1
|
Bahl AS, Verma VK, Prajapati V, Bhatia J, Arya DS. In-silico Assessment of Polyherbal Oils as Anti-diabetic Therapeutics. Curr Comput Aided Drug Des 2024; 20:673-684. [PMID: 37873913 DOI: 10.2174/0115734099267172231012070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is characterized by elevated blood glucose levels either due to insufficient insulin production, defective insulin action, or both. It affects nearly 537 million individuals worldwide. Pharmacological treatment involves the use of oral antidiabetic agents as mono or combination therapy that effectively aids in controlling hyperglycemia. Despite providing therapeutic benefits, these medications limit their use owing to adverse side effects. Certain natural products, including essential oils, have promising anti-diabetic properties. OBJECTIVE The present study explores the effectiveness of two polyherbal oils and their compound towards the treatment of DM based on an In-silico approach to drug investigations Methods: Compounds present in the polyherbal oil formulation were identified using GCMS/ MS analysis. Selected compounds undergo molecular docking with the receptor, and proteins play an important role in DM. The potential compounds showing higher interactions than the known inhibitors or inducers were evaluated using molecular dynamic simulations RMSD value. RESULTS The compounds identified through GC-MS analysis possess anti-diabetic and antiinflammatory properties. With the aid of in silico prediction methods, compounds such as geraniol, cinnamaldehyde, anethole, caryophyllene, terpinyl acetate, cymene, linalool, menthol, Phenol,2-methoxy-3-(2-propenyl), and 2,6- octadienal,3,7-dimethyl were identified as strong binders of GLUT4 and insulin receptor proteins. Geraniol and Phenol,2-methoxy-3-(2-propenyl) interaction with GLUT4 were of particular importance owing to their conformational stability. CONCLUSION Our data suggest an agonistic effect of compounds on target proteins aiding in enhanced insulin activity and could serve as a potential anti-diabetic agent.
Collapse
Affiliation(s)
- Amul S Bahl
- Department of Research, Development and Innovation, God's Own Store LLP, New Delhi, 110065, India
| | - Vipin Kumar Verma
- Deptartment of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vaishali Prajapati
- Deptartment of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jagriti Bhatia
- Deptartment of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamvir Singh Arya
- Deptartment of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
2
|
Barbhuiya PA, Pariong D, Alam AP, Mazumder TMSR, Sarma S, Sen S, Pathak MP. Ameliorative Effects of Essential Oils on Diabetes Mellitus: A Review. Curr Top Med Chem 2024; 24:2274-2287. [PMID: 39225203 DOI: 10.2174/0115680266314922240822091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Diabetes mellitus (DM) is a metabolic disorder and is responsible for the death of more than 4.2 million people in 2019. Synthetic drugs for DM like metformin have been reported to induce numerous complications and side effects. Reports suggested that essential plant oil has been used as an herbal remedy to lower blood glucose levels. Essential oils (EOs) are complex combinations of small molecules obtained from plants via the process of steam distillation and several solvents. EOs have already shown great efficacy as antimicrobials, anti-inflammatory, hepatoprotective, and anti-hypertensive. This review aims to summarize some potential EOs that have been reported to have anti-diabetic activity both in preclinical and clinical aspects while summarizing the probable mechanism of action. The authors went through a vast number of articles from various scientific databases like Google Scholar, PubMed, and Web of Science. It was found that EO from a total of 20 plants has been pre-clinically investigated to have anti-diabetic potential. Besides this, clinical studies have reported the antidiabetic efficacy of EOs from Nigella sativa and Cuminum cyminum at different concentrations. Bioactive phytoconstituents like carvacrol, thymol, α- pinene, via . obtained from EOs ameliorate DM by inhibiting α-GLUC, α-amylase, lipase enzymes and increasing GLUT-4 expression, AKT phosphorylation, via . Although fewer in number, EOs from plant sources have demonstrated significant efficacy in DM. Proper elucidation of the anti-diabetic efficacy of the EOs may open up new avenues for drug discovery and development subjected to clinical studies.
Collapse
Affiliation(s)
- Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
- Centre for Research on Ethnomedicine, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
| | - Diamond Pariong
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
- Centre for Research on Ethnomedicine, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
| | - Asif Pervice Alam
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
- Centre for Research on Ethnomedicine, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
| | | | - Satyabrat Sarma
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
- Centre for Research on Ethnomedicine, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
- Centre for Research on Ethnomedicine, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
- Centre for Research on Ethnomedicine, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, PIN - 781026, India
| |
Collapse
|
3
|
A Status Review on Health-Promoting Properties and Global Regulation of Essential Oils. Molecules 2023; 28:molecules28041809. [PMID: 36838797 PMCID: PMC9968027 DOI: 10.3390/molecules28041809] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Since ancient times, essential oils (EOs) have been known for their therapeutic potential against many health issues. Recent studies suggest that EOs may contribute to the regulation and modulation of various biomarkers and cellular pathways responsible for metabolic health as well as the development of many diseases, including cancer, obesity, diabetes, cardiovascular diseases, and bacterial infections. During metabolic dysfunction and even infections, the immune system becomes compromised and releases pro-inflammatory cytokines that lead to serious health consequences. The bioactive compounds present in EOs (especially terpenoids and phenylpropanoids) with different chemical compositions from fruits, vegetables, and medicinal plants confer protection against these metabolic and infectious diseases through anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In this review, we have highlighted some targeted physiological and cellular actions through which EOs may exhibit anti-inflammatory, anti-cancer, and anti-microbial properties. In addition, it has been observed that EOs from specific plant sources may play a significant role in the prevention of obesity, diabetes, hypertension, dyslipidemia, microbial infections, and increasing breast milk production, along with improvements in heart, liver, and brain health. The current status of the bioactive activities of EOs and their therapeutic effects are covered in this review. However, with respect to the health benefits of EOs, it is very important to regulate the dose and usage of EOs to reduce their adverse health effects. Therefore, we specified that some countries have their own regulatory bodies while others follow WHO and FAO standards and legislation for the use of EOs.
