1
|
Darvin ME. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023; 15:2272. [PMID: 37765241 PMCID: PMC10538180 DOI: 10.3390/pharmaceutics15092272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment-a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Collapse
|
2
|
In-Vivo Tape Stripping Study with Caffeine for Comparisons on Body Sites, Age and Washing. Pharm Res 2022; 39:1935-1944. [PMID: 35725844 DOI: 10.1007/s11095-022-03311-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Assessing the percutaneous absorption of cosmetic ingredients using in-vitro human skin reveals certain limitations, such as restricted anatomical sites and repeated exposure, and to overcome these issues, in-vivo studies are required. The aim of the study is to develop a robust non-invasive in-vivo protocol that should be applicable to a wide range of application. METHODS A robust tape stripping protocol was therefore designed according to recent recommendations, and the impact of two different washing procedures on caffeine distribution in tape strips was investigated to optimise the protocol. The optimised protocol was then used to study the effect of age and anatomical area on the percutaneous absorption of caffeine, including facial areas which are not readily available for in-vitro studies. RESULTS With tape stripping, a difference between the percutaneous absorption on the face (forehead, cheek) and the volar forearm was observed. No obvious difference was observed between percutaneous absorption in young and post-menopausal women, but this could be due to the limited number of subjects. CONCLUSION This tape stripping protocol is now to be deployed to address many other factors, such as percutaneous absorption in other anatomical areas (e.g. abdomen, axilla, etc.), impact of repeated applications and effect of formulation.
Collapse
|
3
|
Arpaia P, Crauso F, Frosolone M, Mariconda M, Minucci S, Moccaldi N. A personalized FEM model for reproducible measurement of anti-inflammatory drugs in transdermal administration to knee. Sci Rep 2022; 12:673. [PMID: 35027630 PMCID: PMC8758660 DOI: 10.1038/s41598-021-04718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
A personalized model of the human knee for enhancing the inter-individual reproducibility of a measurement method for monitoring Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) after transdermal delivery is proposed. The model is based on the solution of Maxwell Equations in the electric-quasi-stationary limit via Finite Element Analysis. The dimensions of the custom geometry are estimated on the basis of knee circumference at the patella, body mass index, and sex of each individual. An optimization algorithm allows to find out the electrical parameters of each subject by experimental impedance spectroscopy data. Muscular tissues were characterized anisotropically, by extracting Cole-Cole equation parameters from experimental data acquired with twofold excitation, both transversal and parallel to tissue fibers. A sensitivity and optimization analysis aiming at reducing computational burden in model customization achieved a worst-case reconstruction error lower than 5%. The personalized knee model and the optimization algorithm were validated in vivo by an experimental campaign on thirty volunteers, 67% healthy and 33% affected by knee osteoarthritis (Kellgren-Lawrence grade ranging in [1,4]), with an average error of 3%.
Collapse
Affiliation(s)
- Pasquale Arpaia
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Health Management and Innovation in Health (CIRMIS), University of Naples Federico II, Naples, Italy
| | - Federica Crauso
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy.,Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Mirco Frosolone
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy.,Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Mariconda
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Simone Minucci
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy. .,Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo, Italy.
| | - Nicola Moccaldi
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Liu Y, Krombholz R, Lunter DJ. Critical parameters for accurate monitoring of caffeine penetration in porcine skin using confocal Raman spectroscopy. Int J Pharm 2021; 607:121055. [PMID: 34461169 DOI: 10.1016/j.ijpharm.2021.121055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
In this research, we addressed a challenge while measuring the penetration performance of caffeine (CAF) using confocal Raman spectroscopy (CRS). Normally in the process of CRS analysis, skin sample was moved from an incubation setup to a specified CRS-measuring sample holder. Accurate data collection may be questioned due to the variation of the environment the skin placed in. Therefore, two critical parameters including the CRS measuring temperature and proper skin hydration were focused; accordingly, four different conditions were designed. First, the skin was incubated in a real-time device with the skin placing onto PBS-filled chamber where the temperature was adjusted to 32℃. This device can be fixed under the CRS microscope, enabling simultaneous skin incubation and dynamic CRS measurements (condition i, reference). The other conditions referred to skins incubated in Franz diffusion cells for simulating the common experimental procedures. In order to control variables of CRS measuring condition, skins were transferred from cells to real-time device and open device. In real-time device, proper skin hydration was maintained and the skin temperature was adjusted to 32℃ (condition ii) and room temperature (condition iii). In open device, the skin was in a less hydrated state by moving onto a PBS-soaked filter paper and wrapped with aluminum foil at room temperature (condition iv). The skin penetration performances measured in these conditions were compared with reference. Caffeine solution and gel formulation were separately applied to the skin. The results showed in both cases that the decrease of skin temperature and hydration in condition iii and iv would apparently induce the decrease of detected caffeine signal, resulting in the inaccurate data collection. To this point, it indicates the reduction of solubilized caffeine in skin layer. We suggest the forming of caffeine crystallization at varied skin conditions to be the factor. Achieved video image, CRS spectrum collection and surface scan demonstrated the caffeine crystallization process on superficial skin layer. Polarized microscopic images exemplified the crystalline drug on tape stripped skin layers. It can be a potential support of caffeine crystallization inside skin. In short, we suggest the consideration of these parameters during CRS measurements for accurate monitoring of topical drug delivery. Meanwhile, the use of real-time device for dynamic skin incubation and data collection provides advantages in saving time and efforts in this study.
