1
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
2
|
Venkidasamy B, Balaraman AK, Thiruvengadam M. Phyto-derived interferons: a promising frontier in antiviral therapy development. EXCLI JOURNAL 2025; 24:286-288. [PMID: 40166426 PMCID: PMC11956520 DOI: 10.17179/excli2024-7998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000 Cyberjaya, Selangor, Malaysia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Sindarovska Y, Kuchuk M. Construction of viral-based expression vectors for high-level production of human interferon alpha 2b in plants. Appl Microbiol Biotechnol 2024; 108:229. [PMID: 38393430 PMCID: PMC10891288 DOI: 10.1007/s00253-024-13069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Human interferon (hINF) alpha 2b is clinically important pharmaceutical product included in combinatory therapy against chronic hepatitis C and B and complex therapy against several cancer diseases. Here, we created the genetic constructions, based on genome elements of potato virus X (PVX), carrying the infα2b gene for transient expression in plant cells. The created plasmid vector constructions were tested through Agrobacterium-mediated transient gene expression method in two plant species-Nicotiana benthamiana and Ocimum basilicum (sweet basil). Production of recombinant hINF alpha 2b was more efficient in N. benthamiana than that in O. basilicum plants. The average yield of hINF alpha 2b produced in N. benthamiana plants was 0.56 mg/g of fresh leaf weight (FW) or 6% of the total soluble cell proteins (TSP). The maximal level reached up to 1.2 mg/g FW or 9% TSP. We estimated that about 0.67 mg of hINF can be obtained from one N. benthamiana plant. The yield of hINF alpha 2b obtained with the PVX-based expression cassette was about 80 times higher than the yield of hINF alpha 2b obtained with a simple expression cassette in which the infα2b gene was controlled by the 35S promoter of cauliflower mosaic virus. KEY POINTS: • PVX-based expression vectors provide efficient transient expression of infα2b gene • N. benthamiana plants can produce human interferon alpha 2b at high levels • The yield of the hINF α2b reached up to 1.2 mg/g of fresh leaf weight.
Collapse
Affiliation(s)
- Yana Sindarovska
- Department of Genetic Engineering, Institute of Cell Biology and Genetic Engineering of NAS of Ukraine, Akad. Zabolotnogo Str., 148, Kyiv, 03148, Ukraine.
| | - Mykola Kuchuk
- Department of Genetic Engineering, Institute of Cell Biology and Genetic Engineering of NAS of Ukraine, Akad. Zabolotnogo Str., 148, Kyiv, 03148, Ukraine
| |
Collapse
|
4
|
Zahmanova G, Aljabali AAA, Takova K, Minkov G, Tambuwala MM, Minkov I, Lomonossoff GP. Green Biologics: Harnessing the Power of Plants to Produce Pharmaceuticals. Int J Mol Sci 2023; 24:17575. [PMID: 38139405 PMCID: PMC10743837 DOI: 10.3390/ijms242417575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Plants are increasingly used for the production of high-quality biological molecules for use as pharmaceuticals and biomaterials in industry. Plants have proved that they can produce life-saving therapeutic proteins (Elelyso™-Gaucher's disease treatment, ZMapp™-anti-Ebola monoclonal antibodies, seasonal flu vaccine, Covifenz™-SARS-CoV-2 virus-like particle vaccine); however, some of these therapeutic proteins are difficult to bring to market, which leads to serious difficulties for the manufacturing companies. The closure of one of the leading companies in the sector (the Canadian biotech company Medicago Inc., producer of Covifenz) as a result of the withdrawal of investments from the parent company has led to the serious question: What is hindering the exploitation of plant-made biologics to improve health outcomes? Exploring the vast potential of plants as biological factories, this review provides an updated perspective on plant-derived biologics (PDB). A key focus is placed on the advancements in plant-based expression systems and highlighting cutting-edge technologies that streamline the production of complex protein-based biologics. The versatility of plant-derived biologics across diverse fields, such as human and animal health, industry, and agriculture, is emphasized. This review also meticulously examines regulatory considerations specific to plant-derived biologics, shedding light on the disparities faced compared to biologics produced in other systems.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - George Minkov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK;
| | - Ivan Minkov
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | | |
Collapse
|
5
|
Ehsasatvatan M, Kohnehrouz BB. The lyophilized chloroplasts store synthetic DARPin G3 as bioactive encapsulated organelles. J Biol Eng 2023; 17:63. [PMID: 37798746 PMCID: PMC10557345 DOI: 10.1186/s13036-023-00383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The high cost of fermentation, purification, cold storage and transportation, short shelf life, and sterile delivery methods of biopharmaceuticals, is a matter for producers and consumers as well. Since the FDA has now approved plant cells for large-scale, cost-effective biopharmaceutical production, the isolation and lyophilization of transplastomic chloroplasts can cover concerns about limitations. DARPins are engineered small single-domain proteins that have been selected to bind to HER2 with high affinity and specificity. HER2 is an oncogene involved in abnormal cell growth in some cancers and the target molecule for cancer immunotherapy. RESULTS In this study, we reported the prolonged stability and functionality of DARPin G3 in lyophilized transplastomic tobacco leaves and chloroplasts. Western blot analysis of lyophilized leaves and chloroplasts stored at room temperature for up to nine months showed that the DARPin G3 protein was stable and preserved proper folding. Lyophilization of leaves and isolated chloroplasts increased DARPin G3 protein concentrations by 16 and 32-fold, respectively. The HER2-binding assay demonstrated that the chloroplast-made DARPin G3 can maintain its stability and binding activity without any affinity drop in lyophilized leaf materials throughout this study for more than nine months at room temperature. CONCLUSION Lyophilization of chloroplasts expressing DARPin G3 would further reduce costs and simplify downstream processing, purification, and storage. Compressed packages of lyophilized chloroplasts were much more effective than lyophilized transplastomic leaves considering occupied space and downstream extraction and purification of DARPin G3 after nine months. These methods facilitate any relevant formulation practices for these compounds to meet any demand-oriented needs.
Collapse
Affiliation(s)
- Maryam Ehsasatvatan
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran
| | - Bahram Baghban Kohnehrouz
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran.
| |
Collapse
|
6
|
Habibi P, Shi Y, Fatima Grossi-de-Sa M, Khan I. Plants as Sources of Natural and Recombinant Antimalaria Agents. Mol Biotechnol 2022; 64:1177-1197. [PMID: 35488142 PMCID: PMC9053566 DOI: 10.1007/s12033-022-00499-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Malaria is one of the severe infectious diseases that has victimized about half a civilization billion people each year worldwide. The application of long-lasting insecticides is the main strategy to control malaria; however, a surge in antimalarial drug development is also taking a leading role to break off the infections. Although, recurring drug resistance can compromise the efficiency of both conventional and novel antimalarial medicines. The eradication of malaria is significantly contingent on discovering novel potent agents that are low cost and easy to administer. In this context, plant metabolites inhibit malaria infection progression and might potentially be utilized as an alternative treatment for malaria, such as artemisinin. Advances in genetic engineering technology, especially the advent of molecular farming, have made plants more versatile in producing protein drugs (PDs) to treat infectious diseases, including malaria. These recent developments in genetic modifications have enabled the production of native pharmaceutically active compounds and the accumulation of diverse heterologous proteins such as human antibodies, booster vaccines, and many PDs to treat infectious diseases and genetic disorders. This review will discuss the pivotal role of a plant-based production system that expresses natural antimalarial agents or host protein drugs to cure malaria infections. The potential of these natural and induced compounds will support modern healthcare systems in treating malaria infections, especially in developing countries to mitigate human fatalities.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao Shi
- Department of Basic and Applied Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, Embrapa, Brazil
| | - Imran Khan
- Department of Chemical Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Ehsasatvatan M, Kohnehrouz BB, Gholizadeh A, Ofoghi H, Shanehbandi D. The production of the first functional antibody mimetic in higher plants: the chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biol Res 2022; 55:32. [PMID: 36274167 PMCID: PMC9590205 DOI: 10.1186/s40659-022-00400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. Results The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. Conclusion The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.
