1
|
Li XY, Shang J, Wang XJ, Ma HP, Ren LF, Zhang L. Bifidobacterium longum JBLC-141 alleviates hypobaric hypoxia-induced intestinal barrier damage by attenuating inflammatory responses and oxidative stress. Front Microbiol 2024; 15:1501999. [PMID: 39741588 PMCID: PMC11685222 DOI: 10.3389/fmicb.2024.1501999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Hypobaric hypoxia exposure occurs at high altitudes, including plateaus, and affects normal intestinal function and microbiota composition. Exposure induces an intestinal inflammatory response and oxidative stress injury, ultimately disrupting intestinal homeostasis and causing barrier damage. Thus, due to its anti-inflammatory, antioxidative, and intestinal microbiota-regulating properties, Bifidobacterium longum is a potentially effective probiotic intervention to protect the intestinal barrier during low-pressure hypoxia on plateaus. However, its mechanism of action is not fully defined. In this study, we investigate the mechanism by which B. longum intervenes in intestinal barrier damage caused by plateau low-pressure hypoxia. To this end, an in vivo model is established by exposing rats to a simulated low-pressure hypoxic plateau environment. The experimental rats were subsequently supplemented with a B. longum strain (JBLC-141) extracted from the feces of healthy adults in Bama, Guangxi. B. longum JBLC-141 mitigates the effects of plateau low-pressure hypoxia on the rat intestinal barrier. This is achieved by activating the intestinal Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, alleviating plateau hypoxia-induced intestinal oxidative stress injury. B. longum JBLC-141 also attenuates the inflammatory response and upregulates the expression of the tight junction proteins claudin-1, occludin, and zonula occludens-1. Furthermore, it reduces intestinal permeability, effectively ameliorating and repairing the barrier histological damage induced by the plateau low-pressure hypoxic environment. In addition, B. longum JBLC-141 positively regulates the intestinal microbiota, increasing the relative abundance of beneficial bacteria while reducing that of pathogenic bacteria and maintaining intestinal flora homeostasis in rats.
Collapse
Affiliation(s)
- Xiang-Yang Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jin Shang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiao-Juan Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hui-Ping Ma
- Pharmacy Department, The 940 Hospital of Joint Logistics Support, PLA, Lanzhou, Gansu, China
| | - Long-Fei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- National Clinical key Specialty of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, Gansu, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- National Clinical key Specialty of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Hu S, Gao K, Jiao Y, Yuan Z. Glycolysis characteristics of intracellular polysaccharides from Agaricus bitorquis (Quél.) sacc. Chaidam and its effects on intestinal flora from different altitudes of mice in vitro fermentation. Food Res Int 2023; 173:113382. [PMID: 37803720 DOI: 10.1016/j.foodres.2023.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The glycolysis characteristics and effects on intestinal flora of polysaccharides from Agaricus bitorquis (Quél.) Sacc. Chaidam (ABIPs) in vitro fermentation by different altitudes of mice feces was examined, including low, medium, and high altitudes groups (LG, MG, and HG). In vitro, fermentation of ABIPs forty-eight hours resulted in a remarkable decrease in total sugar content and improvement of short-chain fatty acids (SCFAs) (mainly acetate, propionate, and butyrate), which simultaneously induced the composition of monose and uronic acids and SCFAs continuously change. Besides, ABIPs influenced the abundance and composition of the intestinal flora, generally increasing the abundance of probiotic bacteria (such as Bifidobacterium and Faecalibacterium) and decreasing the abundance of harmful bacteria (such as Phenylobacterium and Streptococcus) in all groups, with the highland biology core genus Blautia significantly enriched in LG and MG groups. It was also found that ABIPs enhanced pathways associated with biosynthesis and metabolism. In addition, correlation analysis speculated that the metabolism of SCFAs by ABIPs may be associated with genera such as Anaerostipes, Roseburia, and Weissella. ABIPs may protect organismal health by regulating hypoxic intestinal flora composition and metabolic function, and more superior fermentation performance was observed in MG compared to other groups.
Collapse
Affiliation(s)
- Shicheng Hu
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Ke Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Yingchun Jiao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China.
| |
Collapse
|
3
|
Narayan C, Kant V, Mahajan JK, Mohan B, Taneja N. Differential invasiveness & expression of antimicrobial peptides in Shigella serotypes. Indian J Med Res 2023; 158:303-310. [PMID: 37815071 PMCID: PMC10720961 DOI: 10.4103/ijmr.ijmr_4864_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 10/11/2023] Open
Abstract
Background & objectives The study of Shigella pathogenesis at present is severely hampered by the lack of a relevant animal model that replicates human bacillary dysentery. Different Shigella serogroups cause varying severity of clinical illness. Ex vivo colonization of Shigella flexneri, S. dysenteriae and S. sonnei were characterized in human paediatric colonic pinch biopsies in the in vitro organ culture (IVOC) model to study the invasiveness of Shigella by gentamicin protection assay (GPA). Furthermore, the expression of antimicrobial peptides (AMPs) in response to different serotypes of Shigella was also studied in IVOC model. Methods IVOC explants were inoculated with 109 colony forming units of different serotypes of Shigella and recovery of bacteria studied. Histopathological analysis was carried out to study inflammatory immune responses. GPA was done to elucidate the invasiveness of different serotypes of Shigella. Secretions of AMPs were measured by enzyme-linked immunosorbent assay (ELISA). Western blotting was performed to check the expression of AMPs and nuclear factor kappa B in IVOC explants. Results After 24 h post-infection, the colon biopsies showed intense inflammatory reaction. In both IVOC and GPA, S. dysenteriae 1 was the most invasive as compared to S. flexneri and S. sonnei. S. sonnei was the least invasive. ELISA demonstrated that S. sonnei dampened the HBD (human β-defensin)-2 responses whereas there was augmentation by S. dysenteriae and there was a modest but non-significant increase by S. flexneri. A modest increase in HBD-3 by S. sonnei and S. flexneri was observed but was not found to be significant. However, western blotting data showed upregulation of all AMPs by all serotypes. Western blotting is more sensitive than ELISA. Interpretation & conclusions In the present study, differences in invasiveness and AMP production induced by different serotypes of Shigella were found. Human intestinal IVOC represents a model system to investigate early interaction between pathogenic bacteria and the human gut.
Collapse
Affiliation(s)
- Chandradeo Narayan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Vishal Kant
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Jai Kumar Mahajan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
4
|
Ledwaba SE, Bolick DT, de Medeiros PHQS, Kolling GL, Traore AN, Potgieter N, Nataro JP, Guerrant RL. Enteropathogenic Escherichia coli (EPEC) expressing a non-functional bundle-forming pili (BFP) also leads to increased growth failure and intestinal inflammation in C57BL/6 mice. Braz J Microbiol 2022; 53:1781-1787. [PMID: 35882715 PMCID: PMC9679052 DOI: 10.1007/s42770-022-00802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/17/2022] [Indexed: 01/13/2023] Open
Abstract
Bundle-forming pili (BFP) are implicated in the virulence of typical enteropathogenic E. coli (EPEC), resulting in enhanced colonization and mild to severe disease outcomes; hence, non-functional BFP may have a major influence on disease outcomes in vivo. Weaned antibiotic pre-treated C57BL/6 mice were orally infected with EPEC strain UMD901 (E2348/69 bfpA C129S); mice were monitored daily for body weight; stool specimens were collected daily; and intestinal tissues were collected at the termination of the experiment on day 3 post-infection. Real-time PCR was used to quantify fecal shedding and tissue burden. Intestinal inflammatory biomarkers lipocalin-2 (LCN-2) and myeloperoxidase (MPO) were also assessed. Infection caused substantial body weight loss, bloody diarrhea, and intestinal colonization with fecal and intestinal tissue inflammatory biomarkers that were comparable to those previously published with the wild-type typical EPEC strain. Here we further report on the evaluation of an EPEC infection model, showing how disruption of bfp function does not impair, and may even worsen diarrhea, colonization, and intestinal disruption and inflammation. More research is needed to understand the role of bfp in pathogenicity of EPEC infections in vivo.