Collapse
Affiliation(s)
- Yali Liu
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Richard Krombholz
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Dominique Jasmin Lunter
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
5
|
Gorzelanny C, Mess C, Schneider SW, Huck V, Brandner JM. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020; 12:E684. [PMID: 32698388 PMCID: PMC7407329 DOI: 10.3390/pharmaceutics12070684] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Although, drugs are required in the various skin compartments such as viable epidermis, dermis, or hair follicles, to efficiently treat skin diseases, drug delivery into and across the skin is still challenging. An improved understanding of skin barrier physiology is mandatory to optimize drug penetration and permeation. The various barriers of the skin have to be known in detail, which means methods are needed to measure their functionality and outside-in or inside-out passage of molecules through the various barriers. In this review, we summarize our current knowledge about mechanical barriers, i.e., stratum corneum and tight junctions, in interfollicular epidermis, hair follicles and glands. Furthermore, we discuss the barrier properties of the basement membrane and dermal blood vessels. Barrier alterations found in skin of patients with atopic dermatitis are described. Finally, we critically compare the up-to-date applicability of several physical, biochemical and microscopic methods such as transepidermal water loss, impedance spectroscopy, Raman spectroscopy, immunohistochemical stainings, optical coherence microscopy and multiphoton microscopy to distinctly address the different barriers and to measure permeation through these barriers in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Johanna M. Brandner
- Department of Dermatology and Venerology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.G.); (C.M.); (S.W.S.); (V.H.)
| |
Collapse
|
6
|
Lademann J, Richter H, Patzelt A, Meinke MC, Gross I, Grether-Beck S, Krutmann J, Frazier L, Darvin ME. Laser scanning microscopy for control of skin decontamination efficacy from airborne particulates using highly absorbent textile nanofiber material in combination with PEG-12 dimethicone. Skin Res Technol 2020; 26:558-563. [PMID: 31919922 DOI: 10.1111/srt.12830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The decontamination of the skin is indispensable if airborne particulate contaminants deposit on the skin surface. Skin washing can have adverse effects as by skin rubbing the particles can be transferred deeply into the hair follicles, where they can be entrapped for a period of more than 10 days. Thus, alternative skin decontamination strategies are necessary. MATERIALS AND METHODS For imaging the contaminants in the skin, sodium fluorescein-labeled soot particles of submicron size (≈600 nm) were visualized using laser scanning microscopy. RESULTS In the present ex vivo pilot study on porcine ear skin, it was shown that sodium fluorescein-labeled soot particles of submicron size (≈600 nm) could be efficiently removed from the skin with highly absorbent textile nanofiber material, whose efficacy could be further increased by spraying the contaminated skin area with the viscous fluid PEG-12 dimethicone before textile application. CONCLUSION In case of skin contamination with particulates, the contact washing should be avoided due to rubbing particles deeply into the hair follicles, where they can accumulate for a long time and induce negative consequences. Efficient skin decontamination could include pretreatment of skin surface with the viscous fluid PEG-12 dimethicone and subsequent application of highly absorbent textile nanofiber material.
Collapse
Affiliation(s)
- Juergen Lademann
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Richter
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Maxim E Darvin
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Ri JS, Choe SH, Schleusener J, Lademann J, Choe CS, Darvin ME. In vivo Tracking of DNA for Precise Determination of the Stratum Corneum Thickness and Superficial Microbiome Using Confocal Raman Microscopy. Skin Pharmacol Physiol 2019; 33:30-37. [PMID: 31614347 DOI: 10.1159/000503262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/06/2019] [Indexed: 11/19/2022]
Abstract
The skin barrier function is mostly provided by the stratum corneum (SC), the uppermost layer of the epidermis. To noninvasively analyze the physiological properties of the skin barrier functionin vivo, it is important to determine the SC thickness. Confocal Raman microscopy (CRM) is widely used for this task. In the present in vivo study, a new method based on the determination of the DNA concentration profile using CRM is introduced for determining the SC thickness. The obtained SC thickness values are compared with those obtained using other CRM-based methods determining the water and lipid depth profiles. The obtained results show almost no significant differences in SC thickness for the utilized methods. Therefore, the results indicate that it is possible to calculate the SC thickness by using the DNA profile in the fingerprint region, which is comparable with the SC thickness calculated by the water depth profiles (ANOVA test p = 0.77) and the lipid depth profile (ANOVA test p = 0.74). This provides the possibility to measure the SC thickness by using the DNA profile, in case the water or lipid profile analyses are influenced by a topically applied formulation. The increase in DNA concentration in the superficial SC (0-2 µm) is related to the DNA presence in the microbiome of the skin, which was not present in the SC depth below 4 µm.
Collapse
Affiliation(s)
- Jin Song Ri
- Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Se Hyok Choe
- Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chun Sik Choe
- Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,
| |
Collapse
|
8
|
[Follicular penetration of nanocarriers is an important penetration pathway for topically applied drugs]. Hautarzt 2019; 70:185-192. [PMID: 30627746 DOI: 10.1007/s00105-018-4343-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The hair follicle represents a significant penetration route for topically applied substances. ISSUE The percutaneous absorption of substances can be significantly increased and accelerated by the involvement of hair follicles. In addition, nanoparticles have the characteristic to penetrate deeply and effectively into the hair follicles. MATERIALS AND METHODS An optimization of drug delivery for topically applied substances is possible if the nanoparticles act solely as a carrier to transport active ingredients into the hair follicle. Once the nanocarrier has penetrated into the hair follicle, the active substance must be released there. This can be triggered by various mechanisms. RESULTS The released drug can thus pass into the living tissue surrounding the hair follicle independently. With the help of this innovative strategy, the bioavailability of topically applied substances can be significantly improved. CONCLUSION The transport of active ingredients into the hair follicles with the help of particles and the release of active substances there is a very effective new method for transporting active substances through the skin barrier.