Collapse
|
8
|
Cao L, Zhang L, Zhang X, Liu J, Jia MA, Zhang J, Liu J, Wang F. Types of Interferons and Their Expression in Plant Systems. J Interferon Cytokine Res 2022; 42:62-71. [PMID: 35171703 DOI: 10.1089/jir.2021.0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferons (IFNs) are divided into 3 types (type I, type II, and type III) on the basis of sequence homology and functional properties. Recombinant IFNs have been approved by regulatory agencies in many countries for clinical treatment of hepatitis B, hepatitis C, and other diseases; these IFNs are mainly produced in microorganisms and mammalian cell systems. However, there are serious obstacles to the production of recombinant IFNs in microorganism systems; for example, the recombinant IFN may have different glycosylation patterns from the native protein, be present in insoluble inclusion bodies, be contaminated with impurities such as endotoxins and nucleic acids, have a short half-life in human blood, and incur high production costs. Some medicinal proteins have been successfully expressed in plants and used in clinical applications, suggesting that plants may also be a good system for IFN expression. However, there are still many technical problems that need to be addressed before the clinical application of plant-expressed IFNs, such as increasing the amount of recombinant protein expression and ensuring that the IFN is modified with the correct type of glycosylation. In this article, we review the classification of IFNs, their roles in antiviral signal transduction pathways, their clinical applications, and their expression in plant systems.
Collapse
Affiliation(s)
- Linggai Cao
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Lili Zhang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xiaolian Zhang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jia Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Meng-Ao Jia
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jishun Zhang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang, China
| | - Feng Wang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
9
|
Overexpression of the recombinant human interferon-beta ( rhIFN-β) gene in tobacco chloroplasts. BIOTECHNOLOGIA 2021; 102:367-376. [PMID: 36605601 PMCID: PMC9642931 DOI: 10.5114/bta.2021.111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 01/09/2023] Open
Abstract
Chloroplast genetic engineering is a convenient method for the production of recombinant proteins by increasing the expression level of transgenes. Interferon-beta (IFN-β) is a member of type I interferons that possess some pharmaceutical properties. The present study aimed to investigate the overexpression and production of the recombinant human IFN-β gene (rhIFN-β) in the tobacco chloroplast genome. For this purpose, a codon-optimized rhIFN-β was transferred to the pVSR326 plastid vector containing the aadA gene as a selectable marker. The rhIFN-β gene was then successfully introduced into the tobacco chloroplast genome by using a gene gun. The integration of the rhIFN-β gene into the chloroplast genome and the homoplasmy of the T1 progeny were confirmed by PCR and Southern blot analysis, respectively. RT-PCR and western blot analyses confirmed the transcription and translation of the rhIFN-β gene, respectively. An enzyme-linked immunosorbent assay (ELISA) showed that the rhIFN-β protein in transplastomic plants comprised approximately 2.4% of total soluble protein (TSPs). The bioassay confirmed that the rhIFN-β protein expressed in the tobacco chloroplast had a relatively high biological activity (2.9 × 104 IU/ml) and protected human amnionic cells against the vesicular stomatitis virus (VSV). On the basis of these findings, it can be concluded that plastid transformation can serve as an operative method for the production of pharmaceutical recombinant proteins.
Collapse
|
10
|
Ahmadabadi M. Transfer and Expression of Native Human Insulin-Like Growth Factor-1 in Tobacco Chloroplasts. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2911. [PMID: 35350639 PMCID: PMC8926313 DOI: 10.30498/ijb.2021.256630.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Insulin-like growth factor-1 (IGF-1), in addition to having insulin-like effects, has boosting effects on all cells in human body. Most of the recombinant IGF-1 required for patients suffering from its deficiency is currently produced by bacterial and yeast systems. Plant systems, especially chloroplasts, have many benefits for producing human blood proteins. Production costs are low in these systems, and their side effects are less than other systems. Objectives In this study, the transfer and expression of mature IGF-1 protein cDNA in tobacco chloroplasts under the control of strong plastid transcription and translation elements was evaluated. Materials and Methods The biolistic transformation method was used to transfer the IGF-1 gene cloned into the pRB94-IGF1 chloroplast vector. Homoplasmic transplastomic plants were produced through four selection rounds on the selective medium. Transfer of foreign genes to chloroplast genome was confirmed by PCR, Southern blotting and seed progeny test. RT-PCR and SDS-PAGE methods were used to evaluate the expression of IGF-1 gene in transgenic line. Results A truly transformed line was identified from selected seedlings by PCR method. The seed progeny test of 4th-regeneration-round transgenic plants of this line showed maternal inheritance and homoplasmic level for the selectable marker gene, which confirms the transfer and expression of the marker gene in the chloroplast genome. The Southern blot test also confirmed the transfer of the IGF-1 gene into the chloroplast genome. RT-PCR test showed that IGF-1 gene transcription is performed correctly in transgenic plants. Finally, accumulation of IGF-1 protein in transgenic plants was detected by SDS-PAGE. Conclusions Successful transfer and expression of the native human IGF-1 gene in tobacco chloroplast genome is reported.
Collapse
Affiliation(s)
- Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University km 35 Tabriz-Maraqeh Road, Tabriz, Iran
| |
Collapse
|
11
|
Stanbekova G, Beisenov D, Nizkorodova A, Iskakov B, Warzecha H. Production of the sheep pox virus structural protein SPPV117 in tobacco chloroplasts. Biotechnol Lett 2021; 43:1475-1485. [PMID: 33797655 PMCID: PMC8017516 DOI: 10.1007/s10529-021-03117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE A chloroplast transgenic approach was assessed in order to produce a structural protein SPPV117 of sheep pox virus in Nicotiana tabacum for the future development of a plant-based subunit vaccine against sheep pox. RESULTS Two DNA constructs containing SPPV117 coding sequence under the control of chloroplast promoter and terminator of psbA gene or rrn promoter and rbcL terminator were designed and inserted into the chloroplast genome by a biolistic method. The transgenic plants were selected via PCR analysis. Northern and Western blot analysis showed expression of the transgene at transcriptional and translational levels, respectively. The recombinant protein accumulated to about 0.3% and 0.9% of total soluble protein in leaves when expressed from psbA and rrn promoter, respectively. Plant-produced SPPV117 protein was purified using metal affinity chromatography and the protein yield was 19.67 ± 1.25 µg g-1 (FW). The serum of a sheep infected with the virus recognised the chloroplast-produced protein indicating that the protein retains its antigenic properties. CONCLUSIONS These results demonstrate that chloroplasts are a suitable system for the production of a candidate subunit vaccine against sheep pox.