Collapse
Affiliation(s)
- Solanka Ellen Ledwaba
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, Limpopo Province South Africa
| | - David Thomas Bolick
- Division of Infectious Disease and International Health, School of Medicine, University of Virginia, Charlottesville, VA USA
| | | | - Glynis Luanne Kolling
- Division of Infectious Disease and International Health, School of Medicine, University of Virginia, Charlottesville, VA USA ,Department of Biomedical Engineering, University of Virgina, Charlottesville, VA USA
| | - Afsatou Ndama Traore
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, Limpopo Province South Africa
| | - Natasha Potgieter
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, Limpopo Province South Africa
| | - James Paul Nataro
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VA USA
| | - Richard Littleton Guerrant
- Division of Infectious Disease and International Health, School of Medicine, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
5
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
6
|
Perkins A, Tudorica DA, Teixeira RD, Schirmer T, Zumwalt L, Ogba OM, Cassidy CK, Stansfeld PJ, Guillemin K. A Bacterial Inflammation Sensor Regulates c-di-GMP Signaling, Adhesion, and Biofilm Formation. mBio 2021; 12:e0017321. [PMID: 34154415 PMCID: PMC8262984 DOI: 10.1128/mbio.00173-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteria that colonize animals must overcome, or coexist, with the reactive oxygen species products of inflammation, a front-line defense of innate immunity. Among these is the neutrophilic oxidant bleach, hypochlorous acid (HOCl), a potent antimicrobial that plays a primary role in killing bacteria through nonspecific oxidation of proteins, lipids, and DNA. Here, we report that in response to increasing HOCl levels, Escherichia coli regulates biofilm production via activation of the diguanylate cyclase DgcZ. We identify the mechanism of DgcZ sensing of HOCl to be direct oxidation of its regulatory chemoreceptor zinc-binding (CZB) domain. Dissection of CZB signal transduction reveals that oxidation of the conserved zinc-binding cysteine controls CZB Zn2+ occupancy, which in turn regulates the catalysis of c-di-GMP by the associated GGDEF domain. We find DgcZ-dependent biofilm formation and HOCl sensing to be regulated in vivo by the conserved zinc-coordinating cysteine. Additionally, point mutants that mimic oxidized CZB states increase total biofilm. A survey of bacterial genomes reveals that many pathogenic bacteria that manipulate host inflammation as part of their colonization strategy possess CZB-regulated diguanylate cyclases and chemoreceptors. Our findings suggest that CZB domains are zinc-sensitive regulators that allow host-associated bacteria to perceive host inflammation through reactivity with HOCl. IMPORTANCE Immune cells are well equipped to eliminate invading bacteria, and one of their primary tools is the synthesis of bleach, hypochlorous acid (HOCl), the same chemical used as a household disinfectant. In this work, we present findings showing that many host-associated bacteria possess a bleach-sensing protein that allows them to adapt to the presence of this chemical in their environment. We find that the bacterium Escherichia coli responds to bleach by hunkering down and producing a sticky matrix known as biofilm, which helps it aggregate and adhere to surfaces. This behavior may play an important role in pathogenicity for E. coli and other bacteria, as it allows the bacteria to detect and adapt to the weapons of the host immune system.
Collapse
Affiliation(s)
- Arden Perkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Dan A. Tudorica
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | - Lindsay Zumwalt
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - O. Maduka Ogba
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - C. Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Phillip J. Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Ladaycia A, Loretz B, Passirani C, Lehr CM, Lepeltier E. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Adv Drug Deliv Rev 2021; 170:44-70. [PMID: 33388279 DOI: 10.1016/j.addr.2020.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicine implication in cancer treatment and diagnosis studies witness huge attention, especially with the promising results obtained in preclinical studies. Despite this, only few nanomedicines succeeded to pass clinical phase. The human microbiota plays obvious roles in cancer development. Nanoparticles have been successfully used to modulate human microbiota and notably tumor associated microbiota. Taking the microbiota involvement under consideration when testing nanomedicines for cancer treatment might be a way to improve the poor translation from preclinical to clinical trials. Co-culture models of bacteria and cancer cells, as well as animal cancer-microbiota models offer a better representation for the tumor microenvironment and so potentially better platforms to test nanomedicine efficacy in cancer treatment. These models would allow closer representation of human cancer and might smoothen the passage from preclinical to clinical cancer studies for nanomedicine efficacy.
Collapse
|
8
|
Coleman OI, Haller D. Microbe-Mucus Interface in the Pathogenesis of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13040616. [PMID: 33557139 PMCID: PMC7913824 DOI: 10.3390/cancers13040616] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Overlying gastrointestinal epithelial cells is the transparent mucus layer that separates the lumen from the host. The dynamic mucus layer serves to lubricate the mucosal surface, to protect underlying epithelial cells, and as a transport medium between luminal contents and epithelial cells. Furthermore, it provides a habitat for commensal bacteria and signals to the underlying immune system. Mucins are highly glycosylated proteins, and their glycocode is tissue-specific and closely linked to the resident microbiota. Aberrant mucin expression and glycosylation are linked to chronic inflammation and gastrointestinal cancers, including colorectal cancer (CRC). Aberrant mucus production compromises the mucus layer and allows bacteria to come into close contact with the intestinal epithelium, potentially triggering unfavorable host responses and the subsequent development of tumors. Here, we review our current understanding of the interaction between the intestinal microbiota and mucus in healthy and CRC subjects. Deep knowledge of the intricate mechanisms of microbe-mucus interactions may contribute to the development of novel treatment strategies for CRC, in which a dysfunctional mucus layer is observed.
Collapse
Affiliation(s)
- Olivia I. Coleman
- Department of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- Correspondence: ; Tel.: +49-08161-71-2375
| | - Dirk Haller
- Department of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- ZIEL—Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
9
|
Durant L, Stentz R, Noble A, Brooks J, Gicheva N, Reddi D, O’Connor MJ, Hoyles L, McCartney AL, Man R, Pring ET, Dilke S, Hendy P, Segal JP, Lim DNF, Misra R, Hart AL, Arebi N, Carding SR, Knight SC. Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease. MICROBIOME 2020; 8:88. [PMID: 32513301 PMCID: PMC7282036 DOI: 10.1186/s40168-020-00868-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/13/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract.
Collapse
Affiliation(s)
- Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Régis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
| | - Alistair Noble
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Johanne Brooks
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - Nadezhda Gicheva
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
| | - Durga Reddi
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Matthew J. O’Connor
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS UK
| | - Anne L. McCartney
- Food Microbial Sciences Unit, University of Reading, Whiteknights, Reading, RG6 6UR UK
| | - Ripple Man
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - E. Tobias Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Stella Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Philip Hendy
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Jonathan P. Segal
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Dennis N. F. Lim
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Ravi Misra
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Ailsa L. Hart
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Naila Arebi
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - Stella C. Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| |
Collapse
|
10
|
EspFu-Mediated Actin Assembly Enhances Enteropathogenic Escherichia coli Adherence and Activates Host Cell Inflammatory Signaling Pathways. mBio 2020; 11:mBio.00617-20. [PMID: 32291304 PMCID: PMC7157822 DOI: 10.1128/mbio.00617-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
EPEC is among the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by EPEC results in actin pedestal formation at the site of bacterial attachment. These pedestals are referred to as attaching and effacing (AE) lesions. Here, we exploit the different molecular mechanisms used by EPEC to induce AE lesions on epithelial cells, showing that the effector EspFu is associated with increased bacterial attachment and enhanced epithelial colonization compared to the Tir-Nck pathway. Moreover, we also showed that actin pedestal formation can counterbalance the anti-inflammatory activity induced by EPEC, especially when driven by EspFu. Collectively, our findings provide new insights into virulence mechanisms employed by EPEC to colonize epithelial cells, as well as the host response to this enteric pathogen. The translocation of effectors into the host cell through type 3 secretion systems (T3SS) is a sophisticated strategy employed by pathogenic bacteria to subvert host responses and facilitate colonization. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) utilize the Tir and EspFu (also known as TccP) effectors to remodel the host cytoskeleton, culminating in the formation of attaching and effacing (AE) lesions on enterocytes. While some EPEC strains require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, EHEC and certain EPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. Here, we investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC. We found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-Nck. Moreover, we showed that both actin polymerization mechanisms can activate inflammatory pathways and reverse the anti-inflammatory response induced by EPEC in epithelial cells. However, this activity is remarkably more evident in infections with EspFu-expressing EPEC strains. This study demonstrates the complex interactions between effector-mediated actin remodeling and inflammation. Different strains carry different combinations of these two effectors, highlighting the plasticity of pathogenic E. coli enteric infections.
