1
|
Song B, Qian J, Fu J. Research progress and potential application of microRNA and other non-coding RNAs in forensic medicine. Int J Legal Med 2024; 138:329-350. [PMID: 37770641 DOI: 10.1007/s00414-023-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Mendoza-Martínez GD, Orzuna-Orzuna JF, Roque-Jiménez JA, Gloria-Trujillo A, Martínez-García JA, Sánchez-López N, Hernández-García PA, Lee-Rangel HA. A Polyherbal Mixture with Nutraceutical Properties for Ruminants: A Meta-Analysis and Review of BioCholine Powder. Animals (Basel) 2024; 14:667. [PMID: 38473052 PMCID: PMC11154432 DOI: 10.3390/ani14050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
BioCholine Powder is a polyherbal feed additive composed of Achyrantes aspera, Trachyspermum ammi, Azadirachta indica, and Citrullus colocynthis. The objective of this study was to analyze published results that support the hypothesis that the polyherbal product BioCholine Powder has rumen bypass choline metabolites through a meta-analysis and effect size analysis (ES). Using Scopus, Web of Science, ScienceDirect, PubMed, and university dissertation databases, a systematic search was conducted for experiments published in scientific documents that evaluated the effects of BioCholine supplementation on the variables of interest. The analyzed data were extracted from twenty-one publications (fifteen scientific articles, three abstracts, and three graduate dissertations available in institutional libraries). The studies included lamb growing-finishing, lactating ewes and goats, calves, and dairy cows. The effects of BioCholine were analyzed using random effects statistical models to compare the weighted mean difference (WMD) between BioCholine-supplemented ruminants and controls (no BioCholine). Heterogeneity was explored, and three subgroup analyses were performed for doses [(4 (or 5 g/d), 8 (10 g/d)], supplementation in gestating and lactating ewes (pre- and postpartum supplementation), and blood metabolites by species and physiological state (lactating goats, calves, lambs, ewes). Supplementation with BioCholine in sheep increased the average daily lamb gain (p < 0.05), final body weight (p < 0.01), and daily milk yield (p < 0.05) without effects on intake or feed conversion. Milk yield was improved in small ruminants with BioCholine prepartum supplementation (p < 0.10). BioCholine supplementation decreased blood urea (p < 0.01) and increased levels of the liver enzymes alanine transaminase (ALT; p < 0.10) and albumin (p < 0.001). BioCholine doses over 8 g/d increased blood glucose, albumin (p < 0.10), cholesterol, total protein, and globulin (p < 0.05). The ES values of BioCholine in retained energy over the control in growing lambs were +7.15% NEm (p < 0.10) and +9.25% NEg (p < 0.10). In conclusion, adding BioCholine Powder to domestic ruminants' diets improves productive performance, blood metabolite indicators of protein metabolism, and liver health, showing its nutraceutical properties where phosphatidylcholine prevails as an alternative that can meet the choline requirements in ruminants.