Collapse
|
4
|
Zhou Q, Lei X, Fu S, Li Z, Chen Y, Long C, Li S, Chen Q. Efficacy of cinnamon supplementation on glycolipid metabolism in T2DM diabetes: A meta-analysis and systematic review. Front Physiol 2022; 13:960580. [PMID: 36505061 PMCID: PMC9731104 DOI: 10.3389/fphys.2022.960580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Cinnamon is a spice used in cooking and in large quantities as a medical complement with hypoglycemic and lipid-lowering properties. The potential pharmacological mechanisms underlying cinnamon's anti-diabetic properties and its active ingredients have not been adequately determined. The current meta-analysis aims to systematically review the potential pharmacological mechanisms underlying the hypoglycemic and hypolipidemic efficacy of cinnamon administration and summarize clinical recommendations of cinnamon and its active ingredients. Method: Relevant randomized clinical trials (RCTs) were identified through a literature search that spanned the years January 2005 to April 2022. Retrieve electronic databases including Web of Science, PubMed, Embase, Medline, and the Cochrane Library. To obtain standardized mean differences (SMDs), continuous outcomes were pooled and 95 percent confidence intervals (CIs) were provided. Categorical outcomes were aggregated to calculate relative risks (RRs) and were accompanied by 95% CIs. Heterogeneity was measured using the Cochrane Q-test and I2 statistics, with a p < 0.05 considered as substantial heterogeneity. If I2 was less than 50%, a fixed effect model was employed; otherwise, a random effect model was used. Subgroup analyses and sensitivity analyses were performed to identify the origins of heterogeneity. Publication bias was retrieved by means of a funnel-plot analysis and Egger's test. The data were analyzed using revman (V.5.3) and stata (V.15) software packages. Results: These 16 RCTs included a total of 1,020 patients who were followed for a duration ranging from 40 days to 4 months. According to the current meta-analysis results, glycolipid levels in diabetic individuals who received cinnamon were significantly improved as compared to those who got placebo (All p < 0.05). An adverse effect was only detected in one patient. Conclusion: These findings imply that cinnamon has a significant influence on lipid and glucose metabolism regulation. An even more pronounced effect was observed in patients with HbA1c of 8%. The results of this study suggested that cinnamon may be utilized as hypoglycemic and lipid-lowering supplement in clinical settings with a guaranteed safety profile.Systematic Review Registration: [PROSPERO], identifier [CRD42022322735].
Collapse
|
5
|
Javadi S, Kazemi NM, Halabian R. Preparation of O/W nano-emulsion containing nettle and fenugreek extract and cumin essential oil for evaluating antidiabetic properties. AAPS OPEN 2021. [DOI: 10.1186/s41120-021-00046-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe oil-in-water (O/W) nano-emulsion (NE) is expanded to enhance the bioavailability of hydrophobic compounds. The NE can be prepared by herbal extract and essential oil as herbal medicines for antidiabetic treatment. In the present study, the O/W NE was prepared by fenugreek extract (FE), nettle extract (NE), and cumin essential oil (CEO) using tween 80 and span 80 surfactants in an ultrasonic bath, at room temperature within 18 min. The antidiabetic property was evaluated by determining glucose absorption using cultured rat L6 myoblast cell line (L6) myotubes and insulin secretion using the cultured mouse pancreatic beta-cell (RIN-5) for NEs. The samples were investigated by dynamic light scattering (DLS) to examine the size distribution and size, zeta potential for the charge determination, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to investigate morphology and size. The rheological properties were studied by viscosity. The sample stability was evaluated at different temperatures and days by DLS and SEM analyses. The cytotoxicity of samples was explored by MTT assay for HEK293 human cell line as a specific cell line originally derived from human embryonic kidney cells at three different concentrations for three periods of time. The NEs with nanometer-size were observed with antidiabetic properties, low cytotoxicity, and suitable stability. This study provides definitive evidence for the NE as a plant medicine with antidiabetic properties. The NE can be a good candidate for biomedical applications.
Collapse
|
6
|
The Beneficial Effects of Essential Oils in Anti-Obesity Treatment. Int J Mol Sci 2021; 22:ijms222111832. [PMID: 34769261 PMCID: PMC8584325 DOI: 10.3390/ijms222111832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Obesity is a complex disease caused by an excessive amount of body fat. Obesity is a medical problem and represents an important risk factor for the development of serious diseases such as insulin resistance, type 2 diabetes, cardiovascular disease, and some types of cancer. Not to be overlooked are the psychological issues that, in obese subjects, turn into very serious pathologies, such as depression, phobias, anxiety, and lack of self-esteem. In addition to modifying one’s lifestyle, the reduction of body mass can be promoted by different natural compounds such as essential oils (EOs). EOs are mixtures of aromatic substances produced by many plants, particularly in medicinal and aromatic ones. They are odorous and volatile and contain a mixture of terpenes, alcohols, aldehydes, ketones, and esters. Thanks to the characteristics of the various chemical components present in them, EOs are used in the food, cosmetic, and pharmaceutical fields. Indeed, it has been shown that EOs possess great antibiotic, anti-inflammatory, and antitumor powers. Emerging results also demonstrate the anti-obesity effects of EOs. We have examined the main data obtained in experimental studies and, in this review, we summarize the effect of EOs in obesity and obesity-related metabolic diseases.
Collapse
|
7
|
Sadgrove NJ, Padilla-González GF, Leuner O, Melnikovova I, Fernandez-Cusimamani E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front Pharmacol 2021; 12:740302. [PMID: 34744723 PMCID: PMC8566702 DOI: 10.3389/fphar.2021.740302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary critically examines the modern paradigm of natural volatiles in 'medical aromatherapy', first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.
Collapse
Affiliation(s)
| | | | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
8
|
Panda S, Sahoo S, Tripathy K, Singh YD, Sarma MK, Babu PJ, Singh MC. Essential oils and their pharmacotherapeutics applications in human diseases. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00477-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Baptista-Silva S, Borges S, Ramos OL, Pintado M, Sarmento B. The progress of essential oils as potential therapeutic agents: a review. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1746698] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sara Baptista-Silva
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Sandra Borges
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Oscar L. Ramos
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Manuela Pintado
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Bruno Sarmento
- I3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal
- INEB Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU , Gandra, Portugal
| |
Collapse
|
10
|
Eid AM, Jaradat N. Public Knowledge, Attitude, and Practice on Herbal Remedies Used During Pregnancy and Lactation in West Bank Palestine. Front Pharmacol 2020; 11:46. [PMID: 32116721 PMCID: PMC7034419 DOI: 10.3389/fphar.2020.00046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
The use of herbal products by pregnant and lactating mothers without awareness of their harmful effects may expose both mother and fetus or infant to great dangers, such as abortion, premature delivery, uterine bleeding, and physical and mental retardation of the fetus. Thus, the aim of this study was to investigate the extent to which herbal product treatment is used and the reason for which such products are used and to ensure that these reasons are correct. An ethnopharmacological survey (cross-sectional observational design study) using a pre-piloted questionnaire was undertaken on herbal products used by pregnant and lactating women in the West Bank area of Palestine. A questionnaire was distributed to 350 pregnant and lactating women. The informed consent forms, ethics, and aims of the present study were reviewed and approved by the Institutional Review Board (IRB) at An-Najah National University. To identify the most important species used, the use value (UV) index was employed, while the SPSS program was used to analyze the data. Collected data revealed that 13 medicinal plants are utilized, while 12 plants are not used during pregnancy. Moreover, 15 plants are utilized and 9 plants are not used during lactation for treating and dealing with various problems. The most commonly used plants belonged to 14 families, including Lamiaceae, Apiaceae, Leguminosae, and Rubiaceae. The plants most used during pregnancy were sage (Salvia fruticosa), anise (Pimpinella anisum), and peppermint (Mentha × piperita). Castor (Ricinus communis) oil, ginger (Zingiber officinale), saffron (Crocus sativus), and senna (Senna alexandrina) mostly were not used by pregnant women. Moreover, cinnamon (Cinnamomum verum), anise (P. anisum), peppermint (M. piperita), and sage (S. fruticosa) were mostly used during lactation. Castor (R. communis) oil, ginger (Z. officinale), garlic (Allium sativum), and aloe (Aloe vera) mostly were not used during lactation. This study is of great importance in order to decrease the possibility of endangering the lives of fetuses and infants. A combined effort among researchers, scientists, lactating women, and pregnant women may help in changing wrong uses and thoughts about medicinal plants and help to improve the overall health of both mother and fetus.
