1
|
Peng Z, Jia Q, Mao J, Luo X, Huang A, Zheng H, Jiang S, Ma Q, Ma C, Yi Q. Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction. Front Psychiatry 2025; 15:1439727. [PMID: 39876994 PMCID: PMC11773674 DOI: 10.3389/fpsyt.2024.1439727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Behavioral addictive disorders (BADs) have become a significant societal challenge over time. The central feature of BADs is the loss of control over engaging in and continuing behaviors, even when facing negative consequences. The neurobiological underpinnings of BADs primarily involve impairments in the reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in the ventral striatum, and prefrontal cortex. These brain regions form networks that communicate through neurotransmitter signaling, leading to neurobiological changes in individuals with behavioral addictions. While dopamine has long been associated with the reward process, recent research highlights the role of other key neurotransmitters like serotonin, glutamate, and endorphins in BADs' development. These neurotransmitters interact within the reward circuitry, creating potential targets for therapeutic intervention. This improved understanding of neurotransmitter systems provides a foundation for developing targeted treatments and helps clinicians select personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhenlei Peng
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiyu Jia
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junxiong Mao
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiao Luo
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Anqi Huang
- Child Mental Health Research Center, Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
| | - Shijie Jiang
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qi Ma
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Metabolic Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuang Ma
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qizhong Yi
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Ayoub SM, Libster AM, Barnes SA, Dulawa SC, Young JW. Sex differences in risk-based decision-making and the modulation of risk preference by dopamine-2 like receptors in rats. Neuropharmacology 2024; 248:109851. [PMID: 38325772 PMCID: PMC11227321 DOI: 10.1016/j.neuropharm.2024.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Heightened risk-based decision-making is observed across several neuropsychiatric disorders including schizophrenia, bipolar disorder, and Parkinson's disease, yet no treatments exist that effectively normalize this aberrant behavior. Preclinical risk-based decision-making paradigms have identified the important modulatory roles of dopamine and sex in the performance of such tasks, though specific task parameters may alter such effects (e.g., punishment and reward values). Previous work has highlighted the role of dopamine 2-like receptors (D2R) during performance of the Risk Preference Task (RPT) in male rats, however sex was not considered as a factor in this study, nor were treatments identified that reduced risk preference. Here, we utilized the RPT to determine sex-dependent differences in baseline performance and impact of the D2R receptor agonist pramipexole (PPX), and antagonist sulpiride (SUL) on behavioral performance. Female rats exhibited heightened risk-preference during baseline testing. Consistent with human studies, PPX increased risk-preference across sex, though the effects of PPX were more pronounced in female animals. Importantly, SUL reduced risk-preference in these rats across sexes. Thus, under the task specifications of the RPT that does not include punishment, female rats were more risk-preferring and required higher PPX doses to promote risky choices compared to males. Furthermore, blockade of D2R receptors may reduce risk-preference of rats, though further studies are required.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Avraham M Libster
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Stephanie C Dulawa
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
3
|
Faraji M, Viera-Resto OA, Setlow B, Bizon JL. Effects of reproductive experience on cost-benefit decision making in female rats. Front Behav Neurosci 2024; 18:1304408. [PMID: 38352625 PMCID: PMC10863065 DOI: 10.3389/fnbeh.2024.1304408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Many individuals undergo mating and/or other aspects of reproductive experience at some point in their lives, and pregnancy and childbirth in particular are associated with alterations in the prevalence of several psychiatric disorders. Research in rodents shows that maternal experience affects spatial learning and other aspects of hippocampal function. In contrast, there has been little work in animal models concerning how reproductive experience affects cost-benefit decision making, despite the relevance of this aspect of cognition for psychiatric disorders. To begin to address this issue, reproductively experienced (RE) and reproductively naïve (RN) female Long-Evans rats were tested across multiple tasks that assess different forms of cost-benefit decision making. In a risky decision-making task, in which rats chose between a small, safe food reward and a large food reward accompanied by variable probabilities of punishment, RE females chose the large risky reward significantly more frequently than RN females (greater risk taking). In an intertemporal choice task, in which rats chose between a small, immediate food reward and a large food reward delivered after a variable delay period, RE females chose the large reward less frequently than RN females. Together, these results show distinct effects of reproductive experience on different forms of cost-benefit decision making in female rats, and highlight reproductive status as a variable that could influence aspects of cognition relevant for psychiatric disorders.
Collapse
Affiliation(s)
- Mojdeh Faraji
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Omar A. Viera-Resto
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L. Bizon
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Lyons S, Depue BE. Not all bad decisions are alike: approach and avoidant bad decisions are associated with distinct network organization. Front Neurosci 2023; 17:1249008. [PMID: 37877010 PMCID: PMC10591088 DOI: 10.3389/fnins.2023.1249008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Decisions under ambiguity occurs daily for everyone. Subsequently, we all deliberate upon options to initiate an action most appropriate for current goal demands. Researchers has attempted to identify factors which contribute to risk taking, alongside the neurocircuitry underpinning it. Empirically, uncertain decision making is frequently assessed using the Iowa Gambling Task (IGT). Research have reliably identified varying regions implicating two broader circuits known as the reward and salience networks. However, considerable work has focused on contrasting "good" versus "bad" decisions. Methods The present investigation attempted a unique approach to analyzing the modified IGT acquired during fMRI (n = 24) and focused on active and passive bad decisions to identify potential internetwork connectivity, dissociable connectivity patterns between approach and avoidant bad decisions, and their relationship with personality traits, which can be linked with behavioral approach styles. Results Network cluster analyses revealed general internetwork connectivity when passing (avoiding) good decks; however, the OFC was functionally disconnected from the rest of the selected brain regions when playing (approaching) bad decks. Decreased reward responsiveness was linked to increased functional connectivity between the lateral OFC and aSMG, while drive was associated with increased functional connectivity between dACC and aINS. Discussion We report evidence that approach and avoidant bad decisions are associated with distinct neural communication patterns. Avoidant decisions were marked by substantial network integration and coherence, contrasted with the general scarcity of internetwork communication observed for approach decisions. Furthermore, the present investigation observed preliminary evidence of personality traits linked with neural communication between salience and reward evaluative networks.
Collapse
Affiliation(s)
- Siraj Lyons
- Neuroimaging Laboratory of Cognitive, Affective, and Motoric Processes, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
| | - Brendan Eliot Depue
- Neuroimaging Laboratory of Cognitive, Affective, and Motoric Processes, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
5
|
Kelmanson IA. [Sleep quality, emotional and behavioral disturbances, and eating behavior in adolescents with obesity: a network analysis-based model]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:95-104. [PMID: 37276005 DOI: 10.17116/jnevro202312305295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To attempt to identify persistent associations between sleep quality, symptoms of emotional and behavioral disturbances, and characteristics of eating behavior in obese adolescents based on a network analysis. MATERIAL AND METHODS The study included 194 adolescents, aged 12-17 years (76 girls, 118 boys), with a confirmed diagnosis of obesity due to excess calories (ICD-10 code E66.0). Sleep quality was studied on the basis of the Adolescent Sleep Wake Scale (ASWS), emotional and behavioral disturbances were assessed with the Achenbach Youth Self-Report for Ages 11-18 (YSR), eating behavior - with the Dutch Eating Behavior Questionnaire (DEBQ). Network analysis was used to identify the most significant and stable associations between the studied indicators. RESULTS The association of poor sleep quality with manifestations of disinhibited behavior in the form of violations of the rules of behavior, aggressiveness, and impaired attention was revealed. Positive correlations between the manifestations of disinhibited behavior (primarily, rule-breaking behavior) and emotional eating behavior, which, in turn, had a positive relationship with external and a negative relationship with restrictive eating behavior, were noted. The disinhibited adolescent behavior is linked with uncontrolled food intake, which can contribute to the development of obesity. CONCLUSION Impaired sleep quality, symptoms of emotional and behavioral disorders, and eating disorders in obese adolescents present a stable and specific clinical pattern that should be taken into account when justifying therapy.
Collapse
Affiliation(s)
- I A Kelmanson
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Saint Petersburg State Institute for Psychology and Social Work, St. Petersburg, Russia
| |
Collapse
|
6
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Wolfschlag M, Håkansson A. Drug-Induced Gambling Disorder: Epidemiology, Neurobiology, and Management. Pharmaceut Med 2023; 37:37-52. [PMID: 36611111 PMCID: PMC9825131 DOI: 10.1007/s40290-022-00453-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/09/2023]
Abstract
Problematic gambling has been suggested to be a possible consequence of dopaminergic medications used mainly in neurological conditions, i.e. pramipexole and ropinirole, and possibly by one antipsychotic compound, aripiprazole. Patients with Parkinson's disease, restless legs syndrome and other conditions potentially treated with dopamine agonists, as well as patients treated for psychotic disorders, are vulnerable patient groups with theoretically increased risk of developing gambling disorder (GD), for example due to higher rates of mental ill-health in these groups. The aim of the present paper is to review the epidemiological, clinical, and neurobiological evidence of the association between dopaminergic medications and GD, and to describe risk groups and treatment options. The neurobiology of GD involves the reward and reinforcement system, based mainly on mesocorticolimbic dopamine projections, with the nucleus accumbens being a crucial area for developing addictions to substances and behaviors. The addictive properties of gambling can perhaps be explained by the reward uncertainty that activates dopamine signaling in a pathological manner. Since reward-related learning is mediated by dopamine, it can be altered by dopaminergic medications, possibly leading to increased gambling behavior and a decreased impulse control. A causal relationship between the medications and GD seems likely, but the molecular mechanisms behind this association have not been fully described yet. More research is needed in order to fully outline the clinical picture of GD developing in patient groups with dopaminergic medications, and data are needed on the differentiation of risk in different compounds. In addition, very few interventional studies are available on the management of GD induced by dopaminergic medications. While GD overall can be treated, there is need for treatment studies testing the effectiveness of tapering of the medication or other gambling-specific treatment modalities in these patient groups.
