1
|
Shi Y, Liu J, Zhou H, Wu Z, Qiu Y, Ye C. Dihydromyricetin alleviates ETEC K88-induced intestinal inflammatory injury by inhibiting quorum sensing-related virulence factors. BMC Microbiol 2025; 25:201. [PMID: 40205366 PMCID: PMC11980137 DOI: 10.1186/s12866-025-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is responsible for piglet diarrhea and causes substantial economic loss in the pig industry. Along with the restriction of antibiotics, natural compounds targeting bacterial virulence factors are supposed to be efficacious and attractive alternatives for controlling ETEC infection. This study aimed to investigate the influence of dihydromyricetin (DMY), a natural flavonoid compound, on the expression of virulence factors of ETEC and intestinal inflammatory injury. RESULTS DMY interfered with the quorum sensing (QS) of ETEC K88 since it decreased AI-2 secretion and downregulated the expression of LuxS and Pfs, which dominate AI-2 production, and decreased the expression mRNA level of genes (lsrA, lsrB, lsrC, lsrD, lsrK, and lsrR) that are involved in AI-2 internalization and signal transduction. Additionally, DMY markedly dampened the expression of QS-related virulence genes (elt-1, estB, fliC, faeG), biofilm formation, cell adhesion, and stress tolerance of ETEC K88. Furthermore, DMY treatment applied to the ETEC K88 infection in mice model resulted in decreased amount of heat-labile (LT) and heat-stable (ST) enterotoxins, reduced production of cAMP and cGMP, downregulated protein level of CFTR and upregulated expression of NHE3 in the ileum. In addition, the mRNA expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and histological damage in the ileum were significantly decreased by DMY treatment. CONCLUSIONS DMY can inhibit the AI-2 QS and virulence factor expression, thereby attenuating the virulence of ETEC and alleviating intestinal inflammatory damage in ETEC K88-challenged mice. This study indicated that DMY has the potential to be a promising antivirulence agent for combating ETEC infection.
Collapse
Affiliation(s)
- Yaqian Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jin Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hualin Zhou
- Agricultural College, Xiangyang Polytechnic, Xiangyang, China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Tang X, Xu S, Yang Z, Wang K, Dai K, Zhang Y, Hu B, Wang Y, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Wen X, Wen Y. EspP2 Regulates the Adhesion of Glaesserella parasuis via Rap1 Signaling Pathway. Int J Mol Sci 2024; 25:4570. [PMID: 38674155 PMCID: PMC11050538 DOI: 10.3390/ijms25084570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence, we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient. We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of Glaesserella parasuis via Rap1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Naveed U, Jiang C, Yan Q, Wu Y, Zhao J, Zhang B, Xing J, Niu T, Shi C, Wang C. Inhibitory Effect of Lactococcus and Enterococcus faecalis on Citrobacter Colitis in Mice. Microorganisms 2024; 12:730. [PMID: 38674673 PMCID: PMC11052236 DOI: 10.3390/microorganisms12040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Probiotics are beneficial for intestinal diseases. Research shows that probiotics can regulate intestinal microbiota and alleviate inflammation. Little research has been done on the effects of probiotics on colitis in mice. The purpose of this study was to investigate the inhibitory effect of the strains isolated and screened from the feces of healthy piglets on the enteritis of rocitrobacter. The compound ratio of isolated Lactobacillus L9 and Enterococcus faecalis L16 was determined, and the optimal compound ratio was selected according to acid production tests and bacteriostatic tests in vitro. The results showed that when the ratio of Lactobacillus L9 to Enterococcus faecalis L16 was 4:1, the pH value was the lowest, and the antibacterial diameter was the largest. Then, in animal experiments, flow cytometry was used to detect the number of T lymphocytes in the spleen and mesenteric lymph nodes of mice immunized with complex lactic acid bacteria. The results showed that the number of T lymphocytes in the spleen and mesenteric lymph nodes of mice immunized with complex lactic acid bacteria significantly increased, which could improve the cellular immunity of mice. The microbiota in mouse feces were sequenced and analyzed, and the results showed that compound lactic acid bacteria could increase the diversity of mouse microbiota. It stabilized the intestinal microbiota structure of mice and resisted the damage of pathogenic bacteria. The combination of lactic acid bacteria was determined to inhibit the intestinal colitis induced by Citrobacter, improve the cellular immune response of the body, and promote the growth of animals.
Collapse
Affiliation(s)
- Ullah Naveed
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chenxi Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Qingsong Yan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yupeng Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jinhui Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Bowen Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Xing
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tianming Niu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China (C.J.); (Y.W.); (J.Z.); (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Ma J, Hermans L, Dierick M, Van der Weken H, Cox E, Devriendt B. Enterotoxigenic Escherichia coli heat labile enterotoxin affects neutrophil effector functions via cAMP/PKA/ERK signaling. Gut Microbes 2024; 16:2399215. [PMID: 39284098 PMCID: PMC11407407 DOI: 10.1080/19490976.2024.2399215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal illness in humans and animals, induced by enterotoxins produced by these pathogens. Despite the crucial role of neutrophils in combatting bacterial infections, our understanding of how enterotoxins impact neutrophil function is limited. To address this knowledge gap, we used heat-labile enterotoxin (LT) and heat-stable enterotoxin a (STa) to investigate their impact on the effector functions of neutrophils. Our study reveals that pSTa does not exert any discernible effect on the function of neutrophils. In contrast, LT altered the migration and phagocytosis of neutrophils and induced the production of inflammatory factors via activation of cAMP/PKA and ERK1/2 signaling. LT also attenuated the release of neutrophil extracellular traps by neutrophils via the PKA signaling pathway. Our findings provide novel insights into the impact of LT on neutrophil function, shedding light on the underlying mechanisms that govern its immunoregulatory effects. This might help ETEC in subverting the immune system and establishing infection.
Collapse
Affiliation(s)
- Jinglin Ma
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Hermans
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Matthias Dierick
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans Van der Weken
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
5
|
Niu L, Gao M, Wen S, Wang F, Shangguan H, Guo Z, Zhang R, Ge J. Effects of Catecholamine Stress Hormones Norepinephrine and Epinephrine on Growth, Antimicrobial Susceptibility, Biofilm Formation, and Gene Expressions of Enterotoxigenic Escherichia coli. Int J Mol Sci 2023; 24:15646. [PMID: 37958634 PMCID: PMC10649963 DOI: 10.3390/ijms242115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant contributor to diarrhea. To determine whether ETEC-catecholamine hormone interactions contribute to the development of diarrhea, we tested the effects of catecholamine hormones acting on ETEC in vitro. The results showed that in the presence of norepinephrine (NE) and epinephrine (Epi), the growth of 9 out of 10 ETEC isolates was promoted, the MICs of more than 60% of the isolates to 6 antibiotics significantly increased, and the biofilm formation ability of 10 ETEC isolates was also promoted. In addition, NE and Epi also significantly upregulated the expression of the virulence genes feaG, estA, estB, and elt. Transcriptome analysis revealed that the expression of 290 genes was affected by NE. These data demonstrated that catecholamine hormones may augment the diarrhea caused by ETEC.
Collapse
Affiliation(s)
- Lingdi Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| | - Shanshan Wen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| |
Collapse
|
6
|
Thapa HB, Kohl P, Zingl FG, Fleischhacker D, Wolinski H, Kufer TA, Schild S. Characterization of the Inflammatory Response Evoked by Bacterial Membrane Vesicles in Intestinal Cells Reveals an RIPK2-Dependent Activation by Enterotoxigenic Escherichia coli Vesicles. Microbiol Spectr 2023; 11:e0111523. [PMID: 37306596 PMCID: PMC10433812 DOI: 10.1128/spectrum.01115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Although the immunomodulatory potency of bacterial membrane vesicles (MVs) is widely acknowledged, their interactions with host cells and the underlying signaling pathways have not been well studied. Herein, we provide a comparative analysis of the proinflammatory cytokine profile secreted by human intestinal epithelial cells exposed to MVs derived from 32 gut bacteria. In general, outer membrane vesicles (OMVs) from Gram-negative bacteria induced a stronger proinflammatory response than MVs from Gram-positive bacteria. However, the quality and quantity of cytokine induction varied between MVs from different species, highlighting their unique immunomodulatory properties. OMVs from enterotoxigenic Escherichia coli (ETEC) were among those showing the strongest proinflammatory potency. In depth analyses revealed that the immunomodulatory activity of ETEC OMVs relies on a so far unprecedented two-step mechanism, including their internalization into host cells followed by intracellular recognition. First, OMVs are efficiently taken up by intestinal epithelial cells, which mainly depends on caveolin-mediated endocytosis as well as the presence of the outer membrane porins OmpA and OmpF on the MVs. Second, lipopolysaccharide (LPS) delivered by OMVs is intracellularly recognized by novel caspase- and RIPK2-dependent pathways. This recognition likely occurs via detection of the lipid A moiety as ETEC OMVs with underacylated LPS exhibited reduced proinflammatory potency but similar uptake dynamics compared to OMVs derived from wild-type (WT) ETEC. Intracellular recognition of ETEC OMVs in intestinal epithelial cells is pivotal for the proinflammatory response as inhibition of OMV uptake also abolished cytokine induction. The study signifies the importance of OMV internalization by host cells to exercise their immunomodulatory activities. IMPORTANCE The release of membrane vesicles from the bacterial cell surface is highly conserved among most bacterial species, including outer membrane vesicles (OMVs) from Gram-negative bacteria as well as vesicles liberated from the cytoplasmic membrane of Gram-positive bacteria. It is becoming increasingly evident that these multifactorial spheres, carrying membranous, periplasmic, and even cytosolic content, contribute to intra- and interspecies communication. In particular, gut microbiota and the host engage in a myriad of immunogenic and metabolic interactions. This study highlights the individual immunomodulatory activities of bacterial membrane vesicles from different enteric species and provides new mechanistic insights into the recognition of ETEC OMVs by human intestinal epithelial cells.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Paul Kohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Franz G. Zingl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
7
|
Both LTA and LTB Subunits Are Equally Important to Heat-Labile Enterotoxin (LT)-Enhanced Bacterial Adherence. Int J Mol Sci 2023; 24:ijms24021245. [PMID: 36674760 PMCID: PMC9863850 DOI: 10.3390/ijms24021245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
There is increasing evidence indicating that the production of heat-labile enterotoxin (LT) enhances bacterial adherence within in vitro and in vivo models. However, which subunit plays the main role, and the precise regulatory mechanisms remain unclear. To further elucidate the contribution of the A subunit of LT (LTA) and the B subunit of LT (LTB) in LT-enhanced bacterial adherence, we generated several LT mutants where their ADP-ribosylation activity or GM1 binding ability was impaired and evaluated their abilities to enhance the two LT-deficient E. coli strains (1836-2 and EcNc) adherence. Our results showed that the two LT-deficient strains, expressing either the native LT or LT derivatives, had a significantly greater number of adhesions to host cells than the parent strains. The adherence abilities of strains expressing the LT mutants were significantly reduced compared with the strains expressing the native LT. Moreover, E. coli 1836-2 and EcNc strains when exogenously supplied with cyclic AMP (cAMP) highly up-regulated the adhesion molecules expression and improved their adherence abilities. Ganglioside GM1, the receptor for LTB subunit, is enriched in lipid rafts. The results showed that deletion of cholesterol from cells also significantly decreased the ability of LT to enhance bacterial adherence. Overall, our data indicated that both subunits are equally responsible for LT-enhanced bacterial adherence, the LTA subunit contributes to this process mainly by increasing bacterial adhesion molecules expression, while LTB subunit mainly by mediating the initial interaction with the GM1 receptors of host cells.
Collapse
|
8
|
Li Q, Li L, Chen Y, Yu C, Azevedo P, Gong J, Yang C. Bacillus licheniformis PF9 improves barrier function and alleviates inflammatory responses against enterotoxigenic Escherichia coli F4 infection in the porcine intestinal epithelial cells. J Anim Sci Biotechnol 2022; 13:86. [PMID: 35799262 PMCID: PMC9264548 DOI: 10.1186/s40104-022-00746-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) F4 commonly colonizes the small intestine and releases enterotoxins that impair the intestinal barrier function and trigger inflammatory responses. Although Bacillus licheniformis (B. licheniformis) has been reported to enhance intestinal health, it remains to be seen whether there is a functional role of B. licheniformis in intestinal inflammatory response in intestinal porcine epithelial cell line (IPEC-J2) when stimulated with ETEC F4. Methods In the present study, the effects of B. licheniformis PF9 on the release of pro-inflammation cytokines, cell integrity and nuclear factor-κB (NF-κB) activation were evaluated in ETEC F4-induced IPEC-J2 cells. Results B. licheniformis PF9 treatment was capable of remarkably attenuating the expression levels of inflammation cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-8, and IL-6 during ETEC F4 infection. Furthermore, the gene expression of Toll-like receptor 4 (TLR4)-mediated upstream related genes of NF-κB signaling pathway has been significantly inhibited. These changes were accompanied by significantly decreased phosphorylation of p65 NF-κB during ETEC F4 infection with B. licheniformis PF9 treatment. The immunofluorescence and western blotting analysis revealed that B. licheniformis PF9 increased the expression levels of zona occludens 1 (ZO-1) and occludin (OCLN) in ETEC F4-infected IPEC-J2 cells. Meanwhile, the B. licheniformis PF9 could alleviate the injury of epithelial barrier function assessed by the trans-epithelial electrical resistance (TEER) and cell permeability assay. Interestingly, B. licheniformis PF9 protect IPEC-J2 cells against ETEC F4 infection by decreasing the gene expressions of virulence-related factors (including luxS, estA, estB, and elt) in ETEC F4. Conclusions Collectively, our results suggest that B. licheniformis PF9 might reduce inflammation-related cytokines through blocking the NF-κB signaling pathways. Besides, B. licheniformis PF9 displayed a significant role in the enhancement of IPEC-J2 cell integrity. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00746-8.
Collapse
Affiliation(s)
- Qiao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Linyan Li
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario, N1G 5C9, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yanhong Chen
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Changning Yu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Paula Azevedo
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario, N1G 5C9, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
9
|
Intestinal Epithelial Cells Modulate the Production of Enterotoxins by Porcine Enterotoxigenic E. coli Strains. Int J Mol Sci 2022; 23:ijms23126589. [PMID: 35743033 PMCID: PMC9223395 DOI: 10.3390/ijms23126589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 01/23/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are one of the most common etiological agents of diarrhea in both human and farm animals. In addition to encoding toxins that cause diarrhea, ETEC have evolved numerous strategies to interfere with host defenses. These strategies most likely depend on the sensing of host factors, such as molecules secreted by gut epithelial cells. The present study tested whether the exposure of ETEC to factors secreted by polarized IPEC-J2 cells resulted in transcriptional changes of ETEC-derived virulence factors. Following the addition of host-derived epithelial factors, genes encoding enterotoxins, secretion-system-associated proteins, and the key regulatory molecule cyclic AMP (cAMP) receptor protein (CRP) were substantially modulated, suggesting that ETEC recognize and respond to factors produced by gut epithelial cells. To determine whether these factors were heat sensitive, the IEC-conditioned medium was incubated at 56 °C for 30 min. In most ETEC strains, heat treatment of the IEC-conditioned medium resulted in a loss of transcriptional modulation. Taken together, these data suggest that secreted epithelial factors play a role in bacterial pathogenesis by modulating the transcription of genes encoding key ETEC virulence factors. Further research is warranted to identify these secreted epithelial factors and how ETEC sense these molecules to gain a competitive advantage in the early engagement of the gut epithelium.
Collapse
|
10
|
Sauvaitre T, Van Herreweghen F, Delbaere K, Durif C, Van Landuyt J, Fadhlaoui K, Huille S, Chaucheyras-Durand F, Etienne-Mesmin L, Blanquet-Diot S, Van de Wiele T. Lentils and Yeast Fibers: A New Strategy to Mitigate Enterotoxigenic Escherichia coli (ETEC) Strain H10407 Virulence? Nutrients 2022; 14:nu14102146. [PMID: 35631287 PMCID: PMC9144138 DOI: 10.3390/nu14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Dietary fibers exhibit well-known beneficial effects on human health, but their anti-infectious properties against enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is a major food-borne pathogen that causes acute traveler’s diarrhea. Its virulence traits mainly rely on adhesion to an epithelial surface, mucus degradation, and the secretion of two enterotoxins associated with intestinal inflammation. With the increasing burden of antibiotic resistance worldwide, there is an imperious need to develop novel alternative strategies to control ETEC infections. This study aimed to investigate, using complementary in vitro approaches, the inhibitory potential of two dietary-fiber-containing products (a lentil extract and yeast cell walls) against the human ETEC reference strain H10407. We showed that the lentil extract decreased toxin production in a dose-dependent manner, reduced pro-inflammatory interleukin-8 production, and modulated mucus-related gene induction in ETEC-infected mucus-secreting intestinal cells. We also report that the yeast product reduced ETEC adhesion to mucin and Caco-2/HT29-MTX cells. Both fiber-containing products strengthened intestinal barrier function and modulated toxin-related gene expression. In a complex human gut microbial background, both products did not elicit a significant effect on ETEC colonization. These pioneering data demonstrate the promising role of dietary fibers in controlling different stages of the ETEC infection process.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Florence Van Herreweghen
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Karen Delbaere
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Claude Durif
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Khaled Fadhlaoui
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | | | - Frédérique Chaucheyras-Durand
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France
| | - Lucie Etienne-Mesmin
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Correspondence: ; Tel.: +33-(0)4-73-17-83-90
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| |
Collapse
|
11
|
Fu Q, Lin Q, Chen D, Yu B, Luo Y, Zheng P, Mao X, Huang Z, Yu J, Luo J, Yan H, He J. β-defensin 118 attenuates inflammation and injury of intestinal epithelial cells upon enterotoxigenic Escherichia coli challenge. BMC Vet Res 2022; 18:142. [PMID: 35440001 PMCID: PMC9017018 DOI: 10.1186/s12917-022-03242-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Antimicrobial peptides including various defensins have been attracting considerable research interest worldwide, as they have potential to substitute for antibiotics. Moreover, AMPs also have immunomodulatory activity. In this study, we explored the role and its potential mechanisms of β-defensin 118 (DEFB118) in alleviating inflammation and injury of IPEC-J2 cells (porcine jejunum epithelial cell line) upon the enterotoxigenic Escherichia coli (ETEC) challenge. Results The porcine jejunum epithelial cell line (IPEC-J2) pretreated with or without DEFB118 (25 μg/mL) were challenged by ETEC (1×106 CFU) or culture medium. We showed that DEFB118 pretreatment significantly increased the cell viability (P<0.05) and decreased the expressions of inflammatory cytokines such as the interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in IPEC-J2 cells exposure to ETEC (P<0.05). Interestingly, DEFB118 pretreatment significantly elevated the abundance of the major tight-junction protein zonula occludens-1 (ZO-1), but decreased the number of apoptotic cells upon ETEC challenge (P<0.05). The expression of caspase 3, caspase 8, and caspase 9 were downregulated by DEFB118 in the IPEC-J2 cells exposure to ETEC (P<0.05). Importantly, DEFB118 suppressed two critical inflammation-associated signaling proteins, nuclear factor-kappa-B inhibitor alpha (IκB-α) and nuclear factor-kappaB (NF-κB) in the ETEC-challenged IPEC-J2 cells. Conclusions DEFB118 can alleviate ETEC-induced inflammation in IPEC-J2 cells through inhibition of the NF-κB signaling pathway, resulting in reduced secretion of inflammatory cytokines and decreased cell apoptosis. Therefore, DEFB118 can act as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Qingqing Fu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Qian Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China. .,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China.
| |
Collapse
|
12
|
Lactobacillus plantarum and Lactobacillus brevis Alleviate Intestinal Inflammation and Microbial Disorder Induced by ETEC in a Murine Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6867962. [PMID: 34594475 PMCID: PMC8478549 DOI: 10.1155/2021/6867962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
The purpose of this research is to explore the positive effects of Lactobacillus plantarum and Lactobacillus brevis on the tissue damage and microbial community in mice challenged by Enterotoxigenic Escherichia coli (ETEC). Twenty-four mice were divided into four groups randomly: the CON group, ETEC group, LP-ETEC group and LB-ETEC group. Our results demonstrated that, compared with the ETEC group, the LP-ETEC and LB-ETEC groups experienced less weight loss and morphological damage of the jejunum. We measured proinflammatory factors of colonic tissue and found that L. plantarum and L. brevis inhibited the expression of proinflammatory factors such as IL-β, TNF-α, and IL-6 and promoted that of the tight junction protein such as claudin-1, occludin, and ZO-1. Additionally, L. plantarum and L. brevis altered the impact of ETEC on the intestinal microbial community of mice, significantly increased the abundance of probiotics such as Lactobacillus, and reduced that of pathogenic bacteria such as Proteobacteria, Clostridia, Epsilonproteobacteria, and Helicobacter. Therefore, we believe that L. plantarum and L. brevis can stabilize the intestinal microbiota and inhibit the growth of pathogenic bacteria, thus protecting mice from the gut inflammation induced by ETEC.
Collapse
|
13
|
Yang KM, Zhu C, Wang L, Cao ST, Yang XF, Gao KG, Jiang ZY. Early supplementation with Lactobacillus plantarum in liquid diet modulates intestinal innate immunity through toll-like receptor 4-mediated mitogen-activated protein kinase signaling pathways in young piglets challenged with Escherichia coli K88. J Anim Sci 2021; 99:6259343. [PMID: 33928383 DOI: 10.1093/jas/skab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of early supplementation during 4 to 18 d of age with Lactobacillus plantarum (LP) in liquid diets on intestinal innate immune response in young piglets infected with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two barrow piglets at 4 d old were assigned to basal or LP-supplemented liquid diet (5 × 1010 CFU·kg-1). On day 15, piglets from each group were orally challenged with either ETEC K88 (1 × 108 CFU·kg-1) or the same amount of phosphate-buffered saline. The intestinal mucosa, mesenteric lymph node (MLN), and spleen samples were collected on day 18. Here, we found that LP pretreatment significantly decreased the mRNA relative expression of inflammatory cytokines (interleukin [IL]-1β, IL-8, and tumor necrosis factor-α), porcine β-defensin 2 (pBD-2), and mucins (MUC1 and MUC4) in the jejunal mucosa in piglets challenged with ETEC K88 (P < 0.05). Moreover, LP significantly decreased the ileal mucosa mRNA relative expression of IL-8 and MUC4 in young piglets challenged with ETEC K88 (P < 0.05). Furthermore, the piglets of the LP + ETEC K88 group had lower protein levels of IL-8, secretory immunoglobulin A, pBD-2, and MUC4 in the jejunal mucosa than those challenged with ETEC K88 (P < 0.05). Besides, LP supplementation reduced the percentage of gamma/delta T cells receptor (γδTCR) and CD172a+ (SWC3+) cells in MLN and the percentage of γδTCR cells in the spleen of young piglets after the ETEC K88 challenge. Supplementation with LP in liquid diets prevented the upregulated protein abundance of toll-like receptor (TLR) 4, phosphorylation-p38, and phosphorylation-extracellular signal-regulated protein kinases in the jejunal mucosa induced by ETEC K88 (P < 0.05). In conclusion, LP supplementation in liquid diet possesses anti-inflammatory activity and modulates the intestinal innate immunity during the early life of young piglets challenged with ETEC K88, which might be attributed to the suppression of TLR4-mediated mitogen-activated protein kinase signaling pathways. Early supplementation with LP in liquid diets regulates the innate immune response, representing a promising immunoregulation strategy for maintaining intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Kuanmin M Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Cui Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, P.R. China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Shuting T Cao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Xuefen F Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Kaiguo G Gao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Zongyong Y Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| |
Collapse
|
14
|
CEACAMs serve as toxin-stimulated receptors for enterotoxigenic Escherichia coli. Proc Natl Acad Sci U S A 2020; 117:29055-29062. [PMID: 33139570 DOI: 10.1073/pnas.2012480117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) are among the most common causes of diarrheal illness and death due to diarrhea among young children in low-/middle-income countries (LMICs). ETEC have also been associated with important sequelae including malnutrition and stunting, placing children at further risk of death from diarrhea and other infections. Our understanding of the molecular pathogenesis of acute diarrheal disease as well as the sequelae linked to ETEC are still evolving. It has long been known that ETEC heat-labile toxin (LT) activates production of cAMP in the cell, signaling the modulation of cellular ion channels that results in a net efflux of salt and water into the intestinal lumen, culminating in watery diarrhea. However, as LT also promotes ETEC adhesion to intestinal epithelial cells, we postulated that increases in cAMP, a critical cellular "second messenger," may be linked to changes in cellular architecture that favor pathogen-host interactions. Indeed, here we show that ETEC use LT to up-regulate carcinoembryonic antigenrelated cell adhesion molecules (CEACAMs) on the surface of small intestinal epithelia, where they serve as critical bacterial receptors. Moreover, we show that bacteria are specifically recruited to areas of CEACAM expression, in particular CEACAM6, and that deletion of this CEACAM abrogates both bacterial adhesion and toxin delivery. Collectively, these results provide a paradigm for the molecular pathogenesis of ETEC in which the bacteria use toxin to drive up-regulation of cellular targets that enhances subsequent pathogen-host interactions.
Collapse
|
15
|
Hu R, He Z, Liu M, Tan J, Zhang H, Hou DX, He J, Wu S. Dietary protocatechuic acid ameliorates inflammation and up-regulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. J Anim Sci Biotechnol 2020; 11:92. [PMID: 32944233 PMCID: PMC7487840 DOI: 10.1186/s40104-020-00492-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023] Open
Abstract
Background Weaning is one of the major factors that cause stress and intestinal disease in piglets. Protocatechuic acid (PCA) is an active plant phenolic acid which exists in Chinese herb, Duzhong (Eucommia ulmoides Oliver), and is also considered as the main bioactive metabolite of polyphenol against oxidative stress and inflammation. This study aimed to investigate the effect of PCA on growth performance, intestinal barrier function, and gut microbiota in a weaned piglet model challenged with lipopolysaccharide (LPS). Methods Thirty-six piglets (Pig Improvement Company line 337 × C48, 28 d of age, 8.87 kg ± 0.11 kg BW) were randomly allocated into 3 treatments and fed with a basal diet (CTL), a diet added 50 mg/kg of aureomycin (AUR), or a diet supplemented with 4000 mg/kg of PCA, respectively. The piglets were challenged with LPS (10 μg/kg BW) on d 14 and d 21 by intraperitoneal injection during the 21-d experiment. Animals (n = 6 from each group) were sacrificed after being anesthetized by sodium pentobarbital at 2 h after the last injection of LPS. The serum was collected for antioxidant indices and inflammatory cytokines analysis, the ileum was harvested for detecting mRNA and protein levels of tight junction proteins by PCR and immunohistochemical staining, and the cecum chyme was collected for intestinal flora analysis using 16S rRNA gene sequencing. Results Dietary supplementation of PCA or AUR significantly increased the expression of tight junction proteins including ZO-1 and claudin-1 in intestinal mucosa, and decreased the serum levels of thiobarbituric acid reactive substances (TBARS) and IL-6, as compared with CTL group. In addition, PCA also decreased the serum levels of IL-2 and TNF-α (P < 0.05). Analysis of gut microbiota indicated that PCA increased the Firmicutes/Bacteroidetes ratio (P < 0.05). Spearman’s correlation analysis at the genus level revealed that PCA reduced the relative abundance of Prevotella 9, Prevotella 2, Holdemanella, and Ruminococcus torques group (P < 0.05), and increased the relative abundance of Roseburia and Desulfovibrio (P < 0.05), whereas AUR had no significant effect on these bacteria. Conclusions These results demonstrated that both PCA and AUR had protective effect on oxidative stress, inflammation and intestinal barrier function in piglets challenged with LPS, and PCA potentially exerted the protective function by modulating intestinal flora in a way different from AUR. Holdemanella ![]()
Collapse
Affiliation(s)
- Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Ziyu He
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065 Japan
| | - Ming Liu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China.,Beijing China-Agri HongKe Bio-Technology Co., Ltd., Beijing, 102206 China
| | - Jijun Tan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing, 100193 China
| | - De-Xing Hou
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065 Japan
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
16
|
Li Q, Yin L, Xue M, Wang Z, Song X, Shao Y, Liu H, Tu J, Qi K. The transcriptional regulator PhoP mediates the tolC molecular mechanism on APEC biofilm formation and pathogenicity. Avian Pathol 2020; 49:211-220. [PMID: 31809574 DOI: 10.1080/03079457.2019.1701182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a transcriptional regulator of the classical binary regulatory system, PhoP plays an important role in the life activities of avian pathogenic Escherichia coli (APEC). In previous experiments, we found that the absence of phoP affects APEC biofilm formation and pathogenicity. To further explore the molecular mechanism of phoP regulation of these phenomena, the differentially expressed gene tolC was screened based on phoP-derived transcriptional data, and the specific sequence identity of the PhoP binding sequence was predicted by bioinformatics and verified by electrophoretic mobility shift assay (EMSA). The results showed that PhoP can directly bind to the tolC promoter. On this basis, tolC deletion and complementary strains were constructed. Biofilm formation was quantified by crystal violet staining and rdar morphology change was observed in these strains. Loss of tolC reduced biofilm formation. We also examined pathological changes in organ paraffin sections by challenging chicks with the strains. After loss of tolC, the clinical signs of pericarditis and liver and spleen enlargement in chicks were alleviated, and pathogenicity to the host cells was decreased. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that tolC deletion downregulated secA/secB/secE/secY transcript levels, which are part of the type II secretion system secreting virulence effector element. These results indicate that tolC contributes to the phoP-mediated effect on APEC biofilm formation and pathogenicity.
Collapse
Affiliation(s)
- Qianwen Li
- Anhui Province Key Laboratory of Veterinary and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Lei Yin
- Anhui Province Key Laboratory of Veterinary and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Mei Xue
- Anhui Province Key Laboratory of Veterinary and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zeping Wang
- Anhui Province Key Laboratory of Veterinary and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Yin Shao
- Anhui Province Key Laboratory of Veterinary and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
17
|
Chen Y, Yang W, Zou G, Chen S, Pang J, She Z. Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia 2019; 139:104369. [PMID: 31626911 DOI: 10.1016/j.fitote.2019.104369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
Five new polyketides, colletotric B (2), 3-hydroxy-5-methoxy-2,4,6-trimethylbenzoic acid (3), colletotric C (4), chaetochromone D (6) and 8-hydroxy-pregaliellalactone B (9), together with four known analogues (1, 5 and 7-8) were isolated from the mangrove endophytic fungus Phoma sp. SYSU-SK-7. Their structures were elucidated by analysis of extensive spectroscopic data and mass spectrometric data. Compounds 1-2 showed strong antimicrobial activity against the P. aeruginosa, MRSA and C. albicans with the MIC values in the range of 1.67-6.28 μg/ml. Furthermore, Compounds 1-5 also exhibited significant α-glucosidase inhibitory activity with the IC50 values in the range of 36.2-90.6 μM. Compound 7 was found to inhibited radical scavenging activity against DPPH with the EC50 value of 11.8 μM.
Collapse
Affiliation(s)
- Yan Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Marin Sciences, Sun Yat-sen University, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Wencong Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ge Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shenyu Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Marin Sciences, Sun Yat-sen University, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China.
| |
Collapse
|
18
|
Duan Q, Xia P, Nandre R, Zhang W, Zhu G. Review of Newly Identified Functions Associated With the Heat-Labile Toxin of Enterotoxigenic Escherichia coli. Front Cell Infect Microbiol 2019; 9:292. [PMID: 31456954 PMCID: PMC6700299 DOI: 10.3389/fcimb.2019.00292] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Heat-labile toxin (LT) is a well-characterized powerful enterotoxin produced by enterotoxigenic Escherichia coli (ETEC). This toxin is known to contribute to diarrhea in young children in developing countries, international travelers, as well as many different species of young animals. Interestingly, it has also been revealed that LT is involved in other activities in addition to its role in enterotoxicity. Recent studies have indicated that LT toxin enhances enteric pathogen adherence and subsequent intestinal colonization. LT has also been shown to act as a powerful adjuvant capable of upregulating vaccine antigenicity; it also serves as a protein or antigenic peptide display platform for new vaccine development, and can be used as a naturally derived cell targeting and protein delivery tool. This review summarizes the epidemiology, secretion, delivery, and mechanisms of action of LT, while also highlighting new functions revealed by recent studies.
Collapse
Affiliation(s)
- Qiangde Duan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rahul Nandre
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Guoqiang Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
19
|
Antibiotic Resistance Profile and Clonality of E. coli Isolated from Water and Paediatric Stool Samples in the North-West, Province South Africa. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Subramenium GA, Sabui S, Marchant JS, Said HM, Subramanian VS. Enterotoxigenic Escherichia coli heat labile enterotoxin inhibits intestinal ascorbic acid uptake via a cAMP-dependent NF-κB-mediated pathway. Am J Physiol Gastrointest Liver Physiol 2019; 316:G55-G63. [PMID: 30285481 PMCID: PMC6383388 DOI: 10.1152/ajpgi.00259.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vitamin C is an antioxidant and acts as a cofactor for many enzymatic reactions. Humans obtain vitamin C from dietary sources via intestinal absorption, a process that involves the sodium-dependent vitamin C transporters-1 and -2 (SVCT1 and SVCT2). Enterotoxigenic Escherichia coli (ETEC) infection impacts intestinal absorption/secretory functions, but nothing is known about its effect on ascorbic acid (AA) uptake. Here we demonstrate that infection of Caco-2 cells with ETEC led to a significant inhibition in intestinal AA uptake. This inhibition was associated with a marked reduction in hSVCT1 and hSVCT2 protein, mRNA, and heterogeneous nuclear RNA (hnRNA) expression levels as well as significant inhibition in the activity of both the SLC23A1 and SLC23A2 promoters. Similarly, exposure of mice to ETEC led to a significant inhibition in intestinal AA uptake and reduction in mSVCT1 and mSVCT2 protein, mRNA, and hnRNA expression levels. Inhibition was caused by the action of heat labile enterotoxin (LT), since infecting Caco-2 cells with LT-deficient ETEC (ΔLT) failed to impact AA uptake. Because LT activates adenylate cyclase, we also examined the effect of dibutyryl-cAMP in AA uptake by Caco-2 cells and observed a significant inhibition. Furthermore, treating the cells with celastrol, a specific NF-κB inhibitor, significantly blocked the inhibition of AA uptake caused by ETEC infection. Together, these data demonstrate that ETEC infection impairs intestinal AA uptake through a cAMP-dependent NF-κB-mediated pathway that regulates both SLC23A1 and SLC23A2 transcription. NEW & NOTEWORTHY Our findings demonstrate that heat-labile enterotoxin produced by enterotoxigenic Escherichia coli inhibits AA uptake in intestinal epithelial cells and mouse intestine. This effect is mediated through transcriptional repression of SLC23A1 (SVCT1) and SLC23A2 (SVCT2) via a cAMP-dependent NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ganapathy A. Subramenium
- 1Department of Medicine, University of California, Irvine, California,3Department of Veterans Affairs Medical Center, Long Beach, California
| | - Subrata Sabui
- 1Department of Medicine, University of California, Irvine, California,2Department of Physiology and Biophysics, University of California, Irvine, California,3Department of Veterans Affairs Medical Center, Long Beach, California
| | - Jonathan S. Marchant
- 4Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hamid M. Said
- 1Department of Medicine, University of California, Irvine, California,2Department of Physiology and Biophysics, University of California, Irvine, California,3Department of Veterans Affairs Medical Center, Long Beach, California
| | - Veedamali S. Subramanian
- 1Department of Medicine, University of California, Irvine, California,2Department of Physiology and Biophysics, University of California, Irvine, California,3Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
21
|
Fu S, Guo J, Li R, Qiu Y, Ye C, Liu Y, Wu Z, Guo L, Hou Y, Hu CAA. Transcriptional Profiling of Host Cell Responses to Virulent Haemophilus parasuis: New Insights into Pathogenesis. Int J Mol Sci 2018; 19:ijms19051320. [PMID: 29710817 PMCID: PMC5983834 DOI: 10.3390/ijms19051320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Haemophilus parasuis is the causative agent of Glässer’s disease in pigs. H. parasuis can cause vascular damage, although the mechanism remains unclear. In this study, we investigated the host cell responses involved in the molecular pathway interactions in porcine aortic vascular endothelial cells (PAVECs) induced by H. parasuis using RNA-Seq. The transcriptome results showed that when PAVECs were infected with H. parasuis for 24 h, 281 differentially expressed genes (DEGs) were identified; of which, 236 were upregulated and 45 downregulated. The 281 DEGs were involved in 136 KEGG signaling pathways that were organismal systems, environmental information processing, metabolism, cellular processes, and genetic information processing. The main pathways were the Rap1, FoxO, and PI3K/Akt signaling pathways, and the overexpressed genes were determined and verified by quantitative reverse transcription polymerase chain reaction. In addition, 252 genes were clustered into biological processes, molecular processes, and cellular components. Our study provides new insights for understanding the interaction between bacterial and host cells, and analyzed, in detail, the possible mechanisms that lead to vascular damage induced by H. parasuis. This may lead to development of novel therapeutic targets to control H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Jing Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ruizhi Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
22
|
Against the tide: the role of bacterial adhesion in host colonization. Biochem Soc Trans 2017; 44:1571-1580. [PMID: 27913666 PMCID: PMC5134996 DOI: 10.1042/bst20160186] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/10/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
Abstract
Evolving under the constant exposure to an abundance of diverse microbial life, the human body has developed many ways of defining the boundaries between self and non-self. Many physical and immunological barriers to microbial invasion exist, and yet bacteria have found a multitude of ways to overcome these, initiate interactions with and colonize the human host. Adhesion to host cells and tissues is a key feature allowing bacteria to persist in an environment under constant flux and to initiate transient or permanent symbioses with the host. This review discusses reasons why adhesion is such a seemingly indispensable requirement for bacteria–host interactions, and whether bacteria can bypass the need to adhere and still persist. It further outlines open questions about the role of adhesion in bacterial colonization and persistence within the host.
Collapse
|
23
|
Yang SC, Lin CH, Aljuffali IA, Fang JY. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch Microbiol 2017; 199:811-825. [DOI: 10.1007/s00203-017-1393-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
|
24
|
Lu X, Li C, Li C, Li P, Fu E, Xie Y, Jin F. Heat-Labile Enterotoxin-Induced PERK-CHOP Pathway Activation Causes Intestinal Epithelial Cell Apoptosis. Front Cell Infect Microbiol 2017. [PMID: 28642847 PMCID: PMC5463185 DOI: 10.3389/fcimb.2017.00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea among children and travelers in developing countries, and heat-labile enterotoxin (LT) is one of the most important virulence factors. The pathogenesis of and virulence factors associated with ETEC have been well-characterized; however, the extent to which ETEC damages host cells remains unclear. In this study, we found that LT could induce decreases in intestinal epithelial cell viability and induce apoptosis in a dose- and time- dependent manner in both HCT-8 and Caco-2 cells. We analyzed the expression profiles of apoptosis-related proteins via protein array technology and found that Bax, p-p53(S46), cleaved caspase-3, and TNFRI/TNFRSF1A expression levels were significantly up-regulated in wild-type ETEC- but not in ΔLT ETEC-infected HCT-8 cells. Bax is essential for endoplasmic reticulum (ER) stress-triggered apoptosis, and our RNAi experiments showed that the PERK-eIF2-CHOP pathway and reactive oxygen species (ROS) are also main participants in this process. LT-induced ROS generation was decreased in CHOP-knockdown HCT-8 cells compared to that in control cells. Moreover, pretreatment with the ROS inhibitor NAC down-regulated GRP78, CHOP, Bim, and cleaved caspase-3 expression, resulting in a reduction in the apoptosis rate from 36.2 to 20.3% in LT-treated HCT-8 cells. Furthermore, ROS inhibition also attenuated LT-induced apoptosis in the small intestinal mucosa in the ETEC-inoculation mouse model.
Collapse
Affiliation(s)
- Xi Lu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Chunmeng Li
- Bacteriology Room in Department of Clinical Laboratory, Shaanxi Province Hospital of Traditional Chinese MedicineXi'an, China
| | - Congcong Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Pengcheng Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Enqing Fu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Yonghong Xie
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| |
Collapse
|
25
|
Liu G, Ren W, Fang J, Hu CAA, Guan G, Al-Dhabi NA, Yin J, Duraipandiyan V, Chen S, Peng Y, Yin Y. L-Glutamine and L-arginine protect against enterotoxigenic Escherichia coli infection via intestinal innate immunity in mice. Amino Acids 2017; 49:1945-1954. [PMID: 28299479 DOI: 10.1007/s00726-017-2410-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/04/2017] [Indexed: 12/13/2022]
Abstract
Dietary glutamine (Gln) or arginine (Arg) supplementation is beneficial for intestinal health; however, whether Gln or Arg may confer protection against Enterotoxigenic Escherichia coli (ETEC) infection is not known. To address this, we used an ETEC-infected murine model to investigate the protective effects of Gln and Arg. Experimentally, we pre-treated mice with designed diet of Gln or Arg supplementation prior to the oral ETEC infection and then assessed mouse mortality and intestinal bacterial burden. We also determined the markers of intestinal innate immunity in treated mice, including secretory IgA response (SIgA), mucins from goblet cells, as well as antimicrobial peptides from Paneth cells. ETEC colonized in mouse small intestine, including duodenum, jejunum, and ileum, and inhibited the mRNA expression of intestinal immune factors, such as polymeric immunoglobulin receptor (pIgR), cryptdin-related sequence 1C (CRS1C), and Reg3γ. We found that dietary Gln or Arg supplementation decreased bacterial colonization and promoted the activation of innate immunity (e.g., the mRNA expression of pIgR, CRS1C, and Reg3γ) in the intestine of ETEC-infected mice. Our results suggest that dietary arginine or glutamine supplementation may inhibit intestinal ETEC infection through intestinal innate immunity.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Hunan, 410125, People's Republic of China
| | - Wenkai Ren
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Hunan, 410125, People's Republic of China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Chien-An Andy Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Fitz 258, Albuquerque, NM, 87131, USA
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Naif Abdullah Al-Dhabi
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Hunan, 410125, People's Republic of China
| | - Veeramuthu Duraipandiyan
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shuai Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Hunan, 410125, People's Republic of China
| | - Yuanyi Peng
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Hunan, 410125, People's Republic of China.
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, Hunan, People's Republic of China.
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
26
|
Roussel C, Sivignon A, de Wiele TV, Blanquet-Diot S. Foodborne enterotoxigenic Escherichia coli: from gut pathogenesis to new preventive strategies involving probiotics. Future Microbiol 2016; 12:73-93. [PMID: 27983878 DOI: 10.2217/fmb-2016-0101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of traveler's diarrhea and infant mortality in developing countries. Given the rise of antibiotic resistance worldwide, there is an urgent need for the development of new preventive strategies. Among them, a promising approach is the use of probiotics. Although many studies, mostly performed under piglet digestive conditions, have shown the beneficial effects of probiotics on ETEC by interfering with their survival, virulence or adhesion to mucosa, underlying mechanisms remain unclear. This review describes ETEC pathogenesis, its modulation by human gastrointestinal cues as well as novel preventive strategies with a particular emphasis on probiotics. The potential of in vitro models simulating human digestion in elucidating probiotic mode of action will be discussed.
Collapse
Affiliation(s)
- Charlène Roussel
- Clermont Université, Université d'Auvergne, Centre de Recherche en Nutrition Humaine Auvergne, EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, 63000 Clermont-Ferrand, France.,Cmet, Center for Microbial Ecology & Technology, Ghent University, 9000 Ghent, Belgium
| | - Adeline Sivignon
- Clermont Université, UMR 1071 INSERM/Université d'Auvergne, Clermont-Ferrand, France INRA, Unité Sous Contrat 2018, Clermont-Ferrand, France
| | - Tom Van de Wiele
- Cmet, Center for Microbial Ecology & Technology, Ghent University, 9000 Ghent, Belgium
| | - Stéphanie Blanquet-Diot
- Clermont Université, Université d'Auvergne, Centre de Recherche en Nutrition Humaine Auvergne, EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, 63000 Clermont-Ferrand, France
| |
Collapse
|
27
|
Sanchez-Villamil J, Tapia-Pastrana G, Navarro-Garcia F. Pathogenic Lifestyles of E. coli Pathotypes in a Standardized Epithelial Cell Model Influence Inflammatory Signaling Pathways and Cytokines Secretion. Front Cell Infect Microbiol 2016; 6:120. [PMID: 27774437 PMCID: PMC5054702 DOI: 10.3389/fcimb.2016.00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory response is key for the host defense against diarrheagenic Escherichia coli and contributes to the pathogenesis of the disease but there is not a comparative study among different diarrheagenic pathotypes. We analyzed the inflammatory response induced by five diarrheagenic pathotypes in a HT-29 cell infection model. The model was unified to reproduce the pathogenesis of each pathotype. To compare the inflammatory responses we evaluated: (i) nuclear NF-κB and ERK1/2 translocation by confocal microscopy; (ii) kinetics of activation by each pathway detecting p65 and ERK1/2 phosphorylation by Western blotting; (iii) pathways modulation through bacterial infections with or without co-stimulation with TNF-α or EGF; (iv) cytokine profile induced by each pathotype with and without inhibitors of each pathway. EHEC but mainly EPEC inhibited translocation and activation of p65 and ERK1/2 pathways, as well as cytokines secretion; inhibition of p65 and ERK1/2 phosphorylation prevailed in the presence of TNF-α and EGF, respectively. Intracellular strains, EIEC/Shigella flexneri, caused a strong translocation, activation, and cytokines secretion but they could not inhibit TNF-α and EGF stimulation. ETEC and mainly EAEC caused a moderate translocation, but a differential activation, and high cytokines secretion; interestingly TNF-α and EGF stimulation did no modify p65 and ERK1/2 activation. The use of inhibitors of NF-κB and/or ERK1/2 showed that NF-κB is crucial for cytokine induction by the different pathotypes; only partially depended on ERK1/2 activation. Thus, in spite of their differences, the pathotypes can also be divided in three groups according to their inflammatory response as those (i) that inject effectors to cause A/E lesion, which are able to inhibit NF-κB and ERK1/2 pathways, and cytokine secretion; (ii) with fimbrial adherence and toxin secretion with a moderate inhibition of both pathways but high cytokines secretion through autocrine cytokine regulation; and (iii) the intracellular bacteria that induce the highest pathways activation and cytokines secretion by using different activation mechanisms. This study provides a comprehensive analysis of how the different pathogenesis schemes of E. coli pathotypes manipulate inflammatory signaling pathways, which leads to a specific proinflammatory cytokine secretion in a cell model infection that reproduce the hallmarks of infection of each pathotype.
Collapse
Affiliation(s)
- Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Gabriela Tapia-Pastrana
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
28
|
Electron Acceptors Induce Secretion of Enterotoxigenic Escherichia coli Heat-Labile Enterotoxin under Anaerobic Conditions through Promotion of GspD Assembly. Infect Immun 2016; 84:2748-57. [PMID: 27430271 DOI: 10.1128/iai.00358-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/05/2016] [Indexed: 02/01/2023] Open
Abstract
Heat-labile enterotoxin (LT), the major virulence factor of enterotoxigenic Escherichia coli (ETEC), can lead to severe diarrhea and promotes ETEC adherence to intestinal epithelial cells. Most previous in vitro studies focused on ETEC pathogenesis were conducted under aerobic conditions, which do not reflect the real situation of ETEC infection because the intestine is anoxic. In this study, the expression and secretion of LT under anaerobic or microaerobic conditions were determined; LT was not efficiently secreted into the supernatant under anaerobic or microaerobic conditions unless terminal electron acceptors (trimethylamine N-oxide dihydrate [TMAO] or nitrate) were available. Furthermore, we found that the restoration effects of TMAO and nitrate on LT secretion could be inhibited by amytal or ΔtorCAD and ΔnarG E. coli strains, indicating that LT secretion under anaerobic conditions was dependent on the integrity of the respiratory chain. At the same time, electron acceptors increase the ATP level of ETEC, but this increase was not the main reason for LT secretion. Subsequently, the relationship between the integrity of the respiratory chain and the function of the type II secretion system was determined. The GspD protein, the secretin of ETEC, was assembled under anaerobic conditions and was accompanied by LT secretion when TMAO or nitrate was added. Our data also demonstrated that TMAO and nitrate could not induce the GspD assembly and LT secretion in ΔtorCAD and ΔnarG strains, respectively. Moreover, GspD assembly under anaerobic conditions was assisted by the pilot protein YghG.
Collapse
|
29
|
Gao X, Pham TH, Feuerbacher LA, Chen K, Hays MP, Singh G, Rueter C, Hurtado-Guerrero R, Hardwidge PR. Citrobacter rodentium NleB Protein Inhibits Tumor Necrosis Factor (TNF) Receptor-associated Factor 3 (TRAF3) Ubiquitination to Reduce Host Type I Interferon Production. J Biol Chem 2016; 291:18232-8. [PMID: 27387501 PMCID: PMC5000071 DOI: 10.1074/jbc.m116.738278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/14/2016] [Indexed: 11/06/2022] Open
Abstract
Interferon signaling plays important roles in both intestinal homeostasis and in the host response to pathogen infection. The extent to which bacterial pathogens inhibit this host pathway is an understudied area of investigation. We characterized Citrobacter rodentium strains bearing deletions in individual type III secretion system effector genes to determine whether this pathogen inhibits the host type I IFN response and which effector is responsible. The NleB effector limited host IFN-β production by inhibiting Lys(63)-linked ubiquitination of TNF receptor-associated factor 3 (TRAF3). Inhibition was dependent on the glycosyltransferase activity of NleB. GAPDH, a target of NleB during infection, bound to TRAF3 and was required for maximal TRAF3 ubiquitination. NleB glycosyltransferase activity inhibited GAPDH-TRAF3 binding, resulting in reduced TRAF3 ubiquitination. Collectively, our data reveal important interplay between GAPDH and TRAF3 and suggest a mechanism by which the NleB effector inhibits type I IFN signaling.
Collapse
Affiliation(s)
- Xiaofei Gao
- From the Whitehead Institute, Cambridge, Massachusetts 02142
| | - Thanh H Pham
- Case Western Reserve University, Cleveland, Ohio 44106
| | - Leigh Ann Feuerbacher
- the College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Kangming Chen
- the College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Michael P Hays
- the College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Gyanendra Singh
- the National Institute of Occupational Health, Meghani Nagar, Ahmedabad 380016, Gujarat, India
| | - Christian Rueter
- the Institute of Infectiology, University of Münster, D-48149 Münster, Germany, and
| | - Ramon Hurtado-Guerrero
- the Fundacion ARAID, Edificio CEEI ARAGÓN and Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
| | - Philip R Hardwidge
- the College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506,
| |
Collapse
|
30
|
YANG XIANGWU, XIAO ZHIMING, LIU FEN, CHEN SHUAI, TANG WULIANG, ZHANG DECAI, LIU SHAOJUN. Enterotoxigenic Escherichia coli infection alters intestinal immunity in mice. Mol Med Rep 2016; 14:825-30. [DOI: 10.3892/mmr.2016.5302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
|
31
|
Ren W, Yin J, Chen S, Duan J, Liu G, Li T, Li N, Peng Y, Tan B, Yin Y. Proteome analysis for the global proteins in the jejunum tissues of enterotoxigenic Escherichia coli -infected piglets. Sci Rep 2016; 6:25640. [PMID: 27157636 PMCID: PMC4860632 DOI: 10.1038/srep25640] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea in humans and livestock. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) combined with multidimensional liquid chromatography (LC) and MS analysis was used for screening the differentially expressed proteins in piglet jejunum after ETEC infection. Totally 1,897 proteins were identified with quantitative information in piglet jejunum. We identified 92 differentially expressed proteins in ETEC-induced diarrhea, of which 30 were up regulated and 62 down regulated. Most of the differentially expressed proteins were involved in intestinal function of binding, metabolic process, catalytic activity and immune responses. The inhibition of intestinal immune responses in the jejunum in ETEC-induced diarrhea was also validated by immunobloting and RT-PCR. Our study is the first attempt to analyze the protein profile of ETEC-infected piglets by quantitative proteomics, and our findings could provide valuable information with respect to better understanding the host response to ETEC infection.
Collapse
Affiliation(s)
- Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of the Chinese Academy of Sciences, Beijing 10008, China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Shuai Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Jielin Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Nengzhang Li
- Chongqing Key Laboratory of Forage &Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage &Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| |
Collapse
|
32
|
Yang WE, Suchindran S, Nicholson BP, McClain MT, Burke T, Ginsburg GS, Harro CD, Chakraborty S, Sack DA, Woods CW, Tsalik EL. Transcriptomic Analysis of the Host Response and Innate Resilience to Enterotoxigenic Escherichia coli Infection in Humans. J Infect Dis 2016; 213:1495-504. [PMID: 26787651 DOI: 10.1093/infdis/jiv593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/27/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is a globally prevalent cause of diarrhea. Though usually self-limited, it can be severe and debilitating. Little is known about the host transcriptional response to infection. We report the first gene expression analysis of the human host response to experimental challenge with ETEC. METHODS We challenged 30 healthy adults with an unattenuated ETEC strain, and collected serial blood samples shortly after inoculation and daily for 8 days. We performed gene expression analysis on whole peripheral blood RNA samples from subjects in whom severe symptoms developed (n = 6) and a subset of those who remained asymptomatic (n = 6) despite shedding. RESULTS Compared with baseline, symptomatic subjects demonstrated significantly different expression of 406 genes highlighting increased immune response and decreased protein synthesis. Compared with asymptomatic subjects, symptomatic subjects differentially expressed 254 genes primarily associated with immune response. This comparison also revealed 29 genes differentially expressed between groups at baseline, suggesting innate resilience to infection. Drug repositioning analysis identified several drug classes with potential utility in augmenting immune response or mitigating symptoms. CONCLUSIONS There are statistically significant and biologically plausible differences in host gene expression induced by ETEC infection. Differential baseline expression of some genes may indicate resilience to infection.
Collapse
Affiliation(s)
- William E Yang
- Duke University School of Medicine, Department of Medicine, Duke University Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University
| | - Sunil Suchindran
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University
| | - Bradly P Nicholson
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University Internal Medicine Service, Durham VA Medical Center, Duke University Medical Center, North Carolina
| | - Micah T McClain
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University Internal Medicine Service, Durham VA Medical Center, Duke University Medical Center, North Carolina Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, North Carolina
| | - Thomas Burke
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University
| | - Geoffrey S Ginsburg
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University
| | - Clayton D Harro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Christopher W Woods
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University Internal Medicine Service, Durham VA Medical Center, Duke University Medical Center, North Carolina Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, North Carolina
| | - Ephraim L Tsalik
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, North Carolina Emergency Medicine Service, Durham VA Medical Center, North Carolina
| |
Collapse
|
33
|
Sanchez-Villamil J, Navarro-Garcia F. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes. Future Microbiol 2015; 10:1009-33. [DOI: 10.2217/fmb.15.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth.
Collapse
Affiliation(s)
- Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| |
Collapse
|
34
|
Mouse intestinal innate immune responses altered by enterotoxigenic Escherichia coli (ETEC) infection. Microbes Infect 2014; 16:954-61. [DOI: 10.1016/j.micinf.2014.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
|
35
|
Tang Y, Li F, Tan B, Liu G, Kong X, Hardwidge PR, Yin Y. Enterotoxigenic Escherichia coli infection induces intestinal epithelial cell autophagy. Vet Microbiol 2014; 171:160-4. [PMID: 24742948 DOI: 10.1016/j.vetmic.2014.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
Abstract
The morbidity and mortality in piglets caused by enterotoxigenic Escherichia coli (ETEC) results in large economic losses to the swine industry, but the precise pathogenesis of ETEC-associated diseases remains unknown. Intestinal epithelial cell autophagy serves as a host defense against pathogens. We found that ETEC induced autophagy, as measured by both the increased punctae distribution of GFP-LC3 and the enhanced conversion of LC3-I to LC3-II. Inhibiting autophagy resulted in decreased survival of IPEC-1 cells infected with ETEC. ETEC triggered autophagy in IPEC-1 cells through a pathway involving the mammalian target of rapamycin (mTOR), the extracellular signal-regulated kinases 1/2 (ERK1/2), and the AMP-activated protein kinase (AMPK).
Collapse
Affiliation(s)
- Yulong Tang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China.
| | - Fengna Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China
| | - Bie Tan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China
| | - Gang Liu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China
| | - Philip R Hardwidge
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
36
|
Ji J, Hu S, Zheng M, Du W, Shang Q, Li W. Bacillus amyloliquefaciens SC06 inhibits ETEC-induced pro-inflammatory responses by suppression of MAPK signaling pathways in IPEC-1 cells and diarrhea in weaned piglets. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 897] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to summarize the recent developments in small intestinal bacterial infections. RECENT FINDINGS This review focuses on aspects of intestinal bacterial infection concerning research developments related to pathogenesis, new therapeutic agents and approaches, as well as potential new vaccine targets. SUMMARY In terms of drug utilization, azithromycin was successfully used to eradicate a Shiga toxin producing Escherichia coli (enterohemorrhagic E. coli) without harmful effects. In the case of Clostridium difficile, fidaxomicin was found to be comparable to or superior to vancomycin depending on study conditions and whether there was concomitant antibiotic use. A novel research finding is the role of galectin 8, which is a danger-sensing lectin, which plays a role in targeting Salmonella for autophagy. In addition, several enteropathogenic E. coli and Shigella effectors were found to inactivate members of the nuclear factor kappa B pathway.
Collapse
|
39
|
Abstract
Antibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF), an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin’s basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity. While nucleotide based inhibitors, similar to its natural substrate, ATP, were identified early, these compounds had low activity and specificity for EF. We used a combined structural and computational approach to choose small organic molecules in large, web-based compound libraries that would, based on docking scores, bind to residues within the substrate binding pocket of EF. A family of fluorenone-based inhibitors was identified that inhibited the release of cAMP from cells treated with EF. The lead inhibitor was also shown to inhibit the diarrhea caused by enterotoxigenic E. coli (ETEC) in a murine model, perhaps by serving as a quorum sensor. These inhibitors are now being tested for their ability to inhibit Anthrax infection in animal models and may have use against other pathogens that produce toxins similar to EF, such as Bordetella pertussis or Vibrio cholera.
Collapse
|
40
|
Enterotoxigenic Escherichia coli prevents host NF-κB activation by targeting IκBα polyubiquitination. Infect Immun 2012; 80:4417-25. [PMID: 23027537 DOI: 10.1128/iai.00809-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The NF-κB pathway regulates innate immune responses to infection. NF-κB is activated after pathogen-associated molecular patterns are detected, leading to the induction of proinflammatory host responses. As a countermeasure, bacterial pathogens have evolved mechanisms to subvert NF-κB signaling. Enterotoxigenic Escherichia coli (ETEC) causes diarrheal disease and significant morbidity and mortality for humans in developing nations. The extent to which this important pathogen subverts innate immune responses by directly targeting the NF-κB pathway is an understudied topic. Here we report that ETEC secretes a heat-stable, proteinaceous factor that blocks NF-κB signaling normally induced by tumor necrosis factor (TNF), interleukin-1β, and flagellin. Pretreating intestinal epithelial cells with ETEC supernatant significantly blocked the degradation of the NF-κB inhibitor IκBα without affecting IκBα phosphorylation. Data from immunoprecipitation experiments suggest that the ETEC factor functions by preventing IκBα polyubiquitination. Inhibiting clathrin function blocked the activity of the secreted ETEC factor, suggesting that this yet-uncharacterized activity may utilize clathrin-dependent endocytosis to enter host cells. These data suggest that ETEC evades the host innate immune response by directly modulating NF-κB signaling.
Collapse
|