1
|
Kang MJ, Hwang SK, Park CH, Moon JW, Kim DW, Bae SE, Kim JH, Nam JM, Kim SJ, Bang J, Lim HJ, Uhm KO, Kim HS. Cedrol derivative attenuates muscle atrophy through regulation of myostatin transcription via Ca 2+-CaMK-FoxO3a signaling pathways. Exp Cell Res 2025; 448:114577. [PMID: 40286862 DOI: 10.1016/j.yexcr.2025.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Sarcopenia is a progressive and generalized muscle wasting syndrome characterized by loss of muscle strength and mass. Although many drug candidates have been developed to treat sarcopenia, their results were unsuccessful due to adverse or off-target effects. In this study, we identified a cedrol derivative which is a bioactive sesquiterpene having substantial suppressive effects on muscle atrophy. We demonstrated that the cedrol analog regulated myostatin expression via transcriptional regulation and that the cedrol derivative regulated this expression more effectively than the original form. Cedrol derivative stimulated Ca2+ via the mouse olfactory receptor 23 (MOR23) and induced interactions between phospho-CaMKII and FoxO3a in a calcium-dependent manner. In animal models, the transcript-level expressions of myostatin and MuRF1 were lower in the extensor digitorum longus (EDL) and soleus muscles of mice fed with cedrol-derivative diet. These findings reveal that cedrol derivative suppresses sarcopenia by inhibiting myostatin and MuRF1 expressions in both in vitro and in vivo models, thus suggesting that cedrol derivatives can be potential therapeutic agents for sarcopenia.
Collapse
Affiliation(s)
- Min Ju Kang
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea; Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
| | - Sung Kwan Hwang
- MFC CO., LTD 35, Cheongwonsandan 7-gil, Mado-myeon, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Chang Ha Park
- MFC CO., LTD 35, Cheongwonsandan 7-gil, Mado-myeon, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Wook Moon
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Do Won Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Se Eun Bae
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hyeon Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Nam
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jihye Bang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
| | - Hyun Joung Lim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex, Cheongju-si, Republic of Korea
| | - Kyung-Ok Uhm
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Qi T, Qin H, Yu F, Zhou Z, Chen Y, Liu P, Zeng H, Weng J. XLOC_015548 Mitigates Skeletal Muscle Atrophy via the Gadd45g/MEK/ERK Pathway and Redox Regulation. FRONT BIOSCI-LANDMRK 2025; 30:36233. [PMID: 40302339 DOI: 10.31083/fbl36233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Skeletal muscle atrophy is a common musculoskeletal disorder that significantly reduces patient quality of life. Long non-coding RNA (lncRNA) XLOC_015548 has been identified as a pivotal regulator of C2C12 myoblast proliferation and differentiation. However, its role in mitigating denervation-induced muscle atrophy and the underlying mechanisms remain unclear. METHODS We employed lentiviral-mediated stable expression of XLOC_015548 in C2C12 myoblasts and skeletal muscle-specific XLOC_015548-edited mouse models to investigate the function of this lncRNA. Muscle atrophy models were established in vitro by glucocorticoid-induced atrophy with dexamethasone (DEX) and in vivo by sciatic nerve transection-induced denervation. The MEK inhibitor U0126 was used to assess the role of the growth arrest and DNA damage-inducible 45 gamma/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (Gadd45g/MEK/ERK) signaling pathway. RESULTS Overexpression of XLOC_015548 significantly activated the MEK/ERK signaling pathway (p < 0.05) by downregulating Gadd45g expression (p < 0.05) and promoting its cytoplasmic localization, thereby enhancing cell proliferation and myotube formation. Furthermore, XLOC_015548 reduced the level of reactive oxygen species (ROS) (p < 0.01), stabilized the mitochondrial membrane potential, and alleviated DEX-induced oxidative stress. These protective effects were partially reversed by U0126, confirming the involvement of the MEK/ERK pathway. Skeletal muscle-specific overexpression of XLOC_015548 in vivo significantly reduced denervation-induced muscle atrophy (q < 0.05) and increased the muscle fiber cross-sectional area. CONCLUSION XLOC_015548 plays a critical role in promoting myogenic differentiation and protecting against muscle atrophy by regulating Gadd45g expression, activating the MEK/ERK signaling pathway, and reducing oxidative stress. These findings underscore the therapeutic potential of XLOC_015548 in skeletal muscle atrophy, and provide a foundation for lncRNA-based treatment strategies.
Collapse
Affiliation(s)
- Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| | - Fei Yu
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518035 Shenzhen, Guangdong, China
| | - Zimeng Zhou
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
- Department of Orthopedic Trauma, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518035 Shenzhen, Guangdong, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Fan Y, Zhai J, Wang Z, Yin Z, Chen H, Ran M, Zhu Z, Ma Y, Ning C, Yu P, Mao C. Piezoelectric Heterojunctions as Bacteria-Killing Bone-Regenerative Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413171. [PMID: 39460412 PMCID: PMC11707579 DOI: 10.1002/adma.202413171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Heterojunctions are widely used in energy conversion, environmental remediation, and photodetection, but have not been fully explored in regenerative medicine. In particular, piezoelectric heterojunctions have never been examined in tissue regeneration. Here the development of piezoelectric heterojunctions is shown to promote bone regeneration while eradicating pathogenic bacteria through light-cellular force-electric coupling. Specifically, an array of heterojunctions (TiO2/Bi2WO6), made of piezoelectric nanocrystals (Bi2WO6) decorating TiO2 nanowires, is fabricated as a biocompatible implant. Upon exposure to near-infrared light, the piezoelectric heterojunctions generate reactive oxygen species and heat to kill bacteria through photodynamic and photothermal therapy, respectively. Meanwhile, the mechanical forces of the stem cells grown on the implant trigger the heterojunctions to produce electric fields that further promote osteogenesis to achieve osteointegration. The heterojunctions effectively suppress postoperative recurrent infections while promoting osseointegration through the local electric fields induced by cells. Therefore, the piezoelectric heterojunctions represent a promising antibacterial tissue-regenerative implant.