Collapse
|
9
|
van Erp PEJ, Peppelman M, Falcone D. Noninvasive analysis and minimally invasive in vivo experimental challenges of the skin barrier. Exp Dermatol 2019; 27:867-875. [PMID: 30019358 DOI: 10.1111/exd.13743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
In this review, we aim to give a concise and selective overview of noninvasive biophysical analysis techniques for skin barrier analysis (transepidermal water loss, electrical methods, confocal Raman microspectroscopy, sebumeter, reflectance spectrophotometry, tristimulus colorimetry, diffuse reflectance spectroscopy and reflectance confocal microscopy), including advantages and limitations. Rather than giving an exhaustive description of the many techniques currently available, we show the usefulness of a representative selection of techniques in the functional and morphological evaluation of the skin barrier. Furthermore, we introduce human minimally invasive skin challenging models as a means to study the mechanisms regulating skin homoeostasis and disease and subsequently show how biophysical analysis techniques can be combined with these in vivo skin challenging models in the functional and morphological evaluation of the skin barrier in healthy human skin. We are convinced that the widespread application of biophysical analysis techniques in dermatological practice and in cosmetic sciences will prove invaluable in offering personalized and noninvasive skin treatment solutions. Furthermore, combining the human in vivo challenging models with these novel noninvasive techniques will provide valuable methodology and tools for detailed characterization of the skin barrier in health and disease.
Collapse
Affiliation(s)
- Piet E J van Erp
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Malou Peppelman
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Denise Falcone
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Binder L, Mazál J, Petz R, Klang V, Valenta C. The role of viscosity on skin penetration from cellulose ether-based hydrogels. Skin Res Technol 2019; 25:725-734. [PMID: 31062432 PMCID: PMC6850716 DOI: 10.1111/srt.12709] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/18/2019] [Accepted: 04/14/2019] [Indexed: 12/31/2022]
Abstract
Background The rheological properties of dermal drug delivery systems are of importance when designing new formulations. Viscosity not only affects features such as spreadability and skin feel, but may also affect the skin penetration of incorporated actives. Data on the latter aspect are controversial. Our objective was to elucidate the relation between viscosity and drug delivery performance of different model hydrogels assuming that enhanced microviscosity might delay drug release and penetration. Materials and Methods Hydrogels covering a broad viscosity range were prepared by adding either HPMC or HEC as gelling agents in different concentrations. To investigate the ability of the gels to deliver a model drug into the skin, sulphadiazine sodium was incorporated and its in vitro skin penetration was monitored using tape stripping/HPLC analysis and non‐invasive confocal Raman spectroscopy. Results The trends observed with the two different experimental setups were comparable. Drug penetration depths decreased slightly with increasing viscosity, suggesting slower drug release due to the increasingly dense gel networks. However, the total penetrated drug amounts were independent of the exact formulation viscosity. Conclusion Drug penetration was largely unaffected by hydrogel viscosity. Moderately enhanced viscosity is advisable when designing cellulose ether hydrogels to allow for convenient application.
Collapse
Affiliation(s)
- Lisa Binder
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Julia Mazál
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Romana Petz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.,Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', University of Vienna, Vienna, Austria
| | - Claudia Valenta
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.,Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Chen G, Ji C, Collins LZ, Hoptroff M, Janssen HG. Visualization of zinc pyrithione particles deposited on the scalp from a shampoo by tape-strip sampling and scanning electron microscopy/energy dispersive X-ray spectroscopy measurement. Int J Cosmet Sci 2018; 40:530-533. [PMID: 30193000 DOI: 10.1111/ics.12493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Zinc pyrithione (ZnPT) is widely used as an anti-fungal active in commercial anti-dandruff (AD) shampoos. The AD efficacy of ZnPT is highly dependent on the deposition of ZnPT particles onto the scalp during the process of shampoo application and rinse-off. Since ZnPT materials with different particle sizes and morphologies have different deposition behaviours, the measurement of the actual ZnPT deposition is critical to understand the AD performance delivered by different ZnPT shampoos. The aim of this study is to develop a robust and reliable method for visualizing the particle size and morphology of ZnPT deposited on the scalp from AD shampoos. METHODS Hair was washed with a commercially available AD shampoo containing ZnPT and zinc carbonate (ZnCO3 ). Tape strips were applied to collect the deposited particles from the scalp after AD shampoo application and rinse-off. The scalp tape strip samples were subjected to scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) measurement. The morphology of the ZnPT particles was visualized by SEM imaging and identification of ZnPT particles was confirmed by EDX analysis. RESULTS For the commercial shampoo studied it was observed that two zinc-containing particulates with different morphologies and composition remained on the scalp after shampoo application and rinse-off. As indicated by the EDX spectra, the ZnPT particles deposited onto the scalp surface had polygonal crystal structures. ZnCO3 was also deposited onto the scalp surface. This material was mainly present as aggregated particulates. CONCLUSION An ex vivo method that combines tape strip sampling and SEM/EDX has been developed for measuring and visualizing the particle size, morphology and composition of ZnPT deposited on the scalp from AD shampoos. This ex vivo measurement method provides higher imaging resolution and more chemical specificity than reflectance confocal microscopy (RCM). To the best of our knowledge, this is the first time that ZnPT particles were distinguishable from other zinc particles on the scalp. Moreover, the new method allows the microstructures of both ZnPT and other zinc particles on the scalp to be imaged.