Collapse
|
11
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43:457-489. [DOI: 10.1093/femsre/fuz013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303 , USA
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303 , USA
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Raphaële Gresse
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Thomas Sauvaitre
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Barcoded Consortium Infections Resolve Cell Type-Dependent Salmonella enterica Serovar Typhimurium Entry Mechanisms. mBio 2019; 10:mBio.00603-19. [PMID: 31113898 PMCID: PMC6529635 DOI: 10.1128/mbio.00603-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S.Tm) is a widespread and broad-host-spectrum enteropathogen with the capacity to invade diverse cell types. Still, the molecular basis for the host cell invasion process has largely been inferred from studies of a few selected cell lines. Our work resolves the mechanisms that Salmonellae employ to invade prototypical host cell types, i.e., human epithelial, monocyte, and macrophage cells, at a previously unattainable level of temporal and quantitative precision. This highlights efficient bacterium-driven entry into innate immune cells and uncovers a type III secretion system effector module that dominates active bacterial invasion of not only epithelial cells but also monocytes and macrophages. The results are derived from a generalizable method, where we combine barcoding of the bacterial chromosome with mixed consortium infections of cultured host cells. The application of this methodology across bacterial species and infection models will provide a scalable means to address host-pathogen interactions in diverse contexts. Bacterial host cell invasion mechanisms depend on the bacterium’s virulence factors and the properties of the target cell. The enteropathogen Salmonella enterica serovar Typhimurium (S.Tm) invades epithelial cell types in the gut mucosa and a variety of immune cell types at later infection stages. The molecular mechanism(s) of host cell entry has, however, been studied predominantly in epithelial cell lines. S.Tm uses a type three secretion system (TTSS-1) to translocate effectors into the host cell cytosol, thereby sparking actin ruffle-dependent entry. The ruffles also fuel cooperative invasion by bystander bacteria. In addition, several TTSS-1-independent entry mechanisms exist, involving alternative S.Tm virulence factors, or the passive uptake of bacteria by phagocytosis. However, it remains ill-defined how S.Tm invasion mechanisms vary between host cells. Here, we developed an internally controlled and scalable method to map S.Tm invasion mechanisms across host cell types and conditions. The method relies on host cell infections with consortia of chromosomally tagged wild-type and mutant S.Tm strains, where the abundance of each strain can be quantified by qPCR or amplicon sequencing. Using this methodology, we quantified cooccurring TTSS-1-dependent, cooperative, and TTSS-1-independent invasion events in epithelial, monocyte, and macrophage cells. We found S.Tm invasion of epithelial cells and monocytes to proceed by a similar MOI-dependent mix of TTSS-1-dependent and cooperative mechanisms. TTSS-1-independent entry was more frequent in macrophages. Still, TTSS-1-dependent invasion dominated during the first minutes of interaction also with this cell type. Finally, the combined action of the SopB/SopE/SopE2 effectors was sufficient to explain TTSS-1-dependent invasion across both epithelial and phagocytic cells.
Collapse
|
13
|
Saxena A, Lopes F, McKay DM. Reduced intestinal epithelial mitochondrial function enhances in vitro interleukin-8 production in response to commensal Escherichia coli. Inflamm Res 2018; 67:829-837. [PMID: 30030553 DOI: 10.1007/s00011-018-1172-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Uncoupling of oxidative phosphorylation in epithelial mitochondria results in decreased epithelial barrier function as characterized by increased internalization of non-invasive Escherichia coli and their translocation across the epithelium. We hypothesized that the increased burden of intracellular commensal bacteria would activate the enterocyte, with the potential to promote inflammation. Treatment of human colon-derived epithelial cell lines in vitro with dinitrophenol (DNP) and commensal E. coli (strains F18, HB101) provoked increased production of interleukin (IL-8), which was not observed with conditioned medium from the bacteria, lipopolysaccharide or inert beads. The IL-8 response was inhibited by co-treatment with cytochalasin-D (blocks F-actin rearrangement), chloroquine (blocks phagosome acidification) and a MyD88 inhibitor (blocks TLR signaling), consistent with TLR-signaling mediating IL-8 synthesis subsequent to bacterial internalization. Use of the mitochondria-targeted antioxidant, mitoTEMPO, or U0126 to block ERK1/2 MAPK signalling inhibited DNP+E. coli-evoked IL-8 production. Mutations in the NOD2 (the intracellular sensor of bacteria) or ATG16L1 (autophagy protein) genes are susceptibility traits for Crohn's, and epithelia lacking either protein displayed enhanced IL-8 production in comparison to wild-type cells when exposed to DNP + E coli. Thus, metabolic stress perturbs the normal epithelial-bacterial interaction resulting in increased IL-8 production due to uptake of bacteria into the enterocyte: this potentially pro-inflammatory event is enhanced in cells lacking NOD2 or ATG16L1 that favor increased survival of bacteria within the enterocyte. We speculate that by increasing epithelial permeability and IL-8 production, reduced mitochondria function in the enteric epithelium would contribute to the initiation, pathophysiology, and reactivation of inflammatory disease in the gut.
Collapse
Affiliation(s)
- Alpana Saxena
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 1877 HSC, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Fernando Lopes
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 1877 HSC, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 1877 HSC, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
14
|
Vijayan A, Rumbo M, Carnoy C, Sirard JC. Compartmentalized Antimicrobial Defenses in Response to Flagellin. Trends Microbiol 2018; 26:423-435. [PMID: 29173868 DOI: 10.1016/j.tim.2017.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022]
Abstract
Motility is often a pathogenicity determinant of bacteria targeting mucosal tissues. Flagella constitute the machinery that propels bacteria into appropriate niches. Besides motility, the structural component, flagellin, which forms the flagella, targets Toll-like receptor 5 (TLR5) to activate innate immunity. The compartmentalization of flagellin-mediated immunity and the contribution of epithelial cells and dendritic cells in detecting flagellin within luminal and basal sides are highlighted here, respectively. While a direct stimulation of the epithelium mainly results in recruitment of immune cells and production of antimicrobial molecules, TLR5 engagement on parenchymal dendritic cells can contribute to the stimulation of innate lymphocytes such as type 3 innate lymphoid cells, as well as T helper cells. This review, therefore, illustrates how the innate and adaptive immunity to flagellin are differentially regulated by the epithelium and the dendritic cells in response to pathogens that either colonize or invade mucosa.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - CONICET - National Universtity of La Plata, 1900 La Plata, Argentina
| | - Christophe Carnoy
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Jean-Claude Sirard
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
15
|
Abstract
The human gut microbiome performs prodigious physiological functions such as production of microbial metabolites, modulation of nutrient digestion and drug metabolism, control of immune system, and prevention of infection. Paradoxically, gut microbiome can also negatively orchestrate the host responses in diseases or chronic disorders, suggesting that the regulated and balanced host-gut microbiome crosstalk is a salient prerequisite in gastrointestinal physiology. To understand the pathophysiological role of host-microbiome crosstalk, it is critical to recreate in vivo relevant models of the host-gut microbiome ecosystem in human. However, controlling the multi-species microbial communities and their uncontrolled growth has remained a notable technical challenge. Furthermore, conventional two-dimensional (2D) or 3D culture systems do not recapitulate multicellular microarchitectures, mechanical dynamics, and tissue-specific functions. Here, we review recent advances and current pitfalls of in vitro and ex vivo models that display human GI functions. We also discuss how the disruptive technologies such as 3D organoids or a human organ-on-a-chip microphysiological system can contribute to better emulate host-gut microbiome crosstalks in health and disease. Finally, the medical and pharmaceutical significance of the gut microbiome-based personalized interventions is underlined as a future perspective.
Collapse
|
16
|
Citrobacter rodentium: a model enteropathogen for understanding the interplay of innate and adaptive components of type 3 immunity. Mucosal Immunol 2017; 10:1108-1117. [PMID: 28612839 PMCID: PMC5969517 DOI: 10.1038/mi.2017.47] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Citrobacter rodentium is a natural murine intestinal pathogen that shares a core set of virulence factors with the related human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). C. rodentium is now the most widely used small animal model for studying the molecular underpinnings of EPEC and EHEC infections in vivo, including: enterocyte attachment; virulence; colonization resistance; and mucosal immunity. In this review, we discuss type 3 immunity in the context of C. rodentium infection and discuss recent publications that use this model to understand how the innate and adaptive components of immunity intersect to mediate host protection against enteric pathogens and maintain homeostasis with the microbiota.
Collapse
|
17
|
Cakebread JA, Callaghan M, Broadhurst M, Harris P, Wheeler TT. Free secretory component from bovine milk aggregates enteropathogenic Escherichia coli and inhibits binding to intestinal cells. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Clyne M, Duggan G, Dunne C, Dolan B, Alvarez L, Bourke B. Assays to Study the Interaction of Campylobacter jejuni with the Mucosal Surface. Methods Mol Biol 2017; 1512:129-147. [PMID: 27885604 DOI: 10.1007/978-1-4939-6536-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucosal colonization and overcoming the mucosal barrier are essential steps in the establishment of infection by Campylobacter jejuni. The interaction between C. jejuni and host cells, including binding and invasion, is thought to be the key virulence factor important for pathogenesis of C. jejuni infections in animals or humans. The intestinal mucosal barrier is composed of a polarized epithelium covered by a thick adherent mucus gel layer. There is a requirement for cell culture assays of infection to accurately represent the in vivo mucosal surface. In this chapter, we describe the use of a number of cell culture models and the use of polarized in vitro organ culture to examine the interaction of C. jejuni with mucosal surfaces.
