1
|
Zhong Y, Teo JQM, Guo S, Schlundt J, Kwa ALH, Ong RTH. Characterization of mobile resistance elements in extended-spectrum β-lactamase producing gram-negative bacteria from aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179353. [PMID: 40245502 DOI: 10.1016/j.scitotenv.2025.179353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Extended-spectrum β-lactamase producing (ESBL) bacteria from aquatic environments can pose potential threats to public health due to their capability of spreading antimicrobial resistance (AMR) genes through mobile genetic elements (MGEs), such as plasmids, insertion sequences (ISs), transposons, and integrons. Currently, there is no policy for routine monitoring of AMR genes in aquatic environments and their roles in transmission are therefore unknown. Previous metagenomic and PCR-based culture-independent approaches are limited in recovering AMR resistant aquatic bacteria isolates and the data resolution generated are not able to provide detailed genetic comparison with known human pathogens particularly for determining genetic islands harbouring AMR genes. To address these gaps, we thus investigated the genetic profiles of ESBL-producing gram-negative aquatic bacteria found from water body sites within Singapore, examining the AMR genes carried and their associated MGEs. In total, 16 ESBL-producing gram-negative bacteria were identified, of which 8 were Escherichia coli, 3 Klebsiella pneumoniae, and 5 Aeromonas spp. Whole genome sequencing (WGS) analysis revealed the presence of 12 distinct classes of AMR genes, including 16 distinct variants of β-lactamase, of which blaCTX-M was the dominant beta-lactamase genotype in all 11 Enterobacterales. The AMR genetic islands in the aquatic bacteria were also found to share similar genetic structures similar to those of circulating ESBL bacteria causing human infections. These findings underscore the potential role of aquatic ESBL bacteria as AMR reservoirs for human pathogens, suggesting that aquatic bacteria may facilitate the hidden transmission of AMR mediated by MGEs through horizontal gene transfer across different sources and species, highlighting the importance of integrating environmental AMR monitoring into local surveillance strategies.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore; SingHealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore
| | - Jocelyn Qi-Min Teo
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Siyao Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Joergen Schlundt
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore; SingHealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore; Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| |
Collapse
|
2
|
Doornekamp L, Klaassen CHW, Zandijk WHA, Goessens WHF, Bode LGM. Performance of two combination disk methods as confirmation for ESBL and AmpC presence in clinical Enterobacterales isolates. Diagn Microbiol Infect Dis 2025; 112:116741. [PMID: 39970820 DOI: 10.1016/j.diagmicrobio.2025.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE Guidelines recommend the use of a combination disk method (CDM) including cefepime and clavulanic acid as a confirmation method for ESBL detection. However, an alternative CDM containing cloxacillin (combining ceftazidime and cefotaxime with clavulanic acid and/or cloxacillin), is not only able to confirm ESBL presence, but also to provide information about AmpC production. We aim to show non-inferiority of the cloxacillin-CDM compared to the cefepime-CDM. METHODS We collected 102 individual clinical Enterobacterales isolates that were positive in the ESBL screening with the VITEK II. Phenotypic confirmation was performed with a cefepime-CDM and a cloxacillin-CDM (Rosco®). These results were compared with the results of a multiplex ESBL real-time PCR and an in-house developed conventional AmpC PCR. RESULTS Twenty-eight% of the isolates were positive in the ESBL PCR (CTX-M, SHV-2, TEM-3). The results of cefepime-CDM and cloxacillin-CDM were concordant with the ESBL PCR in respectively 99 and 94 %. The cefepime-CDM had a sensitivity of 100 % (95 % confidence interval (CI) 88,1-100) and specificity of 98,6 % (95 % CI 92,6-100). The cloxacillin-CDM had a sensitivity of 96,6 (95 % CI 82,2-99,9) and a specificity of 93,2 % (95 % CI 84,7-97,7). The cloxacillin-CDM in the group I Enterobacterales compared to the AmpC PCR had a sensitivity of 92 % (95 % CI 62-100) and a specificity of 100 % (95 % CI 77-100). CONCLUSION Both cefepime-CDM and cloxacillin-CDM performed well as ESBL confirmation methods. Therefore, we suggest to add the cloxacillin-CDM as an alternative ESBL confirmation method to AMR detection guidelines in clinical settings.
Collapse
Affiliation(s)
- L Doornekamp
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - C H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - W H A Zandijk
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - W H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - L G M Bode
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
3
|
AL Shizawi N, AL Jabri Z, Khan F, Sami H, AL Siyabi T, AL Muharrmi Z, Sirasanagandla SR, Rizvi M. Mapping Antimicrobial Resistance in Escherichia coli and Klebsiella pneumoniae from Complicated Urinary Tract Infections in Oman: Phenotypic and Genotypic Insights. Diagnostics (Basel) 2025; 15:1062. [PMID: 40361883 PMCID: PMC12071653 DOI: 10.3390/diagnostics15091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Mapping the local etiology and susceptibility of common pathogens causing complicated urinary tract infection (cUTI) is important for promoting evidence-based antimicrobial prescribing. Evaluating the prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase (AmpC), and carbapenemase-producing Enterobacterales (CPEs) is equally important as it informs treatment guidelines and empiric management. Whole genome sequencing (WGS) enhances antimicrobial resistance (AMR) surveillance by complementing phenotypic antimicrobial susceptibility testing, offering deeper insights into resistance mechanisms, transmissions, and evolutions. Integrating it into routine AMR monitoring can significantly improve global efforts to combat antimicrobial resistance. Methods: Antimicrobial susceptibility profiles of isolates from cUTI were collected from patients presenting with Sultan Qaboos University Hospital, Muscat and Suhar Hospital, Suhar, Oman. Automated systems as well as manual methods were used for detection of ESBL, AmpC, and CPE. ESBLs, AmpC β-lactamases, and CPEs were further detected by manual methods: double-disk synergy test for ESBL; disk approximation assay and D69C AmpC detection set for AmpC, and mCIM and KPC/IMP/NDM/VIM/OXA-48 Combo test kit for CPE. WGS was carried out in 11 FOX-resistant E. coli and (22 carbapenem-resistant K. pneumoniae) isolates with varying susceptibilities to identify circulating clades, AMR genes, and plasmids. Bioinformatic analysis was performed using online tools. Results: The susceptibility patterns of E. coli from cUTI were as follows: nitrofurantoin (96%), fosfomycin (100%), fluoroquinolones (44%), aminoglycosides (93%), piperacillin-tazobactam (95%), and carbapenems (98%). In comparison, susceptibility rates of K. pneumoniae were far lower: nitrofurantoin (38%), fosfomycin (89%), aminoglycosides (82%), piperacillin-tazobactam (72%), and carbapenems (83%). K. pneumoniae, however, was more susceptible to fluoroquinolones at 47% in comparison to E. coli. The prevalence of ESBL among E. coli and K. pneumoniae was 37.2% and CRE was 6.2% while the estimated prevalence of AmpC was 5.4%. It was observed that E. coli was the predominant ESBL and AmpC producer, while K. pneumoniae was the major carbapenem-resistant Enterobacterales (CREs) producer. No predominant multi-locus sequence typing (MLST) lineage was observed in AmpC-producing E. coli with nine E. coli MLST lineages being identified from eleven isolates: ST-10, ST-69, ST-77, ST-131, ST-156, ST-167, ST-361, ST-1125, and ST-2520. On the other hand, a less diverse MLST spectrum (ST-2096, ST-231, ST-147, ST-1770, and ST-111) was observed in the CRE K. pneumoniae. Among the five MLST lineages, ST-2096 (twelve isolates) and ST-147 (seven isolates) predominated. WGS revealed that DHA-1 was the predominant plasmid-mediated AmpC gene in E. coli, while OXA-232 and NDM-5 were the most common carbapenemase genes in K. pneumoniae. All E. coli DHA-1-positive isolates co-harbored the quinolone resistance gene qnrB4 and the sulfonamide resistance gene sul1 while no aminoglycoside resistance genes were detected. The majority of CPE CRE K. pneumoniae carried other β-lactamase genes, such as blaCTX-M-15, blaSHV, and blaTEM; all co-harbored the quinolone resistance gene OqxAB; and 77% carried the aminoglycoside resistance gene armA. Conclusions: Our results suggest that fosfomycin is an excellent empiric choice for treating complicated cystitis caused by both E. coli and K. pneumoniae, while nitrofurantoin is an appropriate choice for E. coli cystitis but not for K. pneumoniae. Aminoglycosides and piperacillin-tazobactam are excellent intravenous alternatives that spare carbapenems. DHA-1 was the predominant AmpC in E. coli, while OXA-232 and NDM-5 were the predominant carbapenemases in K. pneumoniae. In AmpC-producing E. coli, no MLST predominated, suggesting a significant flux in E. coli with lack of stable clades in this region. In contrast, ST-2096 and ST-147 predominated in CRE Klebsiella pneumoniae, suggesting a stable circulation of these in Oman. WGS profiling provides a deeper understanding of the genetic basis of resistance and enhances surveillance and offers comprehensive insights into pathogen evolution and transmission patterns.
Collapse
Affiliation(s)
- Nawal AL Shizawi
- Department of Microbiology, Suhar Hospital, Ministry of Health, Sohar 100, Oman;
| | - Zaaima AL Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| | - Fatima Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202001, India; (F.K.); (H.S.)
| | - Hiba Sami
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202001, India; (F.K.); (H.S.)
| | - Turkiya AL Siyabi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| | - Zakariya AL Muharrmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| |
Collapse
|
4
|
Stankiewicz K, Boroń P, Prajsnar J, Lenart-Boroń A. Is our winter experience safe? Micropollutant risks for artificial snowing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178876. [PMID: 39970557 DOI: 10.1016/j.scitotenv.2025.178876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Artificial snowing is a process that allows ski operators adapt to snow scarcity due to climate change while raising environmental and public health concerns about the role it plays in environmental dissemination of pollutants, but studies addressing this question are still scarce. This study aimed to fill this gap in understanding the role of artificial snowmaking in dissemination of antibiotics, bacterial contaminants, antibiotic resistant bacteria (ARB) and genetic determinants (ARGs) thereof. Technical snow and water used for its production were examined from 11 ski stations located in four river catchments, varying in anthropopressure and the presence/absence of storage reservoirs where water is collected before snowmaking. Culturable E. coli were found in all water intakes with clear reduction/elimination during snowmaking. Fourteen antimicrobial agents were detected using UHPLC/MS/MS. Concentration and prevalence of antimicrobials differed between the catchments; the sites located downstream of long-term stay health centers were most severely contaminated. Two antibiotics of restricted use (vancomycin and linezolid) were detected downstream of hospitals. Antimicrobial resistance of 158 E. coli strains was tested using disk diffusion method. The resistance to penicillins (e.g. ampicillin, amoxicillin/clavulanic acid) was most frequent and in general followed the pattern of antibiotic consumption rather than antibiotic concentration in water. Extended-spectrum beta lactamase (ESBL) genes were detected using PCR tests: 66.46 % (105 out of 158) strains possessed at least one ARG among which blaTEM was most frequent, followed by blaCTX-M and blaSHV. Our study indicates that the major sources of aquatic environment and technical snow contamination with antimicrobial agents are effluents from long-term stay medical centers, while bacterial contamination (including ARB and ARGs) stems from municipal WWTPs, i.e. the main hubs of antimicrobial resistance transfer to the environment. The storage reservoir construction may aid in reducing the transfer rate of pollutants and micropollutants from contaminated water to technical snow.
Collapse
Affiliation(s)
- Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Kraków, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| |
Collapse
|
5
|
Gallardo-Pizarro A, Teijón-Lumbreras C, Monzo-Gallo P, Aiello TF, Chumbita M, Peyrony O, Gras E, Pitart C, Mensa J, Esteve J, Soriano A, Garcia-Vidal C. Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile Neutropenia. Antibiotics (Basel) 2024; 14:13. [PMID: 39858299 PMCID: PMC11760484 DOI: 10.3390/antibiotics14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The rise of multidrug-resistant (MDR) infections demands personalized antibiotic strategies for febrile neutropenia (FN) in hematological malignancies. This study investigates machine learning (ML) for identifying patient profiles with increased susceptibility to bloodstream infections (BSI) during FN onset, aiming to tailor treatment approaches. Methods: From January 2020 to June 2022, we used the unsupervised ML algorithm KAMILA to analyze data from hospitalized hematological malignancy patients. Eleven features categorized clinical phenotypes and determined BSI and multidrug-resistant Gram-negative bacilli (MDR-GNB) prevalences at FN onset. Model performance was evaluated with a validation cohort from July 2022 to March 2023. Results: Among 462 FN episodes analyzed in the development cohort, 116 (25.1%) had BSIs. KAMILA's stratification identified three risk clusters: Cluster 1 (low risk), Cluster 2 (intermediate risk), and Cluster 3 (high risk). Cluster 2 (28.4% of episodes) and Cluster 3 (43.7%) exhibited higher BSI rates of 26.7% and 37.6% and GNB BSI rates of 13.4% and 19.3%, respectively. Cluster 3 had a higher incidence of MDR-GNB BSIs, accounting for 75% of all MDR-GNB BSIs. Cluster 1 (27.9% of episodes) showed a lower BSI risk (<1%) with no GNB infections. Validation cohort results were similar: Cluster 3 had a BSI rate of 38.1%, including 78% of all MDR-GNB BSIs, while Cluster 1 had no GNB-related BSIs. Conclusions: Unsupervised ML-based risk stratification enhances evidence-driven decision-making for empiric antibiotic therapies at FN onset, crucial in an era of rising multi-drug resistance.
Collapse
Affiliation(s)
- Antonio Gallardo-Pizarro
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Christian Teijón-Lumbreras
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
| | - Patricia Monzo-Gallo
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Tommaso Francesco Aiello
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Mariana Chumbita
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Olivier Peyrony
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
- Emergency Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
| | - Emmanuelle Gras
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
- Institut Pierre Louis d’Épidémiologie et de Santé Publique, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne University, 75012 Paris, France
| | - Cristina Pitart
- Department of Microbiology, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain;
| | - Josep Mensa
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
| | - Jordi Esteve
- Department of Hematology, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain;
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
- CIBERINF, CIBER in Infectious Diseases, 28029 Madrid, Spain
| | - Carolina Garcia-Vidal
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (A.G.-P.); (C.T.-L.); (P.M.-G.); (T.F.A.); (M.C.); (O.P.); (E.G.); (J.M.); (A.S.)
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| |
Collapse
|
6
|
Kumar G, Balakrishna K, Mukhopadhyay C, Kalwaje Eshwara V. Characterization and comparative analysis of antimicrobial resistance in Escherichia coli from hospital and municipal wastewater treatment plants. JOURNAL OF WATER AND HEALTH 2024; 22:2276-2288. [PMID: 39733355 DOI: 10.2166/wh.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024]
Abstract
The spread of antimicrobial resistance (AMR) poses global health threats, with wastewater treatment plants (WWTPs) as hotspots for its development. Horizontal gene transfer facilitates acquisition of resistance genes, particularly through integrons in Escherichia coli. Our study investigates E. coli isolates from hospital and municipal WWTPs, focusing on integrons, their temporal correlation and phenotypic and molecular characterization of AMR. Samples from hospital and municipal WWTPs were collected over two seasons, pre-monsoon (March-May) and post-monsoon (December-February). From the hospital (hWWTP) and municipal (mWWTP) influents, 45 and 172 E. coli isolates were obtained, respectively. E. coli from hWWTP exhibited significantly higher resistance rates than mWWTP to most tested antimicrobials except tetracycline. The hWWTP isolates showed a higher prevalence (86.7%) of multidrug resistance (MDR) compared with mWWTP (48.3%). The proportion of MDR isolates from mWWTP nearly doubled in the post-monsoon season. Integron positivity was 17.7% (hWWTP) and 19.7% (mWWTP) with common gene cassettes conferring resistance to trimethoprim and aminoglycosides. Phylogroup analysis showed a predominance of group A in hWWTP and group B1 in mWWTP. The study highlights the role of hospital and municipal wastewater in disseminating AMR, with high rates of MDR E. coli and class 1 integrons detected.
