1
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
2
|
Kawamori D, Sasaki S. Newly discovered knowledge pertaining to glucagon and its clinical applications. J Diabetes Investig 2023. [PMID: 37052948 DOI: 10.1111/jdi.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Glucagon has been defined as an 'insulin counteracting hormone', which raises blood glucose levels. Recent progress in basic research has shown that glucagon is closely involved in glucose and amino acid metabolism. Additionally, its secretion is intricately, but precisely, regulated by various mechanisms involving molecules in addition to glucose, thus showing its critical role in systemic nutrient metabolism. An innovative dual-antibody-linked immunosorbent assay for glucagon that improves measurement accuracy has been developed, and substantial clinical findings have been obtained using this new system. This discovery expanded the pathophysiological significance of glucagon and accelerated the development of its clinical applications in diabetes.
Collapse
Grants
- 21K08576 Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 21K20902 Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 22K16395 Ministry of Education, Culture, Sports, Science, and Technology in Japan
Collapse
Affiliation(s)
- Dan Kawamori
- Medical Education Center, Faculty of Medicine, Osaka University, Osaka, Japan
- Postgraduate Medical Training Center, Osaka University Hospital, Osaka University, Osaka, Japan
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shugo Sasaki
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Hædersdal S, Andersen A, Knop FK, Vilsbøll T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol 2023; 19:321-335. [PMID: 36932176 DOI: 10.1038/s41574-023-00817-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
Insulin and glucagon exert opposing effects on glucose metabolism and, consequently, pancreatic islet β-cells and α-cells are considered functional antagonists. The intra-islet hypothesis has previously dominated the understanding of glucagon secretion, stating that insulin acts to inhibit the release of glucagon. By contrast, glucagon is a potent stimulator of insulin secretion and has been used to test β-cell function. Over the past decade, α-cells have received increasing attention due to their ability to stimulate insulin secretion from neighbouring β-cells, and α-cell-β-cell crosstalk has proven central for glucose homeostasis in vivo. Glucagon is not only the counter-regulatory hormone to insulin in glucose metabolism but also glucagon secretion is more susceptible to changes in the plasma concentration of certain amino acids than to changes in plasma concentrations of glucose. Thus, the actions of glucagon also include a central role in amino acid turnover and hepatic fat oxidation. This Review provides insights into glucagon secretion, with a focus on the local paracrine actions on glucagon and the importance of α-cell-β-cell crosstalk. We focus on dysregulated glucagon secretion in obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus. Lastly, the future potential of targeting hyperglucagonaemia and applying dual and triple receptor agonists with glucagon receptor-activating properties in combination with incretin hormone receptor agonism is discussed.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Martínez MS, Manzano A, Olivar LC, Nava M, Salazar J, D’Marco L, Ortiz R, Chacín M, Guerrero-Wyss M, Cabrera de Bravo M, Cano C, Bermúdez V, Angarita L. The Role of the α Cell in the Pathogenesis of Diabetes: A World beyond the Mirror. Int J Mol Sci 2021; 22:9504. [PMID: 34502413 PMCID: PMC8431704 DOI: 10.3390/ijms22179504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent chronic metabolic disorders, and insulin has been placed at the epicentre of its pathophysiological basis. However, the involvement of impaired alpha (α) cell function has been recognized as playing an essential role in several diseases, since hyperglucagonemia has been evidenced in both Type 1 and T2DM. This phenomenon has been attributed to intra-islet defects, like modifications in pancreatic α cell mass or dysfunction in glucagon's secretion. Emerging evidence has shown that chronic hyperglycaemia provokes changes in the Langerhans' islets cytoarchitecture, including α cell hyperplasia, pancreatic beta (β) cell dedifferentiation into glucagon-positive producing cells, and loss of paracrine and endocrine regulation due to β cell mass loss. Other abnormalities like α cell insulin resistance, sensor machinery dysfunction, or paradoxical ATP-sensitive potassium channels (KATP) opening have also been linked to glucagon hypersecretion. Recent clinical trials in phases 1 or 2 have shown new molecules with glucagon-antagonist properties with considerable effectiveness and acceptable safety profiles. Glucagon-like peptide-1 (GLP-1) agonists and Dipeptidyl Peptidase-4 inhibitors (DPP-4 inhibitors) have been shown to decrease glucagon secretion in T2DM, and their possible therapeutic role in T1DM means they are attractive as an insulin-adjuvant therapy.
