1
|
Is vascular insulin resistance an early step in diet-induced whole-body insulin resistance? Nutr Diabetes 2022; 12:31. [PMID: 35676248 PMCID: PMC9177754 DOI: 10.1038/s41387-022-00209-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
There is increasing evidence that skeletal muscle microvascular (capillary) blood flow plays an important role in glucose metabolism by increasing the delivery of glucose and insulin to the myocytes. This process is impaired in insulin-resistant individuals. Studies suggest that in diet-induced insulin-resistant rodents, insulin-mediated skeletal muscle microvascular blood flow is impaired post-short-term high fat feeding, and this occurs before the development of myocyte or whole-body insulin resistance. These data suggest that impaired skeletal muscle microvascular blood flow is an early vascular step before the onset of insulin resistance. However, evidence of this is still lacking in humans. In this review, we summarise what is known about short-term high-calorie and/or high-fat feeding in humans. We also explore selected animal studies to identify potential mechanisms. We discuss future directions aimed at better understanding the ‘early’ vascular mechanisms that lead to insulin resistance as this will provide the opportunity for much earlier screening and timing of intervention to assist in preventing type 2 diabetes.
Collapse
|
2
|
Keske MA, Przewlocka-Kosmala M, Woznicka AK, Mysiak A, Jankowska EA, Ponikowski P, Kosmala W. Role of skeletal muscle perfusion and insulin resistance in the effect of dietary sodium on heart function in overweight. ESC Heart Fail 2021; 8:5304-5315. [PMID: 34551207 PMCID: PMC8712816 DOI: 10.1002/ehf2.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Aims Weight excess and insulin resistance predispose to heart failure. High sodium consumption may contribute to the development of cardiac impairment in insulin‐resistant individuals by promoting inadequate skeletal muscle microvascular perfusion response to insulin. We sought to investigate the association of dietary sodium reduction with muscle perfusion, insulin sensitivity, and cardiac function in overweight/obese insulin‐resistant (O‐IR) normotensive subjects. Methods and results Fifty O‐IR individuals with higher than recommended sodium intake were randomized to usual or reduced sodium diet for 8 weeks; 25 lean, healthy subjects served as controls for pre‐intervention measurements. Echocardiography and muscle perfusion were performed during fasting and under stable euglycaemic–hyperinsulinaemic clamp conditions. O‐IR patients demonstrated subclinical cardiac dysfunction as evidenced by lower left ventricular global longitudinal strain (GLS), e′ tissue velocity, and left atrial strain and reduced muscle perfusion. The intervention arm showed improvements in insulin resistance [glucose infusion rate (GIR)], GLS, e′, atrial strain, and muscle perfusion in fasting conditions, as well as improved responses of GLS and muscle perfusion to insulin during clamp. Significant interactions were found between the allocation to low‐salt diet and improvement in muscle perfusion on change in GIR at follow‐up (P = 0.030), and between improvement in muscle perfusion and change in GIR on change in GLS response to insulin at follow‐up (P = 0.026). Mediation analysis revealed that the relationship between the reduction of sodium intake and improvement in GLS was mediated by improvements in muscle perfusion and GIR (decrease in beta coefficient from −0.29 to −0.16 after the inclusion of mediator variables to the model). Conclusions The reduction of dietary sodium in the normotensive O‐IR population improves cardiac function, and this effect may be associated with the concomitant improvements in skeletal muscle perfusion and insulin resistance. These findings might contribute to refining heart failure preventive strategies.
Collapse
Affiliation(s)
- Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Anna K Woznicka
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Mysiak
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Kosmala
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
3
|
Gaffney K, Lucero A, Macartney-Coxson D, Clapham J, Whitfield P, Palmer BR, Wakefield S, Faulkner J, Stoner L, Rowlands DS. Effects of whey protein on skeletal muscle microvascular and mitochondrial plasticity following 10 weeks of exercise training in men with type 2 diabetes. Appl Physiol Nutr Metab 2021; 46:915-924. [PMID: 33591858 DOI: 10.1139/apnm-2020-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle microvascular dysfunction and mitochondrial rarefaction feature in type 2 diabetes mellitus (T2DM) linked to low tissue glucose disposal rate (GDR). Exercise training and milk protein supplementation independently promote microvascular and metabolic plasticity in muscle associated with improved nutrient delivery, but combined effects are unknown. In a randomised-controlled trial, 24 men (55.6 y, SD 5.7) with T2DM ingested whey protein drinks (protein/carbohydrate/fat: 20/10/3 g; WHEY) or placebo (carbohydrate/fat: 30/3 g; CON) before/after 45 mixed-mode intense exercise sessions over 10 weeks, to study effects on insulin-stimulated (hyperinsulinemic clamp) skeletal-muscle microvascular blood flow (mBF) and perfusion (near-infrared spectroscopy), and histological, genetic, and biochemical markers (biopsy) of microvascular and mitochondrial plasticity. WHEY enhanced insulin-stimulated perfusion (WHEY-CON 5.6%; 90% CI -0.1, 11.3), while mBF was not altered (3.5%; -17.5, 24.5); perfusion, but not mBF, associated (regression) with increased GDR. Exercise training increased mitochondrial (range of means: 40%-90%) and lipid density (20%-30%), enzyme activity (20%-70%), capillary:fibre ratio (∼25%), and lowered systolic (∼4%) and diastolic (4%-5%) blood pressure, but without WHEY effects. WHEY dampened PGC1α -2.9% (90% compatibility interval: -5.7, -0.2) and NOS3 -6.4% (-1.4, -0.2) expression, but other messenger RNA (mRNA) were unclear. Skeletal muscle microvascular and mitochondrial exercise adaptations were not accentuated by whey protein ingestion in men with T2DM. ANZCTR Registration Number: ACTRN12614001197628. Novelty: Chronic whey ingestion in T2DM with exercise altered expression of several mitochondrial and angiogenic mRNA. Whey added no additional benefit to muscle microvascular or mitochondrial adaptations to exercise. Insulin-stimulated perfusion increased with whey but was without impact on glucose disposal.