Collapse
Affiliation(s)
- Mirjam Wolfschlag
- Malmö-Trelleborg Addiction Center, Competence Center Addiction, Region Skåne, Södra Förstadsgatan 35, plan 4, S-205 02 Malmö, Sweden ,Faculty of Medicine, Dept of Clinical Sciences Lund, Lund University, Psychiatry, Lund, Sweden
| | - Anders Håkansson
- Malmö-Trelleborg Addiction Center, Competence Center Addiction, Region Skåne, Södra Förstadsgatan 35, plan 4, S-205 02, Malmö, Sweden. .,Faculty of Medicine, Dept of Clinical Sciences Lund, Lund University, Psychiatry, Lund, Sweden.
| |
Collapse
|
8
|
Decision Making Under Uncertainty In Parkinson’s Disease With Rem Sleep Behavior Disorder. Sleep Med 2022; 90:214-221. [DOI: 10.1016/j.sleep.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 11/18/2022]
|
9
|
Increased risk for developing gambling disorder under the treatment with pramipexole, ropinirole, and aripiprazole: A nationwide register study in Sweden. PLoS One 2021; 16:e0252516. [PMID: 34061895 PMCID: PMC8168838 DOI: 10.1371/journal.pone.0252516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Gambling Disorder (GD) has recently been reclassified from an impulse-control disorder to a behavioural addiction and, as in other addictive disorders, the dopaminergic reward system is involved. According to neuroimaging studies, alterations within the striatal dopaminergic signalling can occur in GD. However, the findings to date are controversial and there has been no agreement yet on how the reward system is affected on a molecular basis. Within the last 20 years, there has been growing evidence for a higher risk to develop GD in response to certain dopaminergic medication. Especially the dopamine agonists pramipexole and ropinirole, and the dopamine modulator aripiprazole seem to increase the likelihood for GD. The goal of this study was to examine the association between a prescription for either of the three pharmaceuticals and a GD diagnosis in a large cross-sectional study of the Swedish population. Compared to patients with any other dopaminergic drug prescription (38.7% with GD), the diagnosis was more common in patients with a dopamine agonist prescription (69.8% with GD), resulting in an odds ratio of 3.2. A similar association was found between aripiprazole prescriptions and GD diagnoses, which were analysed within the subgroup of all patients with schizophrenia or a schizotypal, delusional, or another non-mood psychotic disorder. An aripiprazole prescription increased the likelihood of GD (88.8%) in comparison to patients without an aripiprazole prescription (71.2%) with an odds ratio of 3.4. This study contributes to the increasingly reliable evidence for an association between several dopaminergic drugs and a higher risk for developing GD. Therefore, one future research goal should be a better understanding of the neurobiology in GD to be able to design more selective dopaminergic medication with less severe side effects. Additionally, this knowledge could enable the development of pharmacotherapy in GD and other addictive disorders.
Collapse
|
10
|
Exploring dopaminergic transmission in gambling addiction: A systematic translational review. Neurosci Biobehav Rev 2020; 119:481-511. [DOI: 10.1016/j.neubiorev.2020.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/16/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
|
11
|
Raimo S, Cropano M, Trojano L, Santangelo G. The neural basis of gambling disorder: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2020; 120:279-302. [PMID: 33275954 DOI: 10.1016/j.neubiorev.2020.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 11/26/2022]
Abstract
Previous imaging studies suggested that impairments of prefrontal-striatal and limbic circuits are correlated to excessive gambling. However, the neural underpinnings of gambling disorder (GD) continue to be the topic of debate. The present study aimed to identify structural changes in GD and differentiate the specific brain activity patterns associated with decision-making and reward-processing. We performed a systematic review complemented by Activation likelihood estimation (ALE) meta-analyses on morphometric and functional studies on neural correlates of GD. The ALE meta-analysis on structural studies revealed that patients with GD showed significant cortical grey-matter thinning in the right ventrolateral and ventromedial prefrontal cortex compared to healthy subjects. The ALE meta-analyses on functional studies revealed that patients with GD showed a significant hyperactivation in the medial prefrontal cortex and in the right ventral striatum during decision-making and gain processing compared to healthy subjects. These findings suggest that GD is related to an alteration of brain mechanisms underlying top-down control and appraisal of gambling-related stimuli and provided indications to develop new interventions in clinical practice.
Collapse
Affiliation(s)
- Simona Raimo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Cropano
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luigi Trojano
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
12
|
Linnet J. The anticipatory dopamine response in addiction: A common neurobiological underpinning of gambling disorder and substance use disorder? Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109802. [PMID: 31678482 DOI: 10.1016/j.pnpbp.2019.109802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
The dopamine system is associated with reward processes in both gambling disorder and substance use disorder, and may constitute a common neurobiological underpinning in addiction. The present review examines differences and similarities of dopaminergic reward processes in gambling disorder and substance use disorder. First, it is suggested that baseline binding potentials of the dopamine system may not be a common pathway, since substance use disorder is associated with reduced binding potentials, whereas gambling disorder is not. Second, it is suggested that dopaminergic reward response may be not a common pathway, since substance use disorder is associated with a blunted dopamine response toward drugs, while conflicting findings of reward response has been reported in gambling disorder. Instead, it is suggested that the anticpatory dopamine response may constitute a common underpinning of gambling disorder and substance use disorder, which may be associated with increased dopamine activity in both types of disorder, and does not involve the intake of substances. The notion of the anticipatory dopamine response as a common underpinning of gambling disorder and substance use disorder is consistent with dopaminergic models of addictions such as the incentive-sensitization model, the ingrative neurodevelopmental model of vulnerability toward addiction and the reward prediction error model.
Collapse
Affiliation(s)
- Jakob Linnet
- Clinic for Gambling- and Binge Eating Disorder, Department of Occupational and Environmental Medicine, Odense University Hospital, Denmark.
| |
Collapse
|
13
|
Woodcock EA, Zakiniaeiz Y, Morris ED, Cosgrove KP. Sex and the dopaminergic system: Insights from addiction studies. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:141-165. [PMID: 33008522 PMCID: PMC11267480 DOI: 10.1016/b978-0-444-64123-6.00011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sex differences are present in psychiatric disorders associated with disrupted dopamine function, and thus, sex differences in dopamine neurobiology may underlie these clinical disparities. In this chapter, we review sex differences in the dopaminergic system with a focus on substance use disorders, especially tobacco smoking, as our exemplar disorder. This chapter is organized into five sections describing sex differences in the dopaminergic system: (1) neurobiology, (2) role of sex hormones, (3) genetic underpinnings, (4) cognitive function, and (5) influence on addiction. In each section, we provide an overview of the topic area, summarize sex differences identified to date, highlight addiction research, especially clinical neuroimaging studies, and suggest avenues for future research.
Collapse
Affiliation(s)
- Eric A Woodcock
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States
| | - Yasmin Zakiniaeiz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Invicro, LLC, New Haven, CT, United States
| | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States.
| |
Collapse
|
14
|
Clark L, Boileau I, Zack M. Neuroimaging of reward mechanisms in Gambling disorder: an integrative review. Mol Psychiatry 2019; 24:674-693. [PMID: 30214041 DOI: 10.1038/s41380-018-0230-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Gambling disorder (GD) was reclassified as a behavioral addiction in the DSM-5 and shares clinical and behavioral features with substance use disorders (SUDs). Neuroimaging studies of GD hold promise in isolating core features of the addiction syndrome, avoiding confounding effects of drug neurotoxicity. At the same time, a neurobiologically-grounded theory of how behaviors like gambling can become addictive remains lacking, posing a significant hurdle for ongoing decisions in addiction nosology. This article integrates research on reward-related brain activity (functional MRI) and neurotransmitter function (PET) in GD, alongside the consideration of structural MRI data as to whether these signals more likely reflect pre-existing vulnerability or neuroadaptive change. Where possible, we point to qualitative similarities and differences with established markers for SUDs. Structural MRI studies indicate modest changes in regional gray matter volume and diffuse reductions in white matter integrity in GD, contrasting with clear structural deterioration in SUDs. Functional MRI studies consistently identify dysregulation in reward-related circuitry (primarily ventral striatum and medial prefrontal cortex), but evidence is mixed as to the direction of these effects. The need for further parsing of reward sub-processes is emphasized, including anticipation vs outcome, gains vs. losses, and disorder-relevant cues vs natural rewards. Neurotransmitter PET studies indicate amplified dopamine (DA) release in GD, in the context of minimal differences in baseline DA D2 receptor binding, highlighting a distinct profile from SUDs. Preliminary work has investigated further contributions of opioids, GABA and serotonin. Neuroimaging data increasingly highlight divergent profiles in GD vs. SUDs. The ability of gambling to perpetually activate DA (via maximal uncertainty) may contribute to neuroimaging similarities between GD and SUDs, whereas the supra-physiological DA effects of drugs may partly explain differences in the neuroimaging profile of the two syndromes. Coupled with consistent observations of correlations with gambling severity and related clinical variables within GD samples, the overall pattern of effects is interpreted as a likely combination of shared vulnerability markers across GD and SUDs, but with further experience-dependent neuroadaptive processes in GD.