Collapse
Affiliation(s)
- María Sofía Martínez
- MedStar Health Internal Medicine, Georgetown University Affiliated, Baltimore, MD 21218-2829, USA;
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Luis Carlos Olivar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Luis D’Marco
- Department of Nephrology, Hospital Clinico Universitario de Valencia, INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Rina Ortiz
- Facultad de Medicina, Universidad Católica de Cuenca, Ciudad de Cuenca, Azuay 010105, Ecuador;
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia; (M.C.); (V.B.)
| | - Marion Guerrero-Wyss
- Escuela de Nutrición y Dietética, Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile;
| | | | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia; (M.C.); (V.B.)
| | - Lisse Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile
| |
Collapse
|
5
|
Glucagon-Producing Cell Expansion in Wistar Rats. Changes to Islet Architecture After Sleeve Gastrectomy. Obes Surg 2021; 31:2241-2249. [PMID: 33619692 PMCID: PMC8041669 DOI: 10.1007/s11695-021-05264-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Purpose Many studies about bariatric surgery have analyzed the effect of sleeve gastrectomy (SG) on glucose improvement, beta-cell mass, and islet size modification. The effects of SG on the other endocrine cells of the pancreas, such as the alpha-cell population, and their regulatory mechanisms remain less studied. Materials and Methods We focused our work on the changes in the alpha-cell population after SG in a healthy model of Wistar rats. We measured alpha-cell mass, glucose tolerance, and insulin release after oral glucose tolerance tests and plasma glucagon secretion patterns after insulin infusion. Three Wistar rat groups were employed: SG-operated, surgical control (Sham), and fasting control. Results The results obtained showed significant increases in the alpha-cell population after SG. The result was an increase in beta-cell transdifferentiation; it was shown by some expressed molecules (the loss of expression of Pdx-1 and the increase in Arx and Pax6 cells/mm2 of islet). The serum results were enhanced plasma glucagon secretion pattern after insulin infusion assays and normal glucose tolerance and insulin release after OGTT. Conclusion We concluded that SG leads to an expansion of the alpha-cell population, at expense of beta-cell; this expansion of alpha-cells is related to transdifferentiation. Plasma glucose level was not affected due to an increased glucagon response.
Collapse
|
6
|
Kawamori D, Katakami N, Takahara M, Miyashita K, Takebe S, Yasuda T, Matsuoka T, Shimomura I. Consistency of plasma glucagon levels in patients with type 1 diabetes after a 1-year period. J Diabetes Investig 2020; 11:337-340. [PMID: 31465632 PMCID: PMC7078088 DOI: 10.1111/jdi.13134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
Recent progress in research on glucagon and α-cells highlights their pathophysiological roles in diabetes. We previously showed that plasma glucagon levels measured by newly developed enzyme-linked immunosorbent assay were dysregulated in patients with type 1 diabetes with respect to plasma glucose levels, suggesting dysregulated secretion. In the current study, the annual change in plasma glucagon levels was assessed in these same patients. We found that the plasma glucagon levels in the 66 Japanese patients involved in the study were significantly correlated between both years. In addition, they were significantly associated with serum blood urea nitrogen levels in a multivariate linear regression analysis, as reported in our previous study. The statistical correlation in glucagon levels between annual checkups and the sustained significant correlation between glucagon and blood urea nitrogen suggest a constant dysregulation of glucagon in association with altered amino acid metabolism in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Dan Kawamori
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
- Medical Education CenterFaculty of MedicineOsaka UniversitySuitaOsakaJapan
| | - Naoto Katakami
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
- Department of Metabolism and AtherosclerosisGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Mitsuyoshi Takahara
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
- Department of Diabetes Care MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Kazuyuki Miyashita
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Satomi Takebe
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Tetsuyuki Yasuda
- Department of Endocrinology and MetabolismOsaka Police HospitalOsakaJapan