Collapse
Affiliation(s)
- Gulshan Stanbekova
- Protein and Nucleic Acids Research, M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Daniyar Beisenov
- Protein and Nucleic Acids Research, M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Anna Nizkorodova
- Protein and Nucleic Acids Research, M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Bulat Iskakov
- Protein and Nucleic Acids Research, M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
12
|
Khan I, Daniell H. Oral delivery of therapeutic proteins bioencapsulated in plant cells: preclinical and clinical advances. Curr Opin Colloid Interface Sci 2021; 54. [PMID: 33967586 DOI: 10.1016/j.cocis.2021.101452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral delivery of protein drugs (PDs) made in plant cells could revolutionize current approaches of their production and delivery. Expression of PDs reduces their production cost by elimination of prohibitively expensive fermentation, purification, cold transportation/storage, and sterile injections and increases their shelf life for several years. Ability of plant cell wall to protect PDs from digestive acids/enzymes, commensal bacteria to release PDs in gut lumen after lysis of plant cell wall and role of GALT in inducing tolerance facilitate prevention or treatment allergic, autoimmune diseases or anti-drug antibody responses. Delivery of functional proteins facilitate treatment of inherited or metabolic disorders. Recent advances in making PDs free of antibiotic resistance genes in edible plant cells, long-term storage at ambient temperature maintaining their efficacy, production in cGMP facilities, IND enabling studies for clinical advancement and FDA approval of orally delivered PDs augur well for advancing this novel drug delivery platform technology.
Collapse
Affiliation(s)
- Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
14
|
Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology. Sci Rep 2020; 10:21144. [PMID: 33273600 PMCID: PMC7713401 DOI: 10.1038/s41598-020-78237-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Chloroplast biotechnology is a route for novel crop metabolic engineering. The potential bio-confinement of transgenes, the high protein expression and the possibility to organize genes into operons represent considerable advantages that make chloroplasts valuable targets in agricultural biotechnology. In the last 3 decades, chloroplast genomes from a few economically important crops have been successfully transformed. The main bottlenecks that prevent efficient transformation in a greater number of crops include the dearth of proven selectable marker gene-selection combinations and tissue culture methods for efficient regeneration of transplastomic plants. The prospects of increasing organelle size are attractive from several perspectives, including an increase in the surface area of potential targets. As a proof-of-concept, we generated Solanum tuberosum (potato) macro-chloroplast lines overexpressing the tubulin-like GTPase protein gene FtsZ1 from Arabidopsis thaliana. Macro-chloroplast lines exhibited delayed growth at anthesis; however, at the time of harvest there was no significant difference in height between macro-chloroplast and wild-type lines. Macro-chloroplasts were successfully transformed by biolistic DNA-delivery and efficiently regenerated into homoplasmic transplastomic lines. We also demonstrated that macro-chloroplasts accumulate the same amount of heterologous protein than wild-type organelles, confirming efficient usage in plastid engineering. Advantages and limitations of using enlarge compartments in chloroplast biotechnology are discussed.
Collapse
|
15
|
Nawae W, Yundaeng C, Naktang C, Kongkachana W, Yoocha T, Sonthirod C, Narong N, Somta P, Laosatit K, Tangphatsornruang S, Pootakham W. The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091247. [PMID: 32967378 PMCID: PMC7570002 DOI: 10.3390/plants9091247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 05/20/2023]
Abstract
Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chutintorn Yundaeng
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Wasitthee Kongkachana
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Nattapol Narong
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (P.S.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (P.S.); (K.L.)
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
- Correspondence: or
| |
Collapse
|
16
|
Heidari-Japelaghi R, Valizadeh M, Haddad R, Dorani-Uliaie E, Jalali-Javaran M. Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expr Purif 2020; 173:105616. [PMID: 32179088 DOI: 10.1016/j.pep.2020.105616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/25/2022]
Abstract
In animals, interferon-γ (IFN-γ) is known as a cytokine involved in antiviral and anticancer activities with a higher biochemical activity in contrast to other IFNs. To produce recombinant human IFN-γ (hIFN-γ) protein in tobacco, factors influencing gene delivery were first evaluated for higher efficiency of transient expression by fluorometric measurement of GUS activity. Higher levels of transient expression were observed in leaves of Nicotiana tabacum cv. Samsun infiltrated with GV3101 strain (optical density equal to 1.0 at 600 nm) under treatment of 200 μM AS at 4 days post agroinfiltration (dpa). The Samsun cv. proved to be amenable with 1.4- and 1.5-fold higher levels of transient expression than Xanthi and N. benthamiana, respectively. In addition, the GV3101 remained the best strain for use in transient assays without any necrotic response in tobacco. The levels of transient hIFN-γ expression were also estimated in the Samsun cv. infiltrated with different Agrobacterium tumefaciens strains carrying various expression constructs. Higher levels of accumulation were obtained with targeting the hIFN-γ protein to endoplasmic reticulum (ER) or apoplastic space than those expressed into cytoplasm. Moreover, antiviral bioassay revealed that recombinant hIFN-γ protein produced in tobacco is biologically active and protects the Vero cells from infection generated by vesicular stomatitis virus (VSV).
Collapse
Affiliation(s)
- Reza Heidari-Japelaghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mostafa Valizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ebrahim Dorani-Uliaie
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Heidari-Japelaghi R, Valizadeh M, Haddad R, Dorani-Uliaie E, Jalali-Javaran M. Fusion to elastin-like polypeptide increases production of bioactive human IFN-γ in tobacco. Transgenic Res 2020; 29:381-394. [PMID: 32686067 DOI: 10.1007/s11248-020-00205-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/18/2020] [Indexed: 12/29/2022]
Abstract
The plant-based expression systems are now accredited as bioreactors for the high production of various biopharmaceuticals. However, low levels of agglomeration and the absence of effective procedures for purification of recombinant proteins have remained two essential obstacles in molecular farming. In this research, we have studied the production of human interferon gamma (hIFN-γ) in tobacco and analyzed the effects of elastin-like polypeptide (ELP) tag and subcellular localization on its accumulation. We report a remarkable enhancement of accumulation of the fusion proteins versus the corresponding unfused hIFN-γ proteins. Furthermore, the hIFN-γ (with and without ELP) accumulated to higher levels in the endoplasmic reticulum. The ELP fusion proteins were successfully recovered from total soluble protein with adding 2.75 M NaCl and three rounds of inverse transition cycling (ITC). The hIFN-γ was also separated from ELP with Enterokinase cleavage of the fusion protein and recovered by ITC. Inverse transition analysis indicated that the hIFN-γ-ELP variants aggregate above their inverse transition temperature and at high ionic strength. Investigation of glycosylation revealed that fused or unfused hIFN-γ proteins are N-glycosylated in different cellular locations. Moreover, N-glycosylation analysis and bioassay showed that fusion to ELP does not disturb glycosylation process and antiviral activity of hIFN-γ.
Collapse
Affiliation(s)
- Reza Heidari-Japelaghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mostafa Valizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ebrahim Dorani-Uliaie
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran
| |
Collapse
|
18
|
Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer? Int J Mol Sci 2020; 21:ijms21144854. [PMID: 32659946 PMCID: PMC7402345 DOI: 10.3390/ijms21144854] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, plant genetic engineering has advanced agriculture in terms of crop improvement, stress and disease resistance, and pharmaceutical biosynthesis. Cells from land plants and algae contain three organelles that harbor DNA: the nucleus, plastid, and mitochondria. Although the most common approach for many plant species is the introduction of foreign DNA into the nucleus (nuclear transformation) via Agrobacterium- or biolistics-mediated delivery of transgenes, plastid transformation offers an alternative means for plant transformation. Since there are many copies of the chloroplast genome in each cell, higher levels of protein accumulation can often be achieved from transgenes inserted in the chloroplast genome compared to the nuclear genome. Chloroplasts are therefore becoming attractive hosts for the introduction of new agronomic traits, as well as for the biosynthesis of high-value pharmaceuticals, biomaterials and industrial enzymes. This review provides a comprehensive historical and biological perspective on plastid transformation, with a focus on current and emerging approaches such as the use of single-walled carbon nanotubes (SWNTs) as DNA delivery vehicles, overexpressing morphogenic regulators to enhance regeneration ability, applying genome editing techniques to accelerate double-stranded break formation, and reconsidering protoplasts as a viable material for plastid genome engineering, even in transformation-recalcitrant species.