Collapse
Affiliation(s)
- G Chen
- Unilever Research and Development Shanghai, 66 Linxin Road, Linkong Economic Development Zone, Shanghai, 200335, China.,Analytical-Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - C Ji
- Unilever Research and Development Shanghai, 66 Linxin Road, Linkong Economic Development Zone, Shanghai, 200335, China
| | - L Z Collins
- Unilever Research and Development Port Sunlight, Quarry Road East, Bebington Merseyside, SH63 3JW, U.K
| | - M Hoptroff
- Unilever Research and Development Port Sunlight, Quarry Road East, Bebington Merseyside, SH63 3JW, U.K
| | - H-G Janssen
- Analytical-Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.,Unilever Research and Development Vlaardingen, P.O. Box 114, 3130 AC, Vlaardingen, The Netherlands
| |
Collapse
|
12
|
Age related depth profiles of human Stratum Corneum barrier-related molecular parameters by confocal Raman microscopy in vivo. Mech Ageing Dev 2018; 172:6-12. [DOI: 10.1016/j.mad.2017.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022]
|
13
|
Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J Nanobiotechnology 2017; 15:88. [PMID: 29202753 PMCID: PMC5715633 DOI: 10.1186/s12951-017-0323-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/25/2017] [Indexed: 12/24/2022] Open
Abstract
Background This work aimed to provide useful information on the use of nanoemulsions for the percutaneous administration of triptolide. Lipid nanosystems have great potential for transdermal drug delivery. Nanoemulsions and nanoemulsion gels were prepared to enhance percutaneous permeation. Microstructure and in vitro/in vivo percutaneous delivery characteristics of triptolide (TPL)-nanoemulsions and TPL-nanoemulsion gels were compared. The integrity of the nanoemulsions and nanoemulsion gels during transdermal delivery and its effects on the surface of skin were also investigated. The penetration mechanisms of nanoemulsions and nanoemulsion gels were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The transport characteristics of fluorescence-labelled nanoemulsions were probed using laser scanning confocal microscopy. A chronic dermatitis/eczema model in mice ears and the pharmacodynamic of the TPL-nanoemulsion gels were also investigated. Results Compared to TPL gels, significantly greater cumulative amounts of TPL-nanoemulsion gels and TPL-nanoemulsions penetrated rat skin in vitro. The in vivo microdialysis showed the concentration–time curve AUC0–t for TPL-NPs is bigger than the TPL-gels. At the same time, TPL-NPs had a larger effect on the surface of skin. By hydrating keratin and changing the structure of both the stratum corneum lipids and keratin, nanoemulsions and nanoemulsion gels influence skin to promote percutaneous drug penetration. Both hairfollicles and the stratum corneum are also important in this transdermal drug delivery system. Moderate and high dosages of the TPL-nanoemulsion gels can significantly improve the symptoms of dermatitis/eczema inflammation and edema erythematic in mice ears and can reduce the expression of IFN-γ and IL-4. Moreover, the TPL-nanoemulsion gels cause less gastrointestinal damage than that of the Tripterygium wilfordii oral tablet does. Conclusions Nanoemulsions could be suitable for transdermal stably releasing drugs and maintaining the effective drug concentration. The TPL-nanoemulsion gels provided higher percutaneous amounts than other carriers did. These findings suggest that nanoemulsion gels could be promising percutaneous carriers for TPL. The TPL-nanoemulsion gels have a significant treatment effect on dermatitis/eczema in the mice model and is expected to provide a new, low-toxicity and long-term preparation for the clinical treatment of dermatitis/eczema in transdermal drug delivery systems. Electronic supplementary material The online version of this article (10.1186/s12951-017-0323-0) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy. Eur J Pharm Biopharm 2017; 116:94-101. [DOI: 10.1016/j.ejpb.2016.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/30/2016] [Accepted: 10/12/2016] [Indexed: 12/27/2022]
|
15
|
Noninvasive measurement of transdermal drug delivery by impedance spectroscopy. Sci Rep 2017; 7:44647. [PMID: 28338008 PMCID: PMC5364508 DOI: 10.1038/srep44647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
The effectiveness in transdermal delivery of skin permeation strategies (e.g., chemical enhancers, vesicular carrier systems, sonophoresis, iontophoresis, and electroporation) is poorly investigated outside of laboratory. In therapeutic application, the lack of recognized techniques for measuring the actually-released drug affects the scientific concept itself of dosage for topically- and transdermally-delivered drugs. Here we prove the suitability of impedance measurement for assessing the amount of drug penetrated into the skin after transdermal delivery. In particular, the measured amount of drug depends linearly on the impedance magnitude variation normalized to the pre-treated value. Three experimental campaigns, based on the electrical analysis of the biological tissue behavior due to the drug delivery, are reported: (i) laboratory emulation on eggplants, (ii) ex-vivo tests on pig ears, and finally (iii) in-vivo tests on human volunteers. Results point out that the amount of delivered drug can be assessed by reasonable metrological performance through a unique measurement of the impedance magnitude at one single frequency. In particular, in-vivo results point out sensitivity of 23 ml−1, repeatability of 0.3%, non-linearity of 3.3%, and accuracy of 5.7%. Finally, the measurement resolution of 0.20 ml is compatible with clinical administration standards.
Collapse
|
16
|
Lohan SB, Saeidpour S, Solik A, Schanzer S, Richter H, Dong P, Darvin ME, Bodmeier R, Patzelt A, Zoubari G, Unbehauen M, Haag R, Lademann J, Teutloff C, Bittl R, Meinke MC. Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy. Eur J Pharm Biopharm 2016; 116:102-110. [PMID: 28043865 DOI: 10.1016/j.ejpb.2016.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
An improvement of the penetration efficiency combined with the controlled release of actives in the skin can facilitate the medical treatment of skin diseases immensely. Dexamethasone (Dx), a synthetic glucocorticoid, is frequently used for the treatment of inflammatory skin diseases. To investigate the penetration of nano-sized lipid particles (NLP) loaded with Dx in comparison to a commercially available base cream, different techniques were applied. Electron paramagnetic resonance (EPR) spectroscopy was used to monitor the penetration of Dx, which was covalently labeled with the spin probe 3-(Carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA). The penetration into hair follicles was studied using confocal laser scanning microscopy (CLSM) with curcumin-loaded NLP. The penetration of the vehicle was followed by confocal Raman microscopy (CRM). Penetration studies using excised porcine skin revealed a more than twofold higher penetration efficiency for DxPCA into the stratum corneum (SC) after 24h incubation compared to 4h incubation when loaded to the NLP, whereas when applied in the base cream, almost no further penetration was observed beyond 4h. The distribution of DxPCA within the SC was investigated by consecutive tape stripping. The release of DxPCA from the base cream after 24h in deeper SC layers and the viable epidermis was shown by EPR. For NLP, no release from the carrier was observed, although DxPCA was detectable in the skin after the complete SC was removed. This phenomenon can be explained by the penetration of the NLP into the hair follicles. However, penetration profiles measured by CRM indicate that NLP did not penetrate as deeply into the SC as the base cream formulation. In conclusion, NLP can improve the accumulation of Dx in the skin and provide a reservoir within the SC and in the follicular infundibula.