Collapse
Affiliation(s)
- Gauri Kumar
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Keshava Balakrishna
- Department of Civil Engineering, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Emerging and Tropical Diseases (CETD), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vandana Kalwaje Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Antimicrobial Resistance and Education (CARE), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India E-mail:
| |
Collapse
|
7
|
Hamilton KA, Njoroge SM, Momanyi K, Murungi MK, Odinga CO, Bor N, Ogendo A, Odaba J, Ogola JG, Fèvre EM, Falzon LC. The antimicrobial resistance landscape of slaughterhouses in western Kenya: A microbiological case study. One Health 2024; 19:100899. [PMID: 39381065 PMCID: PMC11458994 DOI: 10.1016/j.onehlt.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Slaughterhouses may be hotspots for the transmission of antimicrobial resistant (AMR) pathogens. To obtain information on the AMR landscape in Kenyan slaughterhouses, we collected swabs of the environment, animal carcasses, and workers. Bacterial isolates were identified in 101/193 (52.3 %) samples, and most showed resistance to streptomycin (68.7 %), ampicillin (48.7 %), and tetracycline (42.5 %). Multi drug resistance was exhibited by 35/80 isolates (43.8 %; 95 % CI: 33.2-54.9 %), while Extended Spectrum Beta Lactamase was expressed in 5/80 isolates (6.3 %; 95 % CI: 2.6-14.3 %). These findings illustrate the presence of resistant bacteria throughout the slaughterhouse environment, posing a risk to workers and meat consumers and highlighting the need for an integrated surveillance system along the food chain.
Collapse
Affiliation(s)
- Katie A. Hamilton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| | - Sam M. Njoroge
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
- Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Kelvin Momanyi
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| | - Maurice K. Murungi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| | - Christian O. Odinga
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| | - Nicholas Bor
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| | - Allan Ogendo
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
- Directorate of Veterinary Services, County Government of Busia, P.O. Box 261-50400, Busia, Kenya
| | - Josiah Odaba
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| | - Joseph G. Ogola
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
- Directorate of Veterinary Services, County Government of Bungoma, P.O. Box 135-50200, Bungoma, Kenya
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| | - Laura C. Falzon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
8
|
Diarra FBJ, Bonkoungou IJO, Garba Z, Somda NS, Soma D, Nikiema MEM, Bako E, Sore S, Sawadogo N, Barro N, Haukka K. One Health Approach to Study the Occurrence and Antimicrobial Resistance of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Escherichia coli and Klebsiella spp. in Urban Agriculture in Burkina Faso. Microorganisms 2024; 12:2170. [PMID: 39597559 PMCID: PMC11596306 DOI: 10.3390/microorganisms12112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Data on antimicrobial resistance in Burkina Faso's agricultural sector is still limited. This study assessed the occurrence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) and Klebsiella spp. (ESBL-K) in lettuce, environment, and gardeners' stools in market gardens in Ouagadougou, Burkina Faso. A total of 356 samples were collected from three vegetable gardens (76 lettuce, 76 soil, 62 manure, 63 irrigation water, and 79 human stools). The ESBL-selective medium was used for initial selection of ESBL-producing bacteria, and the isolates were further identified using biochemical tests. An antibiotic susceptibility test was performed using the disk diffusion method. The overall prevalence of ESBL-Ec and/or ESBL-K in the samples was 232/356 (65.2%). Of the lettuce samples, the prevalence of ESBL-Ec was 19/76 (25.0%) and ESBL-K 33/76 (43.4%). In the market gardens environment, the prevalence of ESBL-Ec was 32/201 (15.9%) and ESBL-K 124/201 (61.7%). In the gardeners' stools, the prevalence of ESBL-Ec was 42/79 (53.2%) and ESBL-K 24/79 (30.4%). Two ESBL-K isolates were found to produce NDM carbapenemase. Due to the high prevalence of ESBL-producing bacteria, which may also be carbapenemase producers, it is necessary to monitor pathogens in agricultural products with a "One Health" approach to limit and prevent infections in the population.
Collapse
Affiliation(s)
- Fatimata Bintou Josiane Diarra
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (F.B.J.D.); (I.J.O.B.); (D.S.); (N.B.)
| | - Isidore Juste Ouindgueta Bonkoungou
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (F.B.J.D.); (I.J.O.B.); (D.S.); (N.B.)
| | - Zakaria Garba
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso;
| | - Namwin Siourimè Somda
- Département Technologie Alimentaire (DTA)/IRSAT/CNRST, Ouagadougou 03 BP 7047, Burkina Faso;
| | - Djifahamaï Soma
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (F.B.J.D.); (I.J.O.B.); (D.S.); (N.B.)
| | - Marguerite Edith Malatala Nikiema
- Laboratoire de Virologie et Biotechnologies Végétales, Institut de L’Environnement et de Recherches Agricoles (INERA), CNRST, Ouagadougou 04 BP 8645, Burkina Faso;
| | - Evariste Bako
- Department of Biochemistry and Microbiology, Centre Universitaire de Tenkodogo, Ouagadougou 12 BP 417, Burkina Faso;
| | - Souleymane Sore
- Direction des Laboratoires de Biologie Médicale, Ministère de la Santé, Ouagadougou 03 BP 7022, Burkina Faso;
| | - Natéwindé Sawadogo
- Department of Sociology, Université Thomas SANKARA, Ouagadougou 12 BP 417, Burkina Faso;
| | - Nicolas Barro
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (F.B.J.D.); (I.J.O.B.); (D.S.); (N.B.)
| | - Kaisa Haukka
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Lopera C, Monzó P, Aiello TF, Chumbita M, Peyrony O, Gallardo-Pizarro A, Pitart C, Cuervo G, Morata L, Bodro M, Herrera S, Del Río A, Martínez JA, Soriano A, Puerta-Alcalde P, Garcia-Vidal C. Prevalence and impact of multidrug-resistant bacteria in solid cancer patients with bloodstream infection: a 25-year trend analysis. Microbiol Spectr 2024; 12:e0296123. [PMID: 39194256 PMCID: PMC11448387 DOI: 10.1128/spectrum.02961-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 08/29/2024] Open
Abstract
The study aimed to describe the epidemiology of multidrug-resistant (MDR) bacteria among solid cancer (SC) patients with bloodstream infections (BSIs), evaluating inappropriate empiric antibiotic treatment (IEAT) use and mortality trends over a 25-year period. All BSI occurrences in adult SC patients at a university hospital were analyzed across five distinct five-year intervals. MDR bacteria were classified as extended-spectrum beta-lactamases (ESBL)-producing and/or Carbapenem-resistant Enterobacterales, non-fermenting Gram-negative bacilli (GNB) resistant to at least three antibiotic classes, methicillin-resistant Staphylococcus aureus (MRSA), and Vancomycin-resistant Enterococci. A multivariate regression model identified the risk factors for MDR BSI. Of 6,117 BSI episodes, Gram-negative bacilli (GNB) constituted 60.4% (3,695/6,117), being the most common are Escherichia coli with 26.8% (1,637/6,117), Klebsiella spp. with 12.4% (760/6,117), and Pseudomonas aeruginosa with 8.6% (525/6,117). MDR-GNB accounted for 644 episodes (84.8% of MDR or 644/759), predominantly ESBL-producing strains (71.1% or 540/759), which escalated significantly over time. IEAT was administered in 24.8% of episodes, mainly in MDR BSI, and was associated with higher mortality (22.9% vs. 14%, P < 0.001). Independent factors for MDR BSI were prior antibiotic use [odds ratio (OR) 2.93, confidence interval (CI) 2.34-3.67], BSI during antibiotic treatment (OR 1.46, CI 1.18-1.81), biliary (OR 1.84, CI 1.34-2.52) or urinary source (OR 1.86, CI 1.43-2.43), admission period (OR) 1.28, CI 1.18-1.38, and community-acquired infection (OR 0.57, CI 0.39-0.82). The study showed an increase in MDR-GNB among SC patients with BSI. A quarter received IEAT, which was linked to increased mortality. Improving risk assessment for MDR infections and the judicious prescription of empiric antibiotics are crucial for better outcomes. IMPORTANCE Multidrug-resistant (MDR) bacteria pose a global public health threat as they are more challenging to treat, and they are on the rise. Solid cancer patients are often immunocompromised due to their disease and cancer treatments, making them more susceptible to infections. Understanding the changes and trends in bloodstream infections in solid cancer patients is crucial, to help physicians make informed decisions about appropriate antibiotic therapies, manage infections in this vulnerable population, and prevent infection. Solid cancer patients often require intensive and prolonged treatments, including surgery, chemotherapy, and radiation therapy. Infections can complicate these treatments, leading to treatment delays, increased healthcare costs, and poorer patient outcomes. Investigating new strategies to combat MDR infections and researching novel antibiotics in these patients is of paramount importance to avoid these negative impacts.
Collapse
Affiliation(s)
- Carlos Lopera
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Patricia Monzó
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Mariana Chumbita
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Olivier Peyrony
- Emergency Department, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | - Cristina Pitart
- Microbiology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Guillermo Cuervo
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Laura Morata
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Bodro
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sabina Herrera
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Del Río
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Alex Soriano
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Pedro Puerta-Alcalde
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Sartori L, Sellera FP, Silva-Pereira TT, Fuga B, Fuentes-Castillo D, Dropa M, Moura Q, Fernandes MR, Rodrigues L, Esposito F, Sano E, Aleman MAR, Gregory L, Lincopan N. Gut colonization by extended-spectrum β-lactamase-producing Escherichia coli in dairy herd in Brazil: successful dissemination of a One Health clone. Vet Res Commun 2024; 48:3355-3363. [PMID: 38972932 DOI: 10.1007/s11259-024-10456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
The overuse of antimicrobials in livestock has contributed to the emergence and selection of clinically relevant multidrug-resistant bacteria. In Brazil, there is no conclusive information on the occurrence of Escherichia coli producing extended-spectrum β-lactamase (ESβL) in cattle breeding, which is an important sector of agribusiness in this country. Herein, we investigated the presence of ESβL-positive E. coli strains in dairy cattle from a commercial farm with routine practice of therapeutic cephalosporins. Ninety-five rectal swab samples were collected from healthy dairy calves and cows under treatment with ceftiofur. Samples were screened for the presence of ESβL producers, and positive isolates were identified by MALDI-TOF, with subsequent screening for genes encoding ESβL variants by PCR and sequencing. The presence of ESβL (CTX-M-15)-producing E. coli was confirmed in calves, and lactating and dry cows. Most ESβL strains with genetic homologies ≥ 90% were grouped into two major PFGE clusters, confirming the suscessful expansion of clonally related lineages in animals from different lactating cycles, on the same property. Four representatives CTX-M-15-positive E. coli strains had their genomes sequenced, belonging to the clonal complex (CC) 23 and sequence type (ST) 90. A phylogeographical landscape of ST90 was performed revealing a global One Health linkage. Our results highlight the intestinal microbiota of dairy cattle as a hotspot for the spread of critical priority ESβL-producing E. coli and demonstrate that ST90 is an international clone genomically adapted to human and animal hosts, which deserve additional investigation to determine its zoonotic potential and impact in food chain.
Collapse
Affiliation(s)
- Luciana Sartori
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Taiana T Silva-Pereira
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Milena Dropa
- MicroRes Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Federal Institute of Espírito Santo, Vila Velha, Brazil
| | - Miriam R Fernandes
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Larissa Rodrigues
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mario A R Aleman
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Lilian Gregory
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil.
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Niharika J, Deb R, Parihar R, Thakur PK, Anjaria P, Sengar GS, Chaudhary P, Pegu SR, Attupurum N, Antony N, Rajkhowa S, Gupta VK. Isolation and Characterization of Extended-Spectrum β-Lactamase Producing Escherichia coli from Pig Farms and Slaughterhouse. Indian J Microbiol 2024; 64:950-956. [PMID: 39282198 PMCID: PMC11399545 DOI: 10.1007/s12088-023-01151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/16/2023] [Indexed: 09/18/2024] Open
Abstract
Extended-spectrum β-lactamase (ESBL) producing Escherichia coli represents a formidable challenge in the field of microbiology and public health due to its resistance to commonly used antibiotics. These strains pose a serious threat to human and animal health, underscoring the urgency of comprehensive research and surveillance. The ongoing investigation seeks ESBL producing E. coli strains from pig farms and slaughterhouses in West Bengal and Assam, India. A total of 309 samples were collected: nasal swabs (25), rectal swabs (25) from healthy pigs, pig pen soil (45), faeces (55), slaughterhouse effluents (115), and cleaning water (44). In these samples, 154 tested positive for E. coli, indicating a 49.8% prevalence. Among 154 E. coli isolates, 23 (14.9%) produced ESBLs, sourced from pig rectal swabs (7.1%), faeces (10.7%), slaughterhouse effluents (26.1%), and cleaning water (11.7%). Significantly, 4 ESBL E. coli isolates (6.6%) exclusively emerged from pig slaughterhouse effluents, displaying imipenem-resistant properties. The majority of ESBL E. coli primarily produced CTX-M and CMY, with consistent genetic markers bla CTX-M (100%) and bla CMY (82.6%). Remarkably, 2 (8.6%) of 17 ESBL E. coli isolates from pig slaughterhouse effluents carried the genetic marker bla NDM1. These findings stress implementing thorough surveillance in pig farms and local slaughterhouses. This proactive approach is crucial to identify ESBL E. coli strains, enhancing public health protection.
Collapse
Affiliation(s)
- Jagana Niharika
- ICAR-National Research Centre on Pig, Guwahati, Assam India
- All India Institute of Hygiene and Public Health, Kolkata, West Bengal India
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Guwahati, Assam India
| | - Ranjeet Parihar
- ICAR-National Research Centre on Pig, Guwahati, Assam India
- All India Institute of Hygiene and Public Health, Kolkata, West Bengal India
| | - Priyanka Kumari Thakur
- ICAR-National Research Centre on Pig, Guwahati, Assam India
- All India Institute of Hygiene and Public Health, Kolkata, West Bengal India
| | - Pranav Anjaria
- College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat India
| | | | - Parul Chaudhary
- ICAR-National Dairy Research Institute, Karnal, Haryana India
| | | | | | - Naveena Antony
- Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh India
| | | | | |
Collapse
|
12
|
Feng Y, Yang Y, Hu Y, Xiao Y, Xie Y, Wei L, Wen H, Zhang L, McNally A, Zong Z. Population genomics uncovers global distribution, antimicrobial resistance, and virulence genes of the opportunistic pathogen Klebsiella aerogenes. Cell Rep 2024; 43:114602. [PMID: 39137112 PMCID: PMC11372444 DOI: 10.1016/j.celrep.2024.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Klebsiella aerogenes is an understudied and clinically important pathogen. We therefore investigate its population structure by genome analysis aligned with metadata. We sequence 130 non-duplicated K. aerogenes clinical isolates and identify two inter-patient transmission events. We then retrieve all publicly available K. aerogenes genomes (n = 1,026, accessed by January 1, 2023) and analyze them with our 130 genomes. We develop a core-genome multi-locus sequence-typing scheme. We find that K. aerogenes is a species complex comprising four phylogroups undergoing evolutionary divergence, likely forming three species. We delineate remarkable clonal diversity and identify three worldwide-distributed carbapenemase-encoding clonal clusters, representing high-risk lineages. We uncover that K. aerogenes has an open genome equipped by a large arsenal of antimicrobial resistance genes. We identify two genetic regions specific for K. aerogenes, encoding a type VI secretion system and flagella/chemotaxis for motility, respectively, both contributing to the virulence. These results provide much-needed insights into the population structure and pan-genomes of K. aerogenes.