| | - Taka‐aki Matsuoka
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Iichiro Shimomura
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
7
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
8
|
Nakagawa T, Nagai Y, Yamamoto Y, Miyachi A, Hamajima H, Mieno E, Takahashi M, Inoue E, Tanaka Y. Effects of anagliptin on plasma glucagon levels and gastric emptying in patients with type 2 diabetes: An exploratory randomized controlled trial versus metformin. Diabetes Res Clin Pract 2019; 158:107892. [PMID: 31669625 DOI: 10.1016/j.diabres.2019.107892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/24/2019] [Accepted: 10/22/2019] [Indexed: 02/03/2023]
Abstract
AIMS Glucagon has an important role in glucose homeostasis. Recently, a new plasma glucagon assay based on liquid chromatography-high resolution mass spectrometry was developed. We evaluated the influence of a dipeptidyl peptidase-4 inhibitor (anagliptin) on plasma glucagon levels in Japanese patients with type 2 diabetes by using this new assay. METHODS Twenty-four patients with type 2 diabetes were enrolled in a prospective, single-center, randomized, open-label study and were randomly allocated to 4 weeks of treatment with metformin (1000 mg/day) or anagliptin (200 mg/day). A liquid test meal labeled with sodium [13C] acetate was ingested before and after the treatment period. Samples of blood and expired air were collected over 3 h. Plasma levels of glucose, glucagon, C-peptide, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) were measured, and gastric emptying was also evaluated. RESULTS Twenty-two patients completed the study (metformin group: n = 10; anagliptin group: n = 12). Glycemic control showed similar improvement in both groups. In the anagliptin group, there was a slight decrease of the incremental area under the plasma concentration versus time curve for glucagon after the test meal (P = 0.048). In addition, the plasma level of active GLP-1 and GIP was increased, and plasma C-peptide was also increased versus baseline. Neither anagliptin nor metformin delayed gastric emptying. CONCLUSIONS In patients with type 2 diabetes maintained endogenous insulin secretion, anagliptin increased the plasma level of active GLP-1 and GIP in association with a slight stimulation of insulin secretion and slight inhibition of glucagon secretion, but did not delay gastric emptying. Clinical Trial Registry: University hospital Medical Information Network UMIN000028293.
Collapse
Affiliation(s)
- Tomoko Nakagawa
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yoshio Nagai
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yutaro Yamamoto
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Atsushi Miyachi
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shisaki, Hokusei-cho, Inabe, Mie 511-0406, Japan.
| | - Hitoshi Hamajima
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shisaki, Hokusei-cho, Inabe, Mie 511-0406, Japan.
| | - Eri Mieno
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shisaki, Hokusei-cho, Inabe, Mie 511-0406, Japan.
| | - Masaki Takahashi
- Medical Informatics, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Eisuke Inoue
- Medical Informatics, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yasushi Tanaka
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| |
Collapse
|
9
|
|
10
|
Mandaliya DK, Seshadri S. Short Chain Fatty Acids, pancreatic dysfunction and type 2 diabetes. Pancreatology 2019; 19:280-284. [PMID: 30713129 DOI: 10.1016/j.pan.2019.01.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
The microbiota living in gut influence the immune response, metabolism, mood and behavior. The diet plays a pivotal role in maintaining healthy gut microbiota composition and its fermentation leads to production of Short Chain Fatty Acids (SCFAs) mainly acetate, propionate and butyrate. During pancreatic dysfunction, insulin mediated suppression of glucagon is impaired leading to uncontrolled glucose production by liver and state of hyperglycemia. Insulin and glucagon balance is as important as insulin sensitivity which is reduced during Type 2 Diabetes (T2D). Glucagon like peptide-1 (GLP1) produced by Intestinal epithelial cells regulates insulin and glucagon secretion directly via GLP1 receptor on pancreatic cells or via nervous system. But half-life period of GLP1 is very short i.e. about 2 min, after which it is cleaved and inactivated. SCFAs are well documented to induce GLP1 but its direct effect on pancreatic dysfunction has not been reported. This review opens a new avenue to study the role of SCFAs as treatment to pancreatic dysfunction and T2D.