Collapse
|
19
|
Shanmugaraj B, I. Bulaon CJ, Phoolcharoen W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. PLANTS 2020; 9:plants9070842. [PMID: 32635427 PMCID: PMC7411908 DOI: 10.3390/plants9070842] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline. In this review, we consider the importance of a plant- based production system for recombinant protein production, and its potential to produce biopharmaceuticals is discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +66-2-218-8359; Fax: +66-2-218-8357
| |
Collapse
|
20
|
Morgenfeld MM, Vater CF, Alfano EF, Boccardo NA, Bravo-Almonacid FF. Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants. Transgenic Res 2020; 29:295-305. [PMID: 32318934 DOI: 10.1007/s11248-020-00199-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Chloroplast transformation has many potential advantages for the production of recombinant proteins in plants. However, it has been reported that chloroplast expression of many proteins, such as human epidermal growth factor (hEGF), results hindered by post-transcriptional mechanisms. hEGF degradation has been related to the redox potential of the stroma and protein misfolding. To solve this problem, we proposed the redirection of hEGF into the thylakoid lumen where the environment could improve disulfide bonds formation stabilizing the functional conformation of the protein. We generated transplastomic tobacco plants targeting hEGF protein to the thylakoid lumen by adding a transit peptide (Str). Following this approach, we could detect thylakoid lumen-targeted hEGF by western blotting while stromal accumulation of hEGF remained undetectable. Southern blot analysis confirmed the integration of the transgene through homologous recombination into the plastome. Northern blot analysis showed similar levels of egf transcripts in the EGF and StrEGF lines. These results suggest that higher stability of the hEGF peptide in the thylakoid lumen is the primary cause of the increased accumulation of the recombinant protein observed in StrEGF lines. They also highlight the necessity of exploring different sub-organellar destinations to improve the accumulation levels of a specific recombinant protein in plastids.
Collapse
Affiliation(s)
- Mauro M Morgenfeld
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular (FCEN-UBA), Buenos Aires, Argentina
| | - Catalina F Vater
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - E Federico Alfano
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia A Boccardo
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando F Bravo-Almonacid
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Siddiqui A, Wei Z, Boehm M, Ahmad N. Engineering microalgae through chloroplast transformation to produce high‐value industrial products. Biotechnol Appl Biochem 2020; 67:30-40. [DOI: 10.1002/bab.1823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Ayesha Siddiqui
- Agricultural Biotechnology DivisionNational Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Zhengyi Wei
- Institute of Agricultural BiotechnologyJilin Academy of Agricultural Sciences Changchun Jilin Province People's Republic of China
| | - Marko Boehm
- Botanical InstituteChristian‐Albrechts‐University Kiel Germany
| | - Niaz Ahmad
- Agricultural Biotechnology DivisionNational Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| |
Collapse
|
22
|
Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Jeon JH, Kim HS. Development of Systems for the Production of Plant-Derived Biopharmaceuticals. PLANTS 2019; 9:plants9010030. [PMID: 31878277 PMCID: PMC7020158 DOI: 10.3390/plants9010030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Over the last several decades, plants have been developed as a platform for the production of useful recombinant proteins due to a number of advantages, including rapid production and scalability, the ability to produce unique glycoforms, and the intrinsic safety of food crops. The expression methods used to produce target proteins are divided into stable and transient systems depending on applications that use whole plants or minimally processed forms. In the early stages of research, stable expression systems were mostly used; however, in recent years, transient expression systems have been preferred. The production of the plant itself, which produces recombinant proteins, is currently divided into two major approaches, open-field cultivation and closed-indoor systems. The latter encompasses such regimes as greenhouses, vertical farming units, cell bioreactors, and hydroponic systems. Various aspects of each system will be discussed in this review, which focuses mainly on practical examples and commercially feasible approaches.
Collapse
Affiliation(s)
- Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - In-Ja Song
- National Research Safety Headquarters, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Chungbuk-do 28116, Korea;
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Correspondence: ; Tel.: +82-42-860-4493
| |
Collapse
|
23
|
Daniell H, Rai V, Xiao Y. Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1357-1368. [PMID: 30575284 PMCID: PMC6576100 DOI: 10.1111/pbi.13060] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 05/20/2023]
Abstract
To prevent vaccine-associated paralytic poliomyelitis, WHO recommended withdrawal of Oral Polio Vaccine (Serotype-2) and a single dose of Inactivated Poliovirus Vaccine (IPV). IPV however is expensive, requires cold chain, injections and offers limited intestinal mucosal immunity, essential to prevent polio reinfection in countries with open sewer system. To date, there is no virus-free and cold chain-free polio vaccine capable of inducing robust mucosal immunity. We report here a novel low-cost, cold chain/poliovirus-free, booster vaccine using poliovirus capsid protein (VP1, conserved in all serotypes) fused with cholera non-toxic B subunit (CTB) expressed in lettuce chloroplasts. PCR using unique primer sets confirmed site-specific integration of CTB-VP1 transgene cassettes. Absence of the native chloroplast genome in Southern blots confirmed homoplasmy. Codon optimization of the VP1 coding sequence enhanced its expression 9-15-fold in chloroplasts. GM1-ganglioside receptor-binding ELISA confirmed pentamer assembly of CTB-VP1 fusion protein, fulfilling a key requirement for oral antigen delivery through gut epithelium. Transmission Electron Microscope images and hydrodynamic radius analysis confirmed VP1-VLPs of 22.3 nm size. Mice primed with IPV and boosted three times with lyophilized plant cells expressing CTB-VP1co, formulated with plant-derived oral adjuvants, enhanced VP1-specific IgG1, VP1-IgA titres and neutralization (80%-100% seropositivity of Sabin-1, 2, 3). In contrast, IPV single dose resulted in <50% VP1-IgG1 and negligible VP1-IgA titres, poor neutralization and seropositivity (<20%, <40% Sabin 1,2). Mice orally boosted with CTB-VP1co, without IPV priming, failed to produce any protective neutralizing antibody. Because global population is receiving IPV single dose, booster vaccine free of poliovirus or cold chain offers a timely low-cost solution to eradicate polio.
Collapse
Affiliation(s)
- Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vineeta Rai
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yuhong Xiao
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
24
|
Schmidt JA, McGrath JM, Hanson MR, Long SP, Ahner BA. Field-grown tobacco plants maintain robust growth while accumulating large quantities of a bacterial cellulase in chloroplasts. NATURE PLANTS 2019; 5:715-721. [PMID: 31285558 DOI: 10.1038/s41477-019-0467-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
High accumulation of heterologous proteins expressed from the plastid genome has sometimes been reported to result in compromised plant phenotypes. Comparisons of transplastomic plants to wild-type (WT) are typically made in environmentally controlled chambers with relatively low light; little is known about the performance of such plants under field conditions. Here, we report on two plastid-engineered tobacco lines expressing the bacterial cellulase Cel6A. Field-grown plants producing Cel6A at ~20% of total soluble protein exhibit no loss in biomass or Rubisco content and only minor reductions in photosynthesis compared to WT. These experiments demonstrate that, when grown in the field, tobacco possesses sufficient metabolic flexibility to accommodate high levels of recombinant protein by increasing total protein synthesis and accumulation and/or by reallocating unneeded endogenous proteins. Based on current tobacco cultivation practices and readily achievable recombinant protein yields, we estimate that specific proteins could be obtained from field-grown transgenic tobacco plants at costs three orders of magnitude less than current cell culture methods.