Collapse
Affiliation(s)
- Kim Gaffney
- School of Sport, Exercise and Nutrition, Massey University, Wellington and Auckland, New Zealand
| | - Adam Lucero
- School of Sport, Exercise and Nutrition, Massey University, Wellington and Auckland, New Zealand
| | - Donia Macartney-Coxson
- Human Genomics, Institute of Environmental and Scientific Research Ltd (ESR). Porirua, Wellington, New Zealand
| | - Jane Clapham
- Human Genomics, Institute of Environmental and Scientific Research Ltd (ESR). Porirua, Wellington, New Zealand
| | | | - Barry R Palmer
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - StJohn Wakefield
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - James Faulkner
- School of Sport, Health and Community, University of Winchester, Winchester, England
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - David S Rowlands
- School of Sport, Exercise and Nutrition, Massey University, Wellington and Auckland, New Zealand
| |
Collapse
|
4
|
Parker L, Morrison DJ, Wadley GD, Shaw CS, Betik AC, Roberts‐Thomson K, Kaur G, Keske MA. Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a high‐glucose mixed meal in healthy young men. J Physiol 2020; 599:83-102. [DOI: 10.1113/jp280651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Dale J. Morrison
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Glenn D. Wadley
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Christopher S. Shaw
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Andrew C. Betik
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Katherine Roberts‐Thomson
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Michelle A. Keske
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| |
Collapse
|
5
|
|
6
|
Roberts-Thomson KM, Betik AC, Premilovac D, Rattigan S, Richards SM, Ross RM, Russell RD, Kaur G, Parker L, Keske MA. Postprandial microvascular blood flow in skeletal muscle: Similarities and disparities to the hyperinsulinaemic-euglycaemic clamp. Clin Exp Pharmacol Physiol 2019; 47:725-737. [PMID: 31868941 DOI: 10.1111/1440-1681.13237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Skeletal muscle contributes to ~40% of total body mass and has numerous important mechanical and metabolic roles in the body. Skeletal muscle is a major site for glucose disposal following a meal. Consequently, skeletal muscle plays an important role in postprandial blood glucose homeostasis. Over the past number of decades, research has demonstrated that insulin has an important role in vasodilating the vasculature in skeletal muscle in response to an insulin infusion (hyperinsulinaemic-euglycaemic clamp) or following the ingestion of a meal. This vascular action of insulin is pivotal for glucose disposal in skeletal muscle, as insulin-stimulated vasodilation increases the delivery of both glucose and insulin to the myocyte. Notably, in insulin-resistant states such as obesity and type 2 diabetes, this vascular response of insulin in skeletal muscle is significantly impaired. Whereas the majority of work in this field has focussed on the action of insulin alone on skeletal muscle microvascular blood flow and myocyte glucose metabolism, there is less understanding of how the consumption of a meal may affect skeletal muscle blood flow. This is in part due to complex variations in glucose and insulin dynamics that occurs postprandially-with changes in humoral concentrations of glucose, insulin, amino acids, gut and pancreatic peptides-compared to the hyperinsulinaemic-euglycaemic clamp. This review will address the emerging body of evidence to suggest that postprandial blood flow responses in skeletal muscle may be a function of the nutritional composition of a meal.
Collapse
Affiliation(s)
- Katherine M Roberts-Thomson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dino Premilovac
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Renee M Ross
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Ryan D Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
7
|
Russell RD, Hu D, Greenaway T, Sharman JE, Rattigan S, Richards SM, Keske MA. Oral glucose challenge impairs skeletal muscle microvascular blood flow in healthy people. Am J Physiol Endocrinol Metab 2018; 315:E307-E315. [PMID: 29763373 DOI: 10.1152/ajpendo.00448.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Skeletal muscle microvascular (capillary) blood flow increases in the postprandial state or during insulin infusion due to dilation of precapillary arterioles to augment glucose disposal. This effect occurs independently of changes in large artery function. However, acute hyperglycemia impairs vascular function, causes insulin to vasoconstrict precapillary arterioles, and causes muscle insulin resistance in vivo. We hypothesized that acute hyperglycemia impairs postprandial muscle microvascular perfusion, without disrupting normal large artery hemodynamics, in healthy humans. Fifteen healthy people (5 F/10 M) underwent an oral glucose challenge (OGC, 50 g glucose) and a mixed-meal challenge (MMC) on two separate occasions (randomized, crossover design). At 1 h, both challenges produced a comparable increase (6-fold) in plasma insulin levels. However, the OGC produced a 1.5-fold higher increase in blood glucose compared with the MMC 1 h postingestion. Forearm muscle microvascular blood volume and flow (contrast-enhanced ultrasound) were increased during the MMC (1.3- and 1.9-fold from baseline, respectively, P < 0.05 for both) but decreased during the OGC (0.7- and 0.6-fold from baseline, respectively, P < 0.05 for both) despite a similar hyperinsulinemia. Both challenges stimulated brachial artery flow (ultrasound) and heart rate to a similar extent, as well as yielding comparable decreases in diastolic blood pressure and total vascular resistance. Systolic blood pressure and aortic stiffness remained unaltered by either challenge. Independently of large artery hemodynamics, hyperglycemia impairs muscle microvascular blood flow, potentially limiting glucose disposal into skeletal muscle. The OGC reduced microvascular blood flow in muscle peripherally and therefore may underestimate the importance of skeletal muscle in postprandial glucose disposal.