Collapse
Affiliation(s)
- Germán David Mendoza-Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | | | - José Alejandro Roque-Jiménez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Ejido Nuevo León, Mexicali 21705, Mexico
| | - Adrián Gloria-Trujillo
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | - José Antonio Martínez-García
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | - Nallely Sánchez-López
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | | | - Héctor Aaron Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, S.L.P., Soledad de Graciano Sánchez 78000, Mexico;
| |
Collapse
|
3
|
Kreissner KO, Faller B, Talucci I, Maric HM. MARTin-an open-source platform for microarray analysis. FRONTIERS IN BIOINFORMATICS 2024; 4:1329062. [PMID: 38405547 PMCID: PMC10885354 DOI: 10.3389/fbinf.2024.1329062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Background: Microarray technology has brought significant advancements to high-throughput analysis, particularly in the comprehensive study of biomolecular interactions involving proteins, peptides, and antibodies, as well as in the fields of gene expression and genotyping. With the ever-increasing volume and intricacy of microarray data, an accurate, reliable and reproducible analysis is essential. Furthermore, there is a high level of variation in the format of microarrays. This not only holds true between different sample types but is also due to differences in the hardware used during the production of the arrays, as well as the personal preferences of the individual users. Therefore, there is a need for transparent, broadly applicable and user-friendly image quantification techniques to extract meaningful information from these complex datasets, while also addressing the challenges posed by specific microarray and imager formats, which can flaw analysis and interpretation. Results: Here we introduce MicroArray Rastering Tool (MARTin), as a versatile tool developed primarily for the analysis of protein and peptide microarrays. Our software provides state-of-the-art methodologies, offering researchers a comprehensive tool for microarray image quantification. MARTin is independent of the microarray platform used and supports various configurations including high-density formats and printed arrays with significant x and y offsets. This is made possible by granting the user the ability to freely customize parts of the application to their specific microarray format. Thanks to built-in features like adaptive filtering and autofit, measurements can be done very efficiently and are highly reproducible. Furthermore, our tool integrates metadata management and integrity check features, providing a straightforward quality control method, along with a ready-to-use interface for in-depth data analysis. This not only promotes good scientific practice in the field of microarray analysis but also enhances the ability to explore and examine the generated data. Conclusion: MARTin has been developed to empower its users with a reliable, efficient, and intuitive tool for peptidomic and proteomic array analysis, thereby facilitating data-driven discovery across disciplines. Our software is an open-source project freely available via the GNU Affero General Public License licence on GitHub.
Collapse
Affiliation(s)
- Kai O. Kreissner
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | | | - Ivan Talucci
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Hans M. Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Sampieri A, Monroy-Contreras R, Asanov A, Vaca L. Design of Hydrogel Silk-Based Microarrays and Molecular Beacons for Reagentless Point-of-Care Diagnostics. Front Bioeng Biotechnol 2022; 10:881679. [PMID: 35957640 PMCID: PMC9361048 DOI: 10.3389/fbioe.2022.881679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
We have developed a novel microarray system based on three technologies: 1) molecular beacons designed to interact with DNA targets at room temperature (25-27°C), 2) tridimensional silk-based microarrays containing the molecular beacons immersed in the silk hydrogel, and 3) shallow angle illumination, which uses separated optical pathways for excitation and emission. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing, and stringency control, and measure only end-point results, our microarray technology provides enhanced signal-to-background ratio (achieved by separating the optical pathways for excitation and emission, resulting in reduced stray light), performs analysis rapidly in one step without the need for labeling DNA targets, and measures the entire course of association kinetics between target DNA and the molecular beacons. To illustrate the benefits of our technology, we conducted microarray assays designed for the identification of influenza viruses. We show that in a single microarray slide, we can identify the virus subtype according to the molecular beacons designed for hemagglutinin (H1, H2, and H3) and neuraminidase (N1, N2). We also show the identification of human and swine influenza using sequence-specific molecular beacons. This microarray technology can be easily implemented for reagentless point-of-care diagnostics of several contagious diseases, including coronavirus variants responsible for the current pandemic.