Collapse
Affiliation(s)
- Luke Clark
- Centre for Gambling Research, University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Vivian M. Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Addictions Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Martin Zack
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Clinical Neuroscience Program, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada. .,Department of Public Health Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Interaction Between Neuropsychiatric Symptoms and Cognitive Performance in Parkinson's Disease: What Do Clinical and Neuroimaging Studies Tell Us? Curr Neurol Neurosci Rep 2018; 18:91. [PMID: 30324260 DOI: 10.1007/s11910-018-0907-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Parkinson's disease was studied for a long time from the prism of a motor impairment. Recent advances have outlined the importance of cognitive and neuropsychiatric symptoms (NPS) in the PD equation. This review concentrates on the present possibilities of using neuroimaging techniques in order to quantify the cognitive performance and NPS in PD patients. RECENT FINDINGS Mild cognitive impairment as well as many NPS have been acknowledged as important criteria for assessing the quality of life in patients with Parkinson's disease and have been shown as potential factors in predicting further evolution of PD from a clinical perspective. Some NPS strongly influence cognition (depression, REM sleep behavior disorder), while others are less specifically associated with it (impulse control disorders). Neuroimaging techniques reported specific structural, functional, and metabolic brain changes that might be specific for each NPS type. Recent neuroimaging advances report a strong interrelation between NPS and cognitive performance in PD. A special place for consideration is given to REM sleep behavior disorder, depression, and hallucinations. Nevertheless, some studies report distinct results, outlining that the neuroimaging acquisition and analysis techniques still have limitations and also likely represent the complexity of the manifestation of NPS in PD.
Collapse
|
16
|
A potential link between gambling addiction severity and central dopamine levels: Evidence from spontaneous eye blink rates. Sci Rep 2018; 8:13371. [PMID: 30190487 PMCID: PMC6127194 DOI: 10.1038/s41598-018-31531-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence points at similarities between substance use disorders (SUD) and gambling disorder on the behavioral and neural level. In SUD, attenuation of striatal D2/3-receptor availability is a consistent finding, at least for stimulating substances. For gambling disorder, no clear association with striatal D2/3-receptor availability has been unveiled so far. With its presumably negligible dopaminergic toxicity, possible differences in receptor availability in gambling disorder might constitute a vulnerability marker. Spontaneous eye blink rate (sEBR) is discussed as a potential proxy measure for striatal dopamine D2/3-receptor availability. Here we examined sEBR in 21 male problem gamblers and 20 healthy control participants. In addition, participants completed a screening questionnaire for overall psychopathology and self-reported measures of alcohol and nicotine consumption. We found no significant difference in sEBR between gamblers and controls. However, in gamblers, sEBR was negatively associated with gambling severity and positively associated with psychopathology. A final exploratory analysis revealed that healthy controls with low sEBR displayed higher alcohol and nicotine consumption than healthy participants with high sEBR. Although the exact association between dopamine transmission and sEBR is still debated, our findings reveal that sEBR is sensitive to inter-individual differences in gambling disorder severity in problem gamblers.
Collapse
|
17
|
Contributions of medial prefrontal cortex to decision making involving risk of punishment. Neuropharmacology 2018; 139:205-216. [PMID: 30009836 DOI: 10.1016/j.neuropharm.2018.07.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
The prefrontal cortex (PFC) plays an important role in several forms of cost-benefit decision making. Its contributions to decision making under risk of explicit punishment, however, are not well understood. A rat model was used to investigate the role of the medial PFC (mPFC) and its monoaminergic innervation in a Risky Decision-making Task (RDT), in which rats chose between a small, "safe" food reward and a large, "risky" food reward accompanied by varying probabilities of mild footshock punishment. Inactivation of mPFC increased choice of the large, risky reward when the punishment probability increased across the session ("ascending RDT"), but decreased choice of the large, risky reward when the punishment probability decreased across the session ("descending RDT"). In contrast, enhancement of monoamine availability via intra-mPFC amphetamine reduced choice of the large, risky reward only in the descending RDT. Systemic administration of amphetamine reduced choice of the large, risky reward in both the ascending and descending RDT; however, this reduction was not attenuated by concurrent mPFC inactivation, indicating that mPFC is not a critical locus of amphetamine's effects on risk taking. These findings suggest that mPFC plays an important role in adapting choice behavior in response to shifting risk contingencies, but not necessarily in risk-taking behavior per se.
Collapse
|
18
|
Balodis IM, Linnet J, Arshad F, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Relating neural processing of reward and loss prospect to risky decision-making in individuals with and without Gambling Disorder. INTERNATIONAL GAMBLING STUDIES 2018; 18:269-285. [PMID: 31485192 DOI: 10.1080/14459795.2018.1469658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Neuroimaging studies demonstrate alterations in fronto-striatal neurocircuitry in gambling disorder (GD) during anticipatory processing, which may influence decision-making impairments. However, to date little is known about fronto-striatal anticipatory processing and emotion-based decision-making. While undergoing neuroimaging, 28 GD and 28 healthy control (HC) participants performed the Monetary Incentive Delay Task (MIDT). Pearson correlation coefficients assessed out-of-scanner Iowa Gambling Task (IGT) performance with the neural activity during prospect (A1) processing on the MIDT across combined GD and HC groups. The HC and GD groups showed no significant difference in out-of-scanner IGT performance, although there was a trend for higher IGT scores in the HC group on the last two IGT trial blocks. Whole-brain correlations across combined HC and GD groups showed that MIDT BOLD signal in the ventral striatum/caudate/ventromedial prefrontal cortex and anterior cingulate regions during the prospect of winning positively correlated with total IGT scores. The GD group also contained a higher proportion of tobacco smokers, and correlations between neural activations in prospect on the MIDT may relate in part to gambling and/or smoking pathology. In this study, fronto-striatal activity during the prospect of reward and loss on the MIDT was related to decision-making on the IGT, with blunted activation linked to disadvantageous decision-making. The findings from this work are novel in linking brain activity during a prospect-of-reward phase with performance on a decision-making task in individuals with and without GD.
Collapse
Affiliation(s)
- Iris M Balodis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Peter Boris Centre for Addiction Research, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jakob Linnet
- Research Clinic on Gambling Disorders, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fiza Arshad
- Peter Boris Centre for Addiction Research, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Michael C Stevens
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Institute of Living/Hartford Hospital & Olin Neuropsychiatry Research Center, Hartford, CT, USA
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Institute of Living/Hartford Hospital & Olin Neuropsychiatry Research Center, Hartford, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
19
|
Di Ciano P, Le Foll B. The Rat Gambling Task as a model for the preclinical development of treatments for gambling disorder. INTERNATIONAL GAMBLING STUDIES 2018. [DOI: 10.1080/14459795.2018.1448428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH) , Toronto, Canada
| | - Bernard Le Foll
- Addiction Division, Centre for Addiction and Mental Health (CAMH) , Toronto, Canada
- Departments of Pharmacology and Toxicology, Psychiatry, Family and Community Medicine, Institute of Medical Sciences, University of Toronto , Toronto, Canada
| |
Collapse
|
20
|
Zeeb FD, Li Z, Fisher DC, Zack MH, Fletcher PJ. Uncertainty exposure causes behavioural sensitization and increases risky decision-making in male rats: toward modelling gambling disorder. J Psychiatry Neurosci 2017; 42:404-413. [PMID: 28832319 PMCID: PMC5662462 DOI: 10.1503/jpn.170003] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND An animal model of gambling disorder, previously known as pathological gambling, could advance our understanding of the disorder and help with treatment development. We hypothesized that repeated exposure to uncertainty during gambling induces behavioural and dopamine (DA) sensitization - similar to chronic exposure to drugs of abuse. Uncertainty exposure (UE) may also increase risky decision-making in an animal model of gambling disorder. METHODS Male Sprague Dawley rats received 56 UE sessions, during which animals responded for saccharin according to an unpredictable, variable ratio schedule of reinforcement (VR group). Control animals responded on a predictable, fixed ratio schedule (FR group). Rats yoked to receive unpredictable reward were also included (Y group). Animals were then tested on the Rat Gambling Task (rGT), an analogue of the Iowa Gambling Task, to measure decision-making. RESULTS Compared with the FR group, the VR and Y groups experienced a greater locomotor response following administration of amphetamine. On the rGT, the FR and Y groups preferred the advantageous options over the risky, disadvantageous options throughout testing (40 sessions). However, rats in the VR group did not have a significant preference for the advantageous options during sessions 20-40. Amphetamine had a small, but significant, effect on decision-making only in the VR group. After rGT testing, only the VR group showed greater hyperactivity following administration of amphetamine compared with the FR group. LIMITATIONS Reward uncertainty was the only gambling feature modelled. CONCLUSION Actively responding for uncertain reward likely sensitized the DA system and impaired the ability to make optimal decisions, modelling some aspects of gambling disorder.