Collapse
Affiliation(s)
- Ryan D Russell
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
- Department of Health and Human Performance, College of Health Affairs, University of Texas Rio Grande Valley , Brownsville, Texas
| | - Donghua Hu
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
| | - Timothy Greenaway
- Royal Hobart Hospital , Hobart, Tasmania , Australia
- School of Medicine, University of Tasmania , Hobart, Tasmania , Australia
| | - James E Sharman
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
| | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
| | - Stephen M Richards
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
- School of Medicine, University of Tasmania , Hobart, Tasmania , Australia
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition. Deakin University , Geelong, Victoria , Australia
| |
Collapse
|
8
|
Russell RD, Hu D, Greenaway T, Blackwood SJ, Dwyer RM, Sharman JE, Jones G, Squibb KA, Brown AA, Otahal P, Boman M, Al-Aubaidy H, Premilovac D, Roberts CK, Hitchins S, Richards SM, Rattigan S, Keske MA. Skeletal Muscle Microvascular-Linked Improvements in Glycemic Control From Resistance Training in Individuals With Type 2 Diabetes. Diabetes Care 2017; 40:1256-1263. [PMID: 28687542 DOI: 10.2337/dc16-2750] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/16/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Insulin increases glucose disposal in part by enhancing microvascular blood flow (MBF) and substrate delivery to myocytes. Insulin's microvascular action is impaired with insulin resistance and type 2 diabetes. Resistance training (RT) improves glycemic control and insulin sensitivity, but whether this improvement is linked to augmented skeletal muscle microvascular responses in type 2 diabetes is unknown. RESEARCH DESIGN AND METHODS Seventeen (11 male and 6 female; 52 ± 2 years old) sedentary patients with type 2 diabetes underwent 6 weeks of whole-body RT. Before and after RT, participants who fasted overnight had clinical chemistries measured (lipids, glucose, HbA1c, insulin, and advanced glycation end products) and underwent an oral glucose challenge (OGC) (50 g × 2 h). Forearm muscle MBF was assessed by contrast-enhanced ultrasound, skin MBF by laser Doppler flowmetry, and brachial artery flow by Doppler ultrasound at baseline and 60 min post-OGC. A whole-body DEXA scan before and after RT assessed body composition. RESULTS After RT, muscle MBF response to the OGC increased, while skin microvascular responses were unchanged. These microvascular adaptations were accompanied by improved glycemic control (fasting blood glucose, HbA1c, and glucose area under the curve [AUC] during OGC) and increased lean body mass and reductions in fasting plasma triglyceride, total cholesterol, advanced glycation end products, and total body fat. Changes in muscle MBF response after RT significantly correlated with reductions in fasting blood glucose, HbA1c, and OGC AUC with adjustment for age, sex, % body fat, and % lean mass. CONCLUSIONS RT improves OGC-stimulated muscle MBF and glycemic control concomitantly, suggesting that MBF plays a role in improved glycemic control from RT.
Collapse
Affiliation(s)
- Ryan D Russell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville, TX
| | - Donghua Hu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Timothy Greenaway
- Royal Hobart Hospital, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Sarah J Blackwood
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Renee M Dwyer
- School of Medicine, University of Tasmania, Hobart, Australia
| | - James E Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kathryn A Squibb
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Aascha A Brown
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Petr Otahal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Meg Boman
- Royal Hobart Hospital, Hobart, Australia
| | | | - Dino Premilovac
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Christian K Roberts
- Geriatric Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Samuel Hitchins
- School of Medicine, University of Tasmania, Hobart, Australia
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia .,Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
9
|
Dion F, Dumayne C, Henley N, Beauchemin S, Arias EB, Leblond FA, Lesage S, Lefrançois S, Cartee GD, Pichette V. Mechanism of insulin resistance in a rat model of kidney disease and the risk of developing type 2 diabetes. PLoS One 2017; 12:e0176650. [PMID: 28459862 PMCID: PMC5411038 DOI: 10.1371/journal.pone.0176650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease is associated with homeostatic imbalances such as insulin resistance. However, the underlying mechanisms leading to these imbalances and whether they promote the development of type 2 diabetes is unknown. The effect of chronic kidney disease on insulin resistance was studied on two different rat strains. First, in a 5/6th nephrectomised Sprague-Dawley rat model of chronic kidney disease, we observed a correlation between the severity of chronic kidney disease and hyperglycemia as evaluated by serum fructosamine levels (p<0.0001). Further, glucose tolerance tests indicated an increase of 25% in glycemia in chronic kidney disease rats (p<0.0001) as compared to controls whereas insulin levels remained unchanged. We also observed modulation of glucose transporters expression in several tissues such as the liver (decrease of ≈40%, p≤0.01) and muscles (decrease of ≈29%, p≤0.05). Despite a significant reduction of ≈37% in insulin-dependent glucose uptake in the muscles of chronic kidney disease rats (p<0.0001), the development of type 2 diabetes was never observed. Second, in a rat model of metabolic syndrome (Zucker Leprfa/fa), chronic kidney disease caused a 50% increased fasting hyperglycemia (p<0.0001) and an exacerbated glycemic response (p<0.0001) during glucose challenge. Similar modulations of glucose transporters expression and glucose uptake were observed in the two models. However, 30% (p<0.05) of chronic kidney disease Zucker rats developed characteristics of type 2 diabetes. Thus, our results suggest that downregulation of GLUT4 in skeletal muscle may be associated with insulin resistance in chronic kidney disease and could lead to type 2 diabetes in predisposed animals.