Collapse
Affiliation(s)
- Youzhun Fan
- School of Materials Science and EngineeringGuang Dong Engineering Technology Research Center of Metallic Materials Surface FunctionalizationNational Engineering Research Center for Tissue Restoration and ReconstructionMedical Devices Research and Testing CenterSouth China University of TechnologyGuangzhou510641P. R. China
| | - Jinxia Zhai
- School of Materials Science and EngineeringGuang Dong Engineering Technology Research Center of Metallic Materials Surface FunctionalizationNational Engineering Research Center for Tissue Restoration and ReconstructionMedical Devices Research and Testing CenterSouth China University of TechnologyGuangzhou510641P. R. China
| | - Zhengao Wang
- School of Materials Science and EngineeringGuang Dong Engineering Technology Research Center of Metallic Materials Surface FunctionalizationNational Engineering Research Center for Tissue Restoration and ReconstructionMedical Devices Research and Testing CenterSouth China University of TechnologyGuangzhou510641P. R. China
| | - Zhaoyi Yin
- Faculty of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P. R. China
| | - Haoyan Chen
- School of Materials Science and EngineeringGuang Dong Engineering Technology Research Center of Metallic Materials Surface FunctionalizationNational Engineering Research Center for Tissue Restoration and ReconstructionMedical Devices Research and Testing CenterSouth China University of TechnologyGuangzhou510641P. R. China
| | - Maofei Ran
- School of Materials Science and EngineeringGuang Dong Engineering Technology Research Center of Metallic Materials Surface FunctionalizationNational Engineering Research Center for Tissue Restoration and ReconstructionMedical Devices Research and Testing CenterSouth China University of TechnologyGuangzhou510641P. R. China
| | - Zurong Zhu
- School of Materials Science and EngineeringGuang Dong Engineering Technology Research Center of Metallic Materials Surface FunctionalizationNational Engineering Research Center for Tissue Restoration and ReconstructionMedical Devices Research and Testing CenterSouth China University of TechnologyGuangzhou510641P. R. China
| | - Yubin Ma
- Department of Biomedical EngineeringThe Chinese University of Hong KongSha TinHong Kong SARP. R. China
| | - Chengyun Ning
- School of Materials Science and EngineeringGuang Dong Engineering Technology Research Center of Metallic Materials Surface FunctionalizationNational Engineering Research Center for Tissue Restoration and ReconstructionMedical Devices Research and Testing CenterSouth China University of TechnologyGuangzhou510641P. R. China
| | - Peng Yu
- School of Materials Science and EngineeringGuang Dong Engineering Technology Research Center of Metallic Materials Surface FunctionalizationNational Engineering Research Center for Tissue Restoration and ReconstructionMedical Devices Research and Testing CenterSouth China University of TechnologyGuangzhou510641P. R. China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongSha TinHong Kong SARP. R. China
| |
Collapse
|
4
|
Liu J, Bao X, Huang J, Chen R, Tan Y, Zhang Z, Xiao B, Kong F, Gu C, Du J, Wang H, Qi J, Tan J, Ma D, Shi C, Xu G. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics. Metabolism 2024; 152:155767. [PMID: 38154611 DOI: 10.1016/j.metabol.2023.155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Disturbance in the differentiation process of bone marrow mesenchymal stem cells (BMSCs) leads to osteoporosis. Mitochondrial dynamics plays a pivotal role in the metabolism and differentiation of BMSCs. However, the mechanisms underlying mitochondrial dynamics and their impact on the differentiation equilibrium of BMSCs remain unclear. METHODS We investigated the mitochondrial morphology and markers related to mitochondrial dynamics during BMSCs osteogenic and adipogenic differentiation. Bioinformatics was used to screen potential genes regulating BMSCs differentiation through mitochondrial dynamics. Subsequently, we evaluated the impact of Transmembrane protein 135 (TMEM135) deficiency on bone homeostasis by comparing Tmem135 knockout mice with their littermates. The mechanism of TMEM135 in mitochondrial dynamics and BMSCs differentiation was also investigated in vivo and in vitro. RESULTS Distinct changes in mitochondrial morphology were observed between osteogenic and adipogenic differentiation of BMSCs, manifesting as fission in the late stage of osteogenesis and fusion in adipogenesis. Additionally, we revealed that TMEM135, a modulator of mitochondrial dynamics, played a functional role in regulating the equilibrium between adipogenesis and osteogenesis. The TMEM135 deficiency impaired mitochondrial fission and disrupted crucial mitochondrial energy metabolism during osteogenesis. Tmem135 knockout mice showed osteoporotic phenotype, characterized by reduced osteogenesis and increased adipogenesis. Mechanistically, TMEM135 maintained intracellular calcium ion homeostasis and facilitated the dephosphorylation of dynamic-related protein 1 at Serine 637 in BMSCs. CONCLUSIONS Our findings underscore the significant role of TMEM135 as a modulator in orchestrating the differentiation trajectory of BMSCs and promoting a shift in mitochondrial dynamics toward fission. This ultimately contributes to the osteogenesis process. This work has provided promising biological targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jian Huang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Rukun Chen
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yixuan Tan
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Zheng Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Bing Xiao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Changjiang Gu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jianhang Du
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Haotian Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junqiang Qi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junming Tan
- Department of Orthopedics, The 72nd Army Hospital of the People's Liberation Army, Huzhou 313099, PR China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
5
|
Hong L, Xu D, Li W, Wang Y, Cao N, Fu X, Tian Y, Li Y, Li B. Non-coding RNA regulation of Magang geese skeletal muscle maturation via the MAPK signaling pathway. Front Physiol 2024; 14:1331974. [PMID: 38314139 PMCID: PMC10834734 DOI: 10.3389/fphys.2023.1331974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 02/06/2024] Open
Abstract
Skeletal muscle is a critical component of goose meat and a significant economic trait of geese. The regulatory roles of miRNAs and lncRNAs in the maturation stage of goose skeletal muscle are still unclear. Therefore, this study conducted experiments on the leg muscles of Magang geese at two stages: 3-day post-hatch (P3) and 3 months (M3). Morphological observations revealed that from P3 to M3, muscle fibers mainly underwent hypertrophy and maturation. The muscle fibers became thicker, nuclear density decreased, and nuclei moved towards the fiber edges. Additionally, this study analyzed the expression profiles of lncRNAs, miRNAs, and mRNAs during the skeletal muscle fiber maturation stage, identifying 1,949 differentially expressed mRNAs (DEMs), 21 differentially expressed miRNAs (DEMIs), and 172 differentially expressed lncRNAs (DELs). Furthermore, we performed enrichment analyses on DEMs, cis-regulatory genes of DELs, and target DEMs of DEMIs, revealing significant enrichment of signaling pathways including MAPK, PPAR, and mTOR signaling pathways. Among these, the MAPK signaling pathway was the only pathway enriched across all three types of differentially expressed RNAs, indicating its potentially more significant role in skeletal muscle maturation. Finally, this study integrated the targeting relationships between DELs, DEMs, and DEMIs from these two stages to construct a ceRNA regulatory network. These findings unveil the potential functions and mechanisms of lncRNAs and miRNAs in the growth and development of goose skeletal muscle and provide valuable references for further exploration of the mechanism underlying the maturation of Magang geese leg muscle.