Collapse
Affiliation(s)
- Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
11
|
Joch M, Kudrna V, Hakl J, Božik M, Homolka P, Illek J, Tyrolová Y, Výborná A. In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Platelet microparticles contribute to aortic vascular endothelial injury in diabetes via the mTORC1 pathway. Acta Pharmacol Sin 2019; 40:468-476. [PMID: 30446735 DOI: 10.1038/s41401-018-0186-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/10/2018] [Indexed: 11/08/2022]
Abstract
Platelet microparticles (PMPs) are closely associated with diabetic macrovascular complications. The present study aimed to investigate the effects of PMPs in diabetes on aortic vascular endothelial injury and to explore the underlying mechanisms. Peritoneal injection of streptozotocin was used to generate a diabetic rat model in vivo, and human umbilical vein endothelial cells (HUVECs) treated with PMPs were used in vitro. PMP levels in the circulation and aorta tissues were time-dependently increased in streptozotocin-induced diabetic rats at weeks 4, 8, and 12 (P < 0.05). Aspirin significantly inhibited the PMP levels at each time point (P < 0.05). In diabetic rats, the endothelial nitric oxide levels were decreased significantly combined with increased endothelial permeability. PMPs were internalized by HUVECs and primarily accumulated around the nuclei. PMPs inhibited endothelial nitric oxide levels to about 50% and caused approximately twofold increase in reactive oxygen species production. Furthermore, PMPs significantly decreased the endothelial glycocalyx area and expression levels of glypican-1 and occludin (P < 0.05). Interestingly, the PMP-induced endothelial injuries were prevented by raptor siRNA and rapamycin. In conclusion, increased PMPs levels contribute to aortic vascular endothelial injuries in diabetes through activating the mTORC1 pathway.
Collapse
|
13
|
Muhammad DRA, Dewettinck K. Cinnamon and its derivatives as potential ingredient in functional food—A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1369102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dimas Rahadian Aji Muhammad
- Laboratory of Food Technology and Engineering, Faculty of Bioscience-Engineering, Ghent University, Gent, Belgium
- Department of Food Science and Technology, Sebelas Maret University, Surakarta, Indonesia
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering, Faculty of Bioscience-Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
14
|
Bell B, Adhikari K, Chambers E, Alavi S, King S, Haub M. Spices in a Product Affect Emotions: A Study with an Extruded Snack Product †. Foods 2017; 6:foods6080070. [PMID: 28820459 PMCID: PMC5575645 DOI: 10.3390/foods6080070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/20/2017] [Accepted: 08/16/2017] [Indexed: 11/26/2022] Open
Abstract
Food commonly is associated with emotion. The study was designed to determine if a spice blend (cinnamon, ginger, nutmeg, and cloves) high in antioxidants can evoke changes in consumer emotions. This was an exploratory study to determine the effects of these four spices on emotions. Three extruded, dry snack products containing 0, 4, or a 5% spice blend were tested. One day of hedonic and just-about-right evaluations (n = 100), followed by three days of emotion testing were conducted. A human clinical trial (n = 10), using the control and the 4% samples, measured total antioxidant capacity and blood glucose levels. The emotion “Satisfied” increased significantly in the 5% blend, showing an effect of a higher spice content. The 4% blend was significantly higher in total antioxidant capacity than the baseline, but blood glucose levels were not significantly different.
Collapse
Affiliation(s)
- Brandon Bell
- WhiteWave Foods Company, Broomfield, CO 80021, USA.
| | - Koushik Adhikari
- Food Science & Technology, University of Georgia, Griffin, GA 30223, USA.
| | - Edgar Chambers
- Center for Sensory Analysis and Consumer Behavior, Kansas State University, Manhattan, KS 66502, USA.
| | - Sajid Alavi
- Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| | - Silvia King
- Silvia C. King Consulting LLC, Maineville, OH 45039, USA.
| | - Mark Haub
- Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
15
|
Imran M, Nadeem M, Saeed F, Imran A, Khan MR, Khan MA, Ahmed S, Rauf A. Immunomodulatory perspectives of potential biological spices with special reference to cancer and diabetes. FOOD AGR IMMUNOL 2017; 28:543-572. [DOI: 10.1080/09540105.2016.1259293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Muhammad Imran
- Department of Diet and Nutritional Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asif Khan
- University of Agriculture Faisalabad, Sub-campus, Burewala/Vehari, Pakistan
| | - Sheraz Ahmed
- Department of Food Science and Technology, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
16
|
Ge Q, Chen L, Chen K. Treatment of Diabetes Mellitus Using iPS Cells and Spice Polyphenols. J Diabetes Res 2017; 2017:5837804. [PMID: 28758131 PMCID: PMC5512026 DOI: 10.1155/2017/5837804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/05/2017] [Accepted: 06/04/2017] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus is a chronic disease that threatens human health. The disease is caused by a metabolic disorder of the endocrine system, and long-term illness can lead to tissue and organ damage to the cardiovascular, endocrine, nervous, and urinary systems. Currently, the disease prevalence is 11.4%, the treatment rate is 48.2%, and the mortality rate is 2.7% worldwide. Comprehensive and effective control of diabetes, as well as the use of insulin, requires further study to develop additional treatment options. Here, we reviewed the current reprogramming of somatic cells using specific factors to induced pluripotent stem (iPS) cells capable of repairing islet β cell damage in diabetes patients to treat patients with type 1 diabetes mellitus. We also discuss the shortcomings associated with clinical use of iPS cells. Additionally, certain polyphenols found in spices might improve glucose homeostasis and insulin resistance in diabetes patients, thereby constituting promising options for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Qi Ge
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
17
|
|
18
|
Mahmoodnia L, Aghadavod E, Rafieian-Kopaei M. Ameliorative impact of cinnamon against high blood pressure; an updated review. J Renal Inj Prev 2017. [DOI: 10.15171/jrip.2017.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
19
|
Bi X, Lim J, Henry CJ. Spices in the management of diabetes mellitus. Food Chem 2016; 217:281-293. [PMID: 27664636 DOI: 10.1016/j.foodchem.2016.08.111] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 07/07/2016] [Accepted: 08/27/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) remains a major health care problem worldwide both in developing and developed countries. Many factors, including age, obesity, sex, and diet, are involved in the etiology of DM. Nowadays, drug and dietetic therapies are the two major approaches used for prevention and control of DM. Compared to drug therapy, a resurgence of interest in using diet to manage and treat DM has emerged in recent years. Conventional dietary methods to treat DM include the use of culinary herbs and/or spices. Spices have long been known for their antioxidant, anti-inflammatory, and anti-diabetic properties. This review explores the anti-diabetic properties of commonly used spices, such as cinnamon, ginger, turmeric, and cumin, and the use of these spices for prevention and management of diabetes and associated complications.