Collapse
Affiliation(s)
- Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, Mexico, Mexico
| | - Ricardo Monroy-Contreras
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, Mexico, Mexico
| | | | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, Mexico, Mexico
| |
Collapse
|
5
|
Akinbo O, Obukosia S, Ouedraogo J, Sinebo W, Savadogo M, Timpo S, Mbabazi R, Maredia K, Makinde D, Ambali A. Commercial Release of Genetically Modified Crops in Africa: Interface Between Biosafety Regulatory Systems and Varietal Release Systems. FRONTIERS IN PLANT SCIENCE 2021; 12:605937. [PMID: 33828569 PMCID: PMC8020716 DOI: 10.3389/fpls.2021.605937] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/09/2021] [Indexed: 05/30/2023]
Abstract
African countries face key challenges in the deployment of GM crops due to incongruities in the processes for effective and efficient commercial release while simultaneously ensuring food and environmental safety. Against the backdrop of the preceding scenario, and for the effective and efficient commercial release of GM crops for cultivation by farmers, while simultaneously ensuring food and environmental safety, there is a need for the close collaboration of and the interplay between the biosafety competent authorities and the variety release authorities. The commercial release of genetically modified (GM) crops for cultivation requires the approval of biosafety regulatory packages. The evaluation and approval of lead events fall under the jurisdiction of competent national authorities for biosafety (which may be ministries, autonomous authorities, or agencies). The evaluation of lead events fundamentally comprises a review of environmental, food, and feed safety data as provided for in the Biosafety Acts, implementing regulations, and, in some cases, the involvement of other relevant legal instruments. Although the lead GM event may be commercially released for farmers to cultivate, it is often introgressed into locally adapted and farmer preferred non-GM cultivars that are already released and grown by the farmers. The introduction of new biotechnology products to farmers is a process that includes comprehensive testing in the laboratory, greenhouse, and field over some time. The process provides answers to questions about the safety of the products before being introduced into the environment and marketplace. This is the first step in regulatory approvals. The output of the research and development phase of the product development cycle is the identification of a safe and best performing event for advancement to regulatory testing, likely commercialization, and general release. The process of the commercial release of new crop varieties in countries with established formal seed systems is guided by well-defined procedures and approval systems and regulated by the Seed Acts and implemented regulations. In countries with seed laws, no crop varieties are approved for commercial cultivation prior to the fulfillment of the national performance trials and the distinctness, uniformity, and stability tests, as well as prior to the approval by the National Variety Release Committee. This review outlines key challenges faced by African countries in the deployment of GM crops and cites lessons learned as well as best practices from countries that have successfully commercialized genetically engineered crops.
Collapse
Affiliation(s)
- Olalekan Akinbo
- Centre of Excellence for Rural Resources and Food Systems, Diran Makinde Center, African Union Development Agency-NEPAD, Ouagadougou, Burkina Faso
| | - Silas Obukosia
- Centre of Excellence for Human Capital Institutions Development, African Union Development Agency-NEPAD, Nairobi, Kenya
| | - Jeremy Ouedraogo
- Centre of Excellence for Rural Resources and Food Systems, African Union Development Agency-NEPAD, Dakar, Senegal
| | - Woldeyesus Sinebo
- Centre of Excellence for Human Capital Institutions Development, African Union Development Agency-NEPAD, Nairobi, Kenya
| | - Moussa Savadogo
- Centre of Excellence for Rural Resources and Food Systems, Diran Makinde Center, African Union Development Agency-NEPAD, Ouagadougou, Burkina Faso
| | - Samuel Timpo
- Centre of Excellence for Rural Resources and Food Systems, African Union Development Agency-NEPAD, Dakar, Senegal
| | - Ruth Mbabazi
- College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Karim Maredia
- College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Diran Makinde
- African Union Development Agency-NEPAD, Midrand, South Africa
| | - Aggrey Ambali
- African Union Development Agency-NEPAD, Midrand, South Africa
| |
Collapse
|
6
|
Alvarez-Suarez DE, Tovar H, Hernández-Lemus E, Orjuela M, Sadowinski-Pine S, Cabrera-Muñoz L, Camacho J, Favari L, Hernández-Angeles A, Ponce-Castañeda MV. Discovery of a transcriptomic core of genes shared in 8 primary retinoblastoma with a novel detection score analysis. J Cancer Res Clin Oncol 2020; 146:2029-2040. [PMID: 32474753 DOI: 10.1007/s00432-020-03266-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Expression microarrays are powerful technology that allows large-scale analysis of RNA profiles in a tissue; these platforms include underexploited detection scores outputs. We developed an algorithm using the detection score, to generate a detection profile of shared elements in retinoblastoma as well as to determine its transcriptomic size and structure. METHODS We analyzed eight briefly cultured primary retinoblastomas with the Human transcriptome array 2.0 (HTA2.0). Transcripts and genes detection scores were determined using the Detection Above Background algorithm (DABG). We used unsupervised and supervised computational tools to analyze detected and undetected elements; WebGestalt was used to explore functions encoded by genes in relevant clusters and performed experimental validation. RESULTS We found a core cluster with 7,513 genes detected and shared by all samples, 4,321 genes in a cluster that was commonly absent, and 7,681 genes variably detected across the samples accounting for tumor heterogeneity. Relevant pathways identified in the core cluster relate to cell cycle, RNA transport, and DNA replication. We performed a kinome analysis of the core cluster and found 4 potential therapeutic kinase targets. Through analysis of the variably detected genes, we discovered 123 differentially expressed transcripts between bilateral and unilateral cases. CONCLUSIONS This novel analytical approach allowed determining the retinoblastoma transcriptomic size, a shared active transcriptomic core among the samples, potential therapeutic target kinases shared by all samples, transcripts related to inter tumor heterogeneity, and to determine transcriptomic profiles without the need of control tissues. This approach is useful to analyze other cancer or tissue types.