Collapse
Affiliation(s)
- Longsheng Hong
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yifeng Wang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
6
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
7
|
Danowska M, Strączkowski M. The Ca2+/Calmodulin-dependent Calcineurin/NFAT Signaling Pathway in the Pathogenesis of Insulin Resistance in Skeletal Muscle. Exp Clin Endocrinol Diabetes 2023; 131:589-594. [PMID: 37875146 DOI: 10.1055/a-2174-7958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Skeletal muscle is the tissue directly involved in insulin-stimulated glucose uptake. Glucose is the primary energy substrate for contracting muscles, and proper metabolism of glucose is essential for health. Contractile activity and the associated Ca2+signaling regulate functional capacity and muscle mass. A high concentration of Ca2+and the presence of calmodulin (CaM) leads to the activation of calcineurin (CaN), a protein with serine-threonine phosphatase activity. The signaling pathway linked with CaN and transcription factors like the nuclear factor of activated T cells (NFAT) is essential for skeletal muscle development and reprogramming of fast-twitch to slow-twitch fibers. CaN activation may promote metabolic adaptations in muscle cells, resulting in better insulin-stimulated glucose transport. The molecular mechanisms underlying the altered insulin response remain unclear. The role of the CaN/NFAT pathway in regulating skeletal muscle hypertrophy is better described than its involvement in the pathogenesis of insulin resistance. Thus, there are opportunities for future research in that field. This review presents the role of CaN/NFAT signaling and suggests the relationship with insulin-resistant muscles.
Collapse
Affiliation(s)
- Magdalena Danowska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
8
|
Lyu P, Jiang H. RNA-Sequencing Reveals Upregulation and a Beneficial Role of Autophagy in Myoblast Differentiation and Fusion. Cells 2022; 11:cells11223549. [PMID: 36428978 PMCID: PMC9688917 DOI: 10.3390/cells11223549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Myoblast differentiation is a complex process whereby the mononuclear muscle precursor cells myoblasts express skeletal-muscle-specific genes and fuse with each other to form multinucleated myotubes. The objective of this study was to identify potentially novel mechanisms that mediate myoblast differentiation. We first compared transcriptomes in C2C12 myoblasts before and 6 days after induction of myogenic differentiation by RNA-seq. This analysis identified 11,046 differentially expressed genes, of which 5615 and 5431 genes were upregulated and downregulated, respectively, from before differentiation to differentiation. Functional enrichment analyses revealed that the upregulated genes were associated with skeletal muscle contraction, autophagy, and sarcomeres while the downregulated genes were associated with ribonucleoprotein complex biogenesis, mRNA processing, ribosomes, and other biological processes or cellular components. Western blot analyses showed an increased conversion of LC3-I to LC3-II protein during myoblast differentiation, further demonstrating the upregulation of autophagy during myoblast differentiation. Blocking the autophagic flux in C2C12 cells with chloroquine inhibited the expression of skeletal-muscle-specific genes and the formation of myotubes, confirming a positive role for autophagy in myoblast differentiation and fusion.
Collapse
|
9
|
Huang B, Jiao Y, Zhu Y, Ning Z, Ye Z, Li QX, Hu C, Wang C. Putative MicroRNA-mRNA Networks Upon Mdfi Overexpression in C2C12 Cell Differentiation and Muscle Fiber Type Transformation. Front Mol Biosci 2021; 8:675993. [PMID: 34738011 PMCID: PMC8560695 DOI: 10.3389/fmolb.2021.675993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Mdfi, an inhibitor of myogenic regulatory factors, is involved in myoblast myogenic development and muscle fiber type transformation. However, the regulatory network of Mdfi regulating myoblasts has not been revealed. In this study, we performed microRNAs (miRNAs)-seq on Mdfi overexpression (Mdfi-OE) and wild-type (WT) C2C12 cells to establish the regulatory networks. Comparative analyses of Mdfi-OE vs. WT identified 66 differentially expressed miRNAs (DEMs). Enrichment analysis of the target genes suggested that DEMs may be involved in myoblast differentiation and muscle fiber type transformation through MAPK, Wnt, PI3K-Akt, mTOR, and calcium signaling pathways. miRNA-mRNA interaction networks were suggested along with ten hub miRNAs and five hub genes. We also identified eight hub miRNAs and eleven hub genes in the networks of muscle fiber type transformation. Hub miRNAs mainly play key regulatory roles in muscle fiber type transformation through the PI3K-Akt, MAPK, cAMP, and calcium signaling pathways. Particularly, the three hub miRNAs (miR-335-3p, miR-494-3p, and miR-709) may be involved in both myogenic differentiation and muscle fiber type transformation. These hub miRNAs and genes might serve as candidate biomarkers for the treatment of muscle- and metabolic-related diseases.