Collapse
Affiliation(s)
- Xinyan Bi
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore
| | - Joseph Lim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
20
|
Taghizadeh M, Memarzadeh MR, Abedi F, Sharifi N, Karamali F, Fakhrieh Kashan Z, Asemi Z. The Effect of Cumin cyminum L. Plus Lime Administration on Weight Loss and Metabolic Status in Overweight Subjects: A Randomized Double-Blind Placebo-Controlled Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e34212. [PMID: 27781121 PMCID: PMC5065707 DOI: 10.5812/ircmj.34212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/27/2015] [Accepted: 01/11/2016] [Indexed: 01/19/2023]
Abstract
Background Limited data are available regarding the effects of combined administration of Cumin cyminum L. and lime on weight loss and metabolic profiles among subjects with overweight subjects. Objectives The current study aimed to assess the effects of combined administration of Cumin cyminum L. and lime on weight loss and metabolic profiles among subjects with overweight. Patients and Methods This randomized double-blind placebo-controlled clinical trial was conducted on 72 subjects with overweight, aged 18 - 50 years old. Participants were randomly divided into three groups: Group A received high-dose Cumin cyminum L. and lime capsules (75 mg each, n = 24), group B low-dose Cumin cyminum L. and lime capsules (25 mg each, n = 24) and group C placebos (n = 24) twice daily for eight weeks. Results After eight weeks of intervention, compared with low-dose C. cyminum L. plus lime and placebo, taking high-dose C. cyminum L. plus lime resulted in significant weight loss (in the high-dose group: -2.1 ± 1.7 vs. in the low-dose group: -1.2 ± 1.5 and in the placebo group: + 0.2 ± 1.3 kg, respectively; P < 0.001) and body mass index (-0.8 ± 0.6 vs. -0.5 ± 0.5 and +0.1 ± 0.5 kg/m2, respectively; P < 0.001). In addition, administration of high-dose C. cyminum L. plus lime compared with low-dose C. cyminum L. plus lime and placebo, led to a significant reduction in fasting plasma glucose (FPG) (P < 0.001) and a significant rise in quantitative insulin sensitivity check index (QUICKI) (+ 0.02 ± 0.02 vs. + 0.01 ± 0.02 and 0.01 ± 0.01, respectively; P = 0.01). Moreover, a significant decrease in serum triglycerides (-14.1 ± 56.2 vs. +13.9 ± 36.8 and + 10.6 ± 25.1 mg/dL; respectively; P = 0.03), total-cholesterol (-18.4 ± 28.6 vs. +8.6 ± 28.5 and -1.0 ± 24.8 mg/dL; respectively; P = 0.004) and low density lipoproteins- (LDL)-cholesterol levels (-11.8 ± 20.7 vs. +6.5 ± 23.2 and -2.9 ± 20.4 mg/dL, respectively; P = 0.01) was observed following the consumption of high-dose C. cyminum L. plus lime compared with low-dose C. cyminum L. plus lime and placebo. Conclusions Results of the current study indicated that taking high-dose C. cyminum L. plus lime for eight weeks among subjects with overweight had beneficial effects on weight, BMI, FPG, QUICKI, triglycerides, total-cholesterol and LDL-cholesterol levels.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | | | - Fatemeh Abedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Fatemeh Karamali
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, IR Iran
| | - Zohreh Fakhrieh Kashan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
- Corresponding Author: Zatollah Asemi, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran. Tel: +98-31-55463378, Fax: +98-31-55463377, E-mail:
| |
Collapse
|
21
|
Srinivasan S, Muruganathan U. Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Chem Biol Interact 2016; 250:38-46. [PMID: 26944432 DOI: 10.1016/j.cbi.2016.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/01/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a clinically complex disease characterized by chronic hyperglycemia with metabolic disturbances. During diabetes, endogenous hepatic glucose production is increased as a result of impaired activities of the key enzymes of carbohydrate metabolism. The purpose of the present study was to evaluate the antidiabetic efficacy of citronellol, a citrus monoterpene in streptozotocin (STZ)-induced diabetic rats. Diabetes mellitus was induced by a single intraperitoneal injection of STZ (40 mg/kg b.w). STZ induced diabetic rats received citronellol orally at the doses of 25, 50, and 100 mg/kg b.w for 30 days. In this study the levels of plasma glucose, insulin, hemoglobin (Hb), glycated hemoglobin (HbA1C), glycogen, and the activities of carbohydrate metabolic enzymes, liver and kidney markers were evaluated. Oral administration of citronellol (50 mg/kg) for 30 days dose dependently improved the levels of insulin, Hb and hepatic glycogen with significant decrease in glucose and HbA1C levels. The altered activities of carbohydrate metabolic enzymes, hepatic and kidney markers were restored to near normal. Citronellol supplement was found to be effective in preserving the normal histological appearance of hepatic cells and insulin-positive β-cells in STZ-rats. Our results suggest that administration of citronellol attenuates the hyperglycemia in the STZ-induced diabetic rats by ameliorating the key carbohydrate metabolic enzymes and could be developed as a functional and nutraceutical ingredient in combating diabetes mellitus.
Collapse
Affiliation(s)
- Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamilnadu, India.
| | - Udaiyar Muruganathan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| |
Collapse
|
22
|
Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and Health. Molecules 2016; 21:264. [PMID: 26927041 PMCID: PMC6273481 DOI: 10.3390/molecules21030264] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022] Open
Abstract
Nowadays, there are some molecules that have shown over the years a high capacity to act against relevant pathologies such as cardiovascular disease, neurodegenerative disorders or cancer. This article provides a brief review about the origin, bioavailability and new research on curcumin and synthetized derivatives. It examines the beneficial effects on health, delving into aspects such as cancer, cardiovascular effects, metabolic syndrome, antioxidant capacity, anti-inflammatory properties, and neurological, liver and respiratory disorders. Thanks to all these activities, curcumin is positioned as an interesting nutraceutical. This is the reason why it has been subjected to several modifications in its structure and administration form that have permitted an increase in bioavailability and effectiveness against different diseases, decreasing the mortality and morbidity associated to these pathologies.