Collapse
Affiliation(s)
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
11
|
Kawamori D, Katakami N, Takahara M, Miyashita K, Sakamoto F, Yasuda T, Matsuoka T, Shimomura I. Dysregulated plasma glucagon levels in Japanese young adult type 1 diabetes patients. J Diabetes Investig 2019; 10:62-66. [PMID: 29768718 PMCID: PMC6319497 DOI: 10.1111/jdi.12862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/01/2022] Open
Abstract
Currently, the clinical dynamics of glucagon need to be revised based on previous data obtained from conventional glucagon radioimmunoassays. In the present study, we evaluated plasma glucagon levels in type 1 diabetes patients using a newly-developed sandwich enzyme-linked immunosorbent assay, and its association with clinical parameters and markers of diabetes complications were statistically assessed. The plasma glucagon level in 77 Japanese type 1 diabetes patients was 28.1 ± 17.7 pg/mL, and comparable with that reported previously for type 2 diabetes patients. However, the values were widely spread and did not correlate with plasma glucose values. Additionally, the average glucagon levels in patients in a hypoglycemic state (glucose level <80 mg/dL) did not increase (21.7 ± 12.2 pg/mL). The average glucagon level of patients experiencing hypoglycemia unawareness was significantly lower. Plasma glucagon levels evaluated using the new enzyme-linked immunosorbent assay were dysregulated in type 1 diabetes patients in respect to plasma glucose levels, suggesting dysregulation of secretion.
Collapse
Affiliation(s)
- Dan Kawamori
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
- Medical Education CenterGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Naoto Katakami
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
- Department of Metabolism and AtherosclerosisGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Mitsuyoshi Takahara
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
- Department of Diabetes Care MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Kazuyuki Miyashita
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Fumie Sakamoto
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Tetsuyuki Yasuda
- Department of Endocrinology and MetabolismOsaka Police HospitalTennoujiOsakaJapan
| | - Taka‐aki Matsuoka
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Iichiro Shimomura
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
12
|
Kawamori D. Exploring the molecular mechanisms underlying α- and β-cell dysfunction in diabetes. Diabetol Int 2017; 8:248-256. [PMID: 30603330 PMCID: PMC6224887 DOI: 10.1007/s13340-017-0327-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
Abstract
Pancreatic islet dysfunction, including impaired insulin secretion in β cells and dysregulated glucagon secretion in α cells, is the chief pathology of diabetes. In β cells, oxidative stress, evoked by chronic hyperglycemia, was found to induce dysfunction of a critical transcription factor, PDX1, caused by its nucleocytoplasmic translocation via interactions with the insulin and JNK signaling pathways and another transcription factor, FOXO1. The significance of α-cell insulin signaling in the physiological and pathological regulation of α-cell biology was demonstrated in α-cell-specific insulin receptor knockout mice, which exhibited dysregulated glucagon secretion. Moreover, a high-glucose load directly induced excessive glucagon secretion in a glucagon-secreting cell line and isolated islets, together with impairment of insulin signaling. These findings indicate that disordered insulin signaling is central to the pathophysiology of islet dysfunction in both α and β cells. On the other hand, certain beneficial effects of GLP-1 on dysfunctional α and β cells indicate that it has therapeutic potential for diabetes patients who exhibit insulin resistance in islets. These studies, involving basic medical research approaches, have-at least in part-clarified the molecular mechanisms underlying α- and β-cell dysfunction in diabetes, and offer important clues that should aid the development of future therapeutic approaches to the disease.