Collapse
Affiliation(s)
- Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Zhu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zuocheng Ning
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zijian Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Huang B, Jiao Y, Zhu Y, Ning Z, Ye Z, Li QX, Hu C, Wang C. Mdfi Promotes C2C12 Cell Differentiation and Positively Modulates Fast-to-Slow-Twitch Muscle Fiber Transformation. Front Cell Dev Biol 2021; 9:605875. [PMID: 33553177 PMCID: PMC7862576 DOI: 10.3389/fcell.2021.605875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Muscle development requires myoblast differentiation and muscle fiber formation. Myod family inhibitor (Mdfi) inhibits myogenic regulatory factors in NIH3T3 cells, but how Mdfi regulates myoblast myogenic development is still unclear. In the present study, we constructed an Mdfi-overexpression (Mdfi-OE) C2C12 cell line by the CRISPR/Cas9 system and performed RNA-seq on Mdfi-OE and wild-type (WT) C2C12 cells. The RNA-seq results showed that the calcium signaling pathway was the most significant. We also established the regulatory networks of Mdfi-OE on C2C12 cell differentiation and muscle fiber type transformation and identified hub genes. Further, both RNA-seq and experimental verification demonstrated that Mdfi promoted C2C12 cell differentiation by upregulating the expression of Myod, Myog, and Myosin. We also found that the positive regulation of Mdfi on fast-to-slow-twitch muscle fiber transformation is mediated by Myod, Camk2b, and its downstream genes, such as Pgc1a, Pdk4, Cs, Cox4, Acadm, Acox1, Cycs, and Atp5a1. In conclusion, our results demonstrated that Mdfi promotes C2C12 cell differentiation and positively modulates fast-to-slow-twitch muscle fiber transformation. These findings further our understanding of the regulatory mechanisms of Mdfi in myogenic development and muscle fiber type transformation. Our results suggest potential therapeutic targets for muscle- and metabolic-related diseases.
Collapse
Affiliation(s)
- Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Zhu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zuocheng Ning
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zijian Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Alves PKN, Cruz A, Silva WJ, Labeit S, Moriscot AS. Leucine Supplementation Decreases HDAC4 Expression and Nuclear Localization in Skeletal Muscle Fiber of Rats Submitted to Hindlimb Immobilization. Cells 2020; 9:cells9122582. [PMID: 33276563 PMCID: PMC7761616 DOI: 10.3390/cells9122582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
In this study we surveyed a rat skeletal muscle RNA-Seq for genes that are induced by hindlimb immobilization and, in turn, become attenuated by leucine supplementation. This approach, in search of leucine-atrophy protection mediating genes, identified histone deacetylase 4 (HDAC4) as highly responsive to both hindlimb immobilization and leucine supplementation. We then examined the impact of leucine on HDAC4 expression, tissue localization, and target genes. A total of 76 male Wistar rats (~280 g) were submitted to hindlimb immobilization and/or leucine supplementation for 3, 7 and 12 days. These animals were euthanized, and soleus muscle was removed for further analysis. RNA-Seq analysis of hindlimb immobilized rats indicated a sharp induction (log2 = 3.4) of HDAC4 expression which was attenuated by leucine supplementation (~50%). Real-time PCR and protein expression analysis by Western blot confirmed increased HDAC4 mRNA after 7 days of hindlimb immobilization and mitigation of induction by leucine supplementation. Regarding the HDAC4 localization, the proportion of positive nuclei was higher in the immobilized group and decreased after leucine supplementation. Also, we found a marked decrease of myogenin and MAFbx-atrogin-1 mRNA levels upon leucine supplementation, while CAMKII and DACH2 mRNA levels were increased by leucine supplementation. Our data suggest that HDAC4 inhibition might be involved in the anti-atrophic effects of leucine.
Collapse
Affiliation(s)
- Paula K. N. Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
| | - André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
| | - William J. Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
| | - Siegfried Labeit
- Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Institute for Integrative Pathophysiology, Universitätsmedizin Mannheim, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemund, Germany
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
- Correspondence:
| |
Collapse
|
12
|
Ling Y, Zheng Q, Jing J, Sui M, Zhu L, Li Y, Zhang Y, Liu Y, Fang F, Zhang X. RNA-Seq Reveals miRNA Role Shifts in Seven Stages of Skeletal Muscles in Goat Fetuses and Kids. Front Genet 2020; 11:684. [PMID: 32733538 PMCID: PMC7358459 DOI: 10.3389/fgene.2020.00684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are indispensable for the regulation of skeletal muscle. We performed RNA sequencing (RNA-seq) to establish a comprehensive miRNA profiling of goats in seven stages, namely, 45- (F45), 65- (F65), 90- (F90), 120- (F120), and 135-day (F135) fetuses, newborn (B1), and 90-day-old (B90) kids. In total, 421 known miRNAs and 228 goat novel miRNAs were identified in the data, and the average abundance of 19 miRNAs in seven stages exceeds 10,000 reads per million. Furthermore, 420 differentially expressed miRNAs (DEmiRNAs) were identified in all comparison group at seven stages, 80 of which were uniquely differentially expressed in the B1 and B90 comparison groups. Pathway analysis indicated that this group was associated with the release of muscle hypertrophy and regulation of myoblast proliferation. Besides, 305 DEmiRNAs were clustered into three significantly enriched profiles (profiles 11, 16, and 19). Function analysis revealed that profile 16 was related to muscle hypertrophy and differentiation. Profile 11 was involved in multiple enzyme activities and metabolic processes in muscle cells. And profile 19 was involved in material transport and structural stability. Two highly expressed miRNAs and three key miRNAs (chi-miR-328-3p, chi-miR-767, and chi-miR-150) of these profiles were verified to be consistent with the data by quantitative real-time PCR. These results provided a catalog of goat muscle-associated miRNAs, allowing us to better understand the transformation of miRNA roles during mammalian muscle development.