Collapse
Affiliation(s)
- Fiona D. Zeeb
- Correspondence to: F.D. Zeeb, Centre for Addiction and Mental Health (CAMH), 250 College St; Toronto ON M5T 1R8;
| | | | | | | | | |
Collapse
|
21
|
Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies. Neurosci Biobehav Rev 2017; 78:104-116. [DOI: 10.1016/j.neubiorev.2017.04.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 12/21/2022]
|
22
|
Kayser AS, Vega T, Weinstein D, Peters J, Mitchell JM. Right inferior frontal cortex activity correlates with tolcapone responsivity in problem and pathological gamblers. Neuroimage Clin 2016; 13:339-348. [PMID: 28066708 PMCID: PMC5200917 DOI: 10.1016/j.nicl.2016.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/04/2023]
Abstract
Failures of self-regulation in problem and pathological gambling (PPG) are thought to emerge from failures of top-down control, reflected neurophysiologically in a reduced capacity of prefrontal cortex to influence activity within subcortical structures. In patients with addictions, these impairments have been argued to alter evaluation of reward within dopaminergic neuromodulatory systems. Previously we demonstrated that augmenting dopamine tone in frontal cortex via use of tolcapone, an inhibitor of the dopamine-degrading enzyme catechol-O-methyltransferase (COMT), reduced delay discounting, a measure of impulsivity, in healthy subjects. To evaluate this potentially translational approach to augmenting prefrontal inhibitory control, here we hypothesized that increasing cortical dopamine tone would reduce delay discounting in PPG subjects in proportion to its ability to augment top-down control. To causally test this hypothesis, we administered the COMT inhibitor tolcapone in a randomized, double-blind, placebo-controlled, within-subject study of 17 PPG subjects who performed a delay discounting task while functional MRI images were obtained. In this subject population, we found that greater BOLD activity during the placebo condition within the right inferior frontal cortex (RIFC), a region thought to be important for inhibitory control, correlated with greater declines in impulsivity on tolcapone versus placebo. Intriguingly, connectivity between RIFC and the right striatum, and not the level of activity within RIFC itself, increased on tolcapone versus placebo. Together, these findings support the hypothesis that tolcapone-mediated increases in top-down control may reduce impulsivity in PPG subjects, a finding with potential translational relevance for gambling disorders, and for behavioral addictions in general.
Collapse
Affiliation(s)
- Andrew S. Kayser
- Department of Neurology, University of California, San Francisco, United States
- Department of Neurology, VA Northern California Health Care System, United States
| | - Taylor Vega
- Department of Neurology, VA Northern California Health Care System, United States
| | - Dawn Weinstein
- Department of Neurology, University of California, San Francisco, United States
| | - Jan Peters
- Department of Psychology, University of Cologne, Germany
| | - Jennifer M. Mitchell
- Department of Neurology, University of California, San Francisco, United States
- Department of Psychiatry, University of California, San Francisco, United States
| |
Collapse
|
23
|
Chang DC, Piaggi P, Burkholder JE, Votruba SB, Krakoff J, Gluck ME. Higher insulin and higher body fat via leptin are associated with disadvantageous decisions in the Iowa gambling task. Physiol Behav 2016; 167:392-398. [PMID: 27746259 DOI: 10.1016/j.physbeh.2016.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/23/2022]
Abstract
Elevated body mass index and post-prandial state are associated with disadvantageous choices on the Iowa Gambling Task (IGT). Whether physiological factors including percent body fat, and peripheral glucose, insulin, and leptin concentrations, are associated with IGT performance is unknown. In196 healthy adults without diabetes, we measured body fat by DXA scan, glucose, insulin and leptin (n=138) concentrations during an oral glucose tolerance test and IGT performance after a standardized meal. Glucose was not associated with IGT performance. Disadvantageous IGT performance was associated with higher percent body fat (r=-0.16, p=0.03), 30-min insulin concentrations (insulin30, r=-0.27, p<0.001), and 30-min leptin concentrations (leptin30, r=-0.23, p=0.008). Mediation analysis demonstrated that leptin30 was almost completely responsible for the percent body fat effect on IGT performance. Even adjusted for age, sex, race, and education, insulin30 (b=-46.5, p=0.03) and leptin30 (b=-50.9, p=0.03) concentrations remained independently associated with IGT performance and interacted together such that higher leptin30 blunted effects of higher insulin30 (b=23.8, p=0.048). These findings may indicate an internal metabolic signature of energy availability (higher body fat, insulin, and leptin levels) associated with disadvantageous IGT performance.
Collapse
Affiliation(s)
- Douglas C Chang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Joushua E Burkholder
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Susanne B Votruba
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Marci E Gluck
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
24
|
Di Ciano P, Pushparaj A, Kim A, Hatch J, Masood T, Ramzi A, Khaled MATM, Boileau I, Winstanley CA, Le Foll B. The Impact of Selective Dopamine D2, D3 and D4 Ligands on the Rat Gambling Task. PLoS One 2015; 10:e0136267. [PMID: 26352802 PMCID: PMC4564230 DOI: 10.1371/journal.pone.0136267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/03/2015] [Indexed: 11/19/2022] Open
Abstract
Gambling is an addictive disorder with serious societal and personal costs. To-date, there are no approved pharmacological treatments for gambling disorder. Evidence suggests a role for dopamine in gambling disorder and thus may provide a therapeutic target. The present study therefore aimed to investigate the effects of selective antagonists and agonists of D2, D3 and D4 receptors in a rodent analogue of the Iowa gambling task used clinically. In this rat gambling task (rGT), animals are trained to associate different response holes with different magnitudes and probabilities of food pellet rewards and punishing time-out periods. As in the Iowa gambling task, the optimal strategy is to avoid the tempting high-risk high-reward options, and instead favor those linked to smaller per-trial rewards but also lower punishments, thereby maximizing the amount of reward earned over time. Administration of those selective ligands did not affect decision making under the rGT. Only the D4 drug had modest effects on latency measures suggesting that D4 may contribute in some ways to decision making under this task.
Collapse
MESH Headings
- Animals
- Conditioning, Operant
- Decision Making/drug effects
- Dopamine Agents/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists/pharmacology
- Gambling
- Games, Experimental
- Ligands
- Male
- Punishment
- Rats
- Rats, Long-Evans
- Reaction Time/drug effects
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/agonists
- Receptors, Dopamine D4/antagonists & inhibitors
- Receptors, Dopamine D4/physiology
- Reward
Collapse
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Abhiram Pushparaj
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Aaron Kim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Jessica Hatch
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Talal Masood
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Abby Ramzi
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Maram A. T. M. Khaled
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
- Pain Management Unit, Department of Anaesthesia, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R
| | | | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
- Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
25
|
Guillot CR, Fanning JR, Liang T, Berman ME. COMT Associations with Disordered Gambling and Drinking Measures. J Gambl Stud 2015; 31:513-24. [PMID: 24390676 DOI: 10.1007/s10899-013-9434-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Disordered gambling and alcohol dependence are influenced by unique and shared genetic factors. Although the evidence is mixed, some research has linked catechol-O-methyltransferase (COMT) rs4680 (or COMT Val158Met) to the development of gambling or drinking problems; however, no molecular genetic study has jointly examined gambling and drinking problems. Furthermore, the majority of past studies examined gambling or drinking problems using a case-control design. The purpose of the current study was to examine associations of COMT rs4680 with dimensionally and categorically measured gambling and drinking problems in a nonclinical sample (139 Caucasian adults). The current study found that COMT rs4680 was related to both dimensionally and categorically measured gambling and drinking problems. It appears that the COMT Met/Met genotype may be a genetic risk factor that contributes to the development of both gambling and drinking problems.