Collapse
Affiliation(s)
- Dan Kawamori
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
13
|
Glucotoxicity induces abnormal glucagon secretion through impaired insulin signaling in InR1G cells. PLoS One 2017; 12:e0176271. [PMID: 28426798 PMCID: PMC5398759 DOI: 10.1371/journal.pone.0176271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/07/2017] [Indexed: 11/19/2022] Open
Abstract
The significance of glucagon in the pathophysiology of diabetes mellitus is widely recognized, but the mechanisms underlying dysregulated glucagon secretion are still unclear. Here, we explored the molecular mechanisms of glucagon dysregulation, using an in vitro model. Hamster-derived glucagon-secreting InR1G cells were exposed to high glucose (25 mM) levels for 12 h before analyzing glucagon secretion and the activity of components involved in insulin signaling. High-glucose treatment induced increased glucagon secretion in InR1G cells, which represents a hallmark of diabetes mellitus. This treatment reduced the phosphorylation of Akt, indicating the deterioration of insulin signaling. Simultaneously, oxidative stress and JNK activity were shown to be increased. The inhibition of JNK signaling resulted in the amelioration of high-glucose level-induced glucagon secretion. Abnormally elevated glucagon secretion in diabetes can be reproduced by high-glucose treatment of InR1G cells, and the involvement of high glucose-oxidative stress-JNK-insulin signaling pathway axis has been demonstrated. These data elucidate, at least partly, the previously unclear mechanism of abnormal glucagon secretion, providing insights into a potential novel approach to diabetes treatment, targeting glucagon.
Collapse
|
14
|
Bessho M, Murase-Mishiba Y, Imagawa A, Terasaki J, Hanafusa T. Possible contribution of taurine to distorted glucagon secretion in intra-islet insulin deficiency: a metabolome analysis using a novel α-cell model of insulin-deficient diabetes. PLoS One 2014; 9:e113254. [PMID: 25393115 PMCID: PMC4231115 DOI: 10.1371/journal.pone.0113254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/24/2014] [Indexed: 01/30/2023] Open
Abstract
Glycemic instability is a serious problem in patients with insulin-deficient diabetes, and it may be due in part to abnormal endogenous glucagon secretion. However, the intracellular metabolic mechanism(s) involved in the aberrant glucagon response under the condition of insulin deficiency has not yet been elucidated. To investigate the metabolic traits that underlie the distortion of glucagon secretion under insulin deficient conditions, we generated an αTC1-6 cell line with stable knockdown of the insulin receptor (IRKD), i.e., an in vitro α-cell model for insulin-deficient diabetes, which exhibits an abnormal glucagon response to glucose. A comprehensive metabolomic analysis of the IRKD αTC1-6 cells (IRKD cells) revealed some candidate metabolites whose levels differed markedly compared to those in control αTC1-6 cells, but also which could affect the glucagon release in IRKD cells. Of these candidates, taurine was remarkably increased in the IRKD cells and was identified as a stimulator of glucagon in αTC1-6 cells. Taurine also paradoxically exaggerated the glucagon secretion at a high glucose concentration in IRKD cells and islets with IRKD. These results indicate that the metabolic alterations induced by IRKD in α-cells, especially the increase of taurine, may lead to the distorted glucagon response in IRKD cells, suggesting the importance of taurine in the paradoxical glucagon response and the resultant glucose instability in insulin-deficient diabetes.
Collapse
Affiliation(s)
- Megumi Bessho
- Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan
| | | | - Akihisa Imagawa
- Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jungo Terasaki
- Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan
| | - Toshiaki Hanafusa
- Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan
| |
Collapse
|
15
|
Andrade EF, Lobato RV, Araújo TV, Orlando DR, Gomes NF, Alvarenga RR, Rogatto GP, Zangeronimo MG, Pereira LJ. Metabolic effects of glycerol supplementation and aerobic physical training on Wistar rats. Can J Physiol Pharmacol 2014; 92:744-51. [DOI: 10.1139/cjpp-2014-0187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We evaluated the effects of oral glycerol supplementation on trained rats fed a normal diet. Wistar rats were distributed among 6 groups in a completely randomized 2 × 3 factorial design. The animals were subjected to 6 weeks of aerobic training. In the last 4 weeks, the animals’ diet was supplemented with saline, glucose, or glycerol. Data were subjected to one-way analysis of variance (ANOVA) followed by a Student–Newmann–Keuls test, with values for P < 0.05 considered statistically significant. The change in body mass was lower in the trained groups, and their food and water consumption were higher. Glycerol supplementation resulted in an increase in the levels of triacylglycerol (TAG) and total cholesterol, as well as in the area and diameter of adipocytes. When associated with training, these parameters were similar to those of other trained groups. Levels of low-density lipoprotein + very-low-density lipoprotein cholesterol decreased in the trained animals that received glycerol compared with the non-trained ones. Glycerol consumption caused a reduction in food intake and increased the villous:crypt (V:C) ratio. No changes in glycemia, high density lipoproteins, or density of adipocytes were observed. Supplementation with glycerol together with aerobic physical training promoted beneficial metabolic effects. However, in non-trained rats glycerol increased the diameter and area of adipocytes, as well as the levels of TAG and total cholesterol.