Collapse
Affiliation(s)
- Diana E Alvarez-Suarez
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Pharmacology Department, CINVESTAV, Mexico City, Mexico
| | - Hugo Tovar
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Manuela Orjuela
- Epidemiology Department, Columbia University, Columbia, NY, USA
| | - Stanislaw Sadowinski-Pine
- Pathology Department, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | - Lourdes Cabrera-Muñoz
- Pathology Department, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | | | | | - Adriana Hernández-Angeles
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - M Verónica Ponce-Castañeda
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
7
|
Proteomic Analysis of Anticancer TCMs Targeted at Mitochondria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:539260. [PMID: 26568766 PMCID: PMC4629060 DOI: 10.1155/2015/539260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022]
Abstract
Traditional Chinese medicine (TCM) is a rich resource of anticancer drugs. Increasing bioactive natural compounds extracted from TCMs are known to exert significant antitumor effects, but the action mechanisms of TCMs are far from clear. Proteomics, a powerful platform to comprehensively profile drug-regulated proteins, has been widely applied to the mechanistic investigation of TCMs and the identification of drug targets. In this paper, we discuss several bioactive TCM products including terpenoids, flavonoids, and glycosides that were extensively investigated by proteomics to illustrate their antitumor mechanisms in various cancers. Interestingly, many of these natural compounds isolated from TCMs mostly exert their tumor-suppressing functions by specifically targeting mitochondria in cancer cells. These TCM components induce the loss of mitochondrial membrane potential, the release of cytochrome c, and the accumulation of ROS, initiating apoptosis cascade signaling. Proteomics provides systematic views that help to understand the molecular mechanisms of the TCM in tumor cells; it bears the inherent limitations in uncovering the drug-protein interactions, however. Subcellular fractionation may be coupled with proteomics to capture and identify target proteins in mitochondria-enriched lysates. Furthermore, translating mRNA analysis, a new technology profiling the drug-regulated genes in translatome level, may be integrated into the systematic investigation, revealing global information valuable for understanding the action mechanism of TCMs.
Collapse
|
8
|
Wang P, Chen Z. Traditional Chinese medicine ZHENG and Omics convergence: a systems approach to post-genomics medicine in a global world. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:451-9. [PMID: 23837436 DOI: 10.1089/omi.2012.0057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Traditional Chinese medicine (TCM) is a comprehensive system of medical practice that has been used to diagnose, treat, and prevent illnesses for more than 3000 years. ZHENG (also known as "syndrome") differentiation remains the essence of TCM. In China, TCM shares equal status, and integrated with Western medicine in the healthcare system to treat many types of diseases. Yet, compared to biomolecular science and Western medicine, the ZHENG/TCM approach to diagnostics might appear unobjective, but offers at the same time long-standing clinical and phenotypic-rich insights. With the current globalization of life sciences and the arrival of "Big Data" research and development, these two silos of medical lore are rapidly coalescing. The applications of multi-omics strategies to TCM have begun to provide novel insights into the essence and molecular basis of TCM ZHENG. We searched the Chinese electronic databases and PubMed for published articles related to "Omics" and "TCM ZHENG" and observed a dramatic increase in studies over the past few years. In this article, we provide a timely synthesis of the lessons learned, and the emerging applications of omics science in TCM ZHENG research. We suggest that the global health scholarship and the field of "developing world Omics" can usefully draw from TCM, and vice versa.