Collapse
Affiliation(s)
- François Dion
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
- Département de pharmacologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (VP); (FD)
| | - Christopher Dumayne
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
- Département de pharmacologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Henley
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
| | - Stéphanie Beauchemin
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
| | - Edward B. Arias
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - François A. Leblond
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Stéphane Lefrançois
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Gregory D. Cartee
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vincent Pichette
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
- Département de pharmacologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (VP); (FD)
| |
Collapse
|
10
|
Lee WL, Klip A. Endothelial Transcytosis of Insulin: Does It Contribute to Insulin Resistance? Physiology (Bethesda) 2017; 31:336-45. [PMID: 27511460 DOI: 10.1152/physiol.00010.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Most research on insulin resistance has focused on impaired signaling at the level of target tissues like skeletal muscle. Insulin delivery is also important and includes recruitment and perfusion of capillaries bearing insulin, but also the transit of insulin across the capillary endothelium. The mechanisms of this second stage (insulin transcytosis) and whether it contributes to insulin resistance remain uncertain.
Collapse
Affiliation(s)
- Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; and
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Paediatrics, and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Keske MA, Dwyer RM, Russell RD, Blackwood SJ, Brown AA, Hu D, Premilovac D, Richards SM, Rattigan S. Regulation of microvascular flow and metabolism: An overview. Clin Exp Pharmacol Physiol 2016; 44:143-149. [DOI: 10.1111/1440-1681.12688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/07/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Michelle A Keske
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Renee M Dwyer
- School of Medicine University of Tasmania Hobart Tas. Australia
| | - Ryan D Russell
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Sarah J Blackwood
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Aascha A Brown
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Donghua Hu
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Dino Premilovac
- School of Medicine University of Tasmania Hobart Tas. Australia
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| |
Collapse
|
12
|
Ng HLH, Premilovac D, Rattigan S, Richards SM, Muniyappa R, Quon MJ, Keske MA. Acute vascular and metabolic actions of the green tea polyphenol epigallocatechin 3-gallate in rat skeletal muscle. J Nutr Biochem 2016; 40:23-31. [PMID: 27837678 DOI: 10.1016/j.jnutbio.2016.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 11/28/2022]
Abstract
Epidemiological studies show a dose-dependent relationship between green tea consumption and reduced risk for type 2 diabetes and cardiovascular disease. Bioactive compounds in green tea including the polyphenol epigallocatechin 3-gallate (EGCG) have insulin-mimetic actions on glucose metabolism and vascular function in isolated cell culture studies. The aim of this study is to explore acute vascular and metabolic actions of EGCG in skeletal muscle of Sprague-Dawley rats. Direct vascular and metabolic actions of EGCG were investigated using surgically isolated constant-flow perfused rat hindlimbs. EGCG infused at 0.1, 1, 10 and 100 μM in 15 min step-wise increments caused dose-dependent vasodilation in 5-hydroxytryptamine pre-constricted hindlimbs. This response was not impaired by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin or the AMP-kinase inhibitor Compound C. The nitric oxide synthase (NOS) inhibitor NG-Nitro-l-Arginine Methyl Ester (L-NAME) completely blocked EGCG-mediated vasodilation at 0.1-10 μM, but not at 100 μM. EGCG at 10 μM did not alter muscle glucose uptake nor did it augment insulin-stimulated muscle glucose uptake. The acute metabolic and vascular actions of 10 μM EGCG in vivo were investigated in anaesthetised rats during a hyperinsulinemic-euglycemic clamp (10 mU min-1 kg-1 insulin). EGCG and insulin both stimulated comparable increases in muscle microvascular blood flow without an additive effect. EGCG-mediated microvascular action occurred without altering whole body or muscle glucose uptake. We concluded that EGCG has direct NOS-dependent vasodilator actions in skeletal muscle that do not acutely alter muscle glucose uptake or enhance the vascular and metabolic actions of insulin in healthy rats.
Collapse
Affiliation(s)
- Huei L H Ng
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Dino Premilovac
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | | | - Ranganath Muniyappa
- Diabetes, Endocrinology, and Obesity Branch, NIDDK, National Institutes of Health, Bethesda, USA
| | - Michael J Quon
- University of Maryland, Division of Endocrinology, Diabetes & Nutrition, Baltimore, USA
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
13
|
Hinton PS. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility. Med Hypotheses 2016; 93:81-6. [DOI: 10.1016/j.mehy.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/28/2016] [Accepted: 05/11/2016] [Indexed: 01/22/2023]
|
14
|
Betik AC, Aguila J, McConell GK, McAinch AJ, Mathai ML. Tocotrienols and Whey Protein Isolates Substantially Increase Exercise Endurance Capacity in Diet -Induced Obese Male Sprague-Dawley Rats. PLoS One 2016; 11:e0152562. [PMID: 27058737 PMCID: PMC4825941 DOI: 10.1371/journal.pone.0152562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2022] Open
Abstract
Background and Aims Obesity and impairments in metabolic health are associated with reductions in exercise capacity. Both whey protein isolates (WPIs) and vitamin E tocotrienols (TCTs) exert favorable effects on obesity-related metabolic parameters. This research sought to determine whether these supplements improved exercise capacity and increased glucose tolerance in diet-induced obese rats. Methods Six week old male rats (n = 35) weighing 187 ± 32g were allocated to either: Control (n = 9), TCT (n = 9), WPI (n = 8) or TCT + WPI (n = 9) and placed on a high-fat diet (40% of energy from fat) for 10 weeks. Animals received 50mg/kg body weight and 8% of total energy intake per day of TCTs and/or WPIs respectively. Food intake, body composition, glucose tolerance, insulin sensitivity, exercise capacity, skeletal muscle glycogen content and oxidative enzyme activity were determined. Results Both TCT and WPI groups ran >50% longer (2271 ± 185m and 2195 ± 265m respectively) than the Control group (1428 ± 139m) during the run to exhaustion test (P<0.05), TCT + WPI did not further improve exercise endurance (2068 ± 104m). WPIs increased the maximum in vitro activity of beta-hydroxyacyl-CoA in the soleus muscle (P<0.05 vs. Control) but not in the plantaris. Citrate synthase activity was not different between groups. Neither supplement had any effect on weight gain, adiposity, glucose tolerance or insulin sensitivity. Conclusion Ten weeks of both TCTs and WPIs increased exercise endurance by 50% in sedentary, diet-induced obese rats. These positive effects of TCTs and WPIs were independent of body weight, adiposity or glucose tolerance.
Collapse
Affiliation(s)
- Andrew C. Betik
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
- * E-mail:
| | - Jay Aguila
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Glenn K. McConell
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Andrew J. McAinch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Michael L. Mathai
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Bradley EA, Zhang L, Genders AJ, Richards SM, Rattigan S, Keske MA. Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside. Cardiovasc Diabetol 2015; 14:91. [PMID: 26194188 PMCID: PMC4509722 DOI: 10.1186/s12933-015-0251-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Insulin-induced microvascular recruitment is important for optimal muscle glucose uptake. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, an activator of AMP-activated protein kinase), can also induce microvascular recruitment, at doses that do not acutely activate glucose transport in rat muscle. Whether low doses of AICAR can augment physiologic insulin action is unknown. In the present study we used the euglycemic hyperinsulinemic clamp to assess whether insulin action is augmented by low dose AICAR. METHODS Anesthetized rats were studied during saline infusion or euglycemic insulin (3 mU/kg/min) clamp for 2 h in the absence or presence of AICAR for the last hour (5 mg bolus followed by 3.75 mg/kg/min). Muscle glucose uptake (R'g) was determined radioisotopically with (14)C-2-deoxyglucose and muscle microvascular perfusion by contrast-enhanced ultrasound with microbubbles. RESULTS AICAR did not affect blood glucose, or lower leg R'g, although it significantly (p < 0.05) increased blood lactate levels and augmented muscle microvascular blood volume via a nitric oxide synthase dependent pathway. Insulin increased femoral blood flow, whole body glucose infusion rate (GIR), R'g, hindleg glucose uptake, and microvascular blood volume. Addition of AICAR during insulin infusion increased lactate production, further increased R'g in Type IIA (fast twitch oxidative) and IIB (fast twitch glycolytic) fiber containing muscles, and hindleg glucose uptake, but decreased R'g in the Type I (slow twitch oxidative) fiber muscle. AICAR also decreased GIR due to inhibition of insulin-mediated suppression of hepatic glucose output. AICAR augmented insulin-mediated microvascular perfusion. CONCLUSIONS AICAR, at levels that have no direct effect on muscle glucose uptake, augments insulin-mediated microvascular blood flow and glucose uptake in white fiber type muscles. Agents targeted to endothelial AMPK activation are promising insulin sensitizers, however, the decrease in GIR and the propensity to increase blood lactate cautions against AICAR as an acute insulin sensitizer.
Collapse
Affiliation(s)
- Eloise A Bradley
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7001, TAS, Australia.
| | - Lei Zhang
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | - Amanda J Genders
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7001, TAS, Australia.
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7001, TAS, Australia.
| |
Collapse
|
16
|
Keske MA, Ng HLH, Premilovac D, Rattigan S, Kim JA, Munir K, Yang P, Quon MJ. Vascular and metabolic actions of the green tea polyphenol epigallocatechin gallate. Curr Med Chem 2015; 22:59-69. [PMID: 25312214 PMCID: PMC4909506 DOI: 10.2174/0929867321666141012174553] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 01/04/2023]
Abstract
Epidemiological studies demonstrate robust correlations between green tea consumption and reduced risk of type 2 diabetes and its cardiovascular complications. However, underlying molecular, cellular, and physiological mechanisms remain incompletely understood. Health promoting actions of green tea are often attributed to epigallocatechin gallate (EGCG), the most abundant polyphenol in green tea. Insulin resistance and endothelial dysfunction play key roles in the pathogenesis of type 2 diabetes and its cardiovascular complications. Metabolic insulin resistance results from impaired insulin-mediated glucose disposal in skeletal muscle and adipose tissue, and blunted insulin-mediated suppression of hepatic glucose output that is often associated with endothelial/vascular dysfunction. This endothelial dysfunction is itself caused, in part, by impaired insulin signaling in vascular endothelium resulting in reduced insulin-stimulated production of NO in arteries, and arterioles that regulate nutritive capillaries. In this review, we discuss the considerable body of literature supporting insulin-mimetic actions of EGCG that oppose endothelial dysfunction and ameliorate metabolic insulin resistance in skeletal muscle and liver. We conclude that EGCG is a promising therapeutic to combat cardiovascular complications associated with the metabolic diseases characterized by reciprocal relationships between insulin resistance and endothelial dysfunction that include obesity, metabolic syndrome and type 2 diabetes. There is a strong rationale for well-powered randomized placebo controlled intervention trials to be carried out in insulin resistant and diabetic populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael J Quon
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, 7000, Australia.
| |
Collapse
|
17
|
Anim-Nyame N, Gamble J, Sooranna SR, Johnson MR, Steer PJ. Relationship between insulin resistance and tissue blood flow in preeclampsia. J Hypertens 2015; 33:1057-63. [DOI: 10.1097/hjh.0000000000000494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Keske MA, Premilovac D, Bradley EA, Dwyer RM, Richards SM, Rattigan S. Muscle microvascular blood flow responses in insulin resistance and ageing. J Physiol 2015; 594:2223-31. [PMID: 25581640 DOI: 10.1113/jphysiol.2014.283549] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/08/2014] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance plays a key role in the development of type 2 diabetes. Skeletal muscle is the major storage site for glucose following a meal and as such has a key role in maintenance of blood glucose concentrations. Insulin resistance is characterised by impaired insulin-mediated glucose disposal in skeletal muscle. Multiple mechanisms can contribute to development of muscle insulin resistance and our research has demonstrated an important role for loss of microvascular function within skeletal muscle. We have shown that insulin can enhance blood flow to the microvasculature in muscle thus improving the access of glucose and insulin to the myocytes to augment glucose disposal. Obesity, insulin resistance and ageing are all associated with impaired microvascular responses to insulin in skeletal muscle. Impairments in insulin-mediated microvascular perfusion in muscle can directly cause insulin resistance, and this event can occur early in the aetiology of this condition. Understanding the mechanisms involved in the loss of microvascular function in muscle has the potential to identify novel treatment strategies to prevent or delay progression of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Dino Premilovac
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Eloise A Bradley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Renee M Dwyer
- School of Medicine, University of Tasmania, Hobart, Australia
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
19
|
Shim CY, Kim S, Chadderdon S, Wu M, Qi Y, Xie A, Alkayed NJ, Davidson BP, Lindner JR. Epoxyeicosatrienoic acids mediate insulin-mediated augmentation in skeletal muscle perfusion and blood volume. Am J Physiol Endocrinol Metab 2014; 307:E1097-104. [PMID: 25336524 PMCID: PMC4269677 DOI: 10.1152/ajpendo.00216.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Skeletal muscle microvascular blood flow (MBF) increases in response to physiological hyperinsulinemia. This vascular action of insulin may facilitate glucose uptake. We hypothesized that epoxyeicosatrienoic acids (EETs), a family of arachadonic, acid-derived, endothelium-derived hyperpolarizing factors, are mediators of insulin's microvascular effects. Contrast-enhanced ultrasound (CEU) was performed to quantify skeletal muscle capillary blood volume (CBV) and MBF in wild-type and obese insulin-resistant (db/db) mice after administration of vehicle or trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (t-AUCB), an inhibitor of soluble epoxide hydrolase that converts EETs to less active dihydroxyeicosatrienoic acids. Similar studies were performed in rats pretreated with l-NAME. CEU was also performed in rats undergoing a euglycemic hyperinsulinemic clamp, half of which were pretreated with the epoxygenase inhibitor MS-PPOH to inhibit EET synthesis. In both wild-type and db/db mice, intravenous t-AUCB produced an increase in CBV (65-100% increase at 30 min, P < 0.05) and in MBF. In db/db mice, t-AUCB also reduced plasma glucose by ∼15%. In rats pretreated with l-NAME, t-AUCB after produced a significant ≈20% increase in CBV, indicating a component of vascular response independent of nitric oxide (NO) production. Hyperinsulinemic clamp produced a time-dependent increase in MBF (19 ± 36 and 76 ± 49% at 90 min, P = 0.026) that was mediated in part by an increase in CBV. Insulin-mediated changes in both CBV and MBF during the clamp were blocked entirely by MS-PPOH. We conclude that EETs are a mediator of insulin-mediated augmentation in skeletal muscle perfusion and are involved in regulating changes in CBV during hyperinsulinemia.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors
- 8,11,14-Eicosatrienoic Acid/metabolism
- Animals
- Benzoates/pharmacology
- Blood Volume/drug effects
- Epoxide Hydrolases/antagonists & inhibitors
- Hyperinsulinism/physiopathology
- Insulin/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microcirculation/drug effects
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Rats
- Rats, Sprague-Dawley
- Regional Blood Flow/drug effects
- Urea/analogs & derivatives
- Urea/pharmacology
Collapse
Affiliation(s)
| | | | | | | | - Yue Qi
- Knight Cardiovascular Institute and
| | - Aris Xie
- Knight Cardiovascular Institute and
| | - Nabil J Alkayed
- Knight Cardiovascular Institute and Department of Anesthesia and Peri-operative Medicine, Oregon Health and Science University, Portland, Oregon
| | | | | |
Collapse
|
20
|
Premilovac D, Richards SM, Rattigan S, Keske MA. A vascular mechanism for high-sodium-induced insulin resistance in rats. Diabetologia 2014; 57:2586-95. [PMID: 25212260 DOI: 10.1007/s00125-014-3373-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS High sodium (HS) effects on hypertension are well established. Recent evidence implicates a relationship between HS intake and insulin resistance, even in the absence of hypertension. The aim of the current study was to determine whether loss of the vascular actions of insulin may be the driving factor linking HS intake to insulin resistance. METHODS Sprague Dawley rats were fed a control (0.31% wt/wt NaCl) or HS (8.00% wt/wt NaCl) diet for 4 weeks and subjected to euglycaemic-hyperinsulinaemic clamp (10 mU min(-1) kg(-1)) or constant-flow pump-perfused hindlimb studies following an overnight fast. A separate group of HS rats was given quinapril during the dietary intervention and subjected to euglycaemic-hyperinsulinaemic clamp as above. RESULTS HS intake had no effect on body weight or fat mass or on fasting glucose, insulin, endothelin-1 or NEFA concentrations. However, HS impaired whole body and skeletal muscle glucose uptake, in addition to a loss of insulin-stimulated microvascular recruitment. These effects were present despite enhanced insulin signalling (Akt) in both liver and skeletal muscle. Constant-flow pump-perfused hindlimb experiments revealed normal insulin-stimulated myocyte glucose uptake in HS-fed rats. Quinapril treatment restored insulin-mediated microvascular recruitment and muscle glucose uptake in vivo. CONCLUSIONS/INTERPRETATION HS-induced insulin resistance is driven by impaired microvascular responsiveness to insulin, and is not due to metabolic or signalling defects within myocytes or liver. These results imply that reducing sodium intake may be important not only for management of hypertension but also for insulin resistance, and highlight the vasculature as a potential therapeutic target in the prevention of insulin resistance.
Collapse
Affiliation(s)
- Dino Premilovac
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | | | | | | |
Collapse
|
21
|
Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol 2014; 220:T61-79. [PMID: 24323910 DOI: 10.1530/joe-13-0397] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.
Collapse
Affiliation(s)
- Nigel Turner
- Department of Pharmacology School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Diabetes and Obesity Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
22
|
Eskens BJM, Leurgans TM, Vink H, Vanteeffelen JWGE. Early impairment of skeletal muscle endothelial glycocalyx barrier properties in diet-induced obesity in mice. Physiol Rep 2014; 2:e00194. [PMID: 24744873 PMCID: PMC3967677 DOI: 10.1002/phy2.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 01/05/2023] Open
Abstract
While previous studies have indicated an important role for the endothelial glycocalyx in regulation of microvascular function, it was recently shown that acute enzymatic glycocalyx degradation in rats was associated with an impaired insulin‐mediated glucose disposal. The aim of this study was to determine whether glycocalyx damage in skeletal muscle occurs at an early stage of diet‐induced obesity (DIO). The microcirculation of the hindlimb muscle of anesthetized C57Bl/6 mice, fed chow (CON) or a high‐fat diet (HFD) for 6 and 18 weeks (w), respectively, was visualized with a Sidestream Dark‐Field camera, and glycocalyx barrier properties were derived from the calculated perfused boundary region (PBR). Subsequently, an intraperitoneal glucose tolerance test was performed and the area under the curve (AUC) of blood glucose was calculated. Impairment of glycocalyx barrier properties was already apparent after 6 weeks of HFD and remained after 18 weeks of HFD (PBR [in μm]: 0.81 ± 0.03 in CON_6w vs. 0.97 ± 0.04 in HFD_6w and 1.02 ± 0.07 in HFD_18w [both P < 0.05]). Glucose intolerance appeared to develop more slowly (AUC [in mmol/L × 120 min]: 989 ± 61 in CON_6w vs. 1204 ± 89 in HFD_6w [P = 0.11] and 1468 ± 84 in HFD_18w [P < 0.05]) than the impairment of glycocalyx barrier properties. The data indicate that damage to the endothelial glycocalyx is an early event in DIO. It is suggested that glycocalyx damage may contribute to the development of insulin resistance in obesity. In this study we assessed glycocalyx barrier properties in skeletal muscle using Sidestream Dark‐Field imaging at an early and later stage of diet‐induced obesity in mice, by feeding them a high‐fat diet for 6 and 18 weeks, respectively. Glycocalyx barrier properties in hindlimb muscle microcirculation were found to be impaired after 6 weeks already. Our results suggest that in obesity glycocalyx damage represents an early aspect of microvascular dysfunction which may as well contribute to the development of glucose intolerance.
Collapse
Affiliation(s)
- Bart J M Eskens
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Thomas M Leurgans
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jurgen W G E Vanteeffelen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
23
|
Abstract
Insulin resistance strongly associates with decreased nitric oxide (NO) bioavailability and endothelial dysfunction. In the vasculature, NO mediates multiple processes that affect insulin delivery, including dilating both resistance and terminal arterioles in skeletal muscle in vivo. However, whether NO directly regulates vascular endothelial cell (EC) insulin uptake and its transendothelial transport (TET) is unknown. We report in this article that L-N(G)-nitro-L-arginine methyl ester (L-NAME) pretreatment blocked, whereas L-arginine and sodium nitroprusside (SNP) each enhanced, EC uptake of fluorescein isothiocyanate (FITC)-labeled insulin. SNP also partly or fully reversed the inhibition of EC insulin uptake caused by L-NAME, wortmannin, the Src inhibitor PP1, and tumor necrosis factor-α. In addition, SNP promoted [(125)I]Tyr(A14)insulin TET by ~40%. Treatment with insulin with and without SNP did not affect EC cyclic guanosine monophosphate (cGMP) levels, and the cGMP analog 8-bromo-cGMP did not affect FITC-insulin uptake. In contrast, treatment with insulin and SNP significantly increased EC protein S-nitrosylation, the colocalization of S-nitrosothiol (S-NO) and protein-tyrosine phosphatase 1B (PTP1B), and Akt phosphorylation at Ser(473) and inhibited PTP1B activity. Moreover, a high-fat diet significantly inhibited EC insulin-stimulated Akt phosphorylation and FITC-insulin uptake that was partially reversed by SNP in rats. Finally, inhibition of S-nitrosylation by knockdown of thioredoxin-interacting protein completely eliminated SNP-enhanced FITC-insulin uptake. We conclude that NO directly promotes EC insulin transport by enhancing protein S-nitrosylation. NO also inhibits PTP1B activity, thereby enhancing insulin signaling.
Collapse
|
24
|
Bradley EA, Richards SM, Keske MA, Rattigan S. Local NOS inhibition impairs vascular and metabolic actions of insulin in rat hindleg muscle in vivo. Am J Physiol Endocrinol Metab 2013; 305:E745-50. [PMID: 23900417 DOI: 10.1152/ajpendo.00289.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin stimulates microvascular recruitment in skeletal muscle, and this vascular action augments muscle glucose disposal by ∼40%. The aim of the current study was to determine the contribution of local nitric oxide synthase (NOS) to the vascular actions of insulin in muscle. Hooded Wistar rats were infused with the NOS inhibitor N(ω)-nitro-L-arginine methylester (L-NAME, 10 μM) retrogradely via the epigastric artery in one leg during a systemic hyperinsulinemic-euglycemic clamp (3 mU·min(-1)·kg(-1) × 60 min) or saline infusion. Femoral artery blood flow, microvascular blood flow (assessed from 1-methylxanthine metabolism), and muscle glucose uptake (2-deoxyglucose uptake) were measured in both legs. Local L-NAME infusion did not have any systemic actions on blood pressure or heart rate. Local L-NAME blocked insulin-stimulated changes in femoral artery blood flow (84%, P < 0.05) and microvascular recruitment (98%, P < 0.05), and partially blocked insulin-mediated glucose uptake in muscle (reduced by 34%, P < 0.05). L-NAME alone did not have any metabolic effects in the hindleg. We conclude that insulin-mediated microvascular recruitment is dependent on local activation of NOS in muscle and that this action is important for insulin's metabolic actions.
Collapse
Affiliation(s)
- Eloise A Bradley
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | | | | | | |
Collapse
|
25
|
Premilovac D, Bradley EA, Ng HL, Richards SM, Rattigan S, Keske MA. Muscle insulin resistance resulting from impaired microvascular insulin sensitivity in Sprague Dawley rats. Cardiovasc Res 2013; 98:28-36. [DOI: 10.1093/cvr/cvt015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Kolka CM, Bergman RN. The barrier within: endothelial transport of hormones. Physiology (Bethesda) 2012; 27:237-47. [PMID: 22875454 DOI: 10.1152/physiol.00012.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.
Collapse
Affiliation(s)
- Cathryn M Kolka
- Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | | |
Collapse
|
27
|
|
28
|
St-Pierre P, Keith LJ, Richards SM, Rattigan S, Keske MA. Microvascular blood flow responses to muscle contraction are not altered by high-fat feeding in rats. Diabetes Obes Metab 2012; 14:753-61. [PMID: 22429614 DOI: 10.1111/j.1463-1326.2012.01598.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM Exercise and insulin each increase microvascular blood flow and enhance glucose disposal in skeletal muscle. We have reported that insulin-mediated microvascular recruitment in a diet-induced model of insulin resistance (high-fat feeding for 4 weeks) is markedly impaired; however, the effect of muscle contraction in this model has not been previously explored. METHODS We fed rats either normal (ND, 10% calories from fat) or high-fat (HFD, 60% calories from fat) diets ad libitum for 4-8 weeks. Animals were then anaesthetized and one hindlimb electrically stimulated to contract at 0.05, 0.1 and 2 Hz (field stimulation, 30 V, 0.1 ms duration) in 15 min stepwise increments. Femoral artery blood flow (Transonic flow probe), muscle microvascular blood flow (hindleg metabolism of 1-methylxanthine and contrast-enhanced ultrasound) and muscle glucose disposal (uptake of radiolabelled 2-deoxy-d-glucose and hindleg glucose disappearance) were measured. RESULTS Both ND and HFD rats received the same voltage across the leg and consequently developed the same muscle tension. Femoral artery blood flow in the contracting leg increased during 2 Hz contraction, but not during the lower frequencies and these effects were similar between ND and HFD rats. Muscle microvascular blood flow significantly increased in a contraction frequency-dependent manner, and preceded increases in total limb blood flow and these effects were similar between ND and HFD rats. Muscle glucose disposal was markedly elevated during 2 Hz contraction and was comparable between ND and HFD rats. CONCLUSION Contraction-mediated muscle microvascular recruitment and glucose uptake are not impaired in the HFD insulin resistant rat.
Collapse
Affiliation(s)
- P St-Pierre
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Martinez HG, Quinones MP, Jimenez F, Estrada CA, Clark K, Muscogiuri G, Sorice G, Musi N, Reddick RL, Ahuja SS. Critical role of chemokine (C-C motif) receptor 2 (CCR2) in the KKAy + Apoe -/- mouse model of the metabolic syndrome. Diabetologia 2011; 54:2660-8. [PMID: 21779871 PMCID: PMC4430553 DOI: 10.1007/s00125-011-2248-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/03/2011] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Chemokines and their receptors such as chemokine (C-C motif) receptor 2 (CCR2) may contribute to the pathogenesis of the metabolic syndrome via their effects on inflammatory monocytes. Increased accumulation of CCR2-driven inflammatory monocytes in epididymal fat pads is thought to favour the development of insulin resistance. Ultimately, the resulting hyperglycaemia and dyslipidaemia contribute to development of the metabolic syndrome complications such as cardiovascular disease and diabetic nephropathy. Our goal was to elucidate the role of CCR2 and inflammatory monocytes in a mouse model that resembles the human metabolic syndrome. METHODS We generated a model of the metabolic syndrome by backcrossing KKAy ( + ) with Apoe ( -/- ) mice (KKAy ( + ) Apoe ( -/- )) and studied the role of CCR2 in this model system. RESULTS KKAy ( + ) Apoe ( -/- ) mice were characterised by the presence of obesity, insulin resistance, dyslipidaemia and increased systemic inflammation. This model also manifested two complications of the metabolic syndrome: atherosclerosis and diabetic nephropathy. Inactivation of Ccr2 in KKAy (+) Apoe ( -/- ) mice protected against the metabolic syndrome, as well as atherosclerosis and diabetic nephropathy. This protective phenotype was associated with a reduced number of inflammatory monocytes in the liver and muscle, but not in the epididymal fat pads; circulating levels of adipokines such as leptin, resistin and adiponectin were also not reduced. Interestingly, the proportion of inflammatory monocytes in the liver, pancreas and muscle, but not in the epididymal fat pads, correlated significantly with peripheral glucose levels. CONCLUSIONS/INTERPRETATION CCR2-driven inflammatory monocyte accumulation in the liver and muscle may be a critical pathogenic factor in the development of the metabolic syndrome.
Collapse
Affiliation(s)
- H G Martinez
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|