Collapse
Affiliation(s)
- Silke B Lohan
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany.
| | | | - Agnieszka Solik
- Freie Universität Berlin, Pharmazeutische Technologie, Institut für Pharmazie, Berlin, Germany
| | - Sabine Schanzer
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Heike Richter
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Pin Dong
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Roland Bodmeier
- Freie Universität Berlin, Pharmazeutische Technologie, Institut für Pharmazie, Berlin, Germany
| | - Alexa Patzelt
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | - Gaith Zoubari
- Freie Universität Berlin, Pharmazeutische Technologie, Institut für Pharmazie, Berlin, Germany
| | - Michael Unbehauen
- Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| | | | - Robert Bittl
- Freie Universität Berlin, Fachbereich Physik, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
17
|
Balu M, Mikami H, Hou J, Potma EO, Tromberg BJ. Rapid mesoscale multiphoton microscopy of human skin. BIOMEDICAL OPTICS EXPRESS 2016; 7:4375-4387. [PMID: 27895980 PMCID: PMC5119580 DOI: 10.1364/boe.7.004375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 05/26/2023]
Abstract
We present a multiphoton microscope designed for mesoscale imaging of human skin. The system is based on two-photon excited fluorescence and second-harmonic generation, and images areas of ~0.8x0.8 mm2 at speeds of 0.8 fps (800x800 pixels; 12 frame averages) for high signal-to-noise ratio, with lateral and axial resolutions of 0.5µm and 3.3µm, respectively. The main novelty of this instrument is the design of the scan head, which includes a fast galvanometric scanner, optimized relay optics, a beam expander and high NA objective lens. Computed aberrations in focus are below the Marechal criterion of 0.07λ rms for diffraction-limited performance. We demonstrate the practical utility of this microscope by ex-vivo imaging of wide areas in normal human skin.
Collapse
Affiliation(s)
- Mihaela Balu
- University of California, Irvine, Beckman Laser Institute, Laser Microbeam and Medical Program, Irvine, CA 92612, USA
| | - Hideharu Mikami
- Current Affiliation: Department of Chemistry School of Science, University of Tokyo, Tokyo, Japan
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Jue Hou
- University of California, Irvine, Beckman Laser Institute, Laser Microbeam and Medical Program, Irvine, CA 92612, USA
| | - Eric O. Potma
- University of California, Irvine, Beckman Laser Institute, Laser Microbeam and Medical Program, Irvine, CA 92612, USA
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Bruce J. Tromberg
- University of California, Irvine, Beckman Laser Institute, Laser Microbeam and Medical Program, Irvine, CA 92612, USA
| |
Collapse
|
18
|
Vogt A, Wischke C, Neffe AT, Ma N, Alexiev U, Lendlein A. Nanocarriers for drug delivery into and through the skin — Do existing technologies match clinical challenges? J Control Release 2016; 242:3-15. [DOI: 10.1016/j.jconrel.2016.07.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022]
|
19
|
Mujica Ascencio S, Choe C, Meinke MC, Müller RH, Maksimov GV, Wigger-Alberti W, Lademann J, Darvin ME. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. Eur J Pharm Biopharm 2016; 104:51-8. [PMID: 27108784 DOI: 10.1016/j.ejpb.2016.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Abstract
Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin.
Collapse
Affiliation(s)
- Saul Mujica Ascencio
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Centro de Investigación e Innovación Tecnológica (CIITEC) del Instituto Politécnico Nacional (IPN), Cerrada de Cecati S/N, Col. Santa Catarina Azcapotzalco, México D.F. CP: 02250, Mexico
| | - ChunSik Choe
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rainer H Müller
- Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Freie Universität Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - George V Maksimov
- M.V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, Leninskie Gory, 1-12, 119991 Moscow, Russia
| | | | - Juergen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
20
|
Koehler MJ, Kellner K, Kaatz M, Hipler UC. Epidermal changes during UVB phototherapy assessed by multiphoton laser tomography. Skin Res Technol 2016; 22:437-442. [PMID: 26853735 DOI: 10.1111/srt.12284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Multiphoton laser tomography (MPT) is a non-invasive technique that allows imaging of skin in vivo with very high spatial resolution and contrast. Previous work of our group has demonstrated that known morphological changes due to erythematogenic ultraviolet B (UVB) irradiation may be imaged in vivo by MPT. The present work investigated if morphological skin changes known from experimental erythematogenic UVB irradiation are also demonstrable in the course of a standard phototherapy regime that implies suberythematogenic doses of narrow band UVB. METHODS Sixteen patients with psoriasis vulgaris receiving a narrow band phototherapy were included. A test field and a light-protected control field were measured with the multiphoton tomograph DermaInspect® at four time points: at baseline, the next day, after 3 days and at the day of the last exposure. RESULTS In the course of the UVB phototherapy, spongiosis and pleomorphy as parameters of inflammation and cellular damage did not show significant changes. By contrast, an adaptive skin reaction with significant changes of keratosis and pigmentation was observed. CONCLUSION MPT is a suitable technique for the investigation of qualitative and quantitative skin changes after UVB irradiation. After suberythematogenic UVB irradiation, photoadaptive skin changes, but no cellular damage can be observed with MPT.
Collapse
Affiliation(s)
- M J Koehler
- Department of Dermatology, University Hospital Jena, Jena, Germany.
| | - K Kellner
- Department of Dermatology, University Hospital Jena, Jena, Germany.,ENT Department, University Hospital Leipzig, Leipzig, Germany
| | - M Kaatz
- Department of Dermatology, SRH Waldklinikum Gera, Gera, Germany
| | - U-C Hipler
- Department of Dermatology, University Hospital Jena, Jena, Germany
| |
Collapse
|
21
|
Raj N, Voegeli R, Rawlings AV, Gibbons S, Munday MR, Summers B, Lane ME. Variation in stratum corneum protein content as a function of anatomical site and ethnic group. Int J Cosmet Sci 2015; 38:224-31. [DOI: 10.1111/ics.12274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
Affiliation(s)
- N. Raj
- School of Pharmacy; University College London; London U.K
| | - R. Voegeli
- DSM Nutritional Products Ltd.; Kaiseraugst Switzerland
| | - A. V. Rawlings
- School of Pharmacy; University College London; London U.K
| | - S. Gibbons
- School of Pharmacy; University College London; London U.K
| | - M. R. Munday
- School of Pharmacy; University College London; London U.K
| | - B. Summers
- Photobiology Laboratory; Sefako Makgatho University; Mednusa South Africa
| | - M. E. Lane
- School of Pharmacy; University College London; London U.K
| |
Collapse
|
22
|
Choe C, Lademann J, Darvin ME. Analysis of Human and Porcine Skin in vivo/ex vivo for Penetration of Selected Oils by Confocal Raman Microscopy. Skin Pharmacol Physiol 2015; 28:318-30. [PMID: 26418603 DOI: 10.1159/000439407] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The subject of oil penetration into the skin is controversially discussed in the scientific literature. METHODS Confocal Raman microscopy was used for analyzing oil penetration into the skin. The following methods were applied in the study: methods based on tracking specific peaks (method 1), the nonrestricted multiple least square fit (method 2), analyzing the lipid-to-keratin peak ratio using the perpendicular drop-down cutoff procedure (method 3), and the Gaussian function-based deconvolution procedure (method 4). RESULTS The results obtained using methods 1, 2 and 4 show that the investigated oils do not penetrate deeper than 11 µm into human and porcine skin. Petrolatum has a prominent swelling effect on the stratum corneum (32% in vivo, 28% ex vivo), while the other oils exhibit no significant swelling effect. By using method 3, the penetration profile of oils, and especially of petrolatum, into the skin was interpreted incorrectly for various reasons that are addressed herein below. CONCLUSION Predominantly remaining in the uppermost corneocyte layers of the stratum corneum, topically applied oils do not reach the viable cells of the stratum spinosum. To exclude any possible mistakes when using the lipid-keratin Raman peak (2,820-3,030 cm-1), the penetration analysis should be performed using the Gaussian function-based deconvolution procedure.
Collapse
Affiliation(s)
- ChunSik Choe
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charitx00E9; - Universitx00E4;tsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
23
|
Falcone D, Uzunbajakava NE, Varghese B, de Aquino Santos GR, Richters RJH, van de Kerkhof PCM, van Erp PEJ. Microspectroscopic Confocal Raman and Macroscopic Biophysical Measurements in the in vivo Assessment of the Skin Barrier: Perspective for Dermatology and Cosmetic Sciences. Skin Pharmacol Physiol 2015; 28:307-17. [PMID: 26406586 DOI: 10.1159/000439031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022]
Abstract
Skin barrier function, confined to the stratum corneum, is traditionally evaluated using established, noninvasive biophysical methods like transepidermal water loss, capacitance and conductance. However, these methods neither measure skin molecular composition nor its structure, hindering the actual causes of skin barrier change or impairment. At the same time, confocal Raman microspectroscopy (CRS) can directly measure skin molecular composition and structure and has proven itself to be a powerful technique for biomolecular analysis. The aims of this literature review were to evaluate noninvasive biophysical methods in view of CRS and to outline a direction towards more specific and informative skin measurement methods. We address this by investigating, for the first time, the relation between in vivo assessment of the skin barrier using indirect biophysical methods and the actual skin composition and structure as given by CRS, and emphasize the high potential of CRS for dermatology and cosmetic sciences. CRS acceptance in these fields will require close collaboration between dermatologists, skin scientists and spectroscopy experts towards simplifying the technology and creating robust, rapid, easy-to-use and less expensive CRS applications.
Collapse
Affiliation(s)
- Denise Falcone
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Hatanaka T, Yoshida S, Kadhum WR, Todo H, Sugibayashi K. In Silico Estimation of Skin Concentration Following the Dermal Exposure to Chemicals. Pharm Res 2015. [PMID: 26195007 DOI: 10.1007/s11095-015-1756-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To develop an in silico method based on Fick's law of diffusion to estimate the skin concentration following dermal exposure to chemicals with a wide range of lipophilicity. METHODS Permeation experiments of various chemicals were performed through rat and porcine skin. Permeation parameters, namely, permeability coefficient and partition coefficient, were obtained by the fitting of data to two-layered and one-layered diffusion models for whole and stripped skin. The mean skin concentration of chemicals during steady-state permeation was calculated using the permeation parameters and compared with the observed values. RESULTS All permeation profiles could be described by the diffusion models. The estimated skin concentrations of chemicals using permeation parameters were close to the observed levels and most data fell within the 95% confidence interval for complete prediction. The permeability coefficient and partition coefficient for stripped skin were almost constant, being independent of the permeant's lipophilicity. CONCLUSIONS Skin concentration following dermal exposure to various chemicals can be accurately estimated based on Fick's law of diffusion. This method should become a useful tool to assess the efficacy of topically applied drugs and cosmetic ingredients, as well as the risk of chemicals likely to cause skin disorders and diseases.
Collapse
Affiliation(s)
- Tomomi Hatanaka
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Shun Yoshida
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Wesam R Kadhum
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Hiroaki Todo
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
25
|
Schleusener J, Gluszczynska P, Reble C, Gersonde I, Helfmann J, Fluhr JW, Lademann J, Röwert-Huber J, Patzelt A, Meinke MC. In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy. Exp Dermatol 2015; 24:767-72. [PMID: 26010742 DOI: 10.1111/exd.12768] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 11/28/2022]
Abstract
Raman spectroscopy has proved its capability as an objective, non-invasive tool for the detection of various melanoma and non-melanoma skin cancers (NMSC) in a number of studies. Most publications are based on a Raman microspectroscopic ex vivo approach. In this in vivo clinical evaluation, we apply Raman spectroscopy using a fibre-coupled probe that allows access to a multitude of affected body sites. The probe design is optimized for epithelial sensitivity, whereby a large part of the detected signal originates from within the epidermal layer's depth down to the basal membrane where early stages of skin cancer develop. Data analysis was performed on measurements of 104 subjects scheduled for excision of lesions suspected of being malignant melanoma (MM) (n = 36), basal cell carcinoma (BCC) (n = 39) and squamous cell carcinoma (SCC) (n = 29). NMSC were discriminated from normal skin with a balanced accuracy of 73% (BCC) and 85% (SCC) using partial least squares discriminant analysis (PLS-DA). Discriminating MM and pigmented nevi (PN) resulted in a balanced accuracy of 91%. These results lie within the range of comparable in vivo studies and the accuracies achieved by trained dermatologists using dermoscopy. Discrimination proved to be unsuccessful between cancerous lesions and suspicious lesions that had been histopathologically verified as benign by dermoscopy.
Collapse
Affiliation(s)
- Johannes Schleusener
- Laser- und Medizin-Technologie Berlin (LMTB), Berlin, Germany.,Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patrycja Gluszczynska
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carina Reble
- Laser- und Medizin-Technologie Berlin (LMTB), Berlin, Germany.,Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin, Germany
| | - Ingo Gersonde
- Laser- und Medizin-Technologie Berlin (LMTB), Berlin, Germany
| | - Jürgen Helfmann
- Laser- und Medizin-Technologie Berlin (LMTB), Berlin, Germany
| | - Joachim W Fluhr
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Röwert-Huber
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexa Patzelt
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Raman spectroscopic characterisation of resin-infiltrated hypomineralised enamel. Anal Bioanal Chem 2015; 407:5661-71. [DOI: 10.1007/s00216-015-8742-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/07/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022]
|
27
|
Application of single molecule fluorescence microscopy to characterize the penetration of a large amphiphilic molecule in the stratum corneum of human skin. Int J Mol Sci 2015; 16:6960-77. [PMID: 25826528 PMCID: PMC4424999 DOI: 10.3390/ijms16046960] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/16/2022] Open
Abstract
We report here on the application of laser-based single molecule total internal reflection fluorescence microscopy (TIRFM) to study the penetration of molecules through the skin. Penetration of topically applied drug molecules is often observed to be limited by the size of the respective drug. However, the molecular mechanisms which govern the penetration of molecules through the outermost layer of the skin are still largely unknown. As a model compound we have chosen a larger amphiphilic molecule (fluorescent dye ATTO-Oxa12) with a molecular weight >700 Da that was applied to excised human skin. ATTO-Oxa12 penetrated through the stratum corneum (SC) into the viable epidermis as revealed by TIRFM of cryosections. Single particle tracking of ATTO-Oxa12 within SC sheets obtained by tape stripping allowed us to gain information on the localization as well as the lateral diffusion dynamics of these molecules. ATTO-Oxa12 appeared to be highly confined in the SC lipid region between (intercellular space) or close to the envelope of the corneocytes. Three main distinct confinement sizes of 52 ± 6, 118 ± 4, and 205 ± 5 nm were determined. We conclude that for this amphiphilic model compound several pathways through the skin exist.
Collapse
|
28
|
Balu M, Saytashev I, Hou J, Dantus M, Tromberg BJ. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:120501. [PMID: 26641198 PMCID: PMC4671301 DOI: 10.1117/1.jbo.20.12.120501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/30/2015] [Indexed: 05/03/2023]
Abstract
Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.
Collapse
Affiliation(s)
- Mihaela Balu
- University of California, Irvine, Beckman Laser Institute, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
- Address all correspondence to: Mihaela Balu, E‐mail:
| | - Ilyas Saytashev
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jue Hou
- University of California, Irvine, Beckman Laser Institute, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Marcos Dantus
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Bruce J. Tromberg
- University of California, Irvine, Beckman Laser Institute, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
| |
Collapse
|
29
|
Estimation of skin concentrations of topically applied lidocaine at each depth profile. Int J Pharm 2014; 475:292-7. [DOI: 10.1016/j.ijpharm.2014.08.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/25/2014] [Accepted: 08/21/2014] [Indexed: 11/16/2022]
|
30
|
Braddy AC, Davit BM, Stier EM, Conner DP. Survey of international regulatory bioequivalence recommendations for approval of generic topical dermatological drug products. AAPS JOURNAL 2014; 17:121-33. [PMID: 25344440 DOI: 10.1208/s12248-014-9679-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 09/30/2014] [Indexed: 11/30/2022]
Abstract
The objective of this article is to discuss the similarities and differences in accepted bioequivalence (BE) approaches for generic topical dermatological drug products between international regulatory authorities and organizations. These drug products are locally applied and not intended for systemic absorption. Therefore, the BE approaches which serve as surrogates to establish safety and efficacy for topical dosage forms tend to differ from the traditional solid oral dosage forms. We focused on 15 different international jurisdictions and organizations that currently participate in the International Generic Drug Regulators Pilot Project. These are Australia, Brazil, Canada, China, Chinese Taipei, the European Medicines Association (EMA), Japan, Mexico, New Zealand, Singapore (a member of the Association of Southeast Asian Nations), South Africa, South Korea, Switzerland, the USA and the World Health Organization (WHO). Upon evaluation, we observed that currently only Canada, the EMA, Japan, and the USA have specific guidance documents for topical drug products. Across all jurisdictions and organizations, the three approaches consistently required are (1) BE studies with clinical endpoints for most topical drug products; (2) in vivo pharmacodynamic studies, in particular the vasoconstrictor assay for topical corticosteroids; and (3) waivers from BE study requirements for topical solutions. Japan, South Africa, the USA, and the WHO are also making strides to accept other BE approaches such as in vivo pharmacokinetic studies for BE assessment, in vivo dermatopharmacokinetic studies and/or BE studies with in vitro endpoints.
Collapse
Affiliation(s)
- April C Braddy
- Division of Bioequivalence III, Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA,
| | | | | | | |
Collapse
|
31
|
Fluhr JW, Lachmann N, Baudouin C, Msika P, Darlenski R, De Belilovsky C, Bossert J, Colomb E, Burdin B, Haftek M. Development and organization of human stratum corneum after birth: electron microscopy isotropy score and immunocytochemical corneocyte labelling as epidermal maturation's markers in infancy. Br J Dermatol 2014; 171:978-86. [PMID: 24506732 DOI: 10.1111/bjd.12880] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is growing evidence for the ongoing structural and functional adaptation of the skin after birth. OBJECTIVES The aim of this study was the definition of scanning electron microscopy markers of skin maturation in different age groups (birth to adulthood). We propose a semiquantitative score to analyse the maturation of the skin surface and a complementary evaluation of the distribution of corneodesmosin and corneodesmosomes. MATERIAL AND METHODS An electron microscopy isotropy (E.M.I.) score was performed in six age-groups to include fullterm neonates, babies, children and adults. The distribution of corneodesmosome remnants was analysed by corneodesmosin distribution with immunocytochemical corneocyte labelling. RESULTS The E.M.I. score showed the highest anisotropy in neonates. The youngest groups displayed irregular and thick cell clusters composed of poorly individualized cells. In the older groups, the distribution of superficial corneocytes was more regular. The cells evenly covered the surface and displayed easily visualized single cell outlines. The distribution of immune-labelled corneodesmosome remnants and the corneocyte projected area showed a correlation between age and structural maturation. The observed evolution indicated a poorly controlled process of corneocyte desquamation in infants and confirmed the relative immaturity of the epidermal barrier up to 1-2 years after birth under basal conditions. CONCLUSION Our study is the first attempt at semiquantitative evaluation of the micromorphology maturation of the epidermal surface at the ultrastructural level. The E.M.I. score and the associated pattern of corneodesmosome breakdown may be used as markers of the stratum corneum maturation.
Collapse
Affiliation(s)
- J W Fluhr
- Department of Dermatology, Charité University Clinic, Charité Platz 1, D-10117, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Koehler MJ, Kellner K, Hipler UC, Kaatz M. Acute UVB-induced epidermal changes assessed by multiphoton laser tomography. Skin Res Technol 2014; 21:137-43. [PMID: 25066913 DOI: 10.1111/srt.12168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND In vivo multiphoton tomography (MPT) of human skin has become a valuable tool for non-invasive examination of morphological and biophysical skin properties and their alterations. So far, skin changes after UVB irradiation were mainly evaluated clinically and histologically. The present study aimed at non-invasive imaging of histological changes during acute UVB irradiation by multiphoton laser tomography. METHODS In 10 volunteers, five areas were irradiated once with an erythematous UVB dose. Multiphoton measurements were performed four times, i.e. before irradiation (baseline), and 24, 48 and 72 h after irradiation, respectively. The data were evaluated for changes of epidermal pleomorphy, spongiosis, pigmentation and thickness. RESULTS The four parameters were altered significantly by acute UVB irradiation, i.e. epidermal pleomorphy, spongiosis, pigmentation and thickness increased within 72 h after irradiation. CONCLUSION Thus, the study has shown that typical epidermal changes induced by acute UVB irradiation can be evaluated by MPT.
Collapse
Affiliation(s)
- M J Koehler
- Department of Dermatology, SRH Waldklinikum Gera, Gera, Germany; Department of Dermatology, University Hospital Jena, Jena, Germany
| | | | | | | |
Collapse
|
33
|
Judd AM, Scurr DJ, Heylings JR, Wan KW, Moss GP. Distribution and visualisation of chlorhexidine within the skin using ToF-SIMS: a potential platform for the design of more efficacious skin antiseptic formulations. Pharm Res 2013; 30:1896-905. [PMID: 23636837 DOI: 10.1007/s11095-013-1032-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/18/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE In order to increase the efficacy of a topically applied antimicrobial compound the permeation profile, localisation and mechanism of action within the skin must first be investigated. METHODS Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to visualise the distribution of a conventional antimicrobial compound, chlorhexidine digluconate, within porcine skin without the need for laborious preparation, radio-labels or fluorescent tags. RESULTS High mass resolution and high spatial resolution mass spectra and chemical images were achieved when analysing chlorhexidine digluconate treated cryo-sectioned porcine skin sections by ToF-SIMS. The distribution of chlorhexidine digluconate was mapped throughout the skin sections and our studies indicate that the compound appears to be localised within the stratum corneum. In parallel, tape strips taken from chlorhexidine digluconate treated porcine skin were analysed by ToF-SIMS to support the distribution profile obtained from the skin sections. CONCLUSIONS ToF-SIMS can act as a powerful complementary technique to map the distribution of topically applied compounds within the skin.
Collapse
Affiliation(s)
- Amy M Judd
- School of Pharmacy, Keele University, Keele, Staffordshire ST5 5BG, UK.
| | | | | | | | | |
Collapse
|