen-presenting cells to mycobacteria, including links with phagosome maturation, inflammasome activation and antigen presentation. In addition, the modulation of autophagy by cytokines and pathogen-derived stimuli is discussed.
Collapse
Affiliation(s)
- J Harris
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
23
|
Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Appl Environ Microbiol 2008; 75:1129-34. [PMID: 19114528 DOI: 10.1128/aem.01837-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast strain Pichia anomala DBVPG 3003 secretes a killer toxin (Pikt) that has antifungal activity against Brettanomyces/Dekkera sp. yeasts. Pikt interacts with beta-1,6-glucan, consistent with binding to the cell wall of sensitive targets. In contrast to that of toxin K1, secreted by Saccharomyces cerevisiae, Pikt killer activity is not mediated by an increase in membrane permeability. Purification of the toxin yielded a homogeneous protein of about 8 kDa, which showed a marked similarity to ubiquitin in terms of molecular mass and N-terminal sequences. Pikt is also specifically recognized by anti-bovine ubiquitin antibodies and, similar to ubiquitin-like peptides, is not absorbed by DEAE-cellulose. However, Pikt differs from ubiquitin in its sensitivity to proteolytic enzymes. Therefore, Pikt appears to be a novel ubiquitin-like peptide that has killer activity.
Collapse
|
24
|
Abstract
Approximately one-third of the world's population is infected with Mycobacterium tuberculosis, and the World Health Organization estimates 1.6 million deaths were caused by M. tuberculosis in 2005. The enormous worldwide burden of disease underscores the proficiency by which M. tuberculosis is able to evade eradication by the host, subverting innate and adaptive defences. At the cellular level, mycobacteria are able to modulate macrophage defences by altering phagosome maturation. This review focuses on the bacterial proteins and lipids that are important in establishing the mycobacterial replicative niche. While there is a detailed molecular description of the vacuole and an increasing number of bacterial effectors have been implicated in creating this compartment, exactly how they intersect host cell processes remains ill-defined. However, the emerging picture is that an array of lipid and protein effectors collaborate to create and maintain the mycobacterial phagosome.
Collapse
Affiliation(s)
- Jennifer A Philips
- Clinical Instructor in Medicine, Infectious Disease Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|