Collapse
Affiliation(s)
- Mario Pulido-Moran
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
| | - Jorge Moreno-Fernandez
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
- Departamento de Fisiología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
| | | | - Mcarmen Ramirez-Tortosa
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
| |
Collapse
|
23
|
Ademiluyi AO, Oyeleye SI, Oboh G. Biological activities, antioxidant properties and phytoconstituents of essential oil from sweet basil (Ocimum basilicum L.) leaves. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s00580-015-2163-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Taghizadeh M, Memarzadeh MR, Asemi Z, Esmaillzadeh A. Effect of the cumin cyminum L. Intake on Weight Loss, Metabolic Profiles and Biomarkers of Oxidative Stress in Overweight Subjects: A Randomized Double-Blind Placebo-Controlled Clinical Trial. ANNALS OF NUTRITION AND METABOLISM 2015; 66:117-124. [DOI: 10.1159/000373896] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022]
Abstract
Background: The current study was performed to determine the effects of cumin cyminum L. intake on weight loss and metabolic profiles among overweight subjects. Methods: This randomized double-blind placebo-controlled clinical trial was conducted among 78 overweight subjects (male, n = 18; female, n = 60) aged 18-60 years old. Participants were randomly assigned into three groups to receive: (1) cumin cyminum L. capsule (n = 26); (2) orlistat120 capsule (n = 26) and (3) placebo (n = 26) three times a day for 8 weeks. Anthropometric measures and fasting blood samples were taken at baseline and after 8 weeks of intervention. Results: Consumption of the Cuminum cyminum L. and orlistat120 resulted in a similar significant decrease in weight (-1.1 ± 1.2 and -0.9 ± 1.5 vs. 0.2 ± 1.5 kg, respectively, p = 0.002) and BMI (-0.4 ± 0.5 and -0.4 ± 0.6 vs. 0.1 ± 0.6 kg/m2, respectively, p = 0.003) compared with placebo. In addition, taking Cuminum cyminum L., compared with orlistat and placebo, led to a significant reduction in serum insulin levels (-1.4 ± 4.5 vs. 1.3 ± 3.3 and 0.3 ± 2.2 µIU/ml, respectively, p = 0.02), HOMA-B (-5.4 ± 18.9 vs. 5.8 ± 13.3 and 1.0 ± 11.0, respectively, p = 0.02) and a significant rise in QUICKI (0.01 ± 0.01 vs. -0.005 ± 0.01 and -0.004 ± 0.01, respectively, p = 0.02). Conclusion: Taking cumin cyminum L. for eight weeks among overweight subjects had the same effects of orlistat120 on weight and BMI and beneficial effects on insulin metabolism compared with orlistat120 and placebo.
Collapse
|
25
|
Sánchez JAC, Elamrani A. Nutrigenomics of Essential Oils and their Potential Domestic Use for Improving Health. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400901128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of essential oils as industrial food additives is notorious, like their medicinal properties. However, their use in household food spicing is for now limited. In this work, we have made a review to reveal the nutrigenomic actions exerted by their bioactive components, to promote awareness of their modulating gene expression ability and the potential that this implies. Also considered is how essential oils can be used as flavoring and seasoning after cooking and before consumption, such as diet components which can improve human health. Genetic mechanisms involved in the medicinal properties of essential oils for food use are identified from literature. These genetic mechanisms reveal nutrigenomic actions. Reviews on the medicinal properties of essential oils have been particularly considered. A wide diversity of nutrigenomic effects from essential oils useful potentially for food spicing is reviewed. General ideas are discussed about essential oils and their properties, such as anti-inflammatory, analgesic, immunomodulatory, anticancer, hepatoprotective, hypolipidemic, anti-diabetic, antioxidant, bone-reparation, anti-depressant and mitigatory for Alzheimer's disease. The essential oils for food use are potentially promoting health agents, and, therefore, worth using as flavoring and condiments. Becoming aware of the modulating gene expression actions from essential oils is important for understanding their potential for use in household dishes as spices to improve health.
Collapse
Affiliation(s)
- José Antonio Cayuela Sánchez
- Instituto de la Grasa – CSIC, Department of Physiology and Technology of Plant Products. Avda. Padre García Tejero, 4 41012 Sevilla, Spain
| | - Abdelaziz Elamrani
- Laboratoire Synthèse, Extraction et Etude Physico-Chimique des Molécules Organiques, Faculté des Sciences Aîn -Chock, B.P 5366 Mâarif, Casablanca, Morocco
| |
Collapse
|
26
|
Loizzo MR, Tundis R, Menichini F, Duthie G. Anti-rancidity effect of essential oils, application in the lipid stability of cooked turkey meat patties and potential implications for health. Int J Food Sci Nutr 2014; 66:50-7. [DOI: 10.3109/09637486.2014.953454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Oliveira VB, Ferreira AV, Oliveira MC, Teixeira MM, Brandão MG. Effects of Xylopia aromatica (Lam.) Mart. fruit on metabolic and inflammatory dysfunction induced by high refined carbohydrate-containing-diet in mice. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Shen Y, Jia LN, Honma N, Hosono T, Ariga T, Seki T. Beneficial effects of cinnamon on the metabolic syndrome, inflammation, and pain, and mechanisms underlying these effects - a review. J Tradit Complement Med 2014; 2:27-32. [PMID: 24716111 PMCID: PMC3943007 DOI: 10.1016/s2225-4110(16)30067-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cinnamon is one of the most important herbal drugs and has been widely used in Asia for more than 4000 years. As a folk medicine, cinnamon has been traditionally applied to the treatment of inflammatory disorders and gastric diseases. After chemical profiling of cinnamon's components, their biological activities including antimicrobial, antiviral, antioxidant, antitumor, antihypertension, antilipemic, antidiabetes, gastroprotective and immunomodulatory were reported by many investigators. As a result, current studies have been performed mostly focusing on the bioactivity of cinnamon toward the recently generalized metabolic syndrome involving diabetes. In this review article, we provide an overview of the recent literature describing cinnamon's potential for preventing the metabolic syndrome.
Collapse
Affiliation(s)
- Yan Shen
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| | - Liu-Nan Jia
- School of Pharmacy, Nihon University; 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Natsumi Honma
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| | - Takashi Hosono
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| | - Toyohiko Ariga
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| | - Taiichiro Seki
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| |
Collapse
|
29
|
Sowbhagya HB. Chemistry, technology, and nutraceutical functions of cumin (Cuminum cyminum L): an overview. Crit Rev Food Sci Nutr 2013; 53:1-10. [PMID: 23035918 DOI: 10.1080/10408398.2010.500223] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cumin is a seed spice belonging to the family umbelliferae. Cumin and value added products from cumin are used in food flavoring and perfumery. Cumin contains volatile oil (3-4%), cuminaldehyde, the major active principle, which is present to an extent of 45-50%. Cumin and value added products from cumin, viz., cumin oil and oleoresin are exported. Cumin powder forms the main component of many spice mixes and curry powders. Cuminaldehyde is an important phytochemical and possesses many health benefits. Alcohol and water extract of cumin are reported to possess many nutraceutical properties like antiallergic, antioxidant, anti-platelet aggregation, and hypoglycemic. Cumin and value added products from cumin can be a good source of nutraceuticals with many biological activities. Incorporation of cumin into food products will have the benefits of a flavorant and nutraceutical at the same time. In the present review, the chemistry, processing, and biological activities of cumin and its components are discussed.