Collapse
Affiliation(s)
- Jennifer A Schmidt
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Justin M McGrath
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Stephen P Long
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Beth A Ahner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
25
|
Daniell H, Kulis M, Herzog RW. Plant cell-made protein antigens for induction of Oral tolerance. Biotechnol Adv 2019; 37:107413. [PMID: 31251968 PMCID: PMC6842683 DOI: 10.1016/j.biotechadv.2019.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
The gut associated lymphoid tissue has effective mechanisms in place to maintain tolerance to food antigens. These can be exploited to induce antigen-specific tolerance for the prevention and treatment of autoimmune diseases and severe allergies and to prevent serious immune responses in protein replacement therapies for genetic diseases. An oral tolerance approach for the prevention of peanut allergy in infants proved highly efficacious and advances in treatment of peanut allergy have brought forth an oral immunotherapy drug that is currently awaiting FDA approval. Several other protein antigens made in plant cells are in clinical development. Plant cell-made proteins are protected in the stomach from acids and enzymes after their oral delivery because of bioencapsulation within plant cell wall, but are released to the immune system upon digestion by gut microbes. Utilization of fusion protein technologies facilitates their delivery to the immune system, oral tolerance induction at low antigen doses, resulting in efficient induction of FoxP3+ and latency-associated peptide (LAP)+ regulatory T cells that express immune suppressive cytokines such as IL-10. LAP and IL-10 expression represent potential biomarkers for plant-based oral tolerance. Efficacy studies in hemophilia dogs support clinical development of oral delivery of bioencapsulated antigens to prevent anti-drug antibody formation. Production of clinical grade materials in cGMP facilities, stability of antigens in lyophilized plant cells for several years when stored at ambient temperature, efficacy of oral delivery of human doses in large animal models and lack of toxicity augur well for clinical advancement of this novel drug delivery concept.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael Kulis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Roland W Herzog
- Department of Pediatrics, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
26
|
Kumari U, Singh R, Ray T, Rana S, Saha P, Malhotra K, Daniell H. Validation of leaf enzymes in the detergent and textile industries: launching of a new platform technology. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1167-1182. [PMID: 30963679 PMCID: PMC6523609 DOI: 10.1111/pbi.13122] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 05/02/2023]
Abstract
Chemical catalysts are being replaced by biocatalysts in almost all industrial applications due to environmental concerns, thereby increasing their demand. Enzymes used in current industries are produced in microbial systems or plant seeds. We report here five newly launched leaf-enzyme products and their validation with 15 commercial microbial-enzyme products, for detergent or textile industries. Enzymes expressed in chloroplasts are functional at broad pH/temperature ranges as crude-leaf extracts, while most purified commercial enzymes showed significant loss at alkaline pH or higher temperature, required for broad range commercial applications. In contrast to commercial liquid enzymes requiring cold storage/transportation, chloroplast enzymes as a leaf powder can be stored up to 16 months at ambient temperature without loss of enzyme activity. Chloroplast-derived enzymes are stable in crude-leaf extracts without addition of protease inhibitors. Leaf lipase/mannanase crude extracts removed chocolate or mustard oil stains effectively at both low and high temperatures. Moreover, leaf lipase or mannanase crude-extracts removed stain more efficiently at 70 °C than commercial microbial enzymes (<10% activity). Endoglucanase and exoglucanase in crude leaf extracts removed dye efficiently from denim surface and depilled knitted fabric by removal of horizontal fibre strands. Due to an increased demand for enzymes in the food industry, marker-free lettuce plants expressing lipase or cellobiohydrolase were created for the first time and site-specific transgene integration/homoplasmy was confirmed by Southern blots. Thus, leaf-production platform offers a novel low-cost approach by the elimination of fermentation, purification, concentration, formulation and cold-chain storage/transportation. This is the first report of commercially launched protein products made in leaves and validated with current commercial products.
Collapse
Affiliation(s)
- Uma Kumari
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Rahul Singh
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Tui Ray
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Seema Rana
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Prasenjit Saha
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Karan Malhotra
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
27
|
Daniell H, Ribeiro T, Lin S, Saha P, McMichael C, Chowdhary R, Agarwal A. Validation of leaf and microbial pectinases: commercial launching of a new platform technology. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1154-1166. [PMID: 30963657 PMCID: PMC6523602 DOI: 10.1111/pbi.13119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 05/18/2023]
Abstract
Almost all current genetically modified plant commercial products are derived from seeds. The first protein product made in leaves for commercial use is reported here. Leaf pectinases are validated here with eight liquid commercial microbial enzyme products for textile or juice industry applications. Leaf pectinases are functional in broad pH/temperature ranges as crude leaf extracts, while most commercial enzyme products showed significant loss at alkaline pH or higher temperature, essential for various textile applications. In contrast to commercial liquid enzymes requiring cold storage/transportation, leaf pectinase powder was stored up to 16 months at ambient temperature without loss of enzyme activity. Commercial pectinase products showed much higher enzyme protein PAGE than crude leaf extracts with comparable enzyme activity without protease inhibitors. Natural cotton fibre does not absorb water due to hydrophobic nature of waxes and pectins. After bioscouring with pectinase, measurement of contact-angle water droplet absorption by the FAMAS videos showed 33 or 63 (leaf pectinase), 61 or 64 (commercial pectinase) milliseconds, well below the 10-second industry requirements. First marker-free lettuce plants expressing pectinases were also created by removal of the antibiotic resistance aadA gene. Leaf pectinase powder efficiently clarified orange juice pulp similar to several microbial enzyme products. Commercial pilot scale biomass production of tobacco leaves expressing different pectinases showed that hydroponic growth at Fraunhofer yielded 10 times lower leaf biomass per plant than soil-grown plants in the greenhouse. Pectinase enzyme yield from the greenhouse plants was double that of Fraunhofer. Thus, this leaf-production platform offers a novel, low-cost approach for enzyme production by elimination of fermentation, purification, concentration, formulation and cold chain.