Collapse
Affiliation(s)
- Marguerite Clyne
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 12, Ireland
| | - Gina Duggan
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 12, Ireland
| | - Ciara Dunne
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 12, Ireland
| | - Brendan Dolan
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 12, Ireland
| | - Luis Alvarez
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 12, Ireland.,National children's Research Center, Our Lady's Children's Hospital Crumlin, Dublin 12, Ireland
| | - Billy Bourke
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 12, Ireland.
| |
Collapse
|
19
|
Pearson JS, Giogha C, Wong Fok Lung T, Hartland EL. The Genetics of EnteropathogenicEscherichia coliVirulence. Annu Rev Genet 2016; 50:493-513. [DOI: 10.1146/annurev-genet-120215-035138] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaclyn S. Pearson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Cristina Giogha
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| |
Collapse
|
20
|
Lewis SB, Prior A, Ellis SJ, Cook V, Chan SSM, Gelson W, Schüller S. Flagellin Induces β-Defensin 2 in Human Colonic Ex vivo Infection with Enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 2016; 6:68. [PMID: 27446815 PMCID: PMC4914554 DOI: 10.3389/fcimb.2016.00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022] Open
Abstract
Enterohemorrhagic E.coli (EHEC) is an important foodborne pathogen in the developed world and can cause life-threatening disease particularly in children. EHEC persists in the human gut by adhering intimately to colonic epithelium and forming characteristic attaching/effacing lesions. In this study, we investigated the innate immune response to EHEC infection with particular focus on antimicrobial peptide and protein expression by colonic epithelium. Using a novel human colonic biopsy model and polarized T84 colon carcinoma cells, we found that EHEC infection induced expression of human β-defensin 2 (hBD2), whereas hBD1, hBD3, LL-37, and lysozyme remained unchanged. Infection with specific EHEC deletion mutants demonstrated that this was dependent on flagellin, and apical exposure to purified flagellin was sufficient to stimulate hBD2 and also interleukin (IL)-8 expression ex vivo and in vitro. Flagellin-mediated hBD2 induction was significantly reduced by inhibitors of NF-κB, MAP kinase p38 and JNK but not ERK1/2. Interestingly, IL-8 secretion by polarized T84 cells was vectorial depending on the side of stimulation, and apical exposure to EHEC or flagellin resulted in apical IL-8 release. Our results demonstrate that EHEC only induces a modest immune response in human colonic epithelium characterized by flagellin-dependent induction of hBD2 and low levels of IL-8.
Collapse
Affiliation(s)
- Steven B Lewis
- Norwich Medical School, University of East AngliaNorwich, UK; Gut Health and Food Safety Programme, Institute of Food ResearchNorwich, UK
| | - Alison Prior
- Gastroenterology Department, Norfolk and Norwich University Hospital Norwich, UK
| | - Samuel J Ellis
- Norwich Medical School, University of East AngliaNorwich, UK; Gut Health and Food Safety Programme, Institute of Food ResearchNorwich, UK
| | - Vivienne Cook
- Gastroenterology Department, Norfolk and Norwich University Hospital Norwich, UK
| | - Simon S M Chan
- Norwich Medical School, University of East AngliaNorwich, UK; Gastroenterology Department, Norfolk and Norwich University HospitalNorwich, UK
| | - William Gelson
- Gastroenterology Department, Norfolk and Norwich University Hospital Norwich, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East AngliaNorwich, UK; Gut Health and Food Safety Programme, Institute of Food ResearchNorwich, UK
| |
Collapse
|
21
|
Walsham ADS, MacKenzie DA, Cook V, Wemyss-Holden S, Hews CL, Juge N, Schüller S. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium. Front Microbiol 2016; 7:244. [PMID: 26973622 PMCID: PMC4771767 DOI: 10.3389/fmicb.2016.00244] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.
Collapse
Affiliation(s)
- Alistair D S Walsham
- Norwich Medical School, University of East AngliaNorwich, UK; Gut Health and Food Safety Programme, Institute of Food ResearchNorwich, UK
| | - Donald A MacKenzie
- Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Vivienne Cook
- Department of Gastroenterology, Norfolk and Norwich University Hospital Norwich, UK
| | | | - Claire L Hews
- Gut Health and Food Safety Programme, Institute of Food ResearchNorwich, UK; School of Biological Sciences, University of East AngliaNorwich, UK
| | - Nathalie Juge
- Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East AngliaNorwich, UK; Gut Health and Food Safety Programme, Institute of Food ResearchNorwich, UK
| |
Collapse
|
22
|
Man AL, Bertelli E, Rentini S, Regoli M, Briars G, Marini M, Watson AJM, Nicoletti C. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci (Lond) 2015; 129:515-27. [PMID: 25948052 DOI: 10.1042/cs20150046] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/31/2015] [Indexed: 08/30/2023]
Abstract
The physical and immunological properties of the human intestinal epithelial barrier in aging are largely unknown. Ileal biopsies from young (7-12 years), adult (20-40 years) and aging (67-77 years) individuals not showing symptoms of gastrointestinal (GI) pathologies were used to assess levels of inflammatory cytokines, barrier integrity and cytokine production in response to microbial challenges. Increased expression of interleukin (IL)-6, but not interferon (IFN)γ, tumour necrosis factor (TNF)-α and IL-1β was observed during aging; further analysis showed that cluster of differentiation (CD)11c(+) dendritic cells (DCs) are one of the major sources of IL-6 in the aging gut and expressed higher levels of CD40. Up-regulated production of IL-6 was accompanied by increased expression of claudin-2 leading to reduced transepithelial electric resistance (TEER); TEER could be restored in in vitro and ex vivo cultures by neutralizing anti-IL-6 antibody. In contrast, expression of zonula occludens-1 (ZO-1), occludin and junctional-adhesion molecule-A1 did not vary with age and overall permeability to macromolecules was not affected. Finally, cytokine production in response to different microbial stimuli was assessed in a polarized in vitro organ culture (IVOC). IL-8 production in response to flagellin declined progressively with age although the expression and distribution of toll-like receptor (TLR)-5 on intestinal epithelial cells (IECs) remained unchanged. Also, flagellin-induced production of IL-6 was less pronounced in aging individuals. In contrast, TNF-α production in response to probiotics (VSL#3) did not decline with age; however, in our experimental model probiotics did not down-regulate the production of IL-6 and expression of claudin-2. These data suggested that aging affects properties of the intestinal barrier likely to impact on age-associated disturbances, both locally and systemically.
Collapse
Affiliation(s)
- Angela L Man
- Gut Health and Food Safety Program, Institute of Food Research, Norwich NR4 7UA, U.K
| | | | - Silvia Rentini
- C.O.U. Gastroenterology and Digestive Endoscopy, A.U.O.S. University Hospital, Siena I-53100, Italy
| | - Mari Regoli
- Department of Life Sciences, University of Siena, I-53100 Italy
| | - Graham Briars
- Department of Paediatric Gastroenterology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, U.K
| | - Mario Marini
- C.O.U. Gastroenterology and Digestive Endoscopy, A.U.O.S. University Hospital, Siena I-53100, Italy
| | - Alastair J M Watson
- Gut Health and Food Safety Program, Institute of Food Research, Norwich NR4 7UA, U.K. Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Claudio Nicoletti
- Gut Health and Food Safety Program, Institute of Food Research, Norwich NR4 7UA, U.K.
| |
Collapse
|
23
|
Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE. Engineered in vitro disease models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:195-262. [PMID: 25621660 DOI: 10.1146/annurev-pathol-012414-040418] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schmitz S, Henrich M, Neiger R, Werling D, Allenspach K. Stimulation of duodenal biopsies and whole blood from dogs with food-responsive chronic enteropathy and healthy dogs with Toll-like receptor ligands and probiotic Enterococcus faecium. Scand J Immunol 2014; 80:85-94. [PMID: 24813376 DOI: 10.1111/sji.12186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 05/03/2014] [Indexed: 12/22/2022]
Abstract
The composition of the microbiome plays a significant role in the pathogenesis of inflammatory bowel disease (IBD) in humans and chronic enteropathies (CE) in dogs. The administration of probiotic micro-organisms is one way of modulating the microbiome, but experiments elucidating mechanisms of action of probiotics in the intestine of healthy and CE dogs are lacking. The aim of our study was to investigate the effects of different Toll-like receptor (TLR) ligands and Enterococcus faecium (EF) on ex vivo cultured duodenal samples and whole blood (WB) from dogs with food-responsive chronic enteropathy (FRE) when compared to healthy dogs. Biopsy stimulation was performed in 17 FRE and 11 healthy dogs; WB stimulation was performed in 16 FRE and 16 healthy dogs. Expression of TLR2, 4, 5 and 9, IL-17A, IL-22, IFNy, TNFα, IL-4, IL-10, TGFβ and PPARy was determined in biopsies by quantitative polymerase chain reaction (PCR). In addition, production of TNFα, IL-10, IFNy and IL-17A protein in WB and biopsy supernatants was assessed by ELISA. Treatment with individual TLR ligands or EF induced a variety of changes in the expression of different TLRs and cytokines, but not necessarily a consistent change with a single stimulating agent. Even though cytokine protein could not be detected in supernatants from ex vivo stimulated biopsies, we found TNFα protein responses in blood to be opposite of the transcriptional responses seen in the biopsies. Stimulation of canine duodenal biopsies with TLR ligands can potentially induce anti-inflammatory gene expression, especially in healthy tissue, whereas the effects of EF were limited.