Collapse
Affiliation(s)
- Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Menghua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Lu Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Xiaorong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
13
|
Hu J, Shi D, Ding M, Huang T, Gu R, Xiao J, Xian CJ, Dong J, Wang L, Liao H. Calmodulin-dependent signalling pathways are activated and mediate the acute inflammatory response of injured skeletal muscle. J Physiol 2019; 597:5161-5177. [PMID: 31506936 DOI: 10.1113/jp278478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS There is a close relationship between skeletal muscle physiology and Ca2+ /calmodulin (CaM) signalling. Despite the effects of Ca2+ /CaM signalling on immune and inflammatory responses having been extensively explored, few studies have investigated the role of CaM pathway activation on the post-injury muscle inflammatory response. In this study, we investigated the role of CaM-dependent signalling in muscle inflammation in cardiotoxin induced myoinjuries in mice. The Ca2+ /calmodulin-dependent protein kinase II (CaMII), Ca2+ /calmodulin-dependent protein kinase IV (CaMKIV), and nuclear factor of activated T cells (NFAT) pathways are likely to be simultaneously activated in muscle cells and in infiltrating lymphocytes and to regulate the immune behaviours of myofibres in an inflammatory environment, and these pathways ultimately affect the outcome of muscle inflammation. ABSTRACT Calcium/calmodulin (Ca2+ /CaM) signalling is essential for immune and inflammatory responses in tissues. However, it is unclear if Ca2+ /CaM signalling interferes with muscle inflammation. Here we investigated the roles of CaM-dependent signalling in muscle inflammation in mice that had acute myoinjuries in the tibialis anterior muscle induced by intramuscular cardiotoxin (CTX) injections and received intraperitoneal injections of either the CaM inhibitor calmidazolium chloride (CCL) or CaM agonist calcium-like peptide 1 (CALP1). Multiple inflammatory parameters, including muscle autoantigens and toll-like receptors, mononuclear cell infiltration, cytokines and chemokines associated with peripheral muscle inflammation, were examined after the injury and treatment. CALP1 treatment enhanced intramuscular infiltration of monocytes/macrophages into the damaged tibialis anterior muscle and up-regulated mRNA and protein levels of muscle autoantigens (Mi-2, HARS and Ku70) and Toll-like receptor 3 (TLR3), and mRNA levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), Monocyte chemoattractant protein-1 (MCP1), Monocyte chemoattractant protein-3 (MCP3) and Macrophage inflammatory protein-1(MIP-1α) in damaged muscle. In contrast, CCL treatment decreased the intramuscular cell infiltration and mRNA levels of the inflammatory mediators. After CALP1 treatment, a substantial up-regulation in Ca2+ /calmodulin-dependent protein kinase II (CaMKII), Ca2+ /calmodulin-dependent protein kinase IV (CaMKIV) and nuclear factor of activated T cells (NFAT) activity was detected in CD45+ cells isolated from the damaged muscle. More pro-inflammatory F4/80+ Ly-6C+ cells were detected in CD45-gated cells after CALP1 treatment than in those after CCL treatment or no treatment. Consistently, in interferon-γ-stimulated cultured myoblasts and myotubes, CALP1 treatment up-regulated the activities of CaMKII, CaMKIV and NFAT, and levels of class I/II major histocompatibility complexes (MHC-I/II) and TLR3. Our findings demonstrated that CaM-dependent signalling pathways mediate the injury-induced acute muscle inflammatory response.
Collapse
Affiliation(s)
- Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dandan Shi
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Maochao Ding
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Human Anatomy, Tissue Repair and Regenerative Medicine Research Center, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ruicai Gu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangwei Xiao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Jianghui Dong
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Liping Wang
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
14
|
von Walden F. Ribosome biogenesis in skeletal muscle: coordination of transcription and translation. J Appl Physiol (1985) 2019; 127:591-598. [PMID: 31219775 DOI: 10.1152/japplphysiol.00963.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle mass responds in a remarkable manner to alterations in loading and use. It has long been clear that skeletal muscle hypertrophy can be prevented by inhibiting RNA synthesis. Since 80% of the cell's total RNA has been estimated to be rRNA, this finding indicates that de novo production of rRNA via transcription of the corresponding genes is important for such hypertrophy to occur. Transcription of rDNA by RNA Pol I is the rate-limiting step in ribosome biogenesis, indicating in turn that this biogenesis strongly influences the hypertrophic response. The present minireview focuses on 1) a brief description of the key steps in ribosome biogenesis and the relationship of this process to skeletal muscle mass and 2) the coordination of ribosome biogenesis and protein synthesis for growth or atrophy, as exemplified by the intracellular AMPK and mTOR pathways.
Collapse
Affiliation(s)
- Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Yuasa K, Okubo K, Yoda M, Otsu K, Ishii Y, Nakamura M, Itoh Y, Horiuchi K. Targeted ablation of p38α MAPK suppresses denervation-induced muscle atrophy. Sci Rep 2018; 8:9037. [PMID: 29899565 PMCID: PMC5998077 DOI: 10.1038/s41598-018-26632-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
The loss of skeletal muscle mass is a major cause of falls and fractures in the elderly, leading to compromised independence and a decrease in the quality of life. However, only a few therapeutic interventions leading to marginal clinical benefits in patients with this condition are currently available. Therefore, the demand to further understand the pathology of muscle atrophy and establish a treatment modality for patients with muscle atrophy is significant. p38α mitogen-activated protein kinase (p38α MAPK) is a ubiquitous signaling molecule that is implicated in various cellular functions, including cell proliferation, differentiation, and senescence. In the present study, we generated a mutant line in which p38α MAPK is specifically abrogated in muscle tissues. Compared with the control mice, these mutant mice are significantly resistant to denervation-induced muscle atrophy, suggesting that p38α MAPK positively regulates muscle atrophy. We also identified CAMK2B as a potential downstream target of p38α MAPK and found that the pharmacological inhibition of CAMK2B activity suppresses denervation-induced muscle atrophy. Altogether, our findings identify p38α MAPK as a novel regulator of muscle atrophy and suggest that the suppression of intracellular signaling mediated by p38α MAPK serves as a potential target for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Kazuki Yuasa
- Pharmacological R&D Section, Pharmaceutical Research Department, Sato Pharmaceutical Co., Ltd., 6-8-5 Higashi-ohi, Shinagawa, Tokyo, 140-0011, Japan
| | - Kazumasa Okubo
- Pharmacological R&D Section, Pharmaceutical Research Department, Sato Pharmaceutical Co., Ltd., 6-8-5 Higashi-ohi, Shinagawa, Tokyo, 140-0011, Japan
| | - Masaki Yoda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London, Strand, London, WC2R 2LS, UK
| | - Yasuyuki Ishii
- Pharmacological R&D Section, Pharmaceutical Research Department, Sato Pharmaceutical Co., Ltd., 6-8-5 Higashi-ohi, Shinagawa, Tokyo, 140-0011, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoshiki Itoh
- Drug Discovery Research Department, Sato Pharmaceutical Co., Ltd., 6-8-5 Higashi-ohi, Shinagawa, Tokyo, 140-0011, Japan.