Collapse
Affiliation(s)
- Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | | |
Collapse
|
9
|
Abstract
Fourteen years ago, the first article on molecular genetics was published in this journal: Child Development, Molecular Genetics, andWhat to Do With Genes Once They Are Found (R. Plomin & M. Rutter, 1998). The goal of the article was to outline what developmentalists can do with genes once they are found. These new directions for developmental research are still relevant today. The problem lies with the phrase “once they are found”: It has been much more difficult than expected to identify genes responsible for the heritability of complex traits and common disorders, the so-called missing heritability problem. The present article considers reasons for the missing heritability problem and possible solutions.
Collapse
|
10
|
Ronald A. Is the child ‘father of the Man’? Evaluating the stability of genetic influences across development. Dev Sci 2011; 14:1471-8. [DOI: 10.1111/j.1467-7687.2011.01114.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodríguez-Serrano F, Perán M, Melguizo C, Aranega A. Nanomedicine: application areas and development prospects. Int J Mol Sci 2011; 12:3303-21. [PMID: 21686186 PMCID: PMC3116192 DOI: 10.3390/ijms12053303] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/06/2011] [Accepted: 05/16/2011] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology, along with related concepts such as nanomaterials, nanostructures and nanoparticles, has become a priority area for scientific research and technological development. Nanotechnology, i.e., the creation and utilization of materials and devices at nanometer scale, already has multiple applications in electronics and other fields. However, the greatest expectations are for its application in biotechnology and health, with the direct impact these could have on the quality of health in future societies. The emerging discipline of nanomedicine brings nanotechnology and medicine together in order to develop novel therapies and improve existing treatments. In nanomedicine, atoms and molecules are manipulated to produce nanostructures of the same size as biomolecules for interaction with human cells. This procedure offers a range of new solutions for diagnoses and “smart” treatments by stimulating the body’s own repair mechanisms. It will enhance the early diagnosis and treatment of diseases such as cancer, diabetes, Alzheimer’s, Parkinson’s and cardiovascular diseases. Preventive medicine may then become a reality.
Collapse
Affiliation(s)
- Houria Boulaiz
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
- Authors to whom correspondence should be addressed; E-Mails: (H.B.); (A.A.); Tel.:+34-958-243534; Fax: +34-958-246296
| | - Pablo J. Alvarez
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Alberto Ramirez
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Juan A. Marchal
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Jose Prados
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Fernando Rodríguez-Serrano
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jáen 23071, Spain; E-Mail:
| | - Consolación Melguizo
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Antonia Aranega
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
- Authors to whom correspondence should be addressed; E-Mails: (H.B.); (A.A.); Tel.:+34-958-243534; Fax: +34-958-246296
| |
Collapse
|
12
|
Blonder J, Issaq HJ, Veenstra TD. Proteomic biomarker discovery: it's more than just mass spectrometry. Electrophoresis 2011; 32:1541-8. [PMID: 21557261 DOI: 10.1002/elps.201000585] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/09/2022]
Abstract
The previous decade witnessed an enormous number of studies with the singular goal of identifying protein biomarkers for diseases such as cancer. A large majority of these studies have focused on comparative studies of serum or plasma obtained from disease-affected and control patients. In these studies, proteins identified in the samples using MS were compared with the hope that differences between samples would reveal useful biomarkers. Unfortunately, finding clinically relevant biomarkers has often been elusive and frustrating. As with most research efforts, both successes and failures, much has been learned about what strategies work and which do not. Part of the problem can be attributed to underestimating the effort required to discover novel biomarkers and depending too heavily on MS analysis of peripheral blood samples. Fortunately, the future for biomarker discovery still appears bright. MS technology continues to increase in sensitivity, throughput, and accuracy while novel types of samples and clever experimental designs coupled with innovative bioinformatics will make this vision of routine biomarker discovery a reality. To achieve ultimate success is going to require concomitant application of a number of different technologies, all providing the information necessary for discovering and validating clinically useful biomarkers.