Collapse
Affiliation(s)
- S Schmitz
- Department of Veterinary Sciences and Services, Royal Veterinary College, University of London, North Mymms, Hatfield, Hertfordshire, UK; Small Animal Clinic (Internal Medicine), Justus-Liebig University, Giessen, Germany
| | | | | | | | | |
Collapse
|
25
|
Abstract
ABSTRACT
The inflammatory response is an integral part of host defense against enterohemorrhagic
Escherichia coli
(EHEC) infection and also contributes to disease pathology. In this article we explore the factors leading to inflammation during EHEC infection and the mechanisms EHEC and other attaching and effacing (A/E) pathogens have evolved to suppress inflammatory signaling. EHEC stimulates an inflammatory response in the intestine through host recognition of bacterial components such as flagellin and lipopolysaccharide. In addition, the activity of Shiga toxin and some type III secretion system effectors leads to increased tissue inflammation. Various infection models of EHEC and other A/E pathogens have revealed many of the immune factors that mediate this response. In particular, the outcome of infection is greatly influenced by the ability of an infected epithelial cell to mount an effective host inflammatory response. The inflammatory response of infected enterocytes is counterbalanced by the activity of type III secretion system effectors such as NleE and NleC that modify and inhibit components of the signaling pathways that lead to proinflammatory cytokine production. Overall, A/E pathogens have taught us that innate mucosal immune responses in the gastrointestinal tract during infection with A/E pathogens are highly complex and ultimate clearance of the pathogen depends on multiple factors, including inflammatory mediators, bacterial burden, and the function and integrity of resident intestinal epithelial cells.
Collapse
|
26
|
Pierre JF, Barlow-Anacker AJ, Erickson CS, Heneghan AF, Leverson GE, Dowd SE, Epstein ML, Kudsk KA, Gosain A. Intestinal dysbiosis and bacterial enteroinvasion in a murine model of Hirschsprung's disease. J Pediatr Surg 2014; 49:1242-51. [PMID: 25092084 PMCID: PMC4122863 DOI: 10.1016/j.jpedsurg.2014.01.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND/PURPOSE Hirschsprung's disease (HSCR), characterized by the absence of ganglia in the distal colon, results in functional obstruction. Despite surgical resection of the aganglionic segment, around 40% of patients suffer recurrent life threatening Hirschsprung's-associated enterocolitis (HAEC). The aim of this study was to investigate whether gut microbiota and intestinal immunity changes contribute to the HAEC risk in an HSCR model. METHODS Mice with neural crest conditional deletion of Endothelin receptor B (EdnrB) and their littermate controls were used (EdnrB-null and EdnrB-het). Bacterial DNA was prepared from cecal contents of P16-18 and P21-24 animals and pyrosequencing employed for microbiome analysis. Ileal tissue was isolated and secretory phospholipase A2 (sPLA2) expression and activity determined. Enteroinvasion of Escherichia coli into ileal explants was measured using an ex vivo organ culture system. RESULTS EdnrB-het and EdnrB-nulls displayed similar flora, sPLA2 expression and activity at P16-18. However, by P21-24, EdnrB-hets demonstrated increased Lactobacillus and decreased Bacteroides and Clostridium, while EdnrB-nulls exhibited reciprocal changes. EdnrB-nulls also showed reduced sPLA2 expression and luminal activity at this stage. Functionally, EdnrB-nulls were more susceptible to enteroinvasion with E. coli ex vivo and released less sPLA2 than EdnrB-hets. CONCLUSIONS Initially, EdnrB-het and EdnrB-nulls contain similar cecal flora but then undergo reciprocal changes. EdnrB-nulls display dysbiosis, demonstrate impaired mucosal defense, decreased luminal sPLA2 and increased enteroinvasion of E. coli just prior to robust colonic inflammation and death. These findings suggest a role for the intestinal microbiome in the development of HAEC.
Collapse
Affiliation(s)
- Joseph F. Pierre
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda J. Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Christopher S. Erickson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Aaron F. Heneghan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Glen E. Leverson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Scot E. Dowd
- Research and Testing Laboratory, Lubbock, Texas, United States of America
| | - Miles L. Epstein
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kenneth A. Kudsk
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America,Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, United States of America
| | - Ankush Gosain
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
27
|
Vllasaliu D, Falcone FH, Stolnik S, Garnett M. Basement membrane influences intestinal epithelial cell growth and presents a barrier to the movement of macromolecules. Exp Cell Res 2014; 323:218-231. [PMID: 24582861 DOI: 10.1016/j.yexcr.2014.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022]
Abstract
This work examines the potential drug delivery barrier of the basement membrane (BM) by assessing the permeability of select macromolecules and nanoparticles. The study further extends to probing the effect of BM on intestinal epithelial cell attachment and monolayer characteristics, including cell morphology. Serum-free cultured Caco-2 cells were grown on BM-containing porous supports, which were obtained by prior culture of airway epithelial cells (Calu-3), shown to assemble and deposit a BM on the growth substrate, followed by decellularisation. Data overall show that the attachment capacity of Caco-2 cells, which is completely lost in serum-free culture, is fully restored when the cells are grown on BM-coated substrates, with cells forming intact monolayers with high electrical resistance and low permeability to macromolecules. Caco-2 cells cultured on BM-coated substrates displayed strikingly different morphological characteristics, suggestive of a higher level of differentiation and closer resemblance to the native intestinal epithelium. BM was found to notably hinder the diffusion of macromolecules and nanoparticles in a size dependent manner. This suggests that the specialised network of extracellular matrix proteins may have a significant impact on transmucosal delivery of certain therapeutics or drug delivery systems.
Collapse
Affiliation(s)
- Driton Vllasaliu
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Franco H Falcone
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Snjezana Stolnik
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Martin Garnett
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
28
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
29
|
Live and heat-killed Lactobacillus rhamnosus GG upregulate gene expression of pro-inflammatory cytokines in 5-fluorouracil-pretreated Caco-2 cells. Support Care Cancer 2014; 22:1647-54. [PMID: 24500789 DOI: 10.1007/s00520-014-2137-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/13/2014] [Indexed: 01/16/2023]
Abstract
PURPOSE This study investigates whether post-chemotherapeutic use of live and heat-killed Lactobacillus rhamnosus GG can modulate the expression of three pro-inflammatory cytokines in 5-fluorouracil (5-FU)-induced intestinal mucositis in vitro. METHODS Live L. rhamnosus GG and heat-killed L. rhamnosus GG were observed using scanning electron microscopy. To establish the duration required for optimal expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and interleukin-12 (IL-12), 5 μM of 5-FU was selected to treat 10-day-old Caco-2 cells for 4, 6, 8, and 24 h. Caco-2 cells were treated with 5-FU (5 μM) for 4 h, followed by the administration of live L. rhamnosus GG (multiplicity of infection = 25), and heat-killed L. rhamnosus GG for 2 and 4 h. Finally, total cellular RNA was isolated to quantify mRNA expression of TNF-α, MCP-1, and IL-12 using real-time PCR. RESULTS The results demonstrated that heat-killed L. rhamnosus GG remained structurally intact with elongation. A biphasic upregulated expression of TNF-α, MCP-1, and IL-12 was observed in 5-FU-treated Caco-2 cells at 4 and 24 h. Compared to non-L. rhamnosus GG controls in 5-FU-pretreated Caco-2 cells, a 2-h treatment of heat-killed L. rhamnosus GG significantly upregulated the MCP-1 expression (p < 0.05), and both live and heat-killed L. rhamnosus GG treatments lasting 4 h upregulated the TNF-α and MCP-1 expression (p < 0.05). Only live L. rhamnosus GG upregulated the IL-12 expression (p < 0.05). CONCLUSIONS Post-chemotherapeutic use of live or heat-killed L. rhamnosus GG can upregulate the gene expression of 5-FU-induced pro-inflammatory cytokines in Caco-2 cells. Human intestinal epithelium may be vulnerable to the post-chemotherapeutic use of L. rhamnosus GG in 5-FU-induced mucositis that requires further in vivo studies for clarification.