Collapse
Affiliation(s)
- Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Thuanne Ribeiro
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shina Lin
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Prasenjit Saha
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | | - Rashmi Chowdhary
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Anshika Agarwal
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
28
|
RAZMI SHAHLA, JALALI JAVARAN MOKHTAR, BAGHERI ABDOLREZA, HONARI HOSSEIN, SOLEIMANI ZADEH MOJGAN. Expression of human interferon gamma in tobacco chloroplasts. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.2/208.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Queiroz LN, Maldaner FR, Mendes ÉA, Sousa AR, D'Allastta RC, Mendonça G, Mendonça DBS, Aragão FJL. Evaluation of lettuce chloroplast and soybean cotyledon as platforms for production of functional bone morphogenetic protein 2. Transgenic Res 2019; 28:213-224. [PMID: 30888592 DOI: 10.1007/s11248-019-00116-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
The bone morphogenetic protein BMP2 plays a crucial role in the formation and regeneration of bone and cartilage, which is critical for maintaining skeletal integrity and bone fracture repair. Because of its important role in osteogenic properties it has been commercially produced for clinical use. Here we report attempts to express human BMP2 using two plant systems (lettuce chloroplast and soybean seeds). The rhBMP2 gene (coding for the 13 kDa active polypeptide) was introduced in two regions of the lettuce chloroplast genome. Two homoplasmic events were achieved and RT-PCR demonstrated that the BMP2 gene was transcribed. However, it was not possible to detect accumulation of rhBMP2 in leaves. Two soybean events were achieved to express a full-length hBMP2 gene (coding for the 45 kDa pro-BMP2) fused with the α-coixin signal peptide, under control of the β-conglycinin promoter. Pro-BMP2 was expressed in the transgenic seeds at levels of up to 9.28% of the total soluble seed protein as determined by ELISA. It was demonstrated that this recombinant form was biologically active upon administration to C2C12 cell cultures, because it was able to induce an osteogenic cascade, as observed by the enhanced expression of SP7 (osterix) and ALPI (alkaline phosphatase) genes. Collectively, these results corroborated our previous observation that soybean seeds provide an effective strategy for achieving stable accumulation of functional therapeutic proteins, such as BMP2.
Collapse
Affiliation(s)
- Lídia N Queiroz
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário, Brasília, DF, 70910-900, Brazil
- Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, MI, 49109-1078, USA
| | - Franciele R Maldaner
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Érica A Mendes
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Aline R Sousa
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Rebeca C D'Allastta
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Gustavo Mendonça
- Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, MI, 49109-1078, USA
| | - Daniela B S Mendonça
- Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, MI, 49109-1078, USA
| | - Francisco J L Aragão
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil.
| |
Collapse
|
30
|
Schindel HS, Piatek AA, Stewart CN, Lenaghan SC. The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression. PLANT CELL REPORTS 2018; 37:1419-1429. [PMID: 30039465 DOI: 10.1007/s00299-018-2323-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/10/2018] [Indexed: 05/21/2023]
Abstract
Owing to its small size, prokaryotic-like molecular genetics, and potential for very high transgene expression, the plastid genome (plastome) is an attractive plant synthetic biology chassis for metabolic engineering. The plastome exists as a homogenous, compact, multicopy genome within multiple-specialized differentiated plastid compartments. Because of this multiplicity, transgenes can be highly expressed. For coordinated gene expression, it is the prokaryotic molecular genetics that is an especially attractive feature. Multiple genes in a metabolic pathway can be expressed in a series of operons, which are regulated at the transcriptional and translational levels with cross talk from the plant's nuclear genome. Key features of each regulatory level are reviewed, as well as some examples of plastome-enabled metabolic engineering. We also speculate about the transformative future of plastid-based synthetic biology to enable metabolic engineering in plants as well as the problems that must be solved before routine plastome-enabled synthetic circuits can be installed.
Collapse
Affiliation(s)
- Heidi S Schindel
- Department of Food Science, University of Tennessee, 2600 River Dr., Knoxville, TN, 37996-4561, USA
| | - Agnieszka A Piatek
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996-4561, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996-4561, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, 2600 River Dr., Knoxville, TN, 37996-4561, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
31
|
Kwon K, Sherman A, Chang W, Kamesh A, Biswas M, Herzog RW, Daniell H. Expression and assembly of largest foreign protein in chloroplasts: oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1148-1160. [PMID: 29106782 PMCID: PMC5936678 DOI: 10.1111/pbi.12859] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 05/11/2023]
Abstract
Inhibitor formation is a serious complication of factor VIII (FVIII) replacement therapy for the X-linked bleeding disorder haemophilia A and occurs in 20%-30% of patients. No prophylactic tolerance protocol currently exists. Although we reported oral tolerance induction using FVIII domains expressed in tobacco chloroplasts, significant challenges in clinical advancement include expression of the full-length CTB-FVIII sequence to cover the entire patient population, regardless of individual CD4+ T-cell epitope responses. Codon optimization of FVIII heavy chain (HC) and light chain (LC) increased expression 15- to 42-fold higher than the native human genes. Homoplasmic lettuce lines expressed CTB fusion proteins of FVIII-HC (99.3 kDa), LC (91.8 kDa), C2 (31 kDa) or single chain (SC, 178.2 kDa) up to 3622, 263, 3321 and 852 μg/g in lyophilized plant cells, when grown in a cGMP hydroponic facility (Fraunhofer). CTB-FVIII-SC is the largest foreign protein expressed in chloroplasts; despite a large pentamer size (891 kDa), assembly, folding and disulphide bonds were maintained upon lyophilization and long-term storage as revealed by GM1-ganglioside receptor binding assays. Repeated oral gavages (twice/week for 2 months) of CTB-FVIII-HC/CTB-FVIII-LC reduced inhibitor titres ~10-fold (average 44 BU/mL to 4.7 BU/mL) in haemophilia A mice. Most importantly, increase in the frequency of circulating LAP-expressing CD4+ CD25+ FoxP3+ Treg in tolerized mice could be used as an important cellular biomarker in human clinical trials for plant-based oral tolerance induction. In conclusion, this study reports the first clinical candidate for oral tolerance induction that is urgently needed to protect haemophilia A patients receiving FVIII injections.
Collapse
Affiliation(s)
- Kwang‐Chul Kwon
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | | - Wan‐Jung Chang
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Aditya Kamesh
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Moanaro Biswas
- Department of PediatricsUniversity of FloridaGainesvilleFLUSA
| | | | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
32
|
Mirzaee M, Jalali-Javaran M, Moieni A, Zeinali S, Behdani M. Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.). PLANT MOLECULAR BIOLOGY 2018; 97:103-112. [PMID: 29633168 DOI: 10.1007/s11103-018-0726-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/03/2018] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE This research has shown, for the first time, that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins and the transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. Angiogenesis refers to the formation of new blood vessels, which resulted in the growth, invasion and metastasis of cancer. The vascular endothelial growth factor receptor 2 (VEGFR2) plays a major role in angiogenesis and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins are promising therapeutics for targeted cancer therapy. They consist of an antibody linked to a protein toxin and are designed to specifically kill the tumor cells. In our previous study, VGRNb-PE immunotoxin protein containing anti-VEGFR2 nanobody fused to the truncated form of Pseudomonas exotoxin A has been established. Here, we expressed this immunotoxin in lettuce chloroplasts. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, multigene engineering in a single transformation event and maternal inheritance of the transgenes. Site specific integration of transgene into chloroplast genomes, and homoplasmy were confirmed. Immunotoxin levels reached up to 1.1% of total soluble protein or 33.7 µg per 100 mg of leaf tissue (fresh weight). We demonstrated that transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. These results indicate that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins.
Collapse
Affiliation(s)
- Malihe Mirzaee
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 1497713111, Tehran, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 1497713111, Tehran, Iran.
| | - Ahmad Moieni
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 1497713111, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Non-photosynthetic plastids as hosts for metabolic engineering. Essays Biochem 2018; 62:41-50. [DOI: 10.1042/ebc20170047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering.