Collapse
Affiliation(s)
- Eric Francelino Andrade
- Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Raquel Vieira Lobato
- Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Ticiana Vasques Araújo
- Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Débora Ribeiro Orlando
- Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Núbia Ferreira Gomes
- Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Renata Ribeiro Alvarenga
- Department of Animal Sciences, Federal University of Lavras, Mail Box 3037, 37200-000 Lavras, Minas Gerais, Brazil
| | - Gustavo Puggina Rogatto
- Department of Physical Education, Federal University of Lavras, Mail Box 3037, 37200-000 Lavras, Minas Gerais, Brazil
| | | | - Luciano José Pereira
- Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| |
Collapse
|
16
|
Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida T, Yagihashi S. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care 2014; 37:1966-74. [PMID: 24705612 DOI: 10.2337/dc13-2018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Deficits of β-cells characterize the islet pathology in type 2 diabetes. It is yet to be clear how the β-cell loss develops in type 2 diabetes. We explored the implication of oxidative stress, endoplasmic reticulum (ER)-induced stress, and autophagy deficit in the β-cell decline in Japanese type 2 diabetic patients. RESEARCH DESIGN AND METHODS Pancreases from recent autopsy cases of 47 type 2 diabetic and 30 nondiabetic subjects were investigated on the islet structure with morphometric analysis. Volume densities of islet (Vi), β-cell (Vβ), and α-cell (Vα) were measured. To evaluate cell damage of endocrine cells, immunohistochemical expressions of oxidative stress-related DNA damage as expressed by γH2AX, ER stress-related cell damage as CCAAT/enhancer 1 binding protein-β (C/EBP-β), and autophagy deficit as P62 were semiquantified, and their correlations to islet changes were sought. RESULTS Compared with nondiabetic subjects, Vβ was reduced in diabetic subjects. Contrariwise, there was an increase in Vα. There was a significant link between reduced Vβ and increased HbA1c levels (P < 0.01) and a trend of inverse correlation between Vβ and duration of diabetes (P = 0.06). Expressions of γH2AX, P62, and C/EBP-β were all enhanced in diabetic islets, and reduced Vβ correlated with the intensity of γH2AX expression but not with C/EBP-β or P62 expressions. Combined expressions of γH2AX, P62, and C/EBP-β were associated with severe reduction of Vβ. CONCLUSIONS β-Cell deficit in type 2 diabetes was associated with increased oxidative stress and may further be augmented by autophagic deficits and ER stress.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazunori Takahashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Wataru Inaba
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Tsuboi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taro Yoshida
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
17
|
Mezza T, Kulkarni RN. The regulation of pre- and post-maturational plasticity of mammalian islet cell mass. Diabetologia 2014; 57:1291-303. [PMID: 24824733 DOI: 10.1007/s00125-014-3251-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/24/2014] [Indexed: 12/17/2022]
Abstract
Regeneration of mature cells that produce functional insulin represents a major focus and a challenge of current diabetes research aimed at restoring beta cell mass in patients with most forms of diabetes, as well as in ageing. The capacity to adapt to diverse physiological states during life and the consequent ability to cope with increased metabolic demands in the normal regulation of glucose homeostasis is a distinctive feature of the endocrine pancreas in mammals. Both beta and alpha cells, and presumably other islet cells, are dynamically regulated via nutrient, neural and/or hormonal activation of growth factor signalling and the post-transcriptional modification of a variety of genes or via the microbiome to continually maintain a balance between regeneration (e.g. proliferation, neogenesis) and apoptosis. Here we review key regulators that determine islet cell mass at different ages in mammals. Understanding the chronobiology and the dynamics and age-dependent processes that regulate the relationship between the different cell types in the overall maintenance of an optimally functional islet cell mass could provide important insights into planning therapeutic approaches to counter and/or prevent the development of diabetes.