Collapse
Affiliation(s)
- Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD, USA
| | | | | |
Collapse
|
13
|
Genetics of learning abilities and disabilities: recent developments from the UK and possible directions for research in China. 2008. Behav Genet 2010; 40:297-305. [PMID: 20358396 DOI: 10.1007/s10519-010-9355-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Viding E, Hanscombe KB, Curtis CJC, Davis OSP, Meaburn EL, Plomin R. In search of genes associated with risk for psychopathic tendencies in children: a two-stage genome-wide association study of pooled DNA. J Child Psychol Psychiatry 2010; 51:780-8. [PMID: 20345837 DOI: 10.1111/j.1469-7610.2010.02236.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Quantitative genetic data from our group indicates that antisocial behaviour (AB) is strongly heritable when coupled with psychopathic, callous-unemotional (CU) personality traits. We have also demonstrated that the genetic influences for AB and CU overlap considerably. We conducted a genome-wide association scan that capitalises on these findings in an attempt to identify quantitative trait loci (QTLs) that may increase risk for psychopathic tendencies (AB+/CU+). METHODS Teacher ratings at age 7 were used to screen 8374 twins with available DNA samples for individuals that were high vs. low on both AB and CU. In Stage 1, we screened for allele frequency differences in 642,432 autosomal single-nucleotide polymorphisms (SNPs) using the Affymetrix 6.0 GeneChip with pooled DNA for high-scoring (AB+/CU+) versus low-scoring children (N = approximately 300/group). In Stage 2, we tested the 3000 most strongly associated SNPs from Stage 1 for association in the same direction in a second sample of high- versus low-scoring children from the same twin study (18% co-twins). RESULTS Using allele frequencies estimated from pooled DNA, we found suggestive evidence for enrichment of association in the second stage of our two-stage genome-wide association design and focus on reporting the 30 top-ranking SNPs nominally associated with psychopathic tendencies. These SNPs include neurodevelopmental genes such as ROBO2. CONCLUSIONS Although none of the SNPs reached genome-wide statistical significance we have generated a list of SNPs that are potentially associated with psychopathic tendencies, which we believe warrant verification and replication in large independent and clinical samples.
Collapse
Affiliation(s)
- Essi Viding
- Division of Psychology and Language Sciences, University College London, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Gantelius J, Hartmann M, Schwenk JM, Roeraade J, Andersson-Svahn H, Joos TO. Magnetic bead-based detection of autoimmune responses using protein microarrays. N Biotechnol 2009; 26:269-76. [PMID: 19664732 DOI: 10.1016/j.nbt.2009.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/06/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
In the present study, a magnetic bead-based detection approach for protein microarrays is described as an alternative approach to the commonly used fluorescence-based detection system. Using the bead-based detection approach with applied magnetic force, it was possible to perform the detection step more rapidly as a result of the accelerated binding between the captured analyte in the microspot and the detection antibody, which was coupled to the magnetic beads. The resulting strong opacity shift on the microspots could be recorded with an ordinary flatbed scanner. In the context of autoimmunity, a set of 24 serum samples was analyzed for the presence of antibodies against 12 autoantigens using standard fluorescence and magnetic bead-based detection methods. Dynamic range, sensitivity, and specificity were determined for both detection methods. We propose from our findings that the magnetic bead-based detection option provides a simplified and cost effective readout method for protein microarrays.
Collapse
Affiliation(s)
- Jesper Gantelius
- Division of Nanobiotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Martins S, Prazeres D, Fonseca L, Monteiro G. Application of central composite design for DNA hybridization onto magnetic microparticles. Anal Biochem 2009; 391:17-23. [DOI: 10.1016/j.ab.2009.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/29/2009] [Accepted: 05/02/2009] [Indexed: 10/20/2022]
|
17
|
Gagna CE, Lambert WC. Novel multistranded, alternative, plasmid and helical transitional DNA and RNA microarrays: implications for therapeutics. Pharmacogenomics 2009; 10:895-914. [DOI: 10.2217/pgs.09.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel multistranded and alternative DNA, RNA and plasmid microarrays (transitional structural nucleic acid microarrays) have been developed that allows for the immobilization of intact, nondenatured, double-stranded DNA, double-stranded RNA, and alternative and multistranded nucleic acids. It also allows for the study of transitional changes that occur in the structure of DNA and RNA. Alternative types of DNA, RNA and multistranded nucleic acids are immobilized by a variety of different surface chemistries (i.e., noncovalent or covalent) onto a novel substrate surface. This technology represents the next generation of microarrays, which will aid in the characterization of nucleic acid structure and function, and accelerate the discovery of drugs that bind to nucleic acids. In addition, we demonstrate four novel techniques that are the first practical applications of the microarray, that is, transitional structural chemogenomics, transitional structural chemoproteomics, transitional structural pharmacogenomics and transitional structural pharmacoproteomics. These novel nucleic acid microarrays, together with pharmacogenomics, can be used to improve the study of DNA and RNA structure, gene expression, drug development and treatment of various diseases.
Collapse
Affiliation(s)
- Claude E Gagna
- New Jersey Medical School, Newark, NJ, USA
- School of Arts & Sciences, Department of Life Sciences, New York Institute of Technology, New York College of Osteopathic Medicine, Building #2, Room #362, Old Westbury, New York, NY 11568, USA
| | | |
Collapse
|
18
|
Plomin R, Davis OSP. The future of genetics in psychology and psychiatry: microarrays, genome-wide association, and non-coding RNA. J Child Psychol Psychiatry 2009; 50:63-71. [PMID: 19220590 PMCID: PMC2898937 DOI: 10.1111/j.1469-7610.2008.01978.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Much of what we thought we knew about genetics needs to be modified in light of recent discoveries. What are the implications of these advances for identifying genes responsible for the high heritability of many behavioural disorders and dimensions in childhood? METHODS Although quantitative genetics such as twin studies will continue to yield important findings, nothing will advance the field as much as identifying the specific genes responsible for heritability. Advances in molecular genetics have been driven by technology, especially DNA microarrays the size of a postage stamp that can genotype a million DNA markers simultaneously. DNA microarrays have led to a dramatic shift in research towards genome-wide association (GWA) studies. The ultimate goal of GWA is to sequence each individual's entire genome, which has begun to happen. RESULTS GWA studies suggest that for most complex traits and common disorders genetic effects are much smaller than previously considered: The largest effects account for only 1% of the variance of quantitative traits. This finding implies that hundreds of genes are responsible for the heritability of behavioural problems in childhood, and that it will be difficult to identify reliably these genes of small effect. Another discovery with far-reaching implications for future genetic research is the importance of non-coding RNA (DNA transcribed into RNA but not translated into amino acid sequences), which redefines what the word gene means. Non-coding RNA underlines the need for a genome-wide approach that is not limited to the 2% of DNA responsible for specifying the amino acid sequences of proteins. CONCLUSIONS The only safe prediction is that the fast pace of genetic discoveries will continue and will increasingly affect research in child psychology and psychiatry. DNA microarrays will make it possible to use hundreds of genes to predict genetic risk and to use these sets of genes in top-down behavioural genomic research that explores developmental change and continuity, multivariate heterogeneity and co-morbidity, and gene-environment interaction and correlation. A crucial question is whether the prediction of genetic risk will be sufficiently robust to translate into genetically based diagnoses, personalized treatments, and prevention programmes.