Collapse
Affiliation(s)
- H B Sowbhagya
- Plantation Products Spices and Flavor Technology, Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
30
|
Chen L, Sun P, Wang T, Chen K, Jia Q, Wang H, Li Y. Diverse mechanisms of antidiabetic effects of the different procyanidin oligomer types of two different cinnamon species on db/db mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9144-9150. [PMID: 22920511 DOI: 10.1021/jf3024535] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The procyanidin oligomers are thought to be responsible for the antidiabetic activity of cinnamon. To investigate the hypoglycemic effects of different procyanidin oligomer types, the procyanidin oligomer-rich extracts were prepared from two different cinnamon species. Using high-performance liquid chromatography with purified procyanidin oligomers as reference compounds, we found that the Cinnamomum cassia extract (CC-E) and Cinnamomum tamala extract (CT-E) were rich in B- and A-type procyanidin oligomers, respectively. In the experiment, 8-week-old diabetic (db/db) mice were gavaged with CC-E and CT-E (both 200 mg/kg per day) for 4 weeks. Both CC-E and CT-E exhibited antidiabetic effects. Moreover, histopathological studies of the pancreas, liver, and adipose tissue showed that CC-E promoted lipid accumulation in the adipose tissue and liver, whereas CT-E mainly improved the insulin concentration in the blood and pancreas.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Jungbauer A, Medjakovic S. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas 2012; 71:227-39. [DOI: 10.1016/j.maturitas.2011.12.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 01/07/2023]
|
32
|
Bornhorst GM, Singh RP. Bolus Formation and Disintegration during Digestion of Food Carbohydrates. Compr Rev Food Sci Food Saf 2012. [DOI: 10.1111/j.1541-4337.2011.00172.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Wainstein J, Stern N, Heller S, Boaz M. Dietary Cinnamon Supplementation and Changes in Systolic Blood Pressure in Subjects with Type 2 Diabetes. J Med Food 2011; 14:1505-10. [DOI: 10.1089/jmf.2010.0300] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Naftali Stern
- Institute of Endocrinology, Metabolism, and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Shimrit Heller
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Mona Boaz
- Epidemiology and Research Units, E. Wolfson Medical Center, Holon, Israel
| |
Collapse
|
34
|
Ulbricht C, Seamon E, Windsor RC, Armbruester N, Bryan JK, Costa D, Giese N, Gruenwald J, Iovin R, Isaac R, Grimes Serrano JM, Tanguay-Colucci S, Weissner W, Yoon H, Zhang J. An Evidence-Based Systematic Review of Cinnamon (Cinnamomumspp.) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:378-454. [DOI: 10.3109/19390211.2011.627783] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Loizzo MR, Di Lecce G, Boselli E, Bonesi M, Menichini F, Menichini F, Frega NG. In vitroantioxidant and hypoglycemic activities of Ethiopian spice blendBerbere. Int J Food Sci Nutr 2011; 62:740-9. [DOI: 10.3109/09637486.2011.573470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Haïdara K, Alachkar A, Moustafa AEA. Teucrium polium plant extract provokes significant cell death in human lung cancer cells. Health (London) 2011. [DOI: 10.4236/health.2011.36062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Abstract
Cinnamon has been used as a spice and as traditional herbal medicine for centuries. The available in vitro and animal in vivo evidence suggests that cinnamon has anti-inflammatory, antimicrobial, antioxidant, antitumor, cardiovascular, cholesterol-lowering, and immunomodulatory effects. In vitro studies have demonstrated that cinnamon may act as an insulin mimetic, to potentiate insulin activity or to stimulate cellular glucose metabolism. Furthermore, animal studies have demonstrated strong hypoglycemic properties. However, there are only very few well-controlled clinical studies, a fact that limits the conclusions that can be made about the potential health benefits of cinnamon for free-living humans. The use of cinnamon as an adjunct to the treatment of type 2 diabetes mellitus is the most promising area, but further research is needed before definitive recommendations can be made.
Collapse
|
38
|
Poole C, Bushey B, Foster C, Campbell B, Willoughby D, Kreider R, Taylor L, Wilborn C. The effects of a commercially available botanical supplement on strength, body composition, power output, and hormonal profiles in resistance-trained males. J Int Soc Sports Nutr 2010; 7:34. [PMID: 20979623 PMCID: PMC2978122 DOI: 10.1186/1550-2783-7-34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/27/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Fenugreek (Trigonella foenum-graecum) is a leguminous, annual plant originating in India and North Africa. In recent years Fenugreek has been touted as an ergogenic aid. The purpose of this study was to evaluate the effects of Fenugreek supplementation on strength and body composition. METHODS 49 Resistance trained men were matched according to body weight and randomly assigned to ingest in a double blind manner capsules containing 500 mg of a placebo (N = 23, 20 ± 1.9 years, 178 ± 6.3 cm, 85 ± 12.7 kg, 17 ± 5.6 %BF) or Fenugreek (N = 26, 21 ± 2.8 years, 178 ± 6 cm, 90 ± 18.2 kg, 19.3 ± 8.4 %BF). Subjects participated in a supervised 4-day per week periodized resistance-training program split into two upper and two lower extremity workouts per week for a total of 8-weeks. At 0, 4, and 8-weeks, subjects underwent hydrodensiometery body composition, 1-RM strength, muscle endurance, and anaerobic capacity testing. Data were analyzed using repeated measures ANOVA and are presented as mean ± SD changes from baseline after 60-days. RESULTS No significant differences (p > 0.05) between groups were noted for training volume. Significant group × time interaction effects were observed among groups in changes in body fat (FEN: -2.3 ± 1.4%BF; PL: -0.39 ± 1.6 %BF, p < 0.001), leg press 1-RM (FEN: 84.6 ± 36.2 kg; PL: 48 ± 29.5 kg, p < 0.001), and bench press 1-RM (FEN: 9.1 ± 6.9 kg; PL: 4.3 ± 5.6 kg, p = 0.01). No significant interactions was observed among groups for Wingate power analysis (p = 0.95) or muscular endurance on bench press (p = 0.87) or leg press (p = 0.61). In addition, there were no changes among groups in any clinical safety data including lipid panel, liver function, kidney function, and/or CBC panel (p > 0.05). CONCLUSION It is concluded that 500 mg of this proprietary Fenugreek extraction had a significant impact on both upper- and lower-body strength and body composition in comparison to placebo in a double blind controlled trial. These changes were obtained with no clinical side effects.