Collapse
Affiliation(s)
- Teresa Mezza
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | | |
Collapse
|
18
|
Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, González-Mariscal I, Carlson OD, Sanghvi M, Moaddel R, Farhang K, Gadkaree SK, Doyle ME, Pearson KJ, Mattison JA, de Cabo R, Egan JM. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 2013; 62:3500-13. [PMID: 23884882 PMCID: PMC3781448 DOI: 10.2337/db13-0266] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eating a "Westernized" diet high in fat and sugar leads to weight gain and numerous health problems, including the development of type 2 diabetes mellitus (T2DM). Rodent studies have shown that resveratrol supplementation reduces blood glucose levels, preserves β-cells in islets of Langerhans, and improves insulin action. Although rodent models are helpful for understanding β-cell biology and certain aspects of T2DM pathology, they fail to reproduce the complexity of the human disease as well as that of nonhuman primates. Rhesus monkeys were fed a standard diet (SD), or a high-fat/high-sugar diet in combination with either placebo (HFS) or resveratrol (HFS+Resv) for 24 months, and pancreata were examined before overt dysglycemia occurred. Increased glucose-stimulated insulin secretion and insulin resistance occurred in both HFS and HFS+Resv diets compared with SD. Although islet size was unaffected, there was a significant decrease in β-cells and an increase in α-cells containing glucagon and glucagon-like peptide 1 with HFS diets. Islets from HFS+Resv monkeys were morphologically similar to SD. HFS diets also resulted in decreased expression of essential β-cell transcription factors forkhead box O1 (FOXO1), NKX6-1, NKX2-2, and PDX1, which did not occur with resveratrol supplementation. Similar changes were observed in human islets where the effects of resveratrol were mediated through Sirtuin 1. These findings have implications for the management of humans with insulin resistance, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Jennifer L. Fiori
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Yu-Kyong Shin
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts
| | - Wook Kim
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Susan M. Krzysik-Walker
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Isabel González-Mariscal
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Olga D. Carlson
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Mitesh Sanghvi
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kathleen Farhang
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Shekhar K. Gadkaree
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Maire E. Doyle
- Division of Endocrinology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Kevin J. Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Corresponding author: Josephine M. Egan,
| |
Collapse
|
19
|
Longuet C, Robledo AM, Dean ED, Dai C, Ali S, McGuinness I, de Chavez V, Vuguin PM, Charron MJ, Powers AC, Drucker DJ. Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: evidence for a circulating α-cell growth factor. Diabetes 2013; 62:1196-205. [PMID: 23160527 PMCID: PMC3609565 DOI: 10.2337/db11-1605] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucagon is a critical regulator of glucose homeostasis; however, mechanisms regulating glucagon action and α-cell function and number are incompletely understood. To elucidate the role of the hepatic glucagon receptor (Gcgr) in glucagon action, we generated mice with hepatocyte-specific deletion of the glucagon receptor. Gcgr(Hep)(-/-) mice exhibited reductions in fasting blood glucose and improvements in insulin sensitivity and glucose tolerance compared with wild-type controls, similar in magnitude to changes observed in Gcgr(-/-) mice. Despite preservation of islet Gcgr signaling, Gcgr(Hep)(-/-) mice developed hyperglucagonemia and α-cell hyperplasia. To investigate mechanisms by which signaling through the Gcgr regulates α-cell mass, wild-type islets were transplanted into Gcgr(-/-) or Gcgr(Hep)(-/-) mice. Wild-type islets beneath the renal capsule of Gcgr(-/-) or Gcgr(Hep)(-/-) mice exhibited an increased rate of α-cell proliferation and expansion of α-cell area, consistent with changes exhibited by endogenous α-cells in Gcgr(-/-) and Gcgr(Hep)(-/-) pancreata. These results suggest that a circulating factor generated after disruption of hepatic Gcgr signaling can increase α-cell proliferation independent of direct pancreatic input. Identification of novel factors regulating α-cell proliferation and mass may facilitate the generation and expansion of α-cells for transdifferentiation into β-cells and the treatment of diabetes.