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan. .,Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
16
|
Chen X, Wan J, Yu B, Diao Y, Zhang W. PIP5K1α promotes myogenic differentiation via AKT activation and calcium release. Stem Cell Res Ther 2018; 9:33. [PMID: 29426367 PMCID: PMC5806439 DOI: 10.1186/s13287-018-0770-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/01/2017] [Accepted: 01/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal muscle satellite cell-derived myoblasts are mainly responsible for postnatal muscle growth and injury-induced regeneration. Many intracellular signaling pathways are essential for myogenic differentiation, while a number of kinases are involved in this modulation process. Type I phosphatidylinositol 4-phosphate 5-kinase (PIP5KI) was identified as one of the key kinases involved in myogenic differentiation, but the underlying molecular mechanism is still unclear. METHODS PIP5K1α was quantified by quantitative reverse transcriptase PCR and western blot assay. Expression levels of myogenin and myosin heavy chain, which showed significant downregulation in PIP5K1α siRNA-mediated knockdown cells in western blot analysis, were confirmed by immunostaining. Phosphatidylinositol 4,5-bisphosphate in PIP5K1α siRNA-mediated knockdown cells was also measured by the PI(4,5)P2 Mass ELISA Kit. C2C12 cells were overexpressed with different forms of AKT, followed by western blot analysis on myogenin and myosin heavy chain, which reveals their function in myogenic differentiation. FLIPR assays are used to test the release of calcium in PIP5K1α siRNA-mediated knockdown cells after histamine or bradykinin treatment. Statistical significances between groups were determined by two-tailed Student's t test. RESULTS Since PIP5K1α was the major form in skeletal muscle, knockdown of PIP5K1α consistently inhibited myogenic differentiation while overexpression of PIP5K1α promoted differentiation and rescued the inhibitory effect of the siRNA. PIP5K1α was found to be required for AKT activation and calcium release, both of which were important for skeletal muscle differentiation. CONCLUSIONS Taken together, these results suggest that PIP5K1α is an important regulator in myoblast differentiation.
Collapse
Affiliation(s)
- Xiaofan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Lianhua Road 1120, Shenzhen, 518036, Guangdong Province, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Lianhua Road 1120, Shenzhen, 518036, Guangdong Province, China.,Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Yarui Diao
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Lianhua Road 1120, Shenzhen, 518036, Guangdong Province, China. .,Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Lianhua Road 1120, Shenzhen, 518036, Guangdong Province, China.
| |
Collapse
|
17
|
Disturbed Ca 2+ Homeostasis in Muscle-Wasting Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:307-326. [PMID: 30390258 DOI: 10.1007/978-981-13-1435-3_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca2+ is essential for proper structure and function of skeletal muscle. It not only activates contraction and force development but also participates in multiple signaling pathways. Low levels of Ca2+ restrain muscle regeneration by limiting the fusion of satellite cells. Ironically, sustained elevations of Ca2+ also result in muscle degeneration as this ion promotes high rates of protein breakdown. Moreover, transforming growth factors (TGFs) which are well known for controlling muscle growth also regulate Ca2+ channels. Thus, therapies focused on changing levels of Ca2+ and TGFs are promising for treating muscle-wasting disorders. Three principal systems govern the homeostasis of Ca2+, namely, excitation-contraction (EC) coupling, excitation-coupled Ca2+ entry (ECCE), and store-operated Ca2+ entry (SOCE). Accordingly, alterations in these systems can lead to weakness and atrophy in many hereditary diseases, such as Brody disease, central core disease (CCD), tubular aggregate myopathy (TAM), myotonic dystrophy type 1 (MD1), oculopharyngeal muscular dystrophy (OPMD), and Duchenne muscular dystrophy (DMD). Here, the interrelationship between all these molecules and processes is reviewed.
Collapse
|
18
|
Dissecting the Roles of the Calcineurin Pathway in Unisexual Reproduction, Stress Responses, and Virulence in Cryptococcus deneoformans. Genetics 2017; 208:639-653. [PMID: 29233811 DOI: 10.1534/genetics.117.300422] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/07/2017] [Indexed: 01/12/2023] Open
Abstract
The Ca2+/calmodulin-dependent protein phosphatase calcineurin orchestrates sexual reproduction, stress responses, and virulence via branched downstream pathways in the opportunistic human fungal pathogen Cryptococcus neoformans The calcineurin-binding protein Cbp1, the calcineurin temperature suppressor Cts1, the calcineurin-responsive zinc finger transcription factor Crz1, and the calcineurin targets Pbp1, Tif3, and Puf4, all function downstream of calcineurin to orchestrate distinct cellular processes. To elucidate how the calcineurin pathway regulatory network governs unisexual reproduction, stress responses, and virulence, we have analyzed the self-filamentous C. deneoformans strain, XL280α, and generated double mutants of these calcineurin downstream genes. We demonstrated that calcineurin governs unisexual reproduction at different sexual developmental stages, in which the initiation of the yeast-hyphal morphological transition is independent of Crz1, whereas the sporulation process is dependent on Crz1. Calcineurin-dependent unisexual reproduction is independent of the pheromone response pathway. Crz1 synergistically interacts with different calcineurin downstream targets in responding to ER, high-calcium, and cell wall stresses. We observed a widespread synergy suggesting that these proteins function in complex branched pathways downstream of calcineurin with some functional redundancy, which may allow efficient signaling network rewiring within the pathway for prompt adaptation to changing environments. Finally, we showed that deletion of PBP1 or TIF3 in the cna1∆ mutant background conferred a modest level of growth tolerance at 37°, but that the cna1∆ pbp1∆ and cna1∆ tif3∆ double mutants were both avirulent, suggesting that calcineurin may control virulence via mechanisms beyond thermotolerance.
Collapse
|
19
|
Brinegar AE, Xia Z, Loehr JA, Li W, Rodney GG, Cooper TA. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions. eLife 2017; 6:27192. [PMID: 28826478 PMCID: PMC5577920 DOI: 10.7554/elife.27192] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development.