Collapse
|
30
|
Naughton J, Duggan G, Bourke B, Clyne M. Interaction of microbes with mucus and mucins: recent developments. Gut Microbes 2014; 5:48-52. [PMID: 24149677 PMCID: PMC4049936 DOI: 10.4161/gmic.26680] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Due to the recent rapid expansion in our understanding of the composition of the gut microflora and the consequences of altering that composition the question of how bacteria colonise mucus layers and interact with components of mucus, such as mucin, is now receiving widespread attention. Using a combination of mucus secreting cells, and a novel mucin microarray platform containing purified native mucins from different sources we recently demonstrated that two gastrointestinal pathogens, Helicobacter pylori and Campylobacter jejuni, colonise mucus by different mechanisms. This result emphasizes the potential for even closely related bacteria to interact with mucus in divergent ways to establish successful infection. Expanding the use of the mucin arrays described in the study to other microorganisms, both pathogenic and commensal, should lead to the discovery of biologically important motifs in bacterial-host interactions and complement the use of novel in vitro cell models, such as mucus secreting cell lines.
Collapse
Affiliation(s)
- Julie Naughton
- School of Medicine and Medical Science; University College Dublin; Dublin, Ireland,Conway Institute of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| | - Gina Duggan
- School of Medicine and Medical Science; University College Dublin; Dublin, Ireland,Conway Institute of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| | - Billy Bourke
- School of Medicine and Medical Science; University College Dublin; Dublin, Ireland,Conway Institute of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland,National Children’s Research Centre; Our Lady’s Children’s Hospital; Dublin, Ireland
| | - Marguerite Clyne
- School of Medicine and Medical Science; University College Dublin; Dublin, Ireland,Conway Institute of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland,Correspondence to: Marguerite Clyne,
| |
Collapse
|
31
|
Jafari NV, Kuehne SA, Bryant CE, Elawad M, Wren BW, Minton NP, Allan E, Bajaj-Elliott M. Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s). PLoS One 2013; 8:e69846. [PMID: 23922820 PMCID: PMC3726775 DOI: 10.1371/journal.pone.0069846] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/13/2013] [Indexed: 11/30/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of hospital and community-acquired antibiotic-associated diarrhoea and currently represents a significant health burden. Although the role and contribution of C. difficile toxins to disease pathogenesis is being increasingly understood, at present other facets of C. difficile-host interactions, in particular, bacterial-driven effects on host immunity remain less studied. Using an ex-vivo model of infection, we report that the human gastrointestinal mucosa elicits a rapid and significant cytokine response to C. difficile. Marked increase in IFN-γ with modest increase in IL-22 and IL-17A was noted. Significant increase in IL-8 suggested potential for neutrophil influx while presence of IL-12, IL-23, IL-1β and IL-6 was indicative of a cytokine milieu that may modulate subsequent T cell immunity. Majority of C. difficile-driven effects on murine bone-marrow-derived dendritic cell (BMDC) activation were toxin-independent; the toxins were however responsible for BMDC inflammasome activation. In contrast, human monocyte-derived DCs (mDCs) released IL-1β even in the absence of toxins suggesting host-specific mediation. Infected DC-T cell crosstalk revealed the ability of R20291 and 630 WT strains to elicit a differential DC IL-12 family cytokine milieu which culminated in significantly greater Th1 immunity in response to R20291. Interestingly, both strains induced a similar Th17 response. Elicitation of mucosal IFN-γ/IL-17A and Th1/Th17 immunity to C. difficile indicates a central role for this dual cytokine axis in establishing antimicrobial immunity to CDI.
Collapse
Affiliation(s)
- Nazila V. Jafari
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Sarah A. Kuehne
- Clostridia Research Group, Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Clare E. Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mamoun Elawad
- Gastroenterology Department, Great Ormond Street Hospital, London, United Kingdom
| | - Brendan W. Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Elaine Allan
- Research Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Mona Bajaj-Elliott
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Tsilingiri K, Sonzogni A, Caprioli F, Rescigno M. A novel method for the culture and polarized stimulation of human intestinal mucosa explants. J Vis Exp 2013:e4368. [PMID: 23666550 DOI: 10.3791/4368] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Few models currently exist to realistically simulate the complex human intestine's micro-environment, where a variety of interactions take place. Proper homeostasis directly depends on these interactions, as they shape an entire immunological response inducing tolerance against food antigens while at the same time mounting effective immune responses against pathogenic microbes accidentally ingested with food. Intestinal homeostasis is preserved also through various complex interactions between the microbiota (including food-associated beneficial bacterial strains) and the host, that regulate the attachment/degradation of mucus, the production of antimicrobial peptides by the epithelial barrier, and the "education" of epithelial cells' that controls the tolerogenic or immunogenic phenotype of unique, gut-resident lymphoid cells' populations. These interactions have been so far very difficult to reproduce with in vitro assays using either cultured cell lines or peripheral blood mononuclear cells. In addition, mouse models differ substantially in components of the intestinal mucosa (mucus layer organization, commensal bacteria community) with respect to the human gut. Thus, studies of a variety of treatments to be brought in the clinics for important stress-related or pathological conditions such as irritable bowel syndrome, inflammatory bowel disease or colorectal cancer have been difficult to carry out. To address these issues, we developed a novel system that enables us to stimulate explants of human intestinal mucosa that retain their in situ conditioning by the host microbiota and immune response, in a polarized fashion. Polarized apical stimulation is of great importance for the outcome of the elicited immune response. It has been repeatedly shown that the same stimuli can produce completely different responses when they bypass the apical face of the intestinal epithelium, stimulating epithelial cells basolaterally or coming into direct contact with lamina propria components, switching the phenotype from tolerogenic to immunogenic and causing unnecessary and excessive inflammation in the area. We achieved polarized stimulation by gluing a cave cylinder which delimited the area of stimulation on the apical face of the mucosa as will be described in the protocol. We used this model to examine, among others, differential effects of three different Lactobacilli strains. We show that this model system is very powerful to assess the immunomodulatory properties of probiotics in healthy and disease conditions.
Collapse
|
33
|
Fang SB, Schüller S, Phillips AD. Human Intestinal In Vitro Organ Culture as a Model for Investigation of Bacteria–Host Interactions. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jecm.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Law RJ, Gur-Arie L, Rosenshine I, Finlay BB. In vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections. Cold Spring Harb Perspect Med 2013; 3:a009977. [PMID: 23457294 DOI: 10.1101/cshperspect.a009977] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) belong to a group of bacteria known as attaching and effacing (A/E) pathogens that cause disease by adhering to the lumenal surfaces of their host's intestinal epithelium. EPEC and EHEC are major causes of infectious diarrhea that result in significant childhood morbidity and mortality worldwide. Recent advances in in vitro and in vivo modeling of these pathogens have contributed to our knowledge of how EPEC and EHEC attach to host cells and subvert host-cell signaling pathways to promote infection and cause disease. A more detailed understanding of how these pathogenic microbes infect their hosts and how the host responds to infection could ultimately lead to new therapeutic strategies to help control these significant enteric pathogens.
Collapse
Affiliation(s)
- Robyn J Law
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | |
Collapse
|
35
|
Abstract
The use of probiotic strains as nutritional supplements has been gaining ground in the last decade. As the mechanisms with which they modulate innate and adaptive immunity start to unravel, probiotics have repeatedly been suggested as potential treatment for a wide variety of diseases, including inflammatory bowel disease (IBD). However, even though the benefits of probiotic treatment for conditions like atopic dermatitis are well established, very limited clinical benefit has been obtained on IBD treatment. This could be due to the lack of suitable models on which to obtain valid pre-clinical data to select the most appropriate strain for a given condition. We recently described a newly developed model for the culture and apical stimulation of whole human intestinal mucosal explants. We showed that the tissue was only viable if incubated in an O(2) chamber, but it was possible to stimulate the tissue with bacteria in a conventional incubator. We used the new set-up to test three different Lactobacilli strains, none of which appeared to be benign on inflamed IBD mucosa.
Collapse
Affiliation(s)
- Katerina Tsilingiri
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|
36
|
Parenteral nutrition increases susceptibility of ileum to invasion by E coli. J Surg Res 2013; 183:583-91. [PMID: 23481564 DOI: 10.1016/j.jss.2013.01.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/16/2013] [Accepted: 01/25/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Parenteral nutrition (PN), with the lack of enteral feeding, compromises mucosal immune function and increases the risk of infections. We developed an ex vivo intestinal segment culture (EVISC) model to study the ex vivo effects of PN on susceptibility of the ileum to invasion by extra-intestinal pathogenic Escherichia coli (ExPEC) and on ileal secretion of antimicrobial secretory phospholipase A2 (sPLA2) in response to the pathogen. MATERIALS AND METHODS Study 1: Using mouse (n = 7) ileal tissue, we examined the effects of ileal region (proximal versus distal) and varying ExPEC inoculum concentrations on ex vivo susceptibility to ExPEC invasion and sPLA2 secretion. Study 2: Ten mice were randomized to oral chow or intravenous PN feeding for 5 d (n = 5/group). Using the EVISC model, we compared the susceptibility of ileal tissue to invasion by ExPEC and sPLA2 secretion in response to the pathogen. RESULTS Study 1: The proximal ileum was more susceptible to invasion (P < 0.0001) and secreted lower amounts of sPLA2 (P = 0.0002) than the distal ileum. Study 2: Ileal tissue from PN-fed animals was more susceptible (approximately 4-fold, P = 0.018) to invasion than those from chow-fed animals. Ileal tissue from PN-fed animals secreted less sPLA2 (P < 0.02) than those from chow-fed animals. CONCLUSIONS The data illustrate EVISC as a reproducible model for studying host-pathogen interactions and the effects of diet on susceptibility to infections. Specifically, the findings support our hypothesis that PN with the lack of enteral feeding decreases mucosal responsiveness to pathogen exposure and provides a plausible mechanism by which PN is associated with increased risk of infectious complication.
Collapse
|
37
|
Abstract
Enteric Escherichia coli (E. coli) are both natural flora of humans and important pathogens causing significant morbidity and mortality worldwide. Traditionally enteric E. coli have been divided into 6 pathotypes, with further pathotypes often proposed. In this review we suggest expansion of the enteric E. coli into 8 pathotypes to include the emerging pathotypes of adherent invasive E. coli (AIEC) and Shiga-toxin producing enteroaggregative E. coli (STEAEC). The molecular mechanisms that allow enteric E. coli to colonize and cause disease in the human host are examined and for two of the pathotypes that express a type 3 secretion system (T3SS) we discuss the complex interplay between translocated effectors and manipulation of host cell signaling pathways that occurs during infection.
Collapse
Affiliation(s)
- Abigail Clements
- Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
| | | | | | | |
Collapse
|
38
|
Edwards LA, Bajaj-Elliott M, Klein NJ, Murch SH, Phillips AD. Bacterial-epithelial contact is a key determinant of host innate immune responses to enteropathogenic and enteroaggregative Escherichia coli. PLoS One 2011; 6:e27030. [PMID: 22046438 PMCID: PMC3203933 DOI: 10.1371/journal.pone.0027030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/09/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Enteropathogenic (EPEC) and Enteroaggregative (EAEC) E. coli have similar, but distinct clinical symptoms and modes of pathogenesis. Nevertheless when they infect the gastrointestinal tract, it is thought that their flagellin causes IL-8 release leading to neutrophil recruitment and gastroenteritis. However, this may not be the whole story as the effect of bacterial adherence to IEC innate response(s) remains unclear. Therefore, we have characterized which bacterial motifs contribute to the innate epithelial response to EPEC and EAEC, using a range of EPEC and EAEC isogenic mutant strains. METHODOLOGY Caco-2 and HEp-2 cell lines were exposed to prototypical EPEC strain E2348/69 or EAEC strain O42, in addition to a range of isogenic mutant strains. E69 [LPS, non-motile, non-adherent, type three secretion system (TTSS) negative, signalling negative] or O42 [non-motile, non-adherent]. IL-8 and CCL20 protein secretion was measured. Bacterial surface structures were assessed by negative staining Transmission Electron Microscopy. The Fluorescent-actin staining test was carried out to determine bacterial adherence. RESULTS Previous studies have reported a balance between the host pro-inflammatory response and microbial suppression of this response. In our system an overall balance towards the host pro-inflammatory response is seen with the E69 WT and to a greater extent O42 WT, which is in fit with clinical symptoms. On removal of the external EPEC structures flagella, LPS, BFP, EspA and EspC; and EAEC flagella and AAF, the host inflammatory response is reduced. However, removal of E69 lymphostatin increases the host inflammatory response suggesting involvement in the bacterial mediated anti-inflammatory response. CONCLUSION Epithelial responses were due to combinations of bacterial agonists, with host-bacterial contact a key determinant of these innate responses. Host epithelial recognition was offset by the microbe's ability to down-regulate the inflammatory response. Understanding the complexity of this host-microbial balance will contribute to improved vaccine design for infectious gastroenteritis.
Collapse
Affiliation(s)
- Lindsey A Edwards
- Centre for Paediatric Gastroenterology, Royal Free Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
39
|
Salazar-Gonzalez H, Navarro-Garcia F. Intimate adherence by enteropathogenic Escherichia coli modulates TLR5 localization and proinflammatory host response in intestinal epithelial cells. Scand J Immunol 2011; 73:268-83. [PMID: 21204905 DOI: 10.1111/j.1365-3083.2011.02507.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) causes diarrhoeal disease by altering enterocyte physiology and producing mucosal inflammation. Many details concerning the host response against EPEC remain unknown. We evaluated the role of EPEC virulence factors on the inflammatory response through an analysis of bacterial recognition, cell signalling, and cytokine production using an in vitro epithelial cell infection model. Interestingly, we found that EPEC infection recruits Toll-like receptor 5 (TLR5) to the cell surface. We confirmed that type 3 secretion system (T3SS) and flagellin (FliC) are necessary for efficient extracellular regulated kinases 1 and 2 (ERK1/2) activation and found that intimin could down-regulate this pathway. Besides flagellin, intimin was required to keep nuclear factor kappa B (NF-κB) activated during infection. EPEC infection activated tumour necrosis factor alpha (TNF-α) production and induced interleukin (IL)-1β and IL-8 release. Virulence factors such as intimin, T3SS, EspA and fliC were required for IL-1β secretion, whereas intimin and T3SS participated in IL-8 release. Flagellin was essential for late secretion of TNF-α and IL-8 and intimin stimulated cytokine secretion. Initial adherence limited TNF-α release, whereas late attachment sustained TNF-α secretion. We conclude that intimin modulates TLR5 activation and intimate adherence alters the proinflammatory response.
Collapse
Affiliation(s)
- H Salazar-Gonzalez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | | |
Collapse
|
40
|
Wong ARC, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 2011; 80:1420-38. [PMID: 21488979 DOI: 10.1111/j.1365-2958.2011.07661.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander R C Wong
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gyles CL. Relevance in pathogenesis research. Vet Microbiol 2011; 153:2-12. [PMID: 21592684 DOI: 10.1016/j.vetmic.2011.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/09/2011] [Accepted: 04/13/2011] [Indexed: 01/28/2023]
Abstract
Research on pathogenesis of bacterial diseases involves exploration of the intricate and complex interactions among pathogen, host, and environment. Host-parasite-environment interactions that were relatively simple were the first to be understood. They include intoxications in which ingestion of a powerful bacterial toxin was sufficient to cause disease. In more complex cases bacteria occupy a variety of niches in the host and attack at an opportune time. Some bacterial pathogens have a brief encounter with the host; others are long-term guests. This variety of relationships involves a wide range of strategies for survival and transmission of bacterial pathogens. Molecular genetics, genomics and proteomics have facilitated understanding of the pathogens and hosts. Massive information often results from such studies and determining the relevance of the data is frequently a challenge. In vitro studies often attempt to simulate one or two critical aspects of the environment, such as temperature, pH, and iron concentration, that may provide clues as to what goes on in the host. These studies sometimes identify critical bacterial virulence factors but regulation of bacterial virulence and host response is complex and often not well understood. Pathogenesis is a process of continuous change in which timing and degree of gene expression are critical and are highly regulated by the environment. It is impossible to get the full picture without the use of natural or experimental infections, although experimental infections involve ethical and economic considerations which may act as a deterrent.
Collapse
Affiliation(s)
- Carlton L Gyles
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1 Canada.
| |
Collapse
|
42
|
Pearson JS, Riedmaier P, Marchès O, Frankel G, Hartland EL. A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation. Mol Microbiol 2011; 80:219-30. [PMID: 21306441 PMCID: PMC3178796 DOI: 10.1111/j.1365-2958.2011.07568.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many bacterial pathogens utilize a type III secretion system (T3SS) to inject virulence effector proteins into host cells during infection. Previously, we found that enteropathogenic Escherichia coli (EPEC) uses the type III effector, NleE, to block the inflammatory response by inhibiting IκB degradation and nuclear translocation of the p65 subunit of NF-κB. Here we screened further effectors with unknown function for their capacity to prevent p65 nuclear translocation. We observed that ectopic expression of GFP–NleC in HeLa cells led to the degradation of p65. Delivery of NleC by the T3SS of EPEC also induced degradation of p65 in infected cells as well as other NF-κB components, c-Rel and p50. Recombinant His6-NleC induced p65 and p50 cleavage in HeLa cell lysates and mutation of a consensus zinc metalloprotease motif, HEIIH, abrogated NleC proteolytic activity. NleC inhibited IL-8 production during prolonged EPEC infection of HeLa cells in a protease activity-dependent manner. A double nleE/nleC mutant was further impaired for its ability to inhibit IL-8 secretion than either a single nleE or a single nleC mutant. We conclude that NleC is a type III effector protease that degrades NF-κB thereby contributing the arsenal of bacterial effectors that inhibit innate immune activation.
Collapse
Affiliation(s)
- Jaclyn S Pearson
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Vic. 3010, Australia
| | | | | | | | | |
Collapse
|
43
|
Edwards LA, Nistala K, Mills DC, Stephenson HN, Zilbauer M, Wren BW, Dorrell N, Lindley KJ, Wedderburn LR, Bajaj-Elliott M. Delineation of the innate and adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS One 2010; 5:e15398. [PMID: 21085698 PMCID: PMC2976761 DOI: 10.1371/journal.pone.0015398] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/04/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Despite the significant health burden this infection presents, molecular understanding of C. jejuni-mediated disease pathogenesis remains poorly defined. Here, we report the characterisation of the early, innate immune response to C. jejuni using an ex-vivo human gut model of infection. Secondly, impact of bacterial-driven dendritic cell activation on T-cell mediated immunity was also sought. METHODOLOGY Healthy, control paediatric terminal ileum or colonic biopsy tissue was infected with C. jejuni for 8-12 hours. Bacterial colonisation was followed by confocal microscopy and mucosal innate immune responses measured by ELISA. Marked induction of IFNγ with modest increase in IL-22 and IL-17A was noted. Increased mucosal IL-12, IL-23, IL-1β and IL-6 were indicative of a cytokine milieu that may modulate subsequent T-cell mediated immunity. C. jejuni-driven human monocyte-derived dendritic cell activation was followed by analyses of T cell immune responses utilising flow cytometry and ELISA. Significant increase in Th-17, Th-1 and Th-17/Th-1 double-positive cells and corresponding cytokines was observed. The ability of IFNγ, IL-22 and IL-17 cytokines to exert host defence via modulation of C. jejuni adhesion and invasion to intestinal epithelia was measured by standard gentamicin protection assay. CONCLUSIONS Both innate and adaptive T cell-immunity to C. jejuni infection led to the release of IFNγ, IL-22 and IL-17A; suggesting a critical role for this cytokine triad in establishing host anti-microbial immunity during the acute and effectors phase of infection. In addition, to their known anti-microbial functions; IL-17A and IL-17F reduced the number of intracellular C. jejuni in intestinal epithelia, highlighting a novel aspect of how IL-17 family members may contribute to protective immunity against C. jejuni.
Collapse
Affiliation(s)
- Lindsey A. Edwards
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| | - Kiran Nistala
- Rheumatology, Institute of Child Health, London, United Kingdom
| | - Dominic C. Mills
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Holly N. Stephenson
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| | - Matthias Zilbauer
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
- Paediatric Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Brendan W. Wren
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Keith J. Lindley
- Autoimmunity and Surgery Units, Institute of Child Health, London, United Kingdom
| | | | - Mona Bajaj-Elliott
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| |
Collapse
|
44
|
Response of porcine intestinal in vitro organ culture tissues following exposure to Lactobacillus plantarum JC1 and Salmonella enterica serovar Typhimurium SL1344. Appl Environ Microbiol 2010; 76:6645-57. [PMID: 20639369 DOI: 10.1128/aem.03115-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of novel intervention strategies for the control of zoonoses caused by bacteria such as Salmonella spp. in livestock requires appropriate experimental models to assess their suitability. Here, a novel porcine intestinal in vitro organ culture (IVOC) model utilizing cell crown (CC) technology (CCIVOC) (Scaffdex) was developed. The CCIVOC model was employed to investigate the characteristics of association of S. enterica serovar Typhimurium strain SL1344 with porcine intestinal tissue following exposure to a Lactobacillus plantarum strain. The association of bacteria to host cells was examined by light microscopy and electron microscopy (EM) after appropriate treatments and staining, while changes in the proteome of porcine jejunal tissues were investigated using quantitative label-free proteomics. Exposure of porcine intestinal mucosal tissues to L. plantarum JC1 did not reduce the numbers of S. Typhimurium bacteria associating to the tissues but was associated with significant (P < 0.005) reductions in the percentages of areas of intestinal IVOC tissues giving positive staining results for acidic mucins. Conversely, the quantity of neutrally charged mucins present within the goblet cells of the IVOC tissues increased significantly (P < 0.05). In addition, tubulin-α was expressed at high levels following inoculation of jejunal IVOC tissues with L. plantarum. Although L. plantarum JC1 did not reduce the association of S. Typhimurium strain SL1344 to the jejunal IVOC tissues, detection of increased acidic mucin secretion, host cytoskeletal rearrangements, and proteins involved in the porcine immune response demonstrated that this strain of L. plantarum may contribute to protecting the pig from infections by S. Typhimurium or other pathogens.
Collapse
|
45
|
Lefoll C, Caubet C, Tasca C, Milon A, Boullier S. Simultaneous inactivation of espB and tir abrogates the strong, but non-protective, inflammatory response induced by EPEC. Vet Immunol Immunopathol 2010; 138:34-44. [PMID: 20633933 DOI: 10.1016/j.vetimm.2010.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 04/23/2010] [Accepted: 06/15/2010] [Indexed: 01/09/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) belong to the attaching and effacing (A/E) family of bacterial pathogens that represent a worldwide health concern. These non-invasive bacteria attach to intestinal enterocytes through a type III secretion system (T3SS), leading to intestinal inflammation and severe diarrhea. To dissect the signals leading to the induction of the inflammatory response and to understand its role in the pathogenesis of infection, we used the rabbit model, which represents a close model of human infections. Rabbits were orally inoculated with either the wild type O103:K-:H2 E22 EPEC strain or with the E22Δtir/espB strain, which bears mutations in two genes involved in the injectisome structure and function. To monitor the development of the inflammatory response, we developed a quantitative real-time RT-PCR (qPCR) assay specific for a panel of rabbit genes. Using combined immunohistochemistry and qPCR, we show here that the inflammatory response triggered by wild type EPEC occurs very early, preceding the bacterial colonization of the epithelium. However, this early response is unable to prevent bacterial attachment on enterocytes. Moreover, our results show that expression of a complete bacterial injectisome is required for the development of inflammation. Finally, infection by the virulent strain, but not by the doubly mutated strain, rapidly induces the development of a specific immune response in the mesenteric lymph nodes, which is not associated with protection. Our findings suggest that the induction of a strong inflammatory response by T3SS dependent components represents a selective advantage for T3SS+ bacteria, thereby facilitating their colonization.
Collapse
Affiliation(s)
- Catherine Lefoll
- Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | | | | | | | | |
Collapse
|
46
|
Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 2010; 8:171-84. [PMID: 20157338 DOI: 10.1038/nrmicro2297] [Citation(s) in RCA: 684] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
How can probiotic bacteria transduce their health benefits to the host? Bacterial cell surface macromolecules are key factors in this beneficial microorganism-host crosstalk, as they can interact with host pattern recognition receptors (PRRs) of the gastrointestinal mucosa. In this Review, we highlight the documented signalling interactions of the surface molecules of probiotic bacteria (such as long surface appendages, polysaccharides and lipoteichoic acids) with PRRs. Research on host-probiotic interactions can benefit from well-documented host-microorganism studies that span the spectrum from pathogenicity to mutualism. Distinctions and parallels are therefore drawn with the interactions of similar molecules that are presented by gastrointestinal commensals and pathogens.
Collapse
|