Collapse
Affiliation(s)
- Christine Longuet
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Ana M. Robledo
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - E. Danielle Dean
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Safina Ali
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Ian McGuinness
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vincent de Chavez
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patricia M. Vuguin
- Division of Pediatric Endocrinology, Steven & Alexandra Cohen Children’s Medical Center of New York, Long Island, New York
| | - Maureen J. Charron
- Albert Einstein College of Medicine, Departments of Biochemistry, Medicine, and Obstetrics & Gynecology, Bronx, New York
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Corresponding author: Alvin C. Powers, , or Daniel J. Drucker,
| | - Daniel J. Drucker
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Inaba W, Mizukami H, Kamata K, Takahashi K, Tsuboi K, Yagihashi S. Effects of long-term treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin on islet endocrine cells in non-obese type 2 diabetic Goto-Kakizaki rats. Eur J Pharmacol 2012; 691:297-306. [PMID: 22820107 DOI: 10.1016/j.ejphar.2012.07.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/25/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023]
Abstract
Reduced β cell mass is a characteristic feature of type 2 diabetes and incretin therapy is expected to prevent this condition. However, it is unknown whether dipeptidyl peptidase-4 inhibitors influence β and α cell mass in animal models of diabetes that can be translated to humans. Therefore, we examined the long-term effects of treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin on islet morphology in Goto-Kakizaki (GK) rats, a spontaneous, non-obese model of type 2 diabetes, and explored the underlying mechanisms. Four-week-old GK rats were orally administered with vildagliptin (15 mg/kg) twice daily for 18 weeks. Glucose tolerance was monitored during the study. After 18 weeks, β and α cell morphology and the expression of molecules involved in cell proliferation and cell death were examined by immunohistochemistry and morphometric analysis. We found that vildagliptin improved glucose tolerance and insulin secretion, and suppressed hyperglucagonemia by increasing plasma active glucagon-like peptide-1 concentrations. β cell mass was reduced in GK rats to 40% of that in Wistar rats, but was restored to 80% by vildagliptin. Vildagliptin enhanced β and α cell proliferation, and increased the number of small neogenetic islets. Vildagliptin also reduced the number of 8-hydroxy-2'-deoxyguanosine-positive cells and forkhead box protein O1 expression, inhibited macrophage infiltration, and enhanced S6 ribosomal protein, molecule of target of rapamycin, and pancreatic duodenal homeobox 1 expression. These results indicate that starting vildagliptin treatment from an early age improved glucose tolerance and preserved islet β cell mass in GK rats by facilitating the proliferation of islet endocrine cells.
Collapse
Affiliation(s)
- Wataru Inaba
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
This review considers the role of α-cells in β-cell generation and regeneration. We present recent evidence obtained from lineage-tracing studies showing that α-cells can serve as progenitors of β-cells and present a hypothetical model how injured β-cells might activate α-cells in adult islets to promote β-cell regeneration. β-cells appear to arise by way of their trans-differentiation from undifferentiated α progenitor cells, pro-α-cells, both during embryonic development of the islets and in the adult pancreas in response to β-cell injuries. Plasticity of α-cells is endowed by the expression of the gene encoding proglucagon, a prohormone that can give rise to glucagon and glucagon-like peptides (GLPs). The production of glucagon from proglucagon is characteristic of fully-differentiated α-cells whereas GLP-1 is a product of undifferentiated α-cells. GLP-1, a cell growth and survival factor, is proposed to promote the expansion of neurogenin3-expressing, undifferentiated pro-α-cells during development. β-cells arise from pro-α-cells by a change in the relative amounts of the transcription factors Arx and Pax4, master regulators of the α- and β-cell lineages, respectively. A paracrine/autocrine model is proposed whereby injuries of β-cells in adult islets induce the production and release of factors, such as stromal cell-derived factor-1, that cause the de-differentiation of adjacent α-cells into pro-α-cells. Pro-α-cells produce GLP-1 and its receptor that renders them competent to trans-differentiate into β-cells. The trans-differentiation of pro-α-cells into β-cells provides a potentially exploitable mechanism for the regeneration of β-cells in individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|