Collapse
Affiliation(s)
- Robert Plomin
- Institute of Psychiatry, King's College, London, UK.
| | | |
Collapse
|
19
|
Non-contact protein microarray fabrication using a procedure based on liquid bridge formation. Anal Bioanal Chem 2008; 393:591-8. [PMID: 19023564 DOI: 10.1007/s00216-008-2509-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
Contemporary microarrayers of contact or non-contact format used in protein microarray fabrication still suffer from a number of problems, e.g. generation of satellite spots, inhomogeneous spots, misplaced or even absent spots, and sample carryover. In this paper, a new concept of non-contact sample deposition that reduces such problems is introduced. To show the potential and robustness of this pressure-assisted deposition technique, different sample solutions known to cause severe problems or to be even impossible to print with conventional microarrayers were accurately printed. The samples included 200 mg mL(-1) human serum albumin, highly concentrated sticky cell adhesion proteins, pure high-salt cell-lysis buffer, pure DMSO, and a suspension of 5-microm polystyrene beads. Additionally, a water-immiscible liquid fluorocarbon, which was shown not to affect the functionality of the capture molecules, was employed as a lid to reduce evaporation during microarray printing. The fluorocarbon liquid lid was shown to circumvent hydrolysis of water-sensitive activated surfaces during long-term deposition procedures.
Collapse
|
20
|
Genetics of Learning Abilities and Disabilities: Recent Developments from the UK and Possible Directions for Research in. ACTA PSYCHOLOGICA SINICA 2008. [DOI: 10.3724/sp.j.1041.2008.01051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO. Protein microarrays for diagnostic assays. Anal Bioanal Chem 2008; 393:1407-16. [PMID: 18807017 DOI: 10.1007/s00216-008-2379-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/06/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
22
|
Affiliation(s)
- Turhan Canli
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500, USA.
| |
Collapse
|
23
|
Koltai H, Weingarten-Baror C. Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Res 2008; 36:2395-405. [PMID: 18299281 PMCID: PMC2367720 DOI: 10.1093/nar/gkn087] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Microarray-hybridization specificity is one of the main effectors of microarray result quality. In the present review, we suggest a definition for specificity that spans four hybridization levels, from the single probe to the microarray platform. For increased hybridization specificity, it is important to quantify the extent of the specificity at each of these levels, and correct the data accordingly. We outline possible effects of low hybridization specificity on the obtained results and list possible effectors of hybridization specificity. In addition, we discuss several studies in which theoretical approaches, empirical means or data filtration were used to identify specificity effectors, and increase the specificity of the hybridization results. However, these various approaches may not yet provide an ultimate solution; rather, further tool development is needed to enhance microarray-hybridization specificity.
Collapse
Affiliation(s)
- Hinanit Koltai
- Department of Ornamental Horticulture, ARO Volcani Center, Bet Dagan, Israel.
| | | |
Collapse
|
24
|
Haworth CMA, Meaburn EL, Harlaar N, Plomin R. Reading and Generalist Genes. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2007; 1:173-180. [PMID: 20383260 PMCID: PMC2847194 DOI: 10.1111/j.1751-228x.2007.00018.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Twin-study research suggests that many (but not all) of the same genes contribute to genetic influence on diverse learning abilities and disabilities, a hypothesis called generalist genes. This generalist genes hypothesis was tested using a set of 10 DNA markers (single nucleotide polymorphisms [SNPs]) found to be associated with early reading ability in a study of 4,258 7-year-old children that screened 100,000 SNPs. Using the same sample, we show that this early reading SNP set also correlates with other aspects of literacy, components of mathematics, and more general cognitive abilities. These results provide support for the generalist genes hypothesis. Although the effect size of the current SNP set is small, such SNP sets could eventually be used to predict genetic risk for learning disabilities as well as to prescribe genetically tailored intervention and prevention programs.
Collapse
Affiliation(s)
- Claire M A Haworth
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London
| | | | | | | |
Collapse
|