Collapse
|
34
|
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 2018; 41:323-342. [PMID: 28521337 PMCID: PMC5435762 DOI: 10.1093/femsre/fux012] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
35
|
Adem M, Beyene D, Feyissa T. Recent achievements obtained by chloroplast transformation. PLANT METHODS 2017; 13:30. [PMID: 28428810 PMCID: PMC5395794 DOI: 10.1186/s13007-017-0179-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/09/2017] [Indexed: 05/22/2023]
Abstract
Chloroplasts play a great role for sustained wellbeing of life on the planet. They have the power and raw materials that can be used as sophisticated biological factories. They are rich in energy as they have lots of pigment-protein complexes capable of collecting sunlight, in sugar produced by photosynthesis and in minerals imported from the plant cell. Chloroplast genome transformation offers multiple advantages over nuclear genome which among others, include: integration of the transgene via homologus recombination that enables to eliminate gene silencing and position effect, higher level of transgene expression resulting into higher accumulations of foreign proteins, and significant reduction in environmental dispersion of the transgene due to maternal inheritance which helps to minimize the major critic of plant genetic engineering. Chloroplast genetic engineering has made fruit full progresses in the development of plants resistance to various stresses, phytoremediation of toxic metals, and production of vaccine antigens, biopharmaceuticals, biofuels, biomaterials and industrial enzymes. Although successful results have been achieved, there are still difficulties impeding full potential exploitation and expansion of chloroplast transformation technology to economical plants. These include, lack of species specific regulatory sequences, problem of selection and shoot regeneration, and massive expression of foreign genes resulting in phenotypic alterations of transplastomic plants. The aim of this review is to critically recapitulate the latest development of chloroplast transformation with special focus on the different traits of economic interest.
Collapse
Affiliation(s)
- Muhamed Adem
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Department of Forestry, School of Agriculture and Natural Resources, Madawalabu University, P.O. Box 247, Bale Robe, Oromiya Ethiopia
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
| | - Tileye Feyissa
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
36
|
Zhang B, Shanmugaraj B, Daniell H. Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Curr Opin Chem Biol 2017; 38:17-23. [PMID: 28229907 DOI: 10.1016/j.cbpa.2017.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022]
Abstract
After approval of the first plant-made biopharmaceutical by FDA for human use, many protein drugs are now in clinical development. Within the last decade, significant advances have been made in expression of heterologous complex/large proteins in chloroplasts of edible plants using codon optimized human or viral genes. Furthermore, advances in quantification enable determination of in-planta drug dosage. Oral delivery of plastid-made biopharmaceuticals (PMB) is affordable because it eliminates prohibitively expensive fermentation, purification processes addressing major challenges of short shelf-life after cold storage. In this review, we discuss recent advances in PMBs against metabolic, inherited or infectious diseases, and also mechanisms of post-translational modifications (PTM) in order to increase our understanding of functional PMBs.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | - Balamurugan Shanmugaraj
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA.
| |
Collapse
|
37
|
Kosobokova EN, Piniugina MV, Kosorukov VS. Synthesis of biologically active human interferon α-2b in Nicotiana benthamiana. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683816070048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Gerasymenko IM, Sheludko YV, Klebanovych AA, Rudas VA, Shakhovsky AM, Klein TM, Kuchuk NV. Comparison of effectiveness of 5'-regulatory sequences in transplastomic tobacco chloroplasts. Transgenic Res 2017; 26:65-75. [PMID: 27565642 DOI: 10.1007/s11248-016-9980-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/18/2016] [Indexed: 11/30/2022]
Abstract
The development of tools which ensure the desired level of transgene expression in plastids is a prerequisite for the effective utilization of these plant organelles for the deployment of bioactive proteins. High-level accumulation of target proteins is considered as a positive feature of transplastomic plants, but excessive accumulation of foreign proteins may have deleterious effects on host plants. On the other hand, expression at low levels can result in ineffective phenotypes. We compared the effectiveness of different 5'-regulatory sequences in driving the expression of a reporter gene, β-glucuronidase (uidA), in tobacco chloroplasts. To achieve varying expression levels, we have chosen heterologous 5'-regulatory sequences which either differ significantly from their homologous counterparts or depend on specific nuclear encoded factors. The Medicago truncatula psbA promoter/5'-UTR supported the highest levels of protein accumulation, surpassing the other tested sequences by two to three orders of magnitude. The heterologous regulatory sequence of Phaseolus vulgaris rbcL gene was as efficient in tobacco chloroplasts as the corresponding homologous promoter/5'-UTR. The Arabidopsis thaliana ndhF promoter/5'-UTR supported as high reporter activity levels as the rbcL 5'-sequences, whereas the effectiveness of A. thaliana psbN promoter/5'-UTR was three fold lower. The characterized regulatory sequences can be utilized to establish transplastomic lines with desirable levels of target protein accumulation. The ability to control transgene expression should be useful for achieving appropriate levels of protein accumulation and thereby avoid their negative impacts on host plant physiology.
Collapse
Affiliation(s)
- I M Gerasymenko
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Zabolotnoho Str. 148, 03143, Kiev, Ukraine.
| | - Y V Sheludko
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Zabolotnoho Str. 148, 03143, Kiev, Ukraine
| | - A A Klebanovych
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Zabolotnoho Str. 148, 03143, Kiev, Ukraine
| | - V A Rudas
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Zabolotnoho Str. 148, 03143, Kiev, Ukraine
| | - A M Shakhovsky
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Zabolotnoho Str. 148, 03143, Kiev, Ukraine
| | - T M Klein
- DuPont Pioneer AgBiotech, DuPont Experimental Station, Wilmington, DE, USA
| | - N V Kuchuk
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Zabolotnoho Str. 148, 03143, Kiev, Ukraine
| |
Collapse
|
39
|
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet 2016; 50:595-618. [PMID: 27893966 PMCID: PMC5496655 DOI: 10.1146/annurev-genet-120215-035349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
40
|
Malhotra K, Subramaniyan M, Rawat K, Kalamuddin M, Qureshi MI, Malhotra P, Mohmmed A, Cornish K, Daniell H, Kumar S. Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells. MOLECULAR PLANT 2016; 9:1464-1477. [PMID: 27773616 PMCID: PMC5980236 DOI: 10.1016/j.molp.2016.09.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/13/2016] [Accepted: 09/26/2016] [Indexed: 05/14/2023]
Abstract
Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (∼0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants.