Collapse
Affiliation(s)
- Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Hu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuling Xiao
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Wen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Linwan Zhang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Mugo-Kamiri L, Schäfer L, Wennmann JT, Herniou EA, Raymond B. Whole-genome sequence of Enterobacter hormaechei, isolate jjbc recovered from the gut of Plutella xylostella feeding on cabbage. Microbiol Resour Announc 2024; 13:e0033024. [PMID: 39037312 PMCID: PMC11320923 DOI: 10.1128/mra.00330-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
We present the whole-genome sequence of Enterobacter hormaechei (previously Enterobacter cloacae) obtained from long and short reads. It is a dominant gut symbiont of the notorious crop pest Plutella xylostella, highly prevalent in lepidopteran midguts and a useful model for the evolution of resistance to antimicrobials.
Collapse
Affiliation(s)
- Loretta Mugo-Kamiri
- Institut de Recherche sur la Biologie de l'Insecte, IRBI, UMR 7261, CNRS - University of Tours, Tours, France
- Center for Ecology and Conservation, Penryn Campus, College of Life and Environmental Science, University of Exeter, Cornwall, United Kingdom
| | - Lea Schäfer
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | - Jörg T. Wennmann
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l'Insecte, IRBI, UMR 7261, CNRS - University of Tours, Tours, France
| | - Ben Raymond
- Center for Ecology and Conservation, Penryn Campus, College of Life and Environmental Science, University of Exeter, Cornwall, United Kingdom
| |
Collapse
|
14
|
Brauncajs M, Bielec F, Macieja A, Machnicki P, Pastuszak-Lewandoska D. Antimicrobial Susceptibility and Genetic Epidemiology of Extended-Spectrum β-Lactamase-Positive Enterobacterales Clinical Isolates in Central Poland. Int J Mol Sci 2024; 25:8371. [PMID: 39125939 PMCID: PMC11312491 DOI: 10.3390/ijms25158371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The extended-spectrum β-lactamases (ESβLs) are bacterial enzymes capable of hydrolyzing penicillins, cephalosporins, and aztreonam. The prevalence of ESβL is increasing among clinically significant microorganisms worldwide, drastically reducing the therapeutic management of infectious diseases. The study aimed to determine the drug susceptibility of ESβL-positive clinical isolates acquired from patients hospitalized in Lodz, central Poland, and analyze the prevalence of specific genes, determining acquired resistance in these bacteria. The samples of ESβL-positive clinical isolates were gathered in 2022 from medical microbiological laboratories in the city of Lodz, central Poland. The strains were subjected to biochemical identification and antimicrobial susceptibility testing following EUCAST guidelines. The presence of studied genes (blaCTX-M, blaSHV, blaTEM, blaPER, blaVEB) was confirmed by PCR. Over 50% of studied isolates were resistant to gentamicin, cefepime, ceftazidime and ciprofloxacin. The most common ESβL gene was blaCTX-M. In most isolates, the resistance genes occurred simultaneously. The blaPER was not detected in any of the tested strains. ESβL-producing strains are largely susceptible to the currently available antibiotics. The observation of the coexistence of different genes in most clinical isolates is alarming.
Collapse
Affiliation(s)
- Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Anna Macieja
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
| | - Piotr Machnicki
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
| |
Collapse
|
15
|
Harbaoui S, Ferjani S, Abbassi MS, Guzmán-Puche J, Causse M, Elías-López C, Martínez-Martínez L, Boubaker IBB. Genetic background of aminoglycoside-modifying enzymes in various genetic lineages of clinical aminoglycosides-resistant E. coli and K. pneumoniae isolates in Tunisia. J Appl Microbiol 2024; 135:lxae164. [PMID: 38955378 DOI: 10.1093/jambio/lxae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/10/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
AIMS This study was conducted to evaluate the in vitro activity of clinically relevant aminoglycosides and to determine the prevalence of genes encoding aminoglycoside modifying enzymes (AMEs) and 16S ribosomal RNA (rRNA) methyltransferases among aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) clinical isolates. Associated resistances to beta-lactams and their bla genes as well as the genetic relatedness of isolates were also investigated. MATERIALS AND METHODS A total of 105 aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) isolates recovered between March and May 2017 from 100 patients hospitalized in different wards of Charles Nicolle Hospital of Tunis, Tunisia, were studied. Minimal inhibitory concentrations of aminoglycoside compounds were determined by broth microdilution method. Aminoglycosides resistance encoding genes [aph(3´)-Ia, aph(3') IIa, aph(3´)-VIa, ant(2″)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, rmtA, rmtB, rmtC, armA, and npmA] and bla genes were investigated by PCR and sequencing. Genetic relatedness was examined by multilocus sequence typing (MLST) for representative isolates. RESULTS High rates of aminoglycoside resistance were found: gentamicin (85.7%), tobramycin (87.6%), kanamycin (78.0%), netilmincin (74.3%), and amikcin (18.0%). Most common AME gene was aac(3)-IIa (42%), followed by aac(6')-Ib (36.2%) and aph(3')-VIa (32.4%). The majority of isolates were resistant to beta-lactams and blaCTX-M-15 was the most common ESBL. The blaNDM-1 and blaOXA-48 were also produced by 1 and 23 isolates, respectively. Novel sequence types have been reported among our isolates and high-risk clonal lineages have been detected, such as E. coli ST43 (ST131 in Achtman MLST scheme) and K. pneumoniae (ST11/ST13). CONCLUSIONS The high prevalence of aminoglycoside resistance rates and the diversity of corresponding genes, with diverse β-lactamase enzymes among genetically heterogeneous clinical isolates present a matter of concern.
Collapse
Affiliation(s)
- Sarra Harbaoui
- Research Laboratory «Antimicrobial resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Sana Ferjani
- Research Laboratory «Antimicrobial resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Boulevard 9 Avril, Tunis 1006, Tunisia
| | - Mohamed Salah Abbassi
- Research Laboratory «Antimicrobial resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Bacteriological Research, Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Julia Guzmán-Puche
- Unidad de Gestión Clínica de Microbiologia, Hospital Universitario Reina Sofía de Córdoba, Córdoba 14004, Spain
| | - Manuel Causse
- Unidad de Gestión Clínica de Microbiologia, Hospital Universitario Reina Sofía de Córdoba, Córdoba 14004, Spain
| | - Cristina Elías-López
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba 14004, Spain
| | - Luis Martínez-Martínez
- Departamento de Química Agrícola, Edafología y Microbiología, Universidad de Córdoba, Córdoba 14004, Spain
| | - Ilhem Boutiba-Ben Boubaker
- Research Laboratory «Antimicrobial resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Boulevard 9 Avril, Tunis 1006, Tunisia
| |
Collapse
|
16
|
Sinyawa T, Shawa M, Muuka GM, Goma F, Fandamu P, Chizimu JY, Khumalo CS, Mulavu M, Ngoma M, Chambaro HM, Kamboyi HK, Kajihara M, Sawa H, Suzuki Y, Higashi H, Mainda G, Munyeme M, Muma JB, Nyantakyi CO, Egyir B, Hang’ombe BM. Antimicrobial Use Survey and Detection of ESBL- Escherichia coli in Commercial and Medium-/Small-Scale Poultry Farms in Selected Districts of Zambia. Antibiotics (Basel) 2024; 13:467. [PMID: 38786195 PMCID: PMC11118926 DOI: 10.3390/antibiotics13050467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance (AMR) among Escherichia coli from food animals is a rising problem, and heavy antimicrobial use in poultry is a contributing factor. In Zambia, studies linking poultry-associated AMR and antibiotic use (AMU) are rare. This study aimed to investigate commercial and medium-/small-scale poultry farmers' usage of antimicrobials based on a questionnaire survey in ten districts of Zambia. In addition, the study characterized extended-spectrum β-lactamase (ESBL)-producing E. coli isolates obtained from poultry in the same districts. Data regarding knowledge and usage of antimicrobials were collected from commercial and medium-/small-scale poultry farmers using a pre-tested structured questionnaire. At the same time, cloacal samples were collected and analyzed. One hundred and fifty E. coli isolates were tested for antimicrobial susceptibility using eight antibiotic classes. The isolates were further screened for ESBL production by streaking them on cefotaxime (CTX)-supplemented MacConkey agar, then subjecting them to sequencing on a NextSeq. The questionnaire survey showed that more medium-/small-scale than commercial poultry farmers used antimicrobials (OR = 7.70, 95% CI = 2.88-20.61) but less prescriptions (OR = 0.02, 95% CI = 0.00-0.08). Susceptibility testing revealed that resistance was highest to ampicillin (128/148, 86.5%) and tetracycline (101/136, 74.3%) and that the prevalence of multidrug resistance (MDR) (28/30, 93.3%) was high. Whole-genome sequencing (WGS) of eight (8/30, 26.7%) isolates with CTX Minimum Inhibitory Concentration (MIC) ≥ 4 µg/mL revealed the presence of ESBL-encoding genes blaCTX-M-14, blaCTX-M-55, and blaTEM. WGS also detected other AMR genes for quinolones, aminoglycosides, phenicols, tetracycline, macrolides, and folate-pathway antagonists. Altogether, the questionnaire survey results showed a higher proportion of AMU and lower prescription usage among medium-/small-scale farmers. In addition, our results emphasize the circulation of ESBL-producing E. coli strains with associated MDR. It is critical to educate farmers about AMR risks and to encourage responsible usage of antimicrobials. Furthermore, there is a need to strengthen regulations limiting access to antimicrobials. Finally, there is a need to establish a one health system to guide public health response.
Collapse
Affiliation(s)
- Taona Sinyawa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Chilanga, Lusaka 10101, Zambia; (T.S.); (M.N.); (H.M.C.)
| | - Misheck Shawa
- Hokudai Centre for Zoonosis Control in Zambia, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.); (H.S.)
| | - Geoffrey M. Muuka
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 15100, Zambia; (G.M.M.); (P.F.)
| | - Fusya Goma
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 15100, Zambia; (G.M.M.); (P.F.)
| | - Paul Fandamu
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 15100, Zambia; (G.M.M.); (P.F.)
| | - Joseph Yamweka Chizimu
- Zambia National Public Health Institute, Stand 1186, Coner of Chaholi and Addis Ababa Roads, Rhodes Park, Lusaka 10101, Zambia;
| | - Cynthia Sipho Khumalo
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Malala Mulavu
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Masuzyo Ngoma
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Chilanga, Lusaka 10101, Zambia; (T.S.); (M.N.); (H.M.C.)
| | - Herman Moses Chambaro
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Chilanga, Lusaka 10101, Zambia; (T.S.); (M.N.); (H.M.C.)
| | - Harvey Kakoma Kamboyi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan; (H.K.K.); (H.H.)
| | - Masahiro Kajihara
- Hokudai Centre for Zoonosis Control in Zambia, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.); (H.S.)
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Hokudai Centre for Zoonosis Control in Zambia, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.); (H.S.)
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, N21 W11, Kita-ku, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan; (H.K.K.); (H.H.)
| | - Geoffrey Mainda
- Food and Agriculture Organization of the United Nations (FAO), Chaholi Road, Rhodes Park, Lusaka 10101, Zambia;
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.M.); (J.B.M.)
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.M.); (J.B.M.)
| | - Christian Owusu Nyantakyi
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra 00233, Ghana; (C.O.N.); (B.E.)
| | - Beverly Egyir
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra 00233, Ghana; (C.O.N.); (B.E.)
| | - Bernard Mudenda Hang’ombe
- Microbiology Unit, Department of Para-Clinical Studies, Africa Centre of Excellence for Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
17
|
Li P, Zhan L, Wang H, Yan Y, Jia M, Gao L, Sun Y, Zhu G, Chen Z. Prevalence and Antimicrobial Resistance Diversity of Salmonella Isolates in Jiaxing City, China. Antibiotics (Basel) 2024; 13:443. [PMID: 38786171 PMCID: PMC11117378 DOI: 10.3390/antibiotics13050443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Nontyphoidal Salmonella (NTS) is a cause of foodborne diarrheal diseases worldwide. Important emerging NTS serotypes that have spread as multidrug-resistant high-risk clones include S. Typhimurium monophasic variant and S. Kentucky. In this study, we isolated Salmonella in 5019 stool samples collected from patients with clinical diarrhea and 484 food samples. Antibiotic susceptibility testing and whole-genome sequencing were performed on positive strains. The detection rates of Salmonella among patients with diarrhea and food samples were 4.0% (200/5019) and 3.1% (15/484), respectively. These 215 Salmonella isolates comprised five main serotypes, namely S. Typhimurium monophasic variant, S. Typhimurium, S. London, S. Enteritidis, and S. Rissen, and were mainly resistant to ampicillin, tetracycline, chloramphenicol, and trimethoprim/sulfamethoxazole. The MDR rates of five major serotypes were 77.4%, 56.0%, 66.7%, 53.3%, and 80.0%, respectively. The most commonly acquired extended-spectrum β-lactamase-encoding genes were blaTEM-1B, blaOXA-10, and blaCTX-M-65. The S. Typhimurium monophasic variant strains from Jiaxing City belonged to a unique clone with broad antibiotic resistance. S. Kentucky isolates showed the highest drug resistance, and all were MDR strains. The discovery of high antibiotic resistance rates in this common foodborne pathogen is a growing concern; therefore, ongoing surveillance is crucial to effectively monitor this pathogen.
Collapse
Affiliation(s)
- Ping Li
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (P.L.)
| | - Li Zhan
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China;
| | - Henghui Wang
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (P.L.)
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (P.L.)
| | - Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (P.L.)
| | - Lei Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (P.L.)
| | - Yangming Sun
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (P.L.)
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (P.L.)
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (P.L.)
| |
Collapse
|
18
|
Moghnieh W, Fadlallah M, Saleh F, El-Hariri S, Sokhn ES. Extended spectrum beta-lactamase carriage among elderly residents of a long-term care facility in Beirut. Am J Infect Control 2024; 52:575-579. [PMID: 38036180 DOI: 10.1016/j.ajic.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Antimicrobial resistance is an emerging problem worldwide, endangering antimicrobials efficacy and resulting in high rates of morbidity and mortality. It is one of the major concerns that health care facilities are facing nowadays. Mainly, extended-spectrum beta-lactamases (ESBL)-producing Enterobacterales play a role in hydrolyzing β-lactams, specifically the third-generation cephalosporins. This study aimed to investigate the prevalence of fecal carriage and molecular characterization of ESBL-producing Enterobacterales among Lebanese elderly residents in a long-term care facility (Dar Al-Ajaza Al Islamia Hospital). METHODS Rectal culture swab specimens were collected from 132 patients at Dar Al Ajaza Al Islamia hospital between January 2019 till June 2020. The phenotype of ESBL producers was confirmed by a modified double disc synergy test and antibiotic susceptibility was determined using the Kirby-Bauer disk diffusion method. Genotypically, multiplex polymerase chain reaction was used to detect the ESBL genes. RESULTS The main Enterobacterales strain observed was E coli (90.15%) followed by Klebsiella pneumoniae (4.54%) and Klebsiella oxytoca (3.80%). It has been found that the ESBL percentage rate has decreased when compared to a study conducted previously at the same hospital. Moreover, the predominant ESBL gene was CTX-M (cefotaximase). CONCLUSIONS This study is the first to demonstrate the improved current status of ESBL in one long-term care facility. In addition, the CTX-M is still the major type in ESBL-producing organisms.
Collapse
Affiliation(s)
- Wafaa Moghnieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Mahdi Fadlallah
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon; Laboratory Department, INOVIE Laboratory, Baabda, Lebanon
| | - Fatima Saleh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Saria El-Hariri
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Elie S Sokhn
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| |
Collapse
|
19
|
Stankiewicz K, Boroń P, Prajsnar J, Żelazny M, Heliasz M, Hunter W, Lenart-Boroń A. Second life of water and wastewater in the context of circular economy - Do the membrane bioreactor technology and storage reservoirs make the recycled water safe for further use? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170995. [PMID: 38378066 DOI: 10.1016/j.scitotenv.2024.170995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
In recent years water demand drastically increased which is particularly evident in tourism-burdened mountain regions. In these areas, climate neutral circular economy strategies to minimize human impact on the environment can be successfully applied. Among these strategies, treated wastewater reuse and retaining water in storage reservoirs deserve particular attention. This study aimed to determine if recycled water produced with two circular economy systems, namely membrane bioreactor treatment plant (MBR) with UV-light effluent disinfection and a storage reservoir, is safe enough for further use in green areas irrigation in summer and artificial snow production in winter. The assessment was based on the presence and concentration of antimicrobial agents, antibiotic resistant bacteria, antibiotic resistance genes, bacterial community composition and diversity. The treated water and wastewater was compared with natural water in their vicinity. Both systems fulfill the criteria set by the European Union in terms of reclaimed water suitable for reuse. Although the MBR/UV light wastewater treatment substantially reduced the numbers of E. coli and E. faecalis (from e.g. 32,000 CFU/100 ml to 20 CFU/100 ml and 15,000 CFU/100 ml to nearly 0 CFU/ml), bacteria resistant to ampicillin, aztreonam, cefepime, ceftazidime, ertapenem and tigecycline, as well as ESBL-positive and multidrug resistant E. coli were highly prevalent in MBR-treated wastewater (88.9 %, 55.6 %, 33.3 %, 22.2 % and 11.1 % and 44.4 and 55.6 %, respectively). Applying additional tertiary treatment technology is recommended. Retaining water in storage reservoirs nearly eliminated bacterial contaminants (e.g. E. coli dropped from 350 CFU/100 ml to 10 CFU/100 ml), antibiotic resistant bacteria, resistance genes (none detected in the storage reservoir) and antibiotics (only enrofloxacin detected once in the concentration of 3.20 ng/l). Findings of this study point to the limitations of solely culture-based assessment of reclaimed water and wastewater while they may prove useful in risk management and prevention in wastewater reuse.
Collapse
Affiliation(s)
- Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Kraków, Poland
| | - Mirosław Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387 Kraków, Poland
| | - Miłosz Heliasz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Walter Hunter
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| |
Collapse
|
20
|
Blaikie JM, Sapula SA, Siderius NL, Hart BJ, Amsalu A, Leong LE, Warner MS, Venter H. Resistome Analysis of Klebsiella pneumoniae Complex from Residential Aged Care Facilities Demonstrates Intra-facility Clonal Spread of Multidrug-Resistant Isolates. Microorganisms 2024; 12:751. [PMID: 38674695 PMCID: PMC11051875 DOI: 10.3390/microorganisms12040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial-resistant Klebsiella pneumoniae is one of the predominant pathogens in healthcare settings. However, the prevalence and resistome of this organism within residential aged care facilities (RACFs), which are potential hotspots for antimicrobial resistance, remain unexplored. Here, we provide a phenotypic and molecular characterization of antimicrobial-resistant K. pneumoniae isolated from RACFs. K. pneumoniae was isolated from urine, faecal and wastewater samples and facility swabs. The antimicrobial susceptibility profiles of all the isolates were determined and the genomic basis for resistance was explored with whole-genome sequencing on a subset of isolates. A total of 147 K. pneumoniae were isolated, displaying resistance against multiple antimicrobials. Genotypic analysis revealed the presence of beta-lactamases and the ciprofloxacin-resistance determinant QnrB4 but failed to confirm the basis for the observed cephalosporin resistance. Clonal spread of the multidrug-resistant, widely disseminated sequence types 323 and 661 was observed. This study was the first to examine the resistome of K. pneumoniae isolates from RACFs and demonstrated a complexity between genotypic and phenotypic antimicrobial resistance. The intra-facility dissemination and persistence of multidrug-resistant clones is concerning, given that residents are particularly vulnerable to antimicrobial resistant infections, and it highlights the need for continued surveillance and interventions to reduce the risk of outbreaks.
Collapse
Affiliation(s)
- Jack M. Blaikie
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Sylvia A. Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Naomi L. Siderius
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Bradley J. Hart
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Anteneh Amsalu
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
- Department of Medical Microbiology, University of Gondar, Gondar 196, Ethiopia
| | - Lex E.X. Leong
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
- Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA 5000, Australia;
| | - Morgyn S. Warner
- Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA 5000, Australia;
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Infectious Diseases Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| |
Collapse
|
21
|
Miranda CD, Concha C, Hurtado L, Urtubia R, Rojas R, Romero J. Occurrence of Antimicrobial-Resistant Bacteria in Intestinal Contents of Wild Marine Fish in Chile. Antibiotics (Basel) 2024; 13:332. [PMID: 38667008 PMCID: PMC11047320 DOI: 10.3390/antibiotics13040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobial-resistant bacteria (ARB) from the intestinal contents of wild fish may have a relevant ecological significance and could be used as indicators of antimicrobial-resistance dissemination in natural bacterial populations in water bodies impacted by urban contamination. Thus, the occurrence of ARB in the intestinal contents of pelagic and demersal wild fishes captured in anthropogenic-impacted Coquimbo Bay in Chile was studied. Culturable counts of total and antimicrobial-resistant bacteria were determined by a spread plate method using Trypticase soy agar and R2A media, both alone and supplemented with the antimicrobials amoxicillin, streptomycin, florfenicol, oxytetracycline and ciprofloxacin, respectively. Heterotrophic plate counts of pelagic and demersal fishes ranged from 1.72 × 106 CFU g-1 to 3.62 × 109 CFU g-1, showing variable proportions of antimicrobial resistance. Representative antimicrobial-resistant isolates were identified by 16S rRNA gene sequencing, and isolates (74) from pelagic fishes mainly belonged to Pseudomonas (50.0%) and Shewanella (17.6%) genera, whereas isolates (68) from demersal fishes mainly belonged to Vibrio (33.8%) and Pseudomonas (26.5%) genera. Antimicrobial-resistant isolates were tested for susceptibility to 12 antimicrobials by an agar disk diffusion method, showing highest resistance to streptomycin (85.2%) and amoxicillin (64.8%), and lowest resistance to oxytetracycline (23.2%) and ciprofloxacin (0.7%). Only furazolidone and trimethoprim/sulfamethoxazole were statistically different (p < 0.05) in comparisons between isolates from pelagic and demersal wild fishes. Furthermore, an important number of these isolates carried plasmids (53.5%) and produced Extended-Spectrum-β-lactamases (ESBL) (16.9%), whereas the detection of Metallo-β-Lactamases and class 1-integron was rare. This study provides evidence that wild fish are important reservoirs and spreading-vehicles of ARB, carrying plasmids and producing ESBLs in Chilean marine environments.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Luz Hurtado
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Rocío Urtubia
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Jaime Romero
- Laboratorio de Biotecnología de los Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830417, Chile;
| |
Collapse
|
22
|
Lenart-Boroń A, Stankiewicz K, Bulanda K, Czernecka N, Heliasz M, Hunter W, Ratajewicz A, Khachatryan K, Khachatryan G. In Vitro Antibacterial Activity of Ozonated Olive Oil against Bacteria of Various Antimicrobial Resistance Profiles Isolated from Wounds of Companion Animals. Int J Mol Sci 2024; 25:3557. [PMID: 38542531 PMCID: PMC10971217 DOI: 10.3390/ijms25063557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 11/11/2024] Open
Abstract
Frequent colonization and bacterial infection of skin wounds in small animals prevent or impair their healing. However, the broadly applied antimicrobial therapy of wounds is not always necessary and promotes the spread of bacterial resistance. Thus, alternatives to antimicrobial therapy, including preventive measures in the form of wound dressings with antibiotic properties, should be searched for. The aim of this study was to develop a new, efficient, cost-effective and non-toxic formulation with antimicrobial properties to serve as an alternative to antibiotic administration in wound-healing stimulation in companion animals. Nano/microencapsulated ozonated olive oil in a hyaluronan matrix was developed, with ozone concentration high enough to prevent bacterial growth. The presence and size of nano- and microcapsules were determined with scanning electron microscopy (SEM). Antibacterial activity of developed formulations was examined in vitro on 101 Gram-positive and Gram-negative bacteria isolated from the wounds of companion animals. The highest ozone concentration in the developed formulations inhibited the growth of 40.59% bacteria. Species and genus-specific differences in reactions were observed. Enterococcus spp. proved the least susceptible while non-pathogenic Gram-positive bacteria were the most susceptible to the examined formulations. Changes in the bacterial morphology and cell structure of Psychrobacter sanguinis suspension mixed with Ca-stabilized formulations with nano/microencapsulated ozonized olive oil were revealed during SEM observations. The combination of compounds that promote wound healing (hyaluronic acid, olive oil, ozone and calcium) with the antibacterial activity of the developed formula makes it a promising bionanocomposite for use as a topical dressing.
Collapse
Affiliation(s)
- Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland;
| | - Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland;
| | - Klaudia Bulanda
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Natalia Czernecka
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Miłosz Heliasz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Walter Hunter
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Anna Ratajewicz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Kraków, Poland;
| | - Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Kraków, Poland;
| |
Collapse
|
23
|
Corrales-Martínez J, Jaramillo K, Tadesse DA, Satán C, Villavicencio FX, Sánchez-Gavilanes L, Rivadeneira-Cueva B, Balcázar JL, Calero-Cáceres W. Genomic characterization of a WHO critical priority isolate Enterobacter kobei ST2070 harboring OXA-10, KPC-2, and CTX-M-12 recovered from a water irrigation channel in Ecuador. Heliyon 2024; 10:e26379. [PMID: 38449644 PMCID: PMC10915343 DOI: 10.1016/j.heliyon.2024.e26379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
The discharge of untreated or partially treated wastewater can have detrimental impacts on the quality of water bodies, posing a significant threat to public health and the environment. In Ecuador, previous research indicates a high prevalence of antimicrobial resistant (AMR) bacteria in surface waters affected by human activities, including irrigation channels. In this study, we analyzed sediment samples collected from an irrigation channel utilized for agricultural purposes in northern Ecuador, using microbiological techniques and whole-genome sequencing (WGS). Our investigation revealed the first documented occurrence of E. kobei in Ecuador and the initial report of environmental E. kobei ST2070. Furthermore, we identified the coexistence of OXA-10-type class D β-lactamase and KPC-2-type class A β-lactamase in the E. kobei isolate (UTA41), representing the first report of such a phenomenon in this species. Additionally, we detected various antibiotic resistance genes in the E. kobei UTA41 isolate, including blaCTX-M-12, fosA, aac(6')-lb, sul2, msr(E), and mph(A), as well as virulence genes such as bacterial efflux pump and siderophore biosynthesis genes. We also identified two intact prophage regions (Entero_186 and Klebsi_phiKO2) in the isolate. Our study presents the first evidence of E. kobei isolate containing two carbapenemase-encoding genes in environmental samples from Latin America. This finding indicates the potential spread of critical-priority bacteria in water samples originating from anthropogenic sources, such as urban wastewater discharges and livestock facilities.
Collapse
Affiliation(s)
- Joselyn Corrales-Martínez
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Katherine Jaramillo
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos RAM, Instituto Nacional de Investigación en Salud Pública “Dr. Leopoldo Izquieta Pérez” INSPI, Quito, Ecuador
- Facultad de Ciencias de la Salud, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Daniel A. Tadesse
- U.S. Food &Drug Administration, Center for Veterinary Medicine, Office of Applied Science Laurel, MD 20708, USA
| | - Carolina Satán
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos RAM, Instituto Nacional de Investigación en Salud Pública “Dr. Leopoldo Izquieta Pérez” INSPI, Quito, Ecuador
| | - Fernando X. Villavicencio
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos RAM, Instituto Nacional de Investigación en Salud Pública “Dr. Leopoldo Izquieta Pérez” INSPI, Quito, Ecuador
- Veterinary Medicine, Eugenio Espejo Faculty of Health Sciences, Universidad UTE, Quito, Ecuador
| | - Lissette Sánchez-Gavilanes
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Brenda Rivadeneira-Cueva
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain
- University of Girona, 17004 Girona, Spain
| | - William Calero-Cáceres
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| |
Collapse
|
24
|
Kerek Á, Török B, Laczkó L, Somogyi Z, Kardos G, Bányai K, Kaszab E, Bali K, Jerzsele Á. In Vitro Microevolution and Co-Selection Assessment of Amoxicillin and Cefotaxime Impact on Escherichia coli Resistance Development. Antibiotics (Basel) 2024; 13:247. [PMID: 38534682 DOI: 10.3390/antibiotics13030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The global spread of antimicrobial resistance has become a prominent issue in both veterinary and public health in the 21st century. The extensive use of amoxicillin, a beta-lactam antibiotic, and consequent resistance development are particularly alarming in food-producing animals, with a focus on the swine and poultry sectors. Another beta-lactam, cefotaxime, is widely utilized in human medicine, where the escalating resistance to third- and fourth-generation cephalosporins is a major concern. The aim of this study was to simulate the development of phenotypic and genotypic resistance to beta-lactam antibiotics, focusing on amoxicillin and cefotaxime. The investigation of the minimal inhibitory concentrations (MIC) of antibiotics was performed at 1×, 10×, 100×, and 1000× concentrations using the modified microbial evolution and growth arena (MEGA-plate) method. Our results indicate that amoxicillin significantly increased the MIC values of several tested antibiotics, except for oxytetracycline and florfenicol. In the case of cefotaxime, this increase was observed in all classes. A total of 44 antimicrobial resistance genes were identified in all samples. Chromosomal point mutations, particularly concerning cefotaxime, revealed numerous complex mutations, deletions, insertions, and single nucleotide polymorphisms (SNPs) that were not experienced in the case of amoxicillin. The findings suggest that, regarding amoxicillin, the point mutation of the acrB gene could explain the observed MIC value increases due to the heightened activity of the acrAB-tolC efflux pump system. However, under the influence of cefotaxime, more intricate processes occurred, including complex amino acid substitutions in the ampC gene promoter region, increased enzyme production induced by amino acid substitutions and SNPs, as well as mutations in the acrR and robA repressor genes that heightened the activity of the acrAB-tolC efflux pump system. These changes may contribute to the significant MIC increases observed for all tested antibiotics. The results underscore the importance of understanding cross-resistance development between individual drugs when choosing clinical alternative drugs. The point mutations in the mdtB and emrR genes may also contribute to the increased activity of the mdtABC-tolC and emrAB-tolC pump systems against all tested antibiotics. The exceptionally high mutation rate induced by cephalosporins justifies further investigations to clarify the exact mechanism behind.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Bence Török
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Levente Laczkó
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Gábor Kardos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- National Public Health Center, Albert Flórián út 2-6, H-1097 Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Sóstói út 2-4, H-4400 Nyíregyháza, Hungary
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Eszter Kaszab
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary
| | - Krisztina Bali
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| |
Collapse
|
25
|
Novak A, Dzelalija M, Goic-Barisic I, Kovacic A, Pirija M, Maravic A, Radic M, Marinovic J, Rubic Z, Carev M, Tonkic M. Phenotypic and Molecular Characterization of a Hospital Outbreak Clonal Lineage of Salmonella enterica Subspecies enterica serovar Mikawasima Containing blaTEM-1B and blaSHV-2 That Emerged on a Neonatal Ward, During the COVID-19 Pandemic. Microb Drug Resist 2024; 30:118-126. [PMID: 38330414 DOI: 10.1089/mdr.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Nontyphoid salmonella can cause severe infections in newborns and is therefore declared a pathogen of major health significance at this age. The aim of the study was molecular and antimicrobial characterization of β-lactamase-producing Salmonella Mikawasima outbreak clone on a Neonatal ward, University Hospital of Split (UHS), Croatia during the COVID-19 pandemic. From April 2020, until April 2023, 75 nonrepetitive strains of Salmonella Mikawasima were isolated from stool specimens and tested for antimicrobial resistance. All 75 isolates were resistant to ampicillin and gentamicin, while 98% of isolates were resistant to amoxicillin/clavulanic acid. A high level of resistance was observed to third-generation cephalosporins (36% to ceftriaxone and 47% to ceftazidime). Extended-spectrum β-lactamase production was phenotypically detected by double-disk synergy test in 40% of isolates. Moderate resistance to quinolones was detected; 7% of isolates were resistant to pefloxacin and ciprofloxacin. All isolates were susceptible to carbapenems, chloramphenicol, and co-trimoxazole. Fourteen representative isolates, from 2020, 2021, 2022, and 2023, were analyzed with PFGE and all of them belong to the same clone. Whole-genome sequencing (WGS) analysis of three outbreak-related strains (SM1 and SM2 from 2020 and SM3 from 2023) confirmed that these strains share the same serotype (Mikawasima), multilocus sequence typing profile (ST2030), resistance genes [blaTEM-1B, aac(6')-Iaa, aac(6')-Im, and aph(2'')-Ib)] and carry incompatibility group C (IncC) plasmid. Furthermore, the gene blaSHV-2 was detected in SM1 and SM2. In summary, WGS analysis of three representative strains clearly demonstrates the persistence of β-lactamase-producing Salmonella Mikawasima in UHS during the 4-year period.
Collapse
Affiliation(s)
- Anita Novak
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
- ESCMID Food and Waterborne Infections Study Group - EFWISG, Basel, Switzerland
| | - Mia Dzelalija
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Ivana Goic-Barisic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Ana Kovacic
- Teaching Public Health Institute of Split and Dalmatia County, Split, Croatia
| | - Mario Pirija
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
| | - Ana Maravic
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Marina Radic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Jelena Marinovic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Zana Rubic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Merica Carev
- School of Medicine, University of Split, Split, Croatia
- ESCMID Food and Waterborne Infections Study Group - EFWISG, Basel, Switzerland
- Teaching Public Health Institute of Split and Dalmatia County, Split, Croatia
- Department of Health Studies, University of Split, Split, Croatia
| | - Marija Tonkic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
26
|
Bazalar-Gonzales J, Silvestre-Espejo T, Rodríguez Cueva C, Carhuaricra Huamán D, Ignación León Y, Luna Espinoza L, Rosadio Alcántara R, Maturrano Hernández L. Genomic insights into ESBL-producing Escherichia coli isolated from non-human primates in the Peruvian Amazon. Front Vet Sci 2024; 10:1340428. [PMID: 38292135 PMCID: PMC10825005 DOI: 10.3389/fvets.2023.1340428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are on the WHO priority pathogens list because they are associated with high mortality, health-care burden, and antimicrobial resistance (AMR), a serious problem that threatens global public health and should be addressed through the One Health approach. Non-human primates (NHP) have a high risk of acquiring these antibiotic-resistant bacteria due to their close phylogenetic relationship with humans and increased anthropogenic activities in their natural environments. This study aimed to detect and analyze the genomes of ESBL-producing Escherichia coli (ESBL-producing E. coli) in NHP from the Peruvian Amazon. Materials and methods We collected a total of 119 fecal samples from semi-captive Saguinus labiatus, Saguinus mystax, and Saimiri boliviensis, and captive Ateles chamek, Cebus unicolor, Lagothrix lagothricha, and Sapajus apella in the Loreto and Ucayali regions, respectively. Subsequently, we isolated and identified E. coli strains by microbiological methods, detected ESBL-producing E. coli through antimicrobial susceptibility tests following CLSI guidelines, and analyzed their genomes using previously described genomic methods. Results We detected that 7.07% (7/99) of E. coli strains: 5.45% (3/55) from Loreto and 9.09% (4/44) from Ucayali, expressed ESBL phenotype. Genomic analysis revealed the presence of high-risk pandemic clones, such as ST10 and ST117, carrying a broad resistome to relevant antibiotics, including three blaCTX-M variants: blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65. Phylogenomic analysis confirmed the clonal relatedness of high-risk lineages circulating at the human-NHP interface. Additionally, two ESBL-producing E. coli strains were identified as EPEC (eae) and ExPEC according to their virulence profiles, and one more presented a hypermucoviscous phenotype. Discussion We report the detection and genomic analysis of seven ESBL-producing E. coli strains carrying broad resistome and virulence factors in NHP from two regions of the Peruvian Amazon. Some of these strains are closely related to high-risk pandemic lineages previously reported in humans and domestic animals, highlighting the negative impact of anthropogenic activities on Amazonian wildlife. To our knowledge, this is the first documentation of ESBL-producing E. coli in NHP from the Amazon, underscoring the importance of adopting the One Health approach to AMR surveillance and minimizing the potential transmission risk of antibiotic-resistant bacteria at the human-NHP interface.
Collapse
Affiliation(s)
- Jhonathan Bazalar-Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Asociación Equipo Primatológico del Perú (EPP), Iquitos, Peru
| | - Thalía Silvestre-Espejo
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Carmen Rodríguez Cueva
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Dennis Carhuaricra Huamán
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Programa de Pós-Graduação Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Yennifer Ignación León
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Luis Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Raúl Rosadio Alcántara
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Lenin Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
27
|
Gogoi I, Saikia S, Sharma M, Onyango AO, Puzari M, Chetia P. Prevalence and distribution pattern of AmpC β-lactamases in ESBL producing clinical isolates of Klebsiella spp. in parts of Assam, India. World J Microbiol Biotechnol 2023; 40:38. [PMID: 38062277 DOI: 10.1007/s11274-023-03846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
The production of extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases is the most common explanation of multidrug resistance in clinical isolates of Klebsiella spp. In the present study, a total of 160 isolates of Klebsiella spp. were procured from the DBT-NER project with ethical clearance no. DU/Dib/ECBHR(Human)/2021-22/02). These were collected from various health settings of Assam and identified as drug-resistant. The isolates were screened for antibiotic susceptibility and phenotypic tests were performed on multidrug resistant isolates to confirm ESBL and AmpC β-lactamases production. The distribution pattern of ESBL and AmpC β-lactamase genotype was investigated by polymerase chain reaction (PCR). The results showed that among 107 multidrug-resistant (MDR) isolates of Klebsiella spp., 67.28% of isolates were ESBL producers and 56.07% were potential AmpC producers. The PCR results revealed that blaCTX-M was the most prevalent ESBL genotype. Among the ESBL producers, 11.11% of isolates showed co-occurrence with plasmid-mediated AmpC β lactamases genotype which indicated the high prevalence of ESBL and AmpC co-producers in K. pneumoniae and K. oxytoca, suggesting the possibility of serious public health concerns. Therefore, it is crucial to regularly monitor the spread of multidrug resistance among clinical isolates.
Collapse
Affiliation(s)
- Indrani Gogoi
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Mohan Sharma
- Integrated Molecular Diagnostic and Research Laboratory (BSL-2), District Hospital Tuensang, Tuensang, Nagaland, 798612, India
| | - Amos Oloo Onyango
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Minakshi Puzari
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Pankaj Chetia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
28
|
Del Corpo O, Senécal J, Hsu JM, Lawandi A, Lee TC. Rapid phenotypic testing for detection of carbapenemase- or extended-spectrum ß-lactamase-producing Enterobacterales directly from blood cultures: a systematic review and meta-analysis. Clin Microbiol Infect 2023; 29:1516-1527. [PMID: 37722531 DOI: 10.1016/j.cmi.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Early identification of extended-spectrum ß-lactamase (ESBL) and carbapenemase-producing Enterobacterales (CP-CRE) is critical for timely therapy. Rapid phenotypic tests identifying these resistance mechanisms from pure bacterial colonies have been developed. OBJECTIVES To determine the operating characteristics of available rapid phenotypic tests when applied directly to positive blood cultures. METHODS OF DATA SYNTHESIS Bivariate random effects models were used unless convergence was not achieved where we used separate univariate models for sensitivity and specificity. DATA SOURCES MEDLINE, CENTRAL, Embase, BIOSIS, and Scopus from inception to 16 March 2021. STUDY ELIGIBILITY CRITERIA Studies using any rapid phenotypic assay for detection of ESBL or CP-CRE directly from blood cultures positive for Enterobacterales, including those utilizing spiked blood cultures. Case reports/series, posters, abstracts, review articles, those with ≤5 resistant isolates, and studies lacking data or without full text were excluded. PARTICIPANTS Consecutive patient samples (main analysis) or spiked blood cultures (sensitivity analysis). TESTS Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assays (MALDI-TOF) and commercially available chromogenic or immunogenic assays. REFERENCE STANDARD Conventional laboratory methods and/or polymerase chain reaction (PCR). ASSESSMENT OF RISK OF BIAS Quality Assessment of Diagnostic Accuracy Studies Version 2 (QUADAS-2). RESULTS For detection of the ESBL phenotype the respective pooled sensitivities and specificities for consecutive clinical samples were as follows: 94% (95% CI 93-99%) and 97% (95% CI 95-100%) for MALDI-TOF/mass spectrometry (n = 1); and 98% (95% CI 92-100%) and 100% (95% CI 96-100%) for chromogenic assays (n = 7). For the CP-CRE phenotype the respective pooled sensitivity and specificities for consecutive clinical samples were as follows: 100% (95% CI 99-100%) and 100% (95% CI 100-100%) for MALDI-TOF (n = 2); 96% (95% CI 77-99%) and 100% (95% CI 81-100%) for chromogenic assays (n = 4); and 98% (95% CI 96-100%) and 100% (95% CI 100-100%) for immunogenic testing (n = 2). CONCLUSIONS Rapid phenotypic assays that can be directly applied to positive blood cultures to detect ESBL and carbapenemase production from Enterobacterales exist and, although clinical studies are limited, they appear to have high sensitivity and specificity. Their potential to facilitate patient care through timely identification of bacterial resistance should be further explored.
Collapse
Affiliation(s)
- Olivier Del Corpo
- Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Julien Senécal
- Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Jimmy M Hsu
- Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Alexander Lawandi
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada; Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Todd C Lee
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada; Clinical Practice Assessment Unit, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
29
|
Literacka E, Konior M, Izdebski R, Żabicka D, Herda M, Gniadkowski M, Korzeniewski K. High risk of intestinal colonization with ESBL-producing Escherichia coli among soldiers of military contingents in specific geographic regions. Eur J Clin Microbiol Infect Dis 2023; 42:1523-1530. [PMID: 37857920 PMCID: PMC10651695 DOI: 10.1007/s10096-023-04684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
One-hundred Polish soldiers of a contingent in Afghanistan in 2019 were screened for Enterobacterales resistant to newer-generation β-lactams at their departure and return. Seventeen percent were colonized in the gut at the departure, whereas 70% acquired carriage in Afghanistan. The commonest organisms were extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-Ec; 96.6%). All isolates were sequenced and were clonally diverse overall, even within the same sequence type, indicating that independent acquisitions mainly. ESBL-Ec were often multi-drug-resistant. Soldiers stationing in certain regions are at high risk of acquiring resistant bacteria that may cause endogenous infection, be transmitted to vulnerable individuals, and spread resistance genes.
Collapse
Affiliation(s)
- E Literacka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland.
| | - M Konior
- Department of Epidemiology and Tropical Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - M Herda
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - K Korzeniewski
- Department of Epidemiology and Tropical Medicine, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| |
Collapse
|
30
|
Khadka C, Shyaula M, Syangtan G, Bista S, Tuladhar R, Singh A, Joshi DR, Pokhrel LR, Dawadi P. Extended-spectrum β-lactamases producing Enterobacteriaceae (ESBL-PE) prevalence in Nepal: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166164. [PMID: 37572913 DOI: 10.1016/j.scitotenv.2023.166164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
An alarming increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has threatened the treatment and management of bacterial infections. This systematic review and meta-analysis aimed to provide a quantitative estimate of the prevalence of ESBL among the members of the Enterobacteriaceae family by analyzing the community-based and clinical studies published between 2011 and 2021 from Nepal and determine if ESBL-PE correlates with multidrug resistance (MDR). The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for systematic review and meta-analysis and the articles' quality was assessed using the Newcastle-Ottawa scale. Of the 2529 articles screened, 65 articles were systematically reviewed, data extracted, and included in in-depth meta-analysis. The overall pooled prevalence of ESBL-producers in Enterobacteriaceae was 29 % (95 % CI: 26-32 %) with high heterogeneity (I2 = 96 %, p < 0.001). Escherichia coli was the predominant ESBL-producing member of the Enterobacteriaceae family, followed by Citrobacter spp. and Klebsiella spp. The prevalence of ESBL-PE increased from 18.7 % in 2011 to 29.5 % in 2021. A strong positive correlation (r = 0.98) was observed between ESBL production and MDR in Enterobacteriaceae. ESBL-PE isolates showed high resistance to ampicillin, cephalosporins, and amoxicillin-clavulanic acid, and blaCTX-M type was the most reported gene variant among ESBL-PE. In conclusion, this study demonstrated an increased prevalence of ESBL-PE in Nepal over the last decade, and such isolates showed a high level of MDR against the β-lactams and non-β-lactam antibiotics. Tackling the rising antibiotic resistance (AR) and MDR in ESBL-PE would require concerted efforts from all stakeholders to institute effective infection control programs in the community and clinical settings.
Collapse
Affiliation(s)
- Christina Khadka
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Manita Shyaula
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Gopiram Syangtan
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Shrijana Bista
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
31
|
Golińska E, Kozień Ł, Tomusiak-Plebanek A, Kędzierska J, Dorycka M, Lauterbach R, Pawlik D, Rzepecka-Węglarz B, Janiszewska M, Heczko PB, Wojkowska-Mach J, Strus M. Epidemiology of neonatal sepsis in two neonatal intensive care units in Krakow, Poland in 2016-2017 years. BMC Infect Dis 2023; 23:827. [PMID: 38001444 PMCID: PMC10675960 DOI: 10.1186/s12879-023-08836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Sepsis in low-birth-weight neonates remains one of the most significant causes of neonatal morbidity and mortality. Approximately 3 million newborns suffer from sepsis globally every year. The aim of this study was to compare demographic and clinical features, as well as etiology and antibiotic susceptibility, of the main pathogens related to neonatal sepsis in two neonatal intensive units during a two-year period. METHODS We observed early-onset (EO-BSI) and late-onset bloodstream infections (LO-BSI) cases in two high-reference neonatal intensive care units (NICU) over a 24-month period (2016-2017). Samples of patients' blood were tested for the presence of the microorganisms. All bacterial isolates were tested for susceptibility to antibiotics. RESULTS The majority of sepsis cases weighed above 1000 g and were born by cesarean section. About 10% of the EO-BSI group died. There were differences in the EO-BSI /LO-BSI ratio in the compared wards due to differences among the admitted children. The most common pathogens isolated from blood were coagulase-negative staphylococci (CoNS) were represented by two dominating species: S. epidermidis and S. haemolyticus, followed by Klebsiella spp. strains and E.coli, which were mostly found in EO-BSI cases. No single S. agalactiae (GBS) strain was isolated. The majority of CoNS strains were resistant to methicillin, half were resistant to aminoglycosides, and one-third were resistant to macrolides and lincosamides. Half of the Gram-negative rods were resistant to beta-lactams. CONCLUSIONS The epidemiology of sepsis in two observed NICUs is comparable to data obtained from other studies with a predominance of methicillin-resistant CoNS in LO-BSI and beta-lactam resistant E. coli in EO-BSI. It is of importance that the campaign for controlling GBS carriage in pregnant women in Poland resulted in the disappearance of GBS as a cause of sepsis. Unfortunately, there are no such measures to control E.coli related sepsis.
Collapse
Affiliation(s)
- Edyta Golińska
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, Cracow, 31-121, Poland.
| | - Ł Kozień
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, Cracow, 31-121, Poland
| | - A Tomusiak-Plebanek
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, Cracow, 31-121, Poland
| | - J Kędzierska
- Department of Microbiology, University Hospital, Cracow, Poland
| | - M Dorycka
- Microbiological Laboratory, Diagnostics Inc. Krakow Branch, Cracow, Poland
| | - R Lauterbach
- Department of Neonatology, Medical College, Jagiellonian University, Cracow, Poland
| | - D Pawlik
- Department of Neonatology, Medical College, Jagiellonian University, Cracow, Poland
| | - B Rzepecka-Węglarz
- Department of Neonatal Intensive Care, "UJASTEK" Medical Centre, Cracow, Poland
| | - M Janiszewska
- Department of Informatics and Medical Statistics with E-learning Laboratory, Medical University, Lublin, Poland
| | - P B Heczko
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, Cracow, 31-121, Poland
| | - J Wojkowska-Mach
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, Cracow, 31-121, Poland
| | - M Strus
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, Cracow, 31-121, Poland
| |
Collapse
|
32
|
Husna A, Rahman MM, Badruzzaman ATM, Sikder MH, Islam MR, Rahman MT, Alam J, Ashour HM. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023; 11:2937. [PMID: 38001938 PMCID: PMC10669213 DOI: 10.3390/biomedicines11112937] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 11/26/2023] Open
Abstract
The rise of antimicrobial resistance, particularly from extended-spectrum β-lactamase producing Enterobacteriaceae (ESBL-E), poses a significant global health challenge as it frequently causes the failure of empirical antibiotic therapy, leading to morbidity and mortality. The E. coli- and K. pneumoniae-derived CTX-M genotype is one of the major types of ESBL. Mobile genetic elements (MGEs) are involved in spreading ESBL genes among the bacterial population. Due to the rapidly evolving nature of ESBL-E, there is a lack of specific standard examination methods. Carbapenem has been considered the drug of first choice against ESBL-E. However, carbapenem-sparing strategies and alternative treatment options are needed due to the emergence of carbapenem resistance. In South Asian countries, the irrational use of antibiotics might have played a significant role in aggravating the problem of ESBL-induced AMR. Superbugs showing resistance to last-resort antibiotics carbapenem and colistin have been reported in South Asian regions, indicating a future bleak picture if no urgent action is taken. To counteract the crisis, we need rapid diagnostic tools along with efficient treatment options. Detailed studies on ESBL and the implementation of the One Health approach including systematic surveillance across the public and animal health sectors are strongly recommended. This review provides an overview of the background, associated risk factors, transmission, and therapy of ESBL with a focus on the current situation and future threat in the developing countries of the South Asian region and beyond.
Collapse
Affiliation(s)
- Asmaul Husna
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town 350, Miaoli County, Taiwan
| | - Md. Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - A. T. M. Badruzzaman
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town 350, Miaoli County, Taiwan
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Livestock Division, Bangladesh Agricultural Research Council, Farmgate, Dhaka 1215, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jahangir Alam
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka 1349, Bangladesh
| | - Hossam M. Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
| |
Collapse
|
33
|
Gaballah A, Ali GH, Emad R, Omar H, Abou-Shleib HM. Beta-lactam Resistance Profile among Klebsiella pneumoniae Clinical Isolates from Alexandria, Egypt. Curr Microbiol 2023; 80:356. [PMID: 37755514 DOI: 10.1007/s00284-023-03479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/30/2023] [Indexed: 09/28/2023]
Abstract
Klebsiella pneumoniae is a major drug-resistant human pathogen accountable for a wide range of infections. In this cross-sectional study, we aimed to determine the phenotypic and genotypic features of β-lactamase-producing K. pneumoniae clinical isolates from Alexandria, Egypt. A total of 50 nonduplicated clinical isolates of K. pneumoniae were obtained from various specimens. They were identified biochemically and by biotyping using mass spectrometry. For molecular characterization, plasmid profile analysis was performed. Screening for extended spectrum β-lactamases (ESBLs), carbapenemases and AmpC production was carried out phenotypically and genotypically. Correlation analysis was performed to assess the relationship between phenotype, genotype and resistance patterns among the studied isolates. The dendrogram demonstrated 38 distinct plasmid profiles among 62% of our isolates. According to antimicrobial susceptibility testing, 90% of isolates were multi/extensive-drug resistant. Nineteen out of 50 (38%) were resistant to cefoxitin, while only 10 (20%) were resistant to imipenem. All isolates were susceptible to colistin. Phenotypically, ESBL producers (78%) were the most common, followed by carbapenemase producers (24%). Genotypically, the most common ESBL gene was blaSHV (90%), followed by blaCTX-Mu (74%), while the most common carbapenemase genes were blaNDM (56%) and blaOXA-48 (54%). No blaKPC or blaIMP were detected. Plasmid-mediated AmpC resistance was confirmed in only two out of 19 cefoxitin-resistant isolates. Both the blaNDM and blaOXA.48 genes were significantly positive correlated (rho = 0.56, p = 0.004). Absence of blaKPC among carbapenem resistant K. pneumoniae isolates in Alexandria, Egypt. AmpC production is not the main factor behind the resistance to cefoxitin among our isolates.
Collapse
Affiliation(s)
- Ahmed Gaballah
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Ghada Hani Ali
- Alexandria Main University Hospital, Alexandria University, Alexandria, Egypt
| | - Rasha Emad
- Alexandria Main University Hospital, Alexandria University, Alexandria, Egypt
| | - Hoda Omar
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
34
|
Bobbadi S, Bobby MN, Chinnam BK, Reddy PN, Kandhan S. Phenotypic and genetic screening of Klebsiella pneumoniae isolates from human UTI patients for beta-lactamases and their genetic diversity analysis by ERIC and REP PCRs. Braz J Microbiol 2023; 54:1723-1736. [PMID: 37198419 PMCID: PMC10484876 DOI: 10.1007/s42770-023-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Klebsiella pneumoniae is one of the major nosocomial pathogens responsible for pneumoniae, septicaemia, liver abscesses, and urinary tract infections. Coordinated efforts by antibiotic stewardship and clinicians are underway to curtail the emergence of antibiotic-resistant strains. The objective of the present study is to characterize K. pneumoniae strains through antibiotic resistance screening for production of beta-lactamases (β-lactamases) such as extended spectrum beta lactamases (ESBLs), AmpC β-lactamases, and carbapenemases by phenotypic and genotypic methods and genetic fingerprinting by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and repetitive element palindromic PCR (REP-PCR). A total of 85 K. pneumoniae strains isolated from 504 human urinary tract infections (UTI) were used in this study. Only 76 isolates showed positive in phenotypic screening test (PST), while combination disc method (CDM) as phenotypic confirmatory test (PCT) confirmed 72 isolates as ESBL producers. One or more β-lactamase genes were detected by PCR in 66 isolates (91.66%, 66/72) with blaTEM gene being the most predominant (75.75%, 50/66). AmpC genes could be detected in 21 isolates (31.8%, 21/66) with FOX gene being the predominant (24.24%, 16/66), whereas NDM-I was detected in a single strain (1.51%, 1/66). Genetic fingerprinting using ERIC-PCR and REP-PCR revealed wide heterogeneity among β-lactamase producing isolates with discriminatory power of 0.9995 and 1, respectively.
Collapse
Affiliation(s)
- Suresh Bobbadi
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur district, Andhra Pradesh 522 213 India
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur district, Andhra Pradesh 522 213 India
| | - Bindu Kiranmayi Chinnam
- Department of Veterinary Public Health and Epidemiology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh 521101 India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government Degree and PG College (Autonomous), Maddilapalem, Visakhapatnam, Andhra Pradesh 530 013 India
| | - Srinivas Kandhan
- Division of Veterinary Public Health, ICAR – Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
| |
Collapse
|
35
|
Mirzaei B, Ebrahimi A, Hariri B, Sokouti Z, Kazemi N, Moradi N. Frequencies of mobilized colistin resistance (mcr-1, 2) genes in clinically isolated Escherichia coli; a cross sectional study. BMC Res Notes 2023; 16:192. [PMID: 37653554 PMCID: PMC10472595 DOI: 10.1186/s13104-023-06455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE Escherichia coli (E. coli) is an opportunistic bacterium, which is globally recognized for its high prevalence and antimicrobial resistance (AMR). The presence of colistin-resistant representative mcr- 1, 2 genes in multi-drug resistant (MDR) clinically isolated E. coli is the main goal of this survey. After biochemically and molecular confirmation tests, susceptibility testing, biofilm formation, and minimum inhibitory concentration to colistin were performed on 100 E. coli isolates. Subsequently, taking advantage of uniplex-PCR, the presence of some responsible genes (mcr- 1, mcr- 2) to colistin-resistant phenotypes in mentioned bacterium was assessed. RESULTS Disc diffusion methods indicated that the highest resistance rate was against ampicillin (80.0%), and trimethoprim/sulfamethoxazole (63%). Among the E. coli isolates, 72 (72.0%) was determined as MDR, respectively. Moreover, 47 (47%) strains were determined as extreme beta-lactamase (ESBL) phenotypes. Among 41 slime-producing E. coli strains, 7 (17.07%), 14 (34.14%), and 20 (48.78%) strains exhibited high, moderate, and weak levels of biofilm formation, respectively. Fifty-nine (81.94%), and 1(100%) of MDR isolates were assessed as colistin resistant (MIC > 2) and susceptible (MIC ≤ 2) as well. In 26(36.11%) of colistin-resistant isolates and 1(1.38%) of colistin, susceptible isolate mcr-1 gene was found. There is no mcr- 2 gene was detected in isolates. CONCLUSION The diversity of high antibiotic-resistant rates could be avoided by developing appropriate healthcare policies and community awareness. Alarming resistance rates were observed in colistin and ampicillin, which should be taken into account in therapy guidelines.
Collapse
Affiliation(s)
- Bahman Mirzaei
- Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aida Ebrahimi
- Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahareh Hariri
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Sokouti
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Niloufar Kazemi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Narges Moradi
- Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
36
|
Abioye OE, Nontongana N, Osunla CA, Okoh AI. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023; 18:e0290356. [PMID: 37616193 PMCID: PMC10449182 DOI: 10.1371/journal.pone.0290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.
Collapse
Affiliation(s)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Charles A. Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
37
|
Grafia I, Chumbita M, Seguí E, Cardozo C, Laguna JC, García de Herreros M, Garcia-Pouton N, Villaescusa A, Pitart C, Rico-Caballero V, Marco-Hernández J, Zamora C, Viladot M, Padrosa J, Tuca A, Mayor-Vázquez E, Marco F, Martínez JA, Mensa J, Garcia-Vidal C, Soriano A, Puerta-Alcalde P. Epidemiology and risk factors for recurrence in biliary source bloodstream infection episodes in oncological patients. Microbiol Spectr 2023; 11:e0214223. [PMID: 37610217 PMCID: PMC10580831 DOI: 10.1128/spectrum.02142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
We aimed to describe the characteristics and outcomes of biliary source bloodstream infections (BSIs) in oncological patients. Secondarily, we analyzed risk factors for recurrent BSI episodes. All episodes of biliary source BSIs in oncological patients were prospectively collected (2008-2019) and retrospectively analyzed. Logistic regression analyses were performed. A rule to stratify patients into risk groups for recurrent biliary source BSI was conducted. Four hundred biliary source BSIs were documented in 291 oncological patients. The most frequent causative agents were Escherichia coli (42%) and Klebsiella spp. (27%), and 86 (21.5%) episodes were caused by multidrug-resistant Gram-negative bacilli (MDR-GNB). The rates of MDR-GNB increased over time. Overall, 73 patients developed 118 recurrent BSI episodes. Independent risk factors for recurrent BSI episodes were prior antibiotic therapy (OR 3.781, 95% CI 1.906-7.503), biliary prosthesis (OR 2.232, 95% CI 1.157-4.305), prior admission due to suspected biliary source infection (OR 4.409, 95% CI 2.338-8.311), and BSI episode caused by an MDR-GNB (OR 2.857, 95% CI 1.389-5.874). With these variables, a score was generated that predicted recurrent biliary source BSI with an area under the receiver operating characteristic (ROC) curve of 0.819. Inappropriate empirical antibiotic treatment (IEAT) was administered in 23.8% of patients, and 30-d mortality was 19.5%. As a conclusion, biliary source BSI in oncological patients is mainly caused by GNB, with high and increasing MDR rates, frequent IEAT, and high mortality. Recurrent BSI episodes are frequent. A simple score to identify recurrent episodes was developed to potentially establish prophylactic strategies. IMPORTANCE This study shows that biliary source bloodstream infections (BSIs) in oncological patients are mainly caused by Gram-negative bacilli (GNB), with high and increasing rates of multidrug resistance. Importantly, recurrent biliary source BSI episodes were very frequent and associated with delays in chemotherapy, high rates of inappropriate empirical antibiotic therapy, and high 30-d mortality (19.5%). Using the variable independently associated with recurrent BSI episodes, a score was generated that predicted recurrent biliary source BSI with high accuracy. This score could be used to establish prophylactic strategies and lower the risk of relapsing episodes and the associated morbidity and mortality.
Collapse
Affiliation(s)
- Ignacio Grafia
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Mariana Chumbita
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Elia Seguí
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Celia Cardozo
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | | | | | | | - Ana Villaescusa
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Cristina Pitart
- Microbiology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | | | - Javier Marco-Hernández
- Internal Medicine Department, Supportive and Palliative Care in Cancer Unit, Hospital Clínic, Barcelona, Spain
| | - Carles Zamora
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Margarita Viladot
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Joan Padrosa
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Albert Tuca
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Eric Mayor-Vázquez
- Medical Intensive Care Unit, Internal Medicine Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Francesc Marco
- Microbiology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Jose A. Martínez
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- CIBERINF, CIBER in Infectious Diseases, Barcelona, Spain
| | - Alex Soriano
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- CIBERINF, CIBER in Infectious Diseases, Barcelona, Spain
| | - Pedro Puerta-Alcalde
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Avatsingh AU, Sharma S, Kour S, Arora Y, Sharma S, Joshi D, Chaudhary PP, Perveen K, Kamal MA, Singh N. Prevalence of antibiotic-resistant Gram-negative bacteria having extended-spectrum β-lactamase phenotypes in polluted irrigation-purpose wastewaters from Indian agro-ecosystems. Front Microbiol 2023; 14:1227132. [PMID: 37608947 PMCID: PMC10440439 DOI: 10.3389/fmicb.2023.1227132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Antibiotic resistance in bacteria has emerged as a serious public health threat worldwide. Aquatic environments including irrigation-purpose wastewaters facilitate the emergence and transmission of antibiotic-resistant bacteria and antibiotic resistance genes leading to detrimental effects on human health and environment sustainability. Considering the paramount threat of ever-increasing antibiotic resistance to human health, there is an urgent need for continuous environmental monitoring of antibiotic-resistant bacteria and antibiotic resistance genes in wastewater being used for irrigation in Indian agro-ecosystems. In this study, the prevalence of antibiotic resistance in Gram-negative bacteria isolated from irrigation-purpose wastewater samples from Sirmaur and Solan districts of Himachal Pradesh was determined. Bacterial isolates of genera Escherichia, Enterobacter, Hafnia, Shigella, Citrobacter, and Klebsiella obtained from 11 different geographical locations were found to exhibit resistance against ampicillin, amoxyclav, cefotaxime, co-trimoxazole, tobramycin, cefpodoxime and ceftazidime. However, all the isolates were sensitive to aminoglycoside antibiotic gentamicin. Enterobacter spp. and Escherichia coli showed predominance among all the isolates. Multidrug-resistance phenotype was observed with isolate AUK-06 (Enterobacter sp.) which exhibited resistant to five antibiotics. Isolate AUK-02 and AUK-09, both E. coli strains showed resistant phenotypes to four antibiotics each. Phenotypic detection revealed that six isolates were positive for extended-spectrum β-lactamases which includes two isolates from Enterobacter spp. and E. coli each and one each from Shigella sp. and Citrobacter sp. Overall, the findings revealed the occurrence of antibiotic resistant and ESBL-positive bacterial isolates in wastewaters utilized for irrigation purpose in the study area and necessitate continuous monitoring and precautionary interventions. The outcomes of the study would be of significant clinical, epidemiological, and agro-environmental importance in designing effective wastewater management and environmental pollution control strategies.
Collapse
Affiliation(s)
- Achhada Ujalkaur Avatsingh
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Shilpa Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Shilippreet Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Yukta Arora
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sheetal Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Department of Microbiology, College of Basic Sciences and Humanities, GBPUA&T, Pantnagar, Uttarakhand, India
| | - Prem Prashant Chaudhary
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohab Amin Kamal
- Environmental Engineering, Civil Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Nasib Singh
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
39
|
Liu E, Prinzi AM, Borjan J, Aitken SL, Bradford PA, Wright WF. #AMRrounds: a systematic educational approach for navigating bench to bedside antimicrobial resistance. JAC Antimicrob Resist 2023; 5:dlad097. [PMID: 37583473 PMCID: PMC10424884 DOI: 10.1093/jacamr/dlad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Antimicrobial resistance (AMR) continues to serve as a major global health crisis. Clinicians practising in this modern era are faced with ongoing challenges in the therapeutic management of patients suffering from antimicrobial-resistant infections. A strong educational understanding and synergistic application of clinical microbiology, infectious disease and pharmacological concepts can assist the adventuring clinician in the navigation of such cases. Important items include mobilizing laboratory testing for pathogen identification and susceptibility data, harnessing an understanding of intrinsic pathogen resistance, acknowledging epidemiological resistance trends, recognizing acquired AMR mechanisms, and consolidating these considerations when constructing an ideal pharmacological plan. In this article, we outline a novel framework by which to systematically approach clinical AMR, encourage AMR-related education and optimize therapeutic decision-making in AMR-related illnesses.
Collapse
Affiliation(s)
- Elaine Liu
- Division of Pharmacy and Division of Infectious Diseases, The Johns Hopkins Bayview Medical Center, 5200 Eastern Avenue, Baltimore, MD, USA
| | - Andrea M Prinzi
- US Medical Affairs, bioMérieux, Salt Lake City, UT 84104, USA
| | - Jovan Borjan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel L Aitken
- Department of Pharmacy, Michigan Medicine, Ann Arbor, MI, USA
| | | | - William F Wright
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, USA
| |
Collapse
|
40
|
Santibañez-Bedolla KE, Orozco-Uriarte MJ, Alvarez-Canales JA, Macias AE, Amador-Medina LF. Oral colonization by gram-negative bacilli in patients with hematologic malignancies and solid tumors compared with healthy controls. BMC Oral Health 2023; 23:465. [PMID: 37422668 PMCID: PMC10329337 DOI: 10.1186/s12903-023-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Colonization of the oropharynx with gram-negative bacilli (GNB) is considered a negative prognostic factor in immunocompromised individuals. Hemato-oncologic patients represent a high-risk group due to their immunodeficiencies and associated treatments. This study aimed to determine the rates of oral colonization by GNB, associated factors, and clinical outcomes in patients with hematologic malignancies and solid tumors compared with healthy subjects. METHODS We conducted a comparative study of hemato-oncologic patients and healthy subjects from August to October 2022. Swabs were taken from the oral cavity; specimens with GNB were identified and tested for antimicrobial susceptibility. RESULTS We included 206 participants (103 hemato-oncologic patients and 103 healthy subjects). Hemato-oncologic patients had higher rates of oral colonization by GNB (34% vs. 17%, P = 0.007) and GNB resistant to third-generation cephalosporins (11.6% vs. 0%, P < 0.001) compared to healthy subjects. Klebsiella spp. was the predominant genus in both groups. The factor associated with oral colonization by GNB was a Charlson index ≥ 3, while ≥ 3 dental visits per year were a protective factor. Regarding colonization by resistant GNB in oncology patients, antibiotic therapy and a Charlson index ≥ 5 were identified as associated factors, while better physical functionality (ECOG ≤ 2) was associated with less colonization. Hemato-oncologic patients colonized with GNB had more 30-day infectious complications (30.5% vs. 2.9%, P = 0.0001) than non-colonized patients. CONCLUSION Oral colonization by GNB and resistant GNB are prevalent in cancer patients, especially those with higher scores on the severity scales. Infectious complications occurred more frequently in colonized patients. There is a knowledge gap about dental hygiene practices in hemato-oncologic patients colonized by GNB. Our results suggest that patients' hygienic-dietary habits, especially frequent dental visits, are a protective factor against colonization.
Collapse
Affiliation(s)
- Karla E. Santibañez-Bedolla
- Bajio Regional High Specialty Hospital, San Carlos La Roncha C.P. 37544, Leon Guanajuato, Mexico
- Department of Medicine, University of Guanajuato, San Carlos La Roncha C.P. 37660, Leon Guanajuato, Mexico
| | - Maria J. Orozco-Uriarte
- Department of Medicine, University of Guanajuato, San Carlos La Roncha C.P. 37660, Leon Guanajuato, Mexico
| | - Jose A. Alvarez-Canales
- Bajio Regional High Specialty Hospital, San Carlos La Roncha C.P. 37544, Leon Guanajuato, Mexico
- Department of Medicine, University of Guanajuato, San Carlos La Roncha C.P. 37660, Leon Guanajuato, Mexico
| | - Alejandro E. Macias
- Department of Medicine, University of Guanajuato, San Carlos La Roncha C.P. 37660, Leon Guanajuato, Mexico
| | - Lauro F. Amador-Medina
- Bajio Regional High Specialty Hospital, San Carlos La Roncha C.P. 37544, Leon Guanajuato, Mexico
- Department of Medicine, University of Guanajuato, San Carlos La Roncha C.P. 37660, Leon Guanajuato, Mexico
| |
Collapse
|
41
|
Mai HTT, Espinoza JL. The Impact of COVID-19 Pandemic on ESBL-Producing Enterobacterales Infections: A Scoping Review. Antibiotics (Basel) 2023; 12:1064. [PMID: 37370383 PMCID: PMC10294973 DOI: 10.3390/antibiotics12061064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have reported an increased frequency of colonization and/or infection with antibiotic-resistant bacteria (ARB) during the COVID-19 pandemic. Extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) are a group of bacteria with intrinsic resistance to multiple antibiotics, including penicillins, cephalosporins, and monobactams. These pathogens are easy to spread and can cause difficult-to-treat infections. Here, we summarize the available evidence on the impact of the COVID-19 pandemic on infections caused by ESBL-PE. Using specific criteria and keywords, we searched PubMed, MEDLINE, and EMBASE for articles published up to 30 March 2023 on potential changes in the epidemiology of ESBL-E since the beginning of the COVID-19 pandemic. We identified eight studies that documented the impact of COVID-19 on ESBL-E. Five studies were focused on assessing the frequency of ESBL-PE in patient-derived specimens, and three studies investigated the epidemiological aspects of ESBL-PE infections in the context of the COVID-19 pandemic. Some of the studies that were focused on patient specimens reported a decrease in ESBL-PE positivity during the pandemic, whereas the three studies that involved patient data (1829 patients in total) reported a higher incidence of ESBL-PE infections in patients hospitalized for COVID-19 compared with those with other conditions. There are limited data on the real impact of the COVID-19 pandemic on the epidemiology of ESBL-PE infections; however, patient-derived data suggest that the pandemic has exacerbated the spread of these pathogens.
Collapse
Affiliation(s)
- Ha Thi Thao Mai
- Department of Biochemistry, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - J. Luis Espinoza
- Faculty of Health Sciences, Kanazawa University, Kanazawa 920-0942, Ishikawa, Japan
| |
Collapse
|
42
|
Kavinesan K, Sugumar G, Chrisolite B, Muthiahsethupathy A, Sudarshan S, Parthiban F, Mansoor M. Phenotypic and genotypic characterization of pathogenic Escherichia coli identified in resistance mapping of β-lactam drug-resistant isolates from seafood along Tuticorin coast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68111-68128. [PMID: 37120498 DOI: 10.1007/s11356-023-27008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/27/2023]
Abstract
The ubiquity of pathogenic E. coli isolate possessing antimicrobial resistance was investigated in seafood samples procured from major seafood supply chain markets established for export and domestic consumption along Tuticorin coast. Out of 63 seafood samples examined, 29 (46%) were found to be contaminated by pathogenic E. coli harbouring one or more genes of virulent potential. Based on virulome profiling, 9.55% of isolates belonged to enterotoxigenic E. coli (ETEC), 8.08% to enteroaggregative E. coli (EAEC), 7.35% to enterohemorrhagic E. coli (EHEC), 2.20% to enteropathogenic E. coli (EPEC), and 2.20% to uropathogenic E. coli (UPEC). All the 34 virulome positive and haemolytic pathogenic E. coli have been serogrouped as O119, O76, O18, O134, O149, O120, O114, O25, O55, O127, O6, O78, O83, O17 and clinically significant O111, O121, O84, O26, O103, and O104 (non-O157 STEC) serotypes in this study. Multi-drug resistance (MDR) (≥ 3 antibiotic classes/sub-classes) was exhibited in 38.23% of the pathogenic E. coli, and 17.64% were extensive drug resistant (XDR). Extended spectrum of β-lactamase (ESBL) genotypes were confirmed in 32.35% isolates and 20.63% isolates harboured ampC gene. One sample (Penaeus semisulcatus) collected from landing centre (L1) harboured all ESBL genotypes blaCTX-M, blaSHV, blaTEM, and ampC genes. Hierarchical clustering of isolates revealed the separation of ESBL isolates into three clusters and non-ESBL isolates into three clusters based on phenotypic and genotypic variations. Based on dendrogram analysis on antibiotic efficacy pattern, carbapenems and β-lactam inhibitor drugs are the best available treatment for ESBL and non-ESBL infections. This study emphasizes the significance of comprehensive surveillance of pathogenic E. coli serogroups that pose serious threat to public health and compliance of AMR antimicrobial resistant genes in seafood that hinder seafood supply chain.
Collapse
Affiliation(s)
- Kumar Kavinesan
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| | - Gopalrajan Sugumar
- Tamil Nadu Dr. J.Jayalalithaa Fisheries University, Nagapattinam, Tamil Nadu, India, 611 002
| | - Bagthasingh Chrisolite
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008.
| | | | - Shanmugam Sudarshan
- TNJFU-Dr.MGR Fisheries College and Research Institute, TNJFU, Thalainayeru, Tamil Nadu, India, 614712
| | - Fathiraja Parthiban
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| | - Mohamed Mansoor
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| |
Collapse
|
43
|
Yang M, Liu D, Li X, Xiao C, Mao Y, He J, Feng J, Wang L. Characterizations of blaCTX-M-14 and blaCTX-M-64 in a clinical isolate of Escherichia coli from China. Front Microbiol 2023; 14:1158659. [PMID: 37649630 PMCID: PMC10464524 DOI: 10.3389/fmicb.2023.1158659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 09/01/2023] Open
Abstract
Extended-spectrum beta-lactamase-producing Gram-negative bacteria are common in the community and hospitals. To monitor ESBLs mediated by the CTX-M genotype, we collected clinical ESBL pathogenic strains from a hospital in central China and observed a strain of Escherichia coli, namely Ec15103 carrying blaCTX-M-14, blaCTX-M-64 and blaTEM-1, isolated from the blood of a 7-day-old infant in 2015. Strain Ec15103 contains two drug resistance plasmids: pEc15103A, an IncFI-type plasmid that cannot be conjugatively transferred and carries the drug resistance genes blaTEM-1, aacC2, aadA5, sul1, mph(A), sul2, strAB, and tetA(A); and pEc15103B, an IncK2/Z-type plasmid that carries the conjugation transfer gene and blaCTX-M-14. In addition, blaCTX-M-64 is located on the chromosome of Ec15103, and it is the first report of pathogen with blaCTX-M-64 located on its chromosome (the search terms used "blaCTX-M-64" and "chromosome"). blaCTX-M-14 and blaCTX-M-64 are carried by ISEcp1-mediated transposon Tn6503a and Tn6502, respectively. The conjugation transfer ability of pEc15103B was significantly inhibited by zidovudine (AZT) and linoleic acid (LA) and that expression of blaCTX-M-14, blaCTX-M-64 and blaTEM-1 at the mRNA level did not change based on the concentration of cefotaxime or ampicillin. Co-occurrence of blaCTX-M-14 and blaCTX-M-64 in a single isolate will enhance the drug resistance of bacteria, and the presence of blaCTX-M-64 in the chromosome may make the resistance more maintain. This fact will facilitate its dissemination and persistence under different antimicrobial selection pressures. It is essential to prevent these strains from further spreading in a hospital environment.
Collapse
Affiliation(s)
- Mingxing Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Dong Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xiaoquan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Chuting Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yingge Mao
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jiaqi He
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jiao Feng
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Li Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
44
|
Gachogo R, Karegi I, Ogoti B, Musyoki V, Martins D, Onyambu F, Kamau J. Draft genome sequences of three emerging beta-lactamase-producing Escherichia coli in the camel production system in Northern Kenya. F1000Res 2023; 11:1413. [PMID: 37654783 PMCID: PMC10466007 DOI: 10.12688/f1000research.127990.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 09/02/2023] Open
Abstract
We report the draft genome sequences and annotation of three beta-lactamase-producing Escherichia coli ( E.coli) strains isolated from fecal samples of healthy camels in Laikipia county, Kenya. This data adds to the online genome resources to support the ongoing antimicrobial resistance surveillance in the livestock-wildlife interface.
Collapse
Affiliation(s)
- Rachael Gachogo
- Center for Molecular Biosciences and Genomics, Nairobi, Kenya
- Division of immunology, Department of Human Pathology, University of Cape Town, Cape Town, South Africa
| | - Irene Karegi
- One Health Center, Institute of Primate Research, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Brian Ogoti
- Center for Microbiology, Washington State University, Nairobi, Kenya
| | - Victor Musyoki
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | | | - Frank Onyambu
- Center for Molecular Biosciences and Genomics, Nairobi, Kenya
- Meru University of Science and Technology, Meru, Kenya
| | - Joseph Kamau
- One Health Center, Institute of Primate Research, Nairobi, Kenya
| |
Collapse
|
45
|
Abbasi E, Ghaznavi-Rad E. High frequency of NDM-1 and OXA-48 carbapenemase genes among Klebsiella pneumoniae isolates in central Iran. BMC Microbiol 2023; 23:98. [PMID: 37038144 PMCID: PMC10088178 DOI: 10.1186/s12866-023-02840-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND The emergence and distribution of multidrug-resistant (MDR) and carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a global health threat. Therefore, this study aimed to investigate the frequency and antibiotic resistance patterns of MDR, extensively drug-resistant (XDR), and CRKP, as well as the antibiotic resistance genes of Klebsiella pneumoniae (K. pneumoniae) isolates from patients' infectious samples from central Iran. METHODS This study examined 546 clinical samples of patients to identify K. pneumoniae. The isolates were investigated for their antibiotic resistance profile, extended-spectrum β-lactamase (ESBL), AMPC β-lactamase, carbapenemase resistance, sulfonamide, tetracycline, plasmid-mediated quinolone resistance (PMQR) along with their resistance genes, integrase, and quaternary ammonium compounds (qac) by polymerase chain reaction (PCR). RESULTS Out of 546 clinical samples, 121 (22.1%) cases of K. pneumoniae were identified using culture and PCR methods. The highest antibiotic resistance rates were found for ampicillin (119/121; 98.3%), cotrimoxazole (78/121; 64.4%), and cefixime, cefotaxime, ceftriaxone, and ceftazidime as a group (77/121; 63.6%). Tigecycline, colistin, and fosfomycin were the most effective antimicrobial agents with 98.4%, 96.7%, and 95.9% susceptibility, respectively. The amount of CRKP was 51 (42.1%). All CRKP isolates were MDR. The most abundant genes were blaTEM (77/77; 100%), blaCTX-M1 (76/77; 98.7%), blaSHV (76/77; 98.7%), blaCTX-M15 (73/77; 94.8%) for ESBL; blaCIT 28 (48.3%) and blaCMY-2 26 (44.8%) for AMPC β-lactamase; and blaOXA-48 46 (90.1%) and blaNDM 36 (70.5%) for carbapenemase. Among the PMQR determinants, qnrB (25/52; 48%), qnrS (19/52; 36.5%), and qnrA (11/52; 21.1%) were positive from the isolates. TetA and tetB were recognized in 25 (44.6%) and 17 (30.3%) isolates, respectively. Class 1 and 2 integrons were recognized in 97 (80.1%) and 53 (43.8%) isolates, respectively. CONCLUSIONS Due to the high prevalence of MDR and CRKP in central Iran, tracking and immediate intervention are necessary for control and inhibition of K. pneumoniae resistant isolates. Tigecycline, colistin, and fosfomycin are the best treatment options for treatment of patients with CRKP in this geographical area.
Collapse
Affiliation(s)
- Elnaz Abbasi
- Department of Microbiology & Immunology, Khomein University of Medical Sciences, Khomein, Iran
| | - Ehsanollah Ghaznavi-Rad
- Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology & Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
46
|
Loftus MJ, Everts RJ, Cheng AC, Eti P, Fakasiieiki T, Isaia L, Isopo E, Jenney AW, Lameko V, Leaupepe H, Leavai F, Lee SJ, Moungaevalu M, Stewardson AJ, Tekoaua R, Tou D, Wuatai G, Peleg AY. Antimicrobial susceptibility of bacterial isolates from clinical specimens in four Pacific Island countries, 2017-2021. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 32:100677. [PMID: 36798514 PMCID: PMC9926303 DOI: 10.1016/j.lanwpc.2022.100677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Background There are limited antimicrobial resistance (AMR) surveillance data from low- and middle-income countries, especially from the Pacific Islands region. AMR surveillance data is essential to inform strategies for AMR pathogen control. Methods We performed a retrospective analysis of antimicrobial susceptibility results from the national microbiology laboratories of four Pacific Island countries - the Cook Islands, Kiribati, Samoa and Tonga - between 2017 and 2021. We focused on four bacteria that have been identified as 'Priority Pathogens' by the World Health Organization: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Findings Following deduplication, a total of 20,902 bacterial isolates was included in the analysis. The most common organism was E. coli (n = 8455) followed by S. aureus (n = 7830), K. pneumoniae (n = 2689) and P. aeruginosa (n = 1928). The prevalence of methicillin resistance among S. aureus isolates varied between countries, ranging from 8% to 26% in the Cook Islands and Kiribati, to 43% in both Samoa and Tonga. Ceftriaxone susceptibility remained high to moderate among E. coli (87%-94%) and K. pneumoniae (72%-90%), whereas amoxicillin + clavulanate susceptibility was low against these two organisms (50%-54% and 43%-61%, respectively). High susceptibility was observed for all anti-pseudomonal agents (83%-99%). Interpretation Despite challenges, these Pacific Island laboratories were able to conduct AMR surveillance. These data provide valuable contemporary estimates of AMR prevalence, which will inform local antibiotic formularies, treatment guidelines, and national priorities for AMR policy. Funding Supported by the National Health and Medical Research Council.
Collapse
Affiliation(s)
- Michael J. Loftus
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | | | - Allen C. Cheng
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | | | | | | | - Adam W.J. Jenney
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
- College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji
| | | | | | | | - Sue J. Lee
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | | | - Andrew J. Stewardson
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | | | | | | | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
47
|
Zhang H, Xu J, Xiao Q, Wang Y, Wang J, Zhu M, Cai Y. Carbapenem-sparing beta-lactam/beta-lactamase inhibitors versus carbapenems for bloodstream infections caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: a systematic review and meta-analysis. Int J Infect Dis 2023; 128:194-204. [PMID: 36621752 DOI: 10.1016/j.ijid.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Bloodstream infections (BSIs) caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) have become a worldwide public health threat, and beta-lactam/beta-lactamase inhibitor combinations (BLBLIs) are considered as one reliable carbapenem-sparing antibiotic. However, it is still controversial whether BLBLIs are truly noninferior to carbapenems. Therefore, we conducted this meta-analysis to compare the efficacy of BLBLIs with carbapenems for ESBL-PE BSIs. METHODS A systematic search of PubMed, Cochrane Library, and Embase was conducted until December 2021 to enroll studies comparing BLBLIs with carbapenems for ESBL-PE BSIs. A subgroup analysis was performed based on the choice of therapy (empirical, definitive, and mixed therapy). The protocol was registered in the International Prospective Register of Systematic Reviews (#CRD42022316011). RESULTS A total of 2786 patients from one randomized clinical trial and 25 cohorts were included. There was no statistically significant difference between BLBLIs and carbapenems groups in therapeutical response (odds ratio [OR] = 1.19, P = 0.45) and mortality (OR = 1.06, P = 0.68). Furthermore, although the statistical difference was also not found in the subgroup analysis, BLBLIs performed better in definitive therapy than empirical therapy than carbapenems, with a numerically higher therapeutical response (OR = 1.42 vs 0.89) and a mildly lower mortality (OR = 0.85 vs 1.14). CONCLUSION BLBLIs were noninferior to carbapenems for ESBL-PE BSIs, especially in definitive therapy. BLBLIs may be a valid alternative to spare the use of carbapenems.
Collapse
Affiliation(s)
- Huan Zhang
- Centre of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Centre, Chinese PLA General Hospital, Beijing, China
| | - Juan Xu
- Centre of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Centre, Chinese PLA General Hospital, Beijing, China
| | - Qinyan Xiao
- Centre of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuhang Wang
- Centre of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Centre, Chinese PLA General Hospital, Beijing, China
| | - Jin Wang
- Centre of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Centre, Chinese PLA General Hospital, Beijing, China
| | - Man Zhu
- Centre of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Centre, Chinese PLA General Hospital, Beijing, China
| | - Yun Cai
- Centre of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
48
|
ESBL-Positive Enterobacteriaceae from Dogs of Santiago and Boa Vista Islands, Cape Verde: A Public Health Concern. Antibiotics (Basel) 2023; 12:antibiotics12030447. [PMID: 36978314 PMCID: PMC10044620 DOI: 10.3390/antibiotics12030447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Antimicrobial resistance is a public health threat with an increasing expression in low- and middle-income countries such as Cape Verde. In this country, there is an overpopulation of dogs, which may facilitate the spread of resistant bacteria, including extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. To clarify the role of dogs as reservoirs for the dissemination of this bacterial group, 100 rectal swab samples were collected from confined (n = 50) and non-confined (n = 50) dogs in Santiago and Boa Vista Islands, Cape Verde. These were analyzed using conventional bacteriological techniques for the detection of ESBL-producing Enterobacteriaceae and characterization of their pathogenic and resistance profiles. Twenty-nine samples displayed ESBL-positive bacteria, from which 48 ESBL-producing isolates were obtained and mostly identified as Escherichia coli. Multiple antimicrobial resistance indexes ranged from 0.18 to 0.70 and half of the isolates were classified as multidrug-resistant. Isolates were capable of producing relevant virulence factors, including biofilm, showing virulence indexes between 0.29 and 0.71. As such, dogs in Cape Verde may act as reservoirs of resistant bacteria, including pathogenic and zoonotic species, representing a public health concern. Although further investigation is needed, this study proposes the periodical analysis of dogs’ fecal samples to monitor resistance dissemination in the country, in a One-Health perspective.
Collapse
|
49
|
Ekwall-Larson A, Fröding I, Mert B, Åkerlund A, Özenci V. Analytical Performance and Potential Clinical Utility of EUCAST Rapid Antimicrobial Susceptibility Testing in Blood Cultures after Four Hours of Incubation. Microbiol Spectr 2023; 11:e0500122. [PMID: 36809027 PMCID: PMC10100889 DOI: 10.1128/spectrum.05001-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
EUCAST rapid antimicrobial susceptibility testing (RAST) provides antibiotic susceptibility results after 4 to 8 h of incubation. This study assessed the diagnostic performance and clinical usefulness of EUCAST RAST after 4 h. This was a retrospective clinical study performed on blood cultures with Escherichia coli and Klebsiella pneumoniae complex (K. pneumoniae and Klebsiella variicola) at Karolinska University Laboratory (Stockholm, Sweden). The rate of categorized RAST results and the categorical agreement (CA) of RAST with the standard EUCAST 16-to-20-h disk diffusion (DD) method for piperacillin-tazobactam, cefotaxime, ceftazidime, meropenem, and ciprofloxacin were analyzed, as well as the utility of RAST for adjusting the empirical antibiotic therapy (EAT) and the combination of RAST with a lateral flow assay (LFA) for extended-spectrum β-lactamase (ESBL) detection. A total of 530 E. coli and 112 K. pneumoniae complex strains were analyzed, generating 2,641 and 558 readable RAST zones, respectively. RAST results categorized according to antimicrobial sensitivity/resistance (S/R) were obtained for 83.1% (2,194/2,641) and 87.5% (488/558) of E. coli and K. pneumoniae complex strains, respectively. The RAST result categorization to S/R for piperacillin-tazobactam was poor (37.2% for E. coli and 66.1% for K. pneumoniae complex). CA with the standard DD method was over 97% for all tested antibiotics. Using RAST, we detected 15/26 and 1/10 of the E. coli and K. pneumoniae complex strains that were resistant to the EAT. For patients treated with cefotaxime, RAST was used to detect 13/14 cefotaxime-resistant E. coli strains and 1/1 cefotaxime-resistant K. pneumoniae complex strain. ESBL positivity was reported the same day as blood culture positivity with RAST and LFA. EUCAST RAST provides accurate and clinically relevant susceptibility results after 4 h of incubation and can accelerate the assessment of resistance patterns. IMPORTANCE Early effective antimicrobial treatment has been shown to be crucial for improving the outcome of bloodstream infections (BSI) and sepsis. In combination with the rise of antibiotic resistance, this calls for accelerated methods for antibiotic susceptibility testing (AST) for effective treatment of BSI. This study assesses EUCAST RAST, an AST method that yields results in 4, 6, or 8 h after blood culture positivity. We analyzed a high number of clinical samples of Escherichia coli and Klebsiella pneumoniae complex strains and confirm that the method delivers reliable results after 4 h of incubation for the relevant antibiotics for treating E. coli and K. pneumoniae complex bacteremia. Furthermore, we conclude that it is an important tool for antibiotic treatment decision-making and early detection of ESBL-producing isolates.
Collapse
Affiliation(s)
- Anna Ekwall-Larson
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Inga Fröding
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Berivan Mert
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Anna Åkerlund
- Division of Clinical Microbiology, Department of Clinical and Experimental Medicine, Linköping University Hospital, Linköping, Sweden
- Division of Clinical Microbiology, Linköping University Hospital, Linköping, Sweden
| | - Volkan Özenci
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Development of a Method for the Fast Detection of Extended-Spectrum β-Lactamase- and Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae from Dogs and Cats in the USA. Animals (Basel) 2023; 13:ani13040649. [PMID: 36830436 PMCID: PMC9951654 DOI: 10.3390/ani13040649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Antibiotic resistance, such as resistance to beta-lactams and the development of resistance mechanisms, is associated with multifactorial phenomena and not only with the use of third-generation cephalosporins. Many methods have been recommended for the detection of ESBL and pAmpC β-lactamase production but they are very subjective and the appropriate facilities are not available in most laboratories, especially not in clinics. Therefore, for fast clinical antimicrobial selection, we need to rapidly detect ESBL- and pAmpC β-lactamase-producing bacteria using a simple method with samples containing large amounts of bacteria. For the detection of ESBL- and pAmpC phenotypes and genes, the disk diffusion test, DDST and multiplex PCR were conducted. Of the 109 samples, 99 (90.8%) samples were grown in MacConkey broth containing cephalothin, and 71 samples were grown on MacConkey agar containing ceftiofur. Of the 71 samples grown on MacConkey agar containing ceftiofur, 58 Escherichia coli and 19 Klebsiella pneumoniae isolates, in particular, harbored β-lactamase genes. Of the 38 samples that did not grow in MacConkey broth containing cephalothin or on MacConkey agar containing ceftiofur, 32 isolates were identified as E. coli, and 10 isolates were identified as K. pneumoniae; β-lactamase genes were not detected in these E. coli and K. pneumoniae isolates. Of the 78 ESBL- and pAmpC β-lactamase-producing E. coli and K. pneumoniae, 55 (70.5%) isolates carried one or more ESBL genes and 56 (71.8%) isolates carried one or more pAmpC β-lactamase genes. Our method is a fast, and low-cost tool for the screening of frequently encountered ESBL- and pAmpC β-lactamase-producing bacteria and it would assist in diagnosis and improve therapeutic treatment in animal hospitals.
Collapse
|