Collapse
Affiliation(s)
- Casey R Guillot
- University of Southern California Keck School of Medicine, 2250 Alcazar St CSC 240, Los Angeles, CA, 90033, USA,
| | | | | | | |
Collapse
|
26
|
Olsen VV, Lugo RG, Sütterlin S. The somatic marker theory in the context of addiction: contributions to understanding development and maintenance. Psychol Res Behav Manag 2015; 8:187-200. [PMID: 26185474 PMCID: PMC4501162 DOI: 10.2147/prbm.s68695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent theoretical accounts of addiction have acknowledged that addiction to substances and behaviors share inherent similarities (eg, insensitivity to future consequences and self-regulatory deficits). This recognition is corroborated by inquiries into the neurobiological correlates of addiction, which has indicated that different manifestations of addictive pathology share common neural mechanisms. This review of the literature will explore the feasibility of the somatic marker hypothesis as a unifying explanatory framework of the decision-making deficits that are believed to be involved in addiction development and maintenance. The somatic marker hypothesis provides a neuroanatomical and cognitive framework of decision making, which posits that decisional processes are biased toward long-term prospects by emotional marker signals engendered by a neuronal architecture comprising both cortical and subcortical circuits. Addicts display markedly impulsive and compulsive behavioral patterns that might be understood as manifestations of decision-making processes that fail to take into account the long-term consequences of actions. Evidence demonstrates that substance dependence, pathological gambling, and Internet addiction are characterized by structural and functional abnormalities in neural regions, as outlined by the somatic marker hypothesis. Furthermore, both substance dependents and behavioral addicts show similar impairments on a measure of decision making that is sensitive to somatic marker functioning. The decision-making deficits that characterize addiction might exist a priori to addiction development; however, they may be worsened by ingestion of substances with neurotoxic properties. It is concluded that the somatic marker model of addiction contributes a plausible account of the underlying neurobiology of decision-making deficits in addictive disorders that is supported by the current neuroimaging and behavioral evidence. Implications for future research are outlined.
Collapse
Affiliation(s)
- Vegard V Olsen
- Section of Psychology, Lillehammer University College, Lillehammer, Norway
| | - Ricardo G Lugo
- Section of Psychology, Lillehammer University College, Lillehammer, Norway
| | - Stefan Sütterlin
- Section of Psychology, Lillehammer University College, Lillehammer, Norway ; Department of Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
27
|
Orsini CA, Moorman DE, Young JW, Setlow B, Floresco SB. Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models. Neurosci Biobehav Rev 2015; 58:147-67. [PMID: 26072028 DOI: 10.1016/j.neubiorev.2015.04.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/13/2015] [Accepted: 04/24/2015] [Indexed: 11/18/2022]
Abstract
Over the past 20 years there has been a growing interest in the neural underpinnings of cost/benefit decision-making. Recent studies with animal models have made considerable advances in our understanding of how different prefrontal, striatal, limbic and monoaminergic circuits interact to promote efficient risk/reward decision-making, and how dysfunction in these circuits underlies aberrant decision-making observed in numerous psychiatric disorders. This review will highlight recent findings from studies exploring these questions using a variety of behavioral assays, as well as molecular, pharmacological, neurophysiological, and translational approaches. We begin with a discussion of how neural systems related to decision subcomponents may interact to generate more complex decisions involving risk and uncertainty. This is followed by an overview of interactions between prefrontal-amygdala-dopamine and habenular circuits in regulating choice between certain and uncertain rewards and how different modes of dopamine transmission may contribute to these processes. These data will be compared with results from other studies investigating the contribution of some of these systems to guiding decision-making related to rewards vs. punishment. Lastly, we provide a brief summary of impairments in risk-related decision-making associated with psychiatric disorders, highlighting recent translational studies in laboratory animals.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry and Center for Addiction Research and Education, University of Florida College of Medicine, Gainesville, FL, United States
| | - David E Moorman
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, United States; VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States
| | - Barry Setlow
- Department of Psychiatry and Center for Addiction Research and Education, University of Florida College of Medicine, Gainesville, FL, United States
| | - Stan B Floresco
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Oswald LM, Wand GS, Wong DF, Brown CH, Kuwabara H, Brašić JR. Risky decision-making and ventral striatal dopamine responses to amphetamine: a positron emission tomography [(11)C]raclopride study in healthy adults. Neuroimage 2015; 113:26-36. [PMID: 25795343 PMCID: PMC4433778 DOI: 10.1016/j.neuroimage.2015.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/05/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Recent functional magnetic resonance imaging (fMRI) studies have provided compelling evidence that corticolimbic brain regions are integrally involved in human decision-making. Although much less is known about molecular mechanisms, there is growing evidence that the mesolimbic dopamine (DA) neurotransmitter system may be an important neural substrate. Thus far, direct examination of DA signaling in human risk-taking has centered on gambling disorder. Findings from several positron emission tomography (PET) studies suggest that dysfunctions in mesolimbic DA circuits may play an important role in gambling behavior. Nevertheless, interpretation of these findings is currently hampered by a need for better understanding of how individual differences in regional DA function influence normative decision-making in humans. To further our understanding of these processes, we used [(11)C]raclopride PET to examine associations between ventral striatal (VS) DA responses to amphetamine (AMPH) and risky decision-making in a sample of healthy young adults with no history of psychiatric disorder, Forty-five male and female subjects, ages 18-29 years, completed a computerized version of the Iowa Gambling Task. Participants then underwent two 90-minute PET studies with high specific activity [(11)C]raclopride. The first scan was preceded by intravenous saline; the second, by intravenous AMPH (0.3mg/kg). Findings of primary analyses showed that less advantageous decision-making was associated with greater right VS DA release; the relationship did not differ as a function of gender. No associations were observed between risk-taking and left VS DA release or baseline D2/D3 receptor availability in either hemisphere. Overall, the results support notions that variability in striatal DA function may mediate inter-individual differences in risky decision-making in healthy adults, further suggesting that hypersensitive DA circuits may represent a risk pathway in this population.
Collapse
Affiliation(s)
- Lynn M Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Gary S Wand
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dean F Wong
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton H Brown
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hiroto Kuwabara
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James R Brašić
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Yamamoto DJ, Woo CW, Wager TD, Regner MF, Tanabe J. Influence of dorsolateral prefrontal cortex and ventral striatum on risk avoidance in addiction: a mediation analysis. Drug Alcohol Depend 2015; 149:10-7. [PMID: 25736619 PMCID: PMC4361089 DOI: 10.1016/j.drugalcdep.2014.12.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/04/2014] [Accepted: 12/18/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alterations in frontal and striatal function are hypothesized to underlie risky decision making in drug users, but how these regions interact to affect behavior is incompletely understood. We used mediation analysis to investigate how prefrontal cortex and ventral striatum together influence risk avoidance in abstinent drug users. METHOD Thirty-seven abstinent substance-dependent individuals (SDI) and 43 controls underwent fMRI while performing a decision-making task involving risk and reward. Analyses of a priori regions-of-interest tested whether activity in dorsolateral prefrontal cortex (DLPFC) and ventral striatum (VST) explained group differences in risk avoidance. Whole-brain analysis was conducted to identify brain regions influencing the negative VST-risk avoidance relationship. RESULTS Right DLPFC (RDLPFC) positively mediated the group-risk avoidance relationship (p < 0.05); RDLPFC activity was higher in SDI and predicted higher risk avoidance across groups, controlling for SDI vs. CONTROLS Conversely, VST activity negatively influenced risk avoidance (p < 0.05); it was higher in SDI, and predicted lower risk avoidance. Whole-brain analysis revealed that, across group, RDLPFC and left temporal-parietal junction positively (p ≤ 0.001) while right thalamus and left middle frontal gyrus negatively (p < 0.005) mediated the VST activity-risk avoidance relationship. CONCLUSION RDLPFC activity mediated less risky decision making while VST mediated more risky decision making across drug users and controls. These results suggest a dual pathway underlying decision making, which, if imbalanced, may adversely influence choices involving risk. Modeling contributions of multiple brain systems to behavior through mediation analysis could lead to a better understanding of mechanisms of behavior and suggest neuromodulatory treatments for addiction.
Collapse
Affiliation(s)
- Dorothy J. Yamamoto
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Choong-Wan Woo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Tor D. Wager
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Michael F. Regner
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jody Tanabe
- Department of Radiology, University of Colorado Anschutz Medical Campus, 12700 E, 19th Avenue Mail Stop C278, Aurora, CO, 80045, USA; Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
30
|
Reward-based decision making in pathological gambling: The roles of risk and delay. Neurosci Res 2015; 90:3-14. [DOI: 10.1016/j.neures.2014.09.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 01/27/2023]
|
31
|
Abstract
Addiction professionals and the public are recognizing that certain nonsubstance behaviors--such as gambling, Internet use, video-game playing, sex, eating, and shopping--bear resemblance to alcohol and drug dependence. Growing evidence suggests that these behaviors warrant consideration as nonsubstance or "behavioral" addictions and has led to the newly introduced diagnostic category "Substance-Related and Addictive Disorders" in DSM-5. At present, only gambling disorder has been placed in this category, with insufficient data for other proposed behavioral addictions to justify their inclusion. This review summarizes recent advances in our understanding of behavioral addictions, describes treatment considerations, and addresses future directions. Current evidence points to overlaps between behavioral and substance-related addictions in phenomenology, epidemiology, comorbidity, neurobiological mechanisms, genetic contributions, responses to treatments, and prevention efforts. Differences also exist. Recognizing behavioral addictions and developing appropriate diagnostic criteria are important in order to increase awareness of these disorders and to further prevention and treatment strategies.