Collapse
Affiliation(s)
- Chris Poole
- Human Performance Lab, Department of Exercise and Sport Science, University of Mary Hardin-Baylor. Belton, Texas, 76513, USA
| | - Brandon Bushey
- Human Performance Lab, Department of Exercise and Sport Science, University of Mary Hardin-Baylor. Belton, Texas, 76513, USA
| | - Cliffa Foster
- Human Performance Lab, Department of Exercise and Sport Science, University of Mary Hardin-Baylor. Belton, Texas, 76513, USA
| | - Bill Campbell
- Exercise and Performance Nutrition Lab, School of Physical Education and Exercise Science, The University of South Florida, USA
| | - Darryn Willoughby
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance & Recreation; Baylor University, Waco, TX 76798, USA
| | - Richard Kreider
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX 78743, USA
| | - Lem Taylor
- Human Performance Lab, Department of Exercise and Sport Science, University of Mary Hardin-Baylor. Belton, Texas, 76513, USA
| | - Colin Wilborn
- Human Performance Lab, Department of Exercise and Sport Science, University of Mary Hardin-Baylor. Belton, Texas, 76513, USA
| |
Collapse
|
39
|
Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010; 30:173-99. [PMID: 20420526 DOI: 10.1146/annurev.nutr.012809.104755] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extensive research within the past two decades has revealed that obesity, a major risk factor for type 2 diabetes, atherosclerosis, cancer, and other chronic diseases, is a proinflammatory disease. Several spices have been shown to exhibit activity against obesity through antioxidant and anti-inflammatory mechanisms. Among them, curcumin, a yellow pigment derived from the spice turmeric (an essential component of curry powder), has been investigated most extensively as a treatment for obesity and obesity-related metabolic diseases. Curcumin directly interacts with adipocytes, pancreatic cells, hepatic stellate cells, macrophages, and muscle cells. There, it suppresses the proinflammatory transcription factors nuclear factor-kappa B, signal transducer and activators of transcription-3, and Wnt/beta-catenin, and it activates peroxisome proliferator-activated receptor-gamma and Nrf2 cell-signaling pathways, thus leading to the downregulation of adipokines, including tumor necrosis factor, interleukin-6, resistin, leptin, and monocyte chemotactic protein-1, and the upregulation of adiponectin and other gene products. These curcumin-induced alterations reverse insulin resistance, hyperglycemia, hyperlipidemia, and other symptoms linked to obesity. Other structurally homologous nutraceuticals, derived from red chili, cinnamon, cloves, black pepper, and ginger, also exhibit effects against obesity and insulin resistance.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
40
|
Alkhateeb H, Bonen A. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 299:R804-12. [DOI: 10.1152/ajpregu.00216.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thujone is thought to be the main constituent of medicinal herbs that have antidiabetic properties. Therefore, we examined whether thujone ameliorated palmitate-induced insulin resistance in skeletal muscle. Soleus muscles were incubated for ≤12 h without or with palmitate (2 mM). Thujone (0.01 mg/ml), in the presence of palmitate, was provided in the last 6 h of incubation. Palmitate oxidation, AMPK/acetyl-CoA carboxylase (ACC) phosphorylation and insulin-stimulated glucose transport, plasmalemmal GLUT4, and AS160 phosphorylation were examined at 0, 6, and 12 h. Palmitate treatment for 12 h reduced fatty acid oxidation (−47%), and insulin-stimulated glucose transport (−71%), GLUT4 translocation (−40%), and AS160 phosphorylation (−26%), but it increased AMPK (+51%) and ACC phosphorylations (+44%). Thujone (6–12 h) fully rescued palmitate oxidation and insulin-stimulated glucose transport, but only partially restored GLUT4 translocation and AS160 phosphorylation, raising the possibility that an increased GLUT4 intrinsic activity may also have contributed to the restoration of glucose transport. Thujone also further increased AMPK phosphorylation but had no further effect on ACC phosphorylation. Inhibition of AMPK phosphorylation with adenine 9-β-d-arabinofuranoside (Ara) (2.5 mM) or compound C (50 μM) inhibited the thujone-induced improvement in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. In contrast, the thujone-induced improvement in palmitate oxidation was only slightly inhibited (≤20%) by Ara or compound C. Thus, while thujone, a medicinal herb component, rescues palmitate-induced insulin resistance in muscle, the improvement in fatty acid oxidation cannot account for this thujone-mediated effect. Instead, the rescue of palmitate-induced insulin resistance appears to occur via an AMPK-dependent mechanism involving partial restoration of insulin-stimulated GLUT4 translocation.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Department of Laboratory Medical Sciences, Hashemite University, Zarqa, Jordan; and
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
41
|
Wei L, Yin Z, Yuan Y, Hwang A, Lee A, Sun D, Li F, Di C, Zhang R, Cao F, Wang H. A PKC-β inhibitor treatment reverses cardiac microvascular barrier dysfunction in diabetic rats. Microvasc Res 2010; 80:158-65. [DOI: 10.1016/j.mvr.2010.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 12/16/2009] [Accepted: 01/05/2010] [Indexed: 01/08/2023]
|
42
|
Kandouz M, Alachkar A, Zhang L, Dekhil H, Chehna F, Yasmeen A, Al Moustafa AE. Teucrium polium plant extract inhibits cell invasion and motility of human prostate cancer cells via the restoration of the E-cadherin/catenin complex. JOURNAL OF ETHNOPHARMACOLOGY 2010; 129:410-415. [PMID: 19897022 DOI: 10.1016/j.jep.2009.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 09/09/2009] [Accepted: 10/29/2009] [Indexed: 05/28/2023]
Abstract
Prostate cancer is the first most common malignancy in men worldwide; this cancer is characterized by a marked propensity for invasion and spreading to local lymph nodes. On the other hand, Teucrium polium (TP) is a medicinal plant that has been used for more than two thousand years for treating many diseases such as abdominal pain, indigestion and diabetes in the Middle East. However, the effect of TP plant extract on human metastatic cancer cells especially prostate has not been investigated yet. In this study, we examined the effects of TP extract on selected parameters in PC3 and DU145 prostate cancer cell lines. Our results show that TP plant extract inhibits cell proliferation and provokes S cell cycle arrest and reduction of G0-G1 phase. In parallel, this extract induces differentiation to an epithelial phenotype "mesenchymal-epithelial transition" which is an important event in cell invasion and metastasis; thus TP plant extract causes a dramatic decrease in cell invasion and motility abilities of PC3 and DU145 cancer cells in comparison with untreated cells. These changes are accompanied by a re-localization of the expression patterns of E-cadherin and catenins. The molecular pathway analysis of the TP plant extract revealed that it inhibits the phosphorylation of beta-catenin, via Src dephosphorylation, and consequently converts its role from a transcriptional regulator to a cell-cell adhesion molecule. Our findings indicate that TP plant extract inhibits signaling pathways involved in regulating the E-cadherin/catenin complex and possibly other cell-cell adhesion genes via beta-catenin alteration, suggesting that this plant extract has therapeutic promise in the treatment of human metastatic prostate cancer.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Loizzo MR, Tundis R, Menichini F, Pugliese A, Bonesi M, Solimene U, Menichini F. Chelating, antioxidant and hypoglycaemic potential of Muscari comosum (L.) Mill. bulb extracts. Int J Food Sci Nutr 2010; 61:780-91. [PMID: 20465433 DOI: 10.3109/09637486.2010.482521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The metal chelating activity, antioxidant properties and the effect on carbohydrate-hydrolysing enzyme inhibition of Muscari comosum extracts have been investigated. M. comosum bulbs contain a total amount of the phenols with a value of 56.6 mg chlorogenic acid equivalent per gram of extract and a flavonoid content of 23.4 mg quercetin equivalent per gram of extract. In order to evaluate the non-polar constituents, n-hexane extract was obtained. Gas chromatography-mass spectrometry analysis revealed the presence of fatty acids and ethyl esters as major constituents, with different aldehydes and alkanes as minor components. Ethanolic extract had the highest ferric-reducing ability power (66.7 μM Fe(II)/g) and DPPH scavenging activity with a concentration giving 50% inhibition (IC₅₀) value of 40.9 μg/ml. Moreover, this extract exhibited a good hypoglycaemic activity with IC₅₀ values of 81.3 and 112.8 μg/ml for α-amylase and α-glucosidase, respectively. In conclusion, M. comosum bulbs show promising antioxidant and hypoglycaemic activity via the inhibition of carbohydrate digestive enzymes. These activities may be of interest from a functional point of view and for the revalorization of this ancient non-cultivated vegetable of Mediterranean traditional gastronomy.
Collapse
Affiliation(s)
- Monica R Loizzo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Nutrition and Health Sciences, University of Calabria, Rende, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Rosenthal T, Younis F, Alter A. Combating Combination of Hypertension and Diabetes in Different Rat Models. Pharmaceuticals (Basel) 2010; 3:916-939. [PMID: 27713282 PMCID: PMC4034014 DOI: 10.3390/ph3040916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/04/2010] [Accepted: 03/18/2010] [Indexed: 12/18/2022] Open
Abstract
Rat experimental models are used extensively for studying physiological mechanisms and treatments of hypertension and diabetes co-existence. Each one of these conditions is a major risk factor for cardiovascular disease (CVD), and the combination of the two conditions is a potent enhancer of CVD. Five major animal models that advanced our understanding of the mechanisms and therapeutic approaches in humans are discussed in this review: Zucker, Goto-Kakizaki, SHROB, SHR/NDmcr-cp and Cohen Rosenthal diabetic hypertensive (CRDH) rats. The use of various drugs, such as angiotensin-converting enzyme (ACE) inhibitors (ACEIs), various angiotensin receptor blockers (ARBs), and calcium channel blockers (CCBs), to combat the effects of concomitant pathologies on the combination of diabetes and hypertension, as well as the non-pharmacological approach are reviewed in detail for each rat model. Results from experiments on these models indicate that classical factors contributing to the pathology of hypertension and diabetes combination—Including hypertension, hyperglycemia, hyperinsulinemia and hyperlipidemia—can now be treated, although these treatments do not completely prevent renal complications. Animal studies have focused on several mechanisms involved in hypertension/diabetes that remain to be translated into clinical medicine, including hypoxia, oxidative stress, and advanced glycation. Several target molecules have been identified that need to be incorporated into a treatment modality. The challenge continues to be the identification and interpretation of the clinical evidence from the animal models and their application to human treatment.
Collapse
Affiliation(s)
- Talma Rosenthal
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel.
| | - Firas Younis
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel.
| | - Ariela Alter
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
46
|
Hashemi P, Shamizadeh M, Badiei A, Ghiasvand AR, Azizi K. Study of the Essential Oil Composition of Cumin Seeds by an Amino Ethyl-Functionalized Nanoporous SPME Fiber. Chromatographia 2009. [DOI: 10.1365/s10337-009-1269-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Roussel AM, Hininger I, Benaraba R, Ziegenfuss TN, Anderson RA. Antioxidant Effects of a Cinnamon Extract in People with Impaired Fasting Glucose That Are Overweight or Obese. J Am Coll Nutr 2009; 28:16-21. [DOI: 10.1080/07315724.2009.10719756] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Sheng X, Zhang Y, Gong Z, Huang C, Zang YQ. Improved Insulin Resistance and Lipid Metabolism by Cinnamon Extract through Activation of Peroxisome Proliferator-Activated Receptors. PPAR Res 2008; 2008:581348. [PMID: 19096709 PMCID: PMC2602825 DOI: 10.1155/2008/581348] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/02/2008] [Indexed: 01/23/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors involved in the regulation of insulin resistance and adipogenesis. Cinnamon, a widely used spice in food preparation and traditional antidiabetic remedy, is found to activate PPARgamma and alpha, resulting in improved insulin resistance, reduced fasted glucose, FFA, LDL-c, and AST levels in high-caloric diet-induced obesity (DIO) and db/db mice in its water extract form. In vitro studies demonstrate that cinnamon increases the expression of peroxisome proliferator-activated receptors gamma and alpha (PPARgamma/alpha) and their target genes such as LPL, CD36, GLUT4, and ACO in 3T3-L1 adipocyte. The transactivities of both full length and ligand-binding domain (LBD) of PPARgamma and PPARalpha are activated by cinnamon as evidenced by reporter gene assays. These data suggest that cinnamon in its water extract form can act as a dual activator of PPARgamma and alpha, and may be an alternative to PPARgamma activator in managing obesity-related diabetes and hyperlipidemia.
Collapse
Affiliation(s)
- Xiaoyan Sheng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of CAS, Chinese Academy of Sciences, 319 Yue Yang Road, Shanghai 200031, China
| | - Yuebo Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of CAS, Chinese Academy of Sciences, 319 Yue Yang Road, Shanghai 200031, China
| | - Zhenwei Gong
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of CAS, Chinese Academy of Sciences, 319 Yue Yang Road, Shanghai 200031, China
| | - Cheng Huang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of CAS, Chinese Academy of Sciences, 319 Yue Yang Road, Shanghai 200031, China
| | - Ying Qin Zang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of CAS, Chinese Academy of Sciences, 319 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
49
|
|
50
|
Hashemi P, Yarahmadi A, Azizi K, Sabouri B. Study of the Effects of N Fertilization and Plant Density on the Essential Oil Composition and Yield of Cuminum cyminum L. Seeds by HS–SME. Chromatographia 2008. [DOI: 10.1365/s10337-007-0492-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|