Collapse
Affiliation(s)
- Karan Malhotra
- Metabolic Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mayavan Subramaniyan
- Metabolic Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Khushboo Rawat
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Md Kalamuddin
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - M Irfan Qureshi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Pawan Malhotra
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Asif Mohmmed
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Katrina Cornish
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shashi Kumar
- Metabolic Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
41
|
Ahmad N, Michoux F, Lössl AG, Nixon PJ. Challenges and perspectives in commercializing plastid transformation technology. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5945-5960. [PMID: 27697788 DOI: 10.1093/jxb/erw360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastid transformation has emerged as an alternative platform to generate transgenic plants. Attractive features of this technology include specific integration of transgenes-either individually or as operons-into the plastid genome through homologous recombination, the potential for high-level protein expression, and transgene containment because of the maternal inheritance of plastids. Several issues associated with nuclear transformation such as gene silencing, variable gene expression due to the Mendelian laws of inheritance, and epigenetic regulation have not been observed in the plastid genome. Plastid transformation has been successfully used for the production of therapeutics, vaccines, antigens, and commercial enzymes, and for engineering various agronomic traits including resistance to biotic and abiotic stresses. However, these demonstrations have usually focused on model systems such as tobacco, and the technology per se has not yet reached the market. Technical factors limiting this technology include the lack of efficient protocols for the transformation of cereals, poor transgene expression in non-green plastids, a limited number of selection markers, and the lengthy procedures required to recover fully segregated plants. This article discusses the technology of transforming the plastid genome, the positive and negative features compared with nuclear transformation, and the current challenges that need to be addressed for successful commercialization.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91058 Evry, France
| | - Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
42
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Saveleva NV, Burlakovskiy MS, Yemelyanov VV, Lutova LA. Transgenic plants as bioreactors to produce substances for medical and veterinary uses. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079059716060071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Kwon KC, Chan HT, León IR, Williams-Carrier R, Barkan A, Daniell H. Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation. PLANT PHYSIOLOGY 2016; 172:62-77. [PMID: 27465114 PMCID: PMC5074611 DOI: 10.1104/pp.16.00981] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/25/2016] [Indexed: 05/20/2023]
Abstract
Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Ileana R León
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Rosalind Williams-Carrier
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Alice Barkan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| |
Collapse
|
45
|
Gupta K, Kotian A, Subramanian H, Daniell H, Ali H. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget 2016; 6:28573-87. [PMID: 26378047 PMCID: PMC4745678 DOI: 10.18632/oncotarget.5611] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/30/2015] [Indexed: 01/21/2023] Open
Abstract
Preclinical evaluation of Retrocyclins (RC-100, RC-101) and Protegrin-1 (PG-1) antimicrobial peptides (AMPs) is important because of their therapeutic potential against bacterial, fungal and viral infections. Human mast cells (HMCs) play important roles in host defense and wound healing but the abilities of retrocyclins and protegrin-1 to harness these functions have not been investigated. Here, we report that chemically synthesized RC-100 and PG-1 caused calcium mobilization and degranulation in HMCs but these responses were not blocked by an inhibitor of formyl peptide receptor-like 1 (FPRL1), a known receptor for AMPs. However, RC-100 and PG-1 induced degranulation in rat basophilic leukemia (RBL-2H3) cells stably expressing Mas related G protein coupled receptor X2 (MrgX2). Chemical synthesis of these AMPs is prohibitively expensive and post-synthesis modifications (cyclization, disulfide bonds, folding) are inadequate for optimal antimicrobial activity. Indeed, we found that synthetic RC-100, which caused mast cell degranulation via MrgX2, did not display any antimicrobial activity. Green-fluorescent protein (GFP)-tagged RC-101 (analog of RC-100) and GFP-tagged PG-1 purified from transgenic plant chloroplasts killed bacteria and induced mast cell degranulation. Furthermore, GFP-PG1 bound specifically to RBL-2H3 cells expressing MrgX2. These findings suggest that retrocyclins and protegrins activate HMCs independently of FPRL1 but via MrgX2. Harnessing this novel feature of AMPs to activate mast cell's host defense/wound healing properties in addition to their antimicrobial activities expands their clinical potential. Low cost production of AMPs in plants should facilitate their advancement to the clinic overcoming major hurdles in current production systems.
Collapse
Affiliation(s)
- Kshitij Gupta
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Akhil Kotian
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hariharan Subramanian
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hydar Ali
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 865] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
47
|
Burlakovskiy MS, Yemelyanov VV, Lutova LA. Plant Based Bioreactors of Recombinant Cytokines (Review). APPL BIOCHEM MICRO+ 2016; 52:121-137. [PMID: 32214409 PMCID: PMC7087682 DOI: 10.1134/s0003683816020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 01/16/2023]
Abstract
Cytokines are a family of signaling polypeptides involved in intercellular interactions in the process of the immune response, as well as in the regulation of a number of normal physiological functions. Cytokines are used in medicine for the treatment of cancer, immune disorders, viral infections, and other socially significant diseases, but the extent of their use is limited by the high production cost of the active agent. The development of this area of pharmacology is associated with the success of genetic engineering, which allows the production of significant amounts of protein by transgenic organisms. The review discusses the latest advances in the production of various cytokines with the use of genetically modified plants.
Collapse
Affiliation(s)
- M. S. Burlakovskiy
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| | - V. V. Yemelyanov
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| | - L. A. Lutova
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| |
Collapse
|
48
|
Waheed MT, Ismail H, Gottschamel J, Mirza B, Lössl AG. Plastids: The Green Frontiers for Vaccine Production. FRONTIERS IN PLANT SCIENCE 2015; 6:1005. [PMID: 26635832 PMCID: PMC4646963 DOI: 10.3389/fpls.2015.01005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/30/2015] [Indexed: 05/10/2023]
Abstract
Infectious diseases pose an increasing risk to health, especially in developing countries. Vaccines are available to either cure or prevent many of these diseases. However, there are certain limitations related to these vaccines, mainly the costs, which make these vaccines mostly unaffordable for people in resource poor countries. These costs are mainly related to production and purification of the products manufactured from fermenter-based systems. Plastid biotechnology has become an attractive platform to produce biopharmaceuticals in large amounts and cost-effectively. This is mainly due to high copy number of plastids DNA in mature chloroplasts, a characteristic particularly important for vaccine production in large amounts. An additional advantage lies in the maternal inheritance of plastids in most plant species, which addresses the regulatory concerns related to transgenic plants. These and many other aspects of plastids will be discussed in the present review, especially those that particularly make these green biofactories an attractive platform for vaccine production. A summary of recent vaccine antigens against different human diseases expressed in plastids will also be presented.
Collapse
Affiliation(s)
- Mohammad T. Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | | | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Andreas G. Lössl
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life SciencesTulln an der Donau, Austria
| |
Collapse
|
49
|
Su J, Zhu L, Sherman A, Wang X, Lin S, Kamesh A, Norikane JH, Streatfield SJ, Herzog RW, Daniell H. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials 2015; 70:84-93. [PMID: 26302233 PMCID: PMC4562874 DOI: 10.1016/j.biomaterials.2015.08.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/13/2023]
Abstract
Antibodies (inhibitors) developed by hemophilia B patients against coagulation factor IX (FIX) are challenging to eliminate because of anaphylaxis or nephrotic syndrome after continued infusion. To address this urgent unmet medical need, FIX fused with a transmucosal carrier (CTB) was produced in a commercial lettuce (Simpson Elite) cultivar using species specific chloroplast vectors regulated by endogenous psbA sequences. CTB-FIX (∼1 mg/g) in lyophilized cells was stable with proper folding, disulfide bonds and pentamer assembly when stored ∼2 years at ambient temperature. Feeding lettuce cells to hemophilia B mice delivered CTB-FIX efficiently to the gut immune system, induced LAP(+) regulatory T cells and suppressed inhibitor/IgE formation and anaphylaxis against FIX. Lyophilized cells enabled 10-fold dose escalation studies and successful induction of oral tolerance was observed in all tested doses. Induction of tolerance in such a broad dose range should enable oral delivery to patients of different age groups and diverse genetic background. Using Fraunhofer cGMP hydroponic system, ∼870 kg fresh or 43.5 kg dry weight can be harvested per 1000 ft(2) per annum yielding 24,000-36,000 doses for 20-kg pediatric patients, enabling first commercial development of an oral drug, addressing prohibitively expensive purification, cold storage/transportation and short shelf life of current protein drugs.
Collapse
Affiliation(s)
- Jin Su
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liqing Zhu
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alexandra Sherman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Xiaomei Wang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shina Lin
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aditya Kamesh
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey H Norikane
- Fraunhofer USA, Center for Molecular Biotechnology, Newark, DE, USA
| | | | - Roland W Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Maistrenko OM, Luchakivska YS, Zholobak NM, Spivak MY, Kuchuk MV. Obtaining of the transgenic Heliantus tuberosus L. plants, callus and “hairy” root cultures able to express the recombinant human interferon alpha-2b gene. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715050060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|