Collapse
|
32
|
Potenza MN. The neural bases of cognitive processes in gambling disorder. Trends Cogn Sci 2014; 18:429-38. [PMID: 24961632 PMCID: PMC4112163 DOI: 10.1016/j.tics.2014.03.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 12/30/2022]
Abstract
Functional imaging is offering powerful new tools to investigate the neurobiology of cognitive functioning in people with and without psychiatric conditions like gambling disorder. Based on similarities between gambling and substance-use disorders in neurocognitive and other domains, gambling disorder has recently been classified in the Diagnostic and Statistical Manual of Mental Disorders (5th edn) (DSM-5) as a behavioral addiction. Despite the advances in understanding, there exist multiple unanswered questions about the pathophysiology underlying gambling disorder and the promise for translating the neurobiological understanding into treatment advances remains largely unrealized. Here we review the neurocognitive underpinnings of gambling disorder with a view to improving prevention, treatment, and policy efforts.
Collapse
Affiliation(s)
- Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA; Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
33
|
Rømer Thomsen K, Fjorback LO, Møller A, Lou HC. Applying incentive sensitization models to behavioral addiction. Neurosci Biobehav Rev 2014; 45:343-9. [PMID: 25036890 DOI: 10.1016/j.neubiorev.2014.07.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 01/05/2023]
Abstract
The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical symptoms and underlying neurobiology. We examine the relevance of this theory for Gambling Disorder and point to predictions for future studies. The theory promises a significant contribution to the understanding of behavioral addiction and opens new avenues for treatment.
Collapse
Affiliation(s)
- Kristine Rømer Thomsen
- Centre of Functionally Integrative Neuroscience, University of Aarhus, 8000 Aarhus C, Denmark.
| | - Lone O Fjorback
- Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Denmark
| | - Arne Møller
- Centre of Functionally Integrative Neuroscience, University of Aarhus, 8000 Aarhus C, Denmark
| | - Hans C Lou
- Centre of Functionally Integrative Neuroscience, University of Aarhus, 8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Leyton M, Vezina P. Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. Trends Pharmacol Sci 2014; 35:268-76. [PMID: 24794705 PMCID: PMC4041845 DOI: 10.1016/j.tips.2014.04.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
Addictions are commonly presaged by problems in childhood and adolescence. For many individuals this starts with the early expression of impulsive risk-taking, social gregariousness, and oppositional behaviors. Here we propose that these early diverse manifestations reflect a heightened ability of emotionally salient stimuli to activate dopamine pathways that foster behavioral approach. If substance use is initiated, these at-risk youth can also develop heightened responses to drug-paired cues. Through conditioning and drug-induced sensitization, these effects strengthen and accumulate, leading to responses that exceed those elicited by other rewards. At the same time, cues not paired with drug become associated with comparatively lower dopamine release, accentuating further the difference between drug and non-drug rewards. Together, these enhancing and inhibiting processes steer a pre-existing vulnerability toward a disproportionate concern for drugs and drug-related stimuli. Implications for prevention and treatment are discussed.
Collapse
Affiliation(s)
- Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Psychology, McGill University, Montreal, Quebec, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada.
| | - Paul Vezina
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA; Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
35
|
Goudriaan AE, Yücel M, van Holst RJ. Getting a grip on problem gambling: what can neuroscience tell us? Front Behav Neurosci 2014; 8:141. [PMID: 24904328 PMCID: PMC4033022 DOI: 10.3389/fnbeh.2014.00141] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/08/2014] [Indexed: 01/27/2023] Open
Abstract
In problem gamblers, diminished cognitive control and increased impulsivity is present compared to healthy controls. Moreover, impulsivity has been found to be a vulnerability marker for the development of pathological gambling (PG) and problem gambling (PrG) and to be a predictor of relapse. In this review, the most recent findings on functioning of the brain circuitry relating to impulsivity and cognitive control in PG and PrG are discussed. Diminished functioning of several prefrontal areas and of the anterior cingulate cortex (ACC) indicate that cognitive-control related brain circuitry functions are diminished in PG and PrG compared to healthy controls. From the available cue reactivity studies on PG and PrG, increased responsiveness towards gambling stimuli in fronto-striatal reward circuitry and brain areas related to attentional processing is present compared to healthy controls. At this point it is unresolved whether PG is associated with hyper- or hypo-activity in the reward circuitry in response to monetary cues. More research is needed to elucidate the complex interactions for reward responsivity in different stages of gambling and across different types of reward. Conflicting findings from basic neuroscience studies are integrated in the context of recent neurobiological addiction models. Neuroscience studies on the interface between cognitive control and motivational processing are discussed in light of current addiction theories. Clinical implications: We suggest that innovation in PG therapy should focus on improvement of dysfunctional cognitive control and/or motivational functions. The implementation of novel treatment methods like neuromodulation, cognitive training and pharmacological interventions as add-on therapies to standard treatment in PG and PrG, in combination with the study of their effects on brain-behavior mechanisms could prove an important clinical step forward towards personalizing and improving treatment results in PG.
Collapse
Affiliation(s)
- Anna E Goudriaan
- Department of Psychiatry and Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Murat Yücel
- Monash Clinical and Imaging Neuroscience (MCIN) Laboratory, Monash Biomedical Imaging and School of Psychological Sciences, Monash University Monash, VIC, Australia
| | - Ruth J van Holst
- Department of Psychiatry and Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| |
Collapse
|
36
|
Linnet J. Neurobiological underpinnings of reward anticipation and outcome evaluation in gambling disorder. Front Behav Neurosci 2014; 8:100. [PMID: 24723865 PMCID: PMC3971161 DOI: 10.3389/fnbeh.2014.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/10/2014] [Indexed: 02/02/2023] Open
Abstract
Gambling disorder is characterized by persistent and recurrent maladaptive gambling behavior, which leads to clinically significant impairment or distress. The disorder is associated with dysfunctions in the dopamine system. The dopamine system codes reward anticipation and outcome evaluation. Reward anticipation refers to dopaminergic activation prior to reward, while outcome evaluation refers to dopaminergic activation after reward. This article reviews evidence of dopaminergic dysfunctions in reward anticipation and outcome evaluation in gambling disorder from two vantage points: a model of reward prediction and reward prediction error by Wolfram Schultz et al. and a model of “wanting” and “liking” by Terry E. Robinson and Kent C. Berridge. Both models offer important insights on the study of dopaminergic dysfunctions in addiction, and implications for the study of dopaminergic dysfunctions in gambling disorder are suggested.
Collapse
Affiliation(s)
- Jakob Linnet
- Research Clinic on Gambling Disorders, Aarhus University Hospital Aarhus, Denmark ; Center of Functionally Integrative Neuroscience, Aarhus University Aarhus, Denmark ; Division on Addiction, Cambridge Health Alliance Cambridge, MA, USA ; Department of Psychiatry, Harvard Medical School, Harvard University Cambridge, MA, USA
| |
Collapse
|
37
|
Abstract
Impulsive–compulsive disorders such as pathological gambling, hypersexuality, compulsive eating, and shopping are side effects of the dopaminergic therapy for Parkinson’s disease. With a lower prevalence, these disorders also appear in the general population. Research in the last few years has discovered that these pathological behaviors share features similar to those of substance use disorders (SUD), which has led to the term “behavioral addictions”. As in SUDs, the behaviors are marked by a compulsive drive toward and impaired control over the behavior. Furthermore, animal and medication studies, research in the Parkinson’s disease population, and neuroimaging findings indicate a common neurobiology of addictive behaviors. Changes associated with addictions are mainly seen in the dopaminergic system of a mesocorticolimbic circuit, the so-called reward system. Here we outline neurobiological findings regarding behavioral addictions with a focus on dopaminergic systems, relate them to SUD theories, and try to build a tentative concept integrating genetics, neuroimaging, and behavioral results.
Collapse
|
38
|
Mitchell MR, Weiss VG, Beas BS, Morgan D, Bizon JL, Setlow B. Adolescent risk taking, cocaine self-administration, and striatal dopamine signaling. Neuropsychopharmacology 2014; 39:955-62. [PMID: 24145852 PMCID: PMC3924529 DOI: 10.1038/npp.2013.295] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/20/2013] [Accepted: 10/11/2013] [Indexed: 01/12/2023]
Abstract
Poor decision making and elevated risk taking, particularly during adolescence, have been strongly linked to drug use; however the causal relationships among these factors are not well understood. To address these relationships, a rat model (the Risky Decision-making Task; RDT) was used to determine whether individual differences in risk taking during adolescence predict later propensity for cocaine self-administration and/or whether cocaine self-administration causes alterations in risk taking. In addition, the RDT was used to determine how risk taking is modulated by dopamine signaling, particularly in the striatum. Results from these experiments indicated that greater risk taking during adolescence predicted greater intake of cocaine during acquisition of self-administration in adulthood, and that adult cocaine self-administration in turn caused elevated risk taking that was present following 6 weeks of abstinence. Greater adolescent risk taking was associated with lower striatal D2 receptor mRNA expression, and pharmacological activation of D2/3 receptors in the ventral, but not dorsal, striatum induced a decrease in risk taking. These findings indicate that the relationship between elevated risk taking and cocaine self-administration is bi-directional, and that low striatal D2 receptor expression may represent a predisposing factor for both maladaptive decision making and cocaine use. Furthermore, these findings suggest that striatal D2 receptors represent a therapeutic target for attenuating maladaptive decision making when choices include risk of adverse consequences.
Collapse
Affiliation(s)
- Marci R Mitchell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610-0256, USA, Tel: +352 294 5203, Fax: +352 392 9887, E-mail: or
| | - Virginia G Weiss
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - B Sofia Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Drake Morgan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Barry Setlow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA,Department of Psychology, University of Florida, Gainesville, FL, USA,Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610-0256, USA, Tel: +352 294 5203, Fax: +352 392 9887, E-mail: or
| |
Collapse
|
39
|
Potenza MN. How central is dopamine to pathological gambling or gambling disorder? Front Behav Neurosci 2013; 7:206. [PMID: 24391562 PMCID: PMC3870289 DOI: 10.3389/fnbeh.2013.00206] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022] Open
Affiliation(s)
- Marc N. Potenza
- Departments of Psychiatry, Neurobiology, and Child Study Center, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
40
|
Leyton M, Vezina P. Striatal ups and downs: their roles in vulnerability to addictions in humans. Neurosci Biobehav Rev 2013; 37:1999-2014. [PMID: 23333263 PMCID: PMC3743927 DOI: 10.1016/j.neubiorev.2013.01.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 01/05/2023]
Abstract
Susceptibility to addictive behaviors has been related to both increases and decreases in striatal function. Both profiles have been reported in humans as well as in animal models. Yet, the mechanisms underlying these opposing effects and the manner in which they relate to the behavioral development and expression of addiction remain unclear. In the present review of human studies, we describe a number of factors that could influence whether striatal hyper- or hypo-function is observed and propose a model that integrates the influence of these opposite responses on the expression of addiction related behaviors. Central to this model is the role played by the presence versus absence of addiction related cues and their ability to regulate responding to abused drugs and other rewards. Striatal function and incentive motivational states are increased in the presence of these cues and decreased in their absence. Alternations between these states might account for the progressive narrowing of interests as addictions develop and point to relevant processes to target in treatment.
Collapse
Affiliation(s)
- Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Quebec, H3A 1A1 Canada.
| | | |
Collapse
|
41
|
Linnet J. The Iowa Gambling Task and the three fallacies of dopamine in gambling disorder. Front Psychol 2013; 4:709. [PMID: 24115941 PMCID: PMC3792697 DOI: 10.3389/fpsyg.2013.00709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/17/2013] [Indexed: 12/05/2022] Open
Abstract
Gambling disorder sufferers prefer immediately larger rewards despite long term losses on the Iowa Gambling Task (IGT), and these impairments are associated with dopamine dysfunctions. Dopamine is a neurotransmitter linked with temporal and structural dysfunctions in substance use disorder, which has supported the idea of impaired decision-making and dopamine dysfunctions in gambling disorder. However, evidence from substance use disorders cannot be directly transferred to gambling disorder. This article focuses on three hypotheses of dopamine dysfunctions in gambling disorder, which appear to be “fallacies,” i.e., have not been supported in a series of positron emission tomography (PET) studies. The first “fallacy” suggests that gambling disorder sufferers have lower dopamine receptor availability, as seen in substance use disorders. However, no evidence supported this hypothesis. The second “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during gambling. No evidence supported the hypothesis, and the literature on substance use disorders offers limited support for this hypothesis. The third “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during winning. The evidence did not support this hypothesis either. Instead, dopaminergic coding of reward prediction and uncertainty might better account for dopamine dysfunctions in gambling disorder. Studies of reward prediction and reward uncertainty show a sustained dopamine response toward stimuli with maximum uncertainty, which may explain the continued dopamine release and gambling despite losses in gambling disorder. The findings from the studies presented here are consistent with the notion of dopaminergic dysfunctions of reward prediction and reward uncertainty signals in gambling disorder.
Collapse
Affiliation(s)
- Jakob Linnet
- Research Clinic on Gambling Disorders, Aarhus University Hospital Aarhus, Denmark ; Clinical Department, Center of Functionally Integrative Neuroscience, Medical School of Aarhus University Aarhus, Denmark ; Division on Addiction, Cambridge Health Alliance Cambridge, MA, USA ; Department of Psychiatry, Harvard Medical School, Harvard University Cambridge, MA, USA
| |
Collapse
|
42
|
Brevers D, Bechara A, Cleeremans A, Noël X. Iowa Gambling Task (IGT): twenty years after - gambling disorder and IGT. Front Psychol 2013; 4:665. [PMID: 24137138 PMCID: PMC3786255 DOI: 10.3389/fpsyg.2013.00665] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/05/2013] [Indexed: 11/25/2022] Open
Abstract
The Iowa Gambling Task (IGT) involves probabilistic learning via monetary rewards and punishments, where advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger losses. Pathological gamblers (PG) perform worse on the IGT compared to controls, relating to their persistent preference toward high, immediate, and uncertain rewards despite experiencing larger losses. In this contribution, we review studies that investigated processes associated with poor IGT performance in PG. Findings from these studies seem to fit with recent neurocognitive models of addiction, which argue that the diminished ability of addicted individuals to ponder short-term against long-term consequences of a choice may be the product of an hyperactive automatic attentional and memory system for signaling the presence of addiction-related cues (e.g., high uncertain rewards associated with disadvantageous decks selection during the IGT) and for attributing to such cues pleasure and excitement. This incentive-salience associated with gambling-related choice in PG may be so high that it could literally “hijack” resources [“hot” executive functions (EFs)] involved in emotional self-regulation and necessary to allow the enactment of further elaborate decontextualized problem-solving abilities (“cool” EFs). A framework for future research is also proposed, which highlights the need for studies examining how these processes contribute specifically to the aberrant choice profile displayed by PG on the IGT.
Collapse
Affiliation(s)
- Damien Brevers
- Department of Medicine, Psychological Medicine Laboratory, Faculty of Medicine, Université Libre de Bruxelles Brussels, Belgium ; Department of Psychology, Brain and Creativity Institute, University of Southern California Los Angeles, CA, USA ; Department of Psychology, Consciousness, Cognition & Computation Group, Center for Research in Cognition & Neuroscience, Université Libre de Bruxelles Brussels, Belgium
| | | | | | | |
Collapse
|
43
|
Neural correlates of pathological gamblers preference for immediate rewards during the iowa gambling task: an fMRI study. J Gambl Stud 2013; 28:623-36. [PMID: 22037936 DOI: 10.1007/s10899-011-9278-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Iowa Gambling Task (IGT) involves exploratory learning via rewards and penalties, where most advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger punishments. Pathological gambling (PG) subjects perform worse on the IGT compared to controls, relating to their persistence at high risk decisions involving the continued choice of potential large immediate rewards despite experiencing larger punishments. We wished to determine if neural processing of risk and reward within striatal and frontal cortex is associated with this behaviour observed in PG. Functional magnetic resonance imaging (fMRI) was used to assess brain activity in response to a computerized version of the IGT. Thirteen male PG subjects with no active comorbidities were compared to 13 demographically matched control subjects. In agreement with previous behavioural studies, PG subjects performed worse on the IGT and made more high-risk choices compared to controls, particularly after experiencing wins and losses. During high-risk gambling decisions, fMRI demonstrated that PG subjects exhibited relatively increased frontal lobe and basal ganglia activation, particularly involving the orbitofrontal cortex (OFC), caudate and amygdala. Increased activation of regions encompassing the extended reward pathway in PG subjects during high risk choices suggests that the persistence of PG may be due to the increased salience of immediate and greater potential monetary rewards relative to lower monetary rewards or potential future losses. Whether this over activation of the reward pathway is associated with the development of PG warrants further investigation.
Collapse
|
44
|
Potenza MN. Neurobiology of gambling behaviors. Curr Opin Neurobiol 2013; 23:660-7. [PMID: 23541597 PMCID: PMC3803105 DOI: 10.1016/j.conb.2013.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/09/2023]
Abstract
For many, gambling is a recreational activity that is performed periodically without ill effects, but for some, gambling may interfere with life functioning. A diagnostic entity, pathological gambling (PG), is currently used to define a condition marked by excessive and problematic gambling. In this review, the current status of understanding of the neurobiologies of gambling and PG is described. Multiple neurotransmitter systems (norepinephrine, serotonin, dopamine, opioid and glutamate) and brain regions (ventral striatum, ventromedial prefrontal cortex, insula, among others) have been implicated in gambling and PG. Considerations for future directions in gambling research, with a view towards translating neurobiological advances into more effective prevention and treatment strategies, are discussed.
Collapse
Affiliation(s)
- Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
45
|
Callesen MB, Hansen KV, Gjedde A, Linnet J, Møller A. Dopaminergic and clinical correlates of pathological gambling in Parkinson's disease: a case report. Front Behav Neurosci 2013; 7:95. [PMID: 23908610 PMCID: PMC3725950 DOI: 10.3389/fnbeh.2013.00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/13/2013] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic medication for motor symptoms in Parkinson's disease (PD) recently has been linked with impulse control disorders, including pathological gambling (PG), which affects up to 8% of patients. PG often is considered a behavioral addiction associated with disinhibition, risky decision-making, and altered striatal dopaminergic neurotransmission. Using [(11)C]raclopride with positron emission tomography, we assessed dopaminergic neurotransmission during Iowa Gambling Task performance. Here we present data from a single patient with PD and concomitant PG. We noted a marked decrease in [(11)C]raclopride binding in the left ventral striatum upon gambling, indicating a gambling-induced dopamine release. The results imply that PG in PD is associated with a high dose of dopaminergic medication, pronounced motor symptomatology, young age at disease onset, high propensity for sensation seeking, and risky decision-making. Overall, the findings are consistent with the hypothesis of medication-related PG in PD and underscore the importance of taking clinical variables, such as age and personality, into account when patients with PD are medicated, to reduce the risk of PG.
Collapse
Affiliation(s)
- Mette Buhl Callesen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - K. V. Hansen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - A. Gjedde
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - J. Linnet
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Research Clinic on Gambling Disorders, Aarhus University Hospital, Aarhus, Denmark
| | - A. Møller
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
46
|
Leeman RF, Potenza MN. A targeted review of the neurobiology and genetics of behavioural addictions: an emerging area of research. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2013; 58:260-73. [PMID: 23756286 PMCID: PMC3762982 DOI: 10.1177/070674371305800503] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes neurobiological and genetic findings in behavioural addictions, draws parallels with findings pertaining to substance use disorders, and offers suggestions for future research. Articles concerning brain function, neurotransmitter activity, and family history and (or) genetic findings for behavioural addictions involving gambling, Internet use, video game playing, shopping, kleptomania, and sexual activity were reviewed. Behavioural addictions involve dysfunction in several brain regions, particularly the frontal cortex and striatum. Findings from imaging studies incorporating cognitive tasks have arguably been more consistent than cue-induction studies. Early results suggest white and grey matter differences. Neurochemical findings suggest roles for dopaminergic and serotonergic systems, but results from clinical trials seem more equivocal. While limited, family history and genetic data support heritability for pathological gambling and that people with behavioural addictions are more likely to have a close family member with some form of psychopathology. Parallels exist between neurobiological and genetic and family history findings in substance and nonsubstance addictions, suggesting that compulsive engagement in these behaviours may constitute addictions. To date, findings are limited, particularly for shopping, kleptomania, and sexual behaviour. Genetic understandings are at an early stage. Future research directions are offered.
Collapse
MESH Headings
- Behavior, Addictive/classification
- Behavior, Addictive/genetics
- Behavior, Addictive/metabolism
- Behavior, Addictive/physiopathology
- Behavioral Research/methods
- Brain/metabolism
- Brain/physiopathology
- Disruptive, Impulse Control, and Conduct Disorders/classification
- Disruptive, Impulse Control, and Conduct Disorders/diagnosis
- Disruptive, Impulse Control, and Conduct Disorders/genetics
- Disruptive, Impulse Control, and Conduct Disorders/metabolism
- Disruptive, Impulse Control, and Conduct Disorders/psychology
- Functional Neuroimaging/methods
- Genetic Predisposition to Disease
- Genetics, Behavioral/methods
- Humans
- Neurobiology/methods
- Neuropsychology/methods
- Neurotransmitter Agents/classification
- Neurotransmitter Agents/metabolism
- Substance-Related Disorders/metabolism
- Substance-Related Disorders/physiopathology
- Substance-Related Disorders/psychology
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Robert F Leeman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
47
|
Systemic administration of 8-OH-DPAT and eticlopride, but not SCH23390, alters loss-chasing behavior in the rat. Neuropsychopharmacology 2013; 38:1094-104. [PMID: 23303072 PMCID: PMC3629409 DOI: 10.1038/npp.2013.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gambling to recover losses is a common gaming behavior. In a clinical context, however, this phenomenon mediates the relationship between diminished control over gambling and the adverse socioeconomic consequences of gambling problems. Modeling loss-chasing through analogous behaviors in rats could facilitate its pharmacological investigation as a potential therapeutic target. Here, rats were trained to make operant responses that produced both food rewards, and unpredictably, imminent time-out periods in which rewards would be unavailable. At these decision points, rats were offered choices between waiting for these time-out periods to elapse before resuming responding for rewards ('quit' responses), or selecting risky options with a 0.5 probability of avoiding the time-outs altogether and a 0.5 probability of time-out periods twice as long as signaled originally ('chase' responses). Chasing behavior, and the latencies to chase or quit, during sequences of unfavorable outcomes were tested following systemic administration of the 5-HT1A receptor agonist, 8-OH-DPAT, the D2 receptor antagonist, eticlopride, and the D1 receptor antagonist, SCH23390. 8-OH-DPAT and eticlopride significantly reduced the proportion of chase responses, and the mean number of consecutive chase responses, in a dose-dependent manner. 8-OH-DPAT also increased latencies to chase. Increasing doses of eticlopride first speeded, then slowed, latencies to quit while SCH23390 had no significant effects on any measure. Research is needed to identify the precise cognitive mechanisms mediating these kinds of risky choices in rats. However, our data provide the first experimental demonstration that 5-HT1A and D2, but not D1, receptor activity influence a behavioral analog of loss-chasing in rats.
Collapse
|
48
|
Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan PM, Houle S, Wilson AA, Warsh J, Kish SJ, Zack M. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction 2013; 108:953-63. [PMID: 23167711 DOI: 10.1111/add.12066] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/05/2012] [Accepted: 11/09/2012] [Indexed: 11/27/2022]
Abstract
AIMS Pathological gambling (PG) shares diagnostic features with substance use disorder (SUD), but the neurochemical mechanisms underlying PG are poorly understood. Because dopamine (DA), a neurotransmitter implicated in reward and reinforcement, is probably involved, we used positron emission tomography (PET) to test whether PG is associated with abnormalities in D2 and D3 receptor levels, as observed in SUD. DESIGN Case-control study comparing PG to healthy control (HC) subjects. SETTING Academic research imaging centre. PARTICIPANTS Thirteen non-treatment-seeking males meeting DSM-IV criteria for PG, and 12 matched HC (11 of whom completed PET). MEASUREMENTS Two PET scans (one with the D3 receptor preferring agonist [11C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO) and the other with [11C]raclopride) to assess D(2/3) DA receptor availability, and behavioural measures (self-report questionnaires and slot-machine game) to assess subjective effects and relationships to PET measures. FINDINGS Binding of both radiotracers did not differ between groups in striatum or substantia nigra (SN) (all P > 0.1). Across PG, [11C]-(+)-PHNO binding in SN, where the signal is attributable primarily to D3 receptors, correlated with gambling severity (r = 0.57, P = 0.04) and impulsiveness (r = 0.65, P = 0.03). In HC, [11C]raclopride binding in dorsal striatum correlated inversely with subjective effects of gambling (r = -0.70, P = 0.03) and impulsiveness (r = -0.70, P = 0.03). CONCLUSIONS Unlike with substance use disorder, there appear to be no marked differences in D2 /D3 levels between healthy subjects and pathological gamblers, suggesting that low receptor availability may not be a necessary feature of addiction. However, relationships between [11C]-(+)-PHNO binding and gambling severity/impulsiveness suggests involvement of the D3 receptor in impulsive/compulsive behaviours.
Collapse
Affiliation(s)
- Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Leyton M, Vezina P. On cue: striatal ups and downs in addictions. Biol Psychiatry 2012; 72:e21-2. [PMID: 22789688 PMCID: PMC3979432 DOI: 10.1016/j.biopsych.2012.04.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada,Corresponding author
| | - Paul Vezina
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, Illinois
| |
Collapse
|
50
|
Linnet J, Mouridsen K, Peterson E, Møller A, Doudet DJ, Gjedde A. Striatal dopamine release codes uncertainty in pathological gambling. Psychiatry Res 2012; 204:55-60. [PMID: 22889563 DOI: 10.1016/j.pscychresns.2012.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/26/2012] [Accepted: 04/24/2012] [Indexed: 12/13/2022]
Abstract
Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors.
Collapse
Affiliation(s)
- Jakob Linnet
- Research Clinic on Gambling Disorders, Aarhus University Hospital, Nørrebrogade 44, Building 30, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|