Collapse
Affiliation(s)
- Amy E Brinegar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States
| | - Zheng Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, United States
| | - James Anthony Loehr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Wei Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, United States
| | - George Gerald Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Thomas A Cooper
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
20
|
He D, Zou T, Gai X, Ma J, Li M, Huang Z, Chen D. MicroRNA expression profiles differ between primary myofiber of lean and obese pig breeds. PLoS One 2017; 12:e0181897. [PMID: 28759650 PMCID: PMC5536276 DOI: 10.1371/journal.pone.0181897] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small miRNAs ~22 nucleotides in length and play a vital role in muscle development by binding to messenger RNAs (mRNAs). Large White (LW, a lean type pig) and Meishan pigs (MS, a Chinese indigenous obese breed) have significant postnatal phenotype differences in growth rate, muscle mass and meat quality, and these differences are programmed during prenatal muscle development. Little research shed light directly on the miRNA transcriptome difference in prenatal muscles between these two distinct pig breeds. Myofiber phenotypes of LW and MS were measured at developmental stages of 35, 55 and 90 days post-conception (dpc), which revealed that the myogenesis process is more intense in MS than in LW at 35 dpc. To investigate the role of miRNAs involved in regulating muscle development at earlier stages of myogenesis and decipher the miRNAs transcriptome difference between LW and MS, here, the miRNAomes of longissimus dorsi muscle collected at 35 dpc from female LW and MS were analyzed by deep sequencing. Overall, 1147 unique miRNAs comprising 434 known miRNAs, 239 conserved miRNAs and 474 candidate miRNAs were identified. Expression analysis of the 10 most abundant miRNAs in every library indicated that functional miRNAome may be a small amount and tend to be greater expressed. These sets of miRNA may play house keeping roles that were involved in myogenesis. A total of 87 miRNAs were significantly differentially expressed between LW and MS (reads > 1000, P < 0.05). Gene ontology (GO) and KEGG pathway enrichment analysis revealed that the differentially expressed miRNAs (DE miRNAs) were associated mainly with muscle contraction, WNT, mTOR, and MAPK signaling pathways. Some myogenesis related miRNAs (miR-133, miR-1, miR-206 and miR-148a) are highly abundant in MS, while other miRNAs (let-7 family, miR-214, miR-181) highly expressed in LW. In addition, the expression patterns of miRNAs (miR-1, -133, -206) at three prenatal stages (35, 55 and 90 dpc) were determined using qRT-PCR. Notably, ssc-miR-133 was significantly more highly expressed in LW pigs skeletal muscle at all prenatal stages compared with its expression in LW pigs skeletal muscle. Taken together, the main functional miRNAs during muscle development are different between lean and obese pig breeds. The present study adds new information to existing data on porcine miRNAs and will be helpful to investigate the dominant (main functional) muscle-related miRNAs sets in different pig breeds.
Collapse
Affiliation(s)
- Dongting He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Tiande Zou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Xiangrong Gai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, People's Republic of China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| |
Collapse
|
21
|
Reddish FN, Miller CL, Gorkhali R, Yang JJ. Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases. Int J Mol Sci 2017; 18:E1024. [PMID: 28489021 PMCID: PMC5454937 DOI: 10.3390/ijms18051024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022] Open
Abstract
The flow of intracellular calcium (Ca2+) is critical for the activation and regulation of important biological events that are required in living organisms. As the major Ca2+ repositories inside the cell, the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of muscle cells are central in maintaining and amplifying the intracellular Ca2+ signal. The morphology of these organelles, along with the distribution of key calcium-binding proteins (CaBPs), regulatory proteins, pumps, and receptors fundamentally impact the local and global differences in Ca2+ release kinetics. In this review, we will discuss the structural and morphological differences between the ER and SR and how they influence localized Ca2+ release, related diseases, and the need for targeted genetically encoded calcium indicators (GECIs) to study these events.
Collapse
Affiliation(s)
- Florence N Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Cassandra L Miller
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Rakshya Gorkhali
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
22
|
Mason SA, Morrison D, McConell GK, Wadley GD. Muscle redox signalling pathways in exercise. Role of antioxidants. Free Radic Biol Med 2016; 98:29-45. [PMID: 26912034 DOI: 10.1016/j.freeradbiomed.2016.02.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023]
Abstract
Recent research highlights the importance of redox signalling pathway activation by contraction-induced reactive oxygen species (ROS) and nitric oxide (NO) in normal exercise-related cellular and molecular adaptations in skeletal muscle. In this review, we discuss some potentially important redox signalling pathways in skeletal muscle that are involved in acute and chronic responses to contraction and exercise. Specifically, we discuss redox signalling implicated in skeletal muscle contraction force, mitochondrial biogenesis and antioxidant enzyme induction, glucose uptake and muscle hypertrophy. Furthermore, we review evidence investigating the impact of major exogenous antioxidants on these acute and chronic responses to exercise. Redox signalling pathways involved in adaptive responses in skeletal muscle to exercise are not clearly elucidated at present, and further research is required to better define important signalling pathways involved. Evidence of beneficial or detrimental effects of specific antioxidant compounds on exercise adaptations in muscle is similarly limited, particularly in human subjects. Future research is required to not only investigate effects of specific antioxidant compounds on skeletal muscle exercise adaptations, but also to better establish mechanisms of action of specific antioxidants in vivo. Although we feel it remains somewhat premature to make clear recommendations in relation to application of specific antioxidant compounds in different exercise settings, a bulk of evidence suggests that N-acetylcysteine (NAC) is ergogenic through its effects on maintenance of muscle force production during sustained fatiguing events. Nevertheless, a current lack of evidence from studies using performance tests representative of athletic competition and a potential for adverse effects with high doses (>70mg/kg body mass) warrants caution in its use for performance enhancement. In addition, evidence implicates high dose vitamin C (1g/day) and E (≥260 IU/day) supplementation in impairments to some skeletal muscle cellular adaptations to chronic exercise training. Thus, determining the utility of antioxidant supplementation in athletes likely requires a consideration of training and competition periodization cycles of athletes in addition to type, dose and duration of antioxidant supplementation.
Collapse
Affiliation(s)
- Shaun A Mason
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Dale Morrison
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Glenn K McConell
- Clinical Exercise Science Research Program, Institute for Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Glenn D Wadley
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
23
|
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016; 116:1595-625. [PMID: 27294501 PMCID: PMC4983298 DOI: 10.1007/s00421-016-3411-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Philipp Baumert
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark J Lake
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
24
|
Zielichowska A, Daczewska M, Saczko J, Michel O, Kulbacka J. Applications of calcium electroporation to effective apoptosis induction in fibrosarcoma cells and stimulation of normal muscle cells. Bioelectrochemistry 2016; 109:70-8. [DOI: 10.1016/j.bioelechem.2016.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023]
|
25
|
Zhang Y, Storey KB. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation. Mol Cell Biochem 2015; 412:27-40. [PMID: 26597853 DOI: 10.1007/s11010-015-2605-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through downregulation of the NFAT-Cn pathway.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
26
|
Qin W, Pan J, Wu Y, Bauman WA, Cardozo C. Anabolic steroids activate calcineurin-NFAT signaling and thereby increase myotube size and reduce denervation atrophy. Mol Cell Endocrinol 2015; 399:336-45. [PMID: 25450864 DOI: 10.1016/j.mce.2014.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/22/2014] [Accepted: 09/24/2014] [Indexed: 01/11/2023]
Abstract
Anabolic androgens have been shown to reduce muscle loss due to immobilization, paralysis and many other medical conditions, but the molecular basis for these actions is poorly understood. We have recently demonstrated that nandrolone, a synthetic androgen, slows muscle atrophy after nerve transection associated with down-regulation of regulator of calcineurin 2 (RCAN2), a calcineurin inhibitor, suggesting a possible role of calcineurin-NFAT signaling. To test this possibility, rat gastrocnemius muscle was analyzed at 56 days after denervation. In denervated muscle, calcineurin activity declined and NFATc4 was excluded from the nucleus and these effects were reversed by nandrolone. Similarly, nandrolone increased calcineurin activity and nuclear NFATc4 levels in cultured L6 myotubes. Nandrolone also induced cell hypertrophy that was blocked by cyclosporin A or overexpression of RCAN2. Finally protection against denervation atrophy by nandrolone in rats was blocked by cyclosporin A. These results demonstrate for the first time that nandrolone activates calcineurin-NFAT signaling, and that such signaling is important in nandrolone-induced cell hypertrophy and protection against paralysis-induced muscle atrophy.
Collapse
Affiliation(s)
- Weiping Qin
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA; Departments of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | - Jiangping Pan
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA
| | - Yong Wu
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA
| | - William A Bauman
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA; Departments of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA; Rehabilitation Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Christopher Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA; Departments of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA; Rehabilitation Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
27
|
Immunosuppressive activity of daphnetin, one of coumarin derivatives, is mediated through suppression of NF-κB and NFAT signaling pathways in mouse T cells. PLoS One 2014; 9:e96502. [PMID: 24800925 PMCID: PMC4011761 DOI: 10.1371/journal.pone.0096502] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
Daphnetin, a plant-derived dihydroxylated derivative of coumarin, is an effective compound extracted from a plant called Daphne Korean Nakai. Coumarin derivates were known for their antithrombotic, anti-inflammatory, and antioxidant activities. The present study was aimed to determine the immunosuppressive effects and the underlying mechanisms of daphnetin on concanavalin A (ConA) induced T lymphocytes in mice. We showed that, in vitro, daphnetin suppressed ConA-induced splenocyte proliferation, influenced production of the cytokines and inhibited cell cycle progression through the G0/G1 transition. The data also revealed that daphnetin could down-regulate activation of ConA induced NF-κB and NFAT signal transduction pathways in mouse T lymphocyte. In vivo, daphnetin treatment significantly inhibited the 2, 4- dinitrofluorobenzene (DNFB) -induced delayed type hypersensitivity (DTH) reactions in mice. Collectively, daphnetin had strong immunosuppressive activity both in vitro and in vivo, suggesting a potential role for daphnetin as an immunosuppressive agent, and established the groundwork for further research on daphnetin.
Collapse
|
28
|
Pierzchala M, Hoekman AJW, Urbanski P, Kruijt L, Kristensen L, Young JF, Oksbjerg N, Goluch D, te Pas MFW. Validation of biomarkers for loin meat quality (M. longissimus) of pigs. J Anim Breed Genet 2014; 131:258-70. [PMID: 24506540 DOI: 10.1111/jbg.12081] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Abstract
The aim of this study was to validate previously reported associations between microarray gene expression levels and pork quality traits using real-time PCR. Meat samples and meat quality data from 100 pigs were collected from a different pig breed to the one tested by microarray (Large White versus Pietrain) and a different country of origin (Denmark versus Germany). Ten genes (CARP, MB, CSRP3, TNNC1, VAPB, TNNI1, HSPB1, TNNT1, TIMP-1, RAD-like) were chosen from the original microarray study on the basis of the association between gene expression levels and the meat quality traits meat %, back fat, pH24, drip loss %, colour a*, colour b*, colour L*, WB-SF, SFA, MUFA, PUFA. Real-time PCR detection methods were developed for validation of all ten genes, confirming association with drip loss (two of two genes), ultimate pH (three of four genes), a* (redness) (two of six genes) and L*(lightness) (two of four genes). Furthermore, several new correlations for MUFA and PUFA were established due to additional meat quality trait information on fatty acid composition not available for the microarray study. Regression studies showed that the maximum explanation of the phenotypic variance of the meat quality traits was 50% for the ultimate pH trait using these ten genes only. Additional studies showed that the gene expression of several of the genes was correlated with each other. We conclude that the genes initially selected from the microarray study were robust, explaining variances of the genes for the meat quality traits.
Collapse
Affiliation(s)
- M Pierzchala
- Animal Breeding and Genetics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands; Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzebiec, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2013; 1:1383-412. [PMID: 23733647 DOI: 10.1002/cphy.c100042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Collapse
Affiliation(s)
- Hans Hoppeler
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
30
|
Adams GR, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2013; 2:2829-70. [PMID: 23720267 DOI: 10.1002/cphy.c110066] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber-type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
31
|
Fontes-Oliveira CC, Busquets S, Fuster G, Ametller E, Figueras M, Olivan M, Toledo M, López-Soriano FJ, Qu X, Demuth J, Stevens P, Varbanov A, Wang F, Isfort RJ, Argilés JM. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation-contraction coupling together with additional muscle alterations. Muscle Nerve 2013; 49:233-48. [DOI: 10.1002/mus.23893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Cibely Cristine Fontes-Oliveira
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Gemma Fuster
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Elisabet Ametller
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Maite Figueras
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Mireia Olivan
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Xiaoyan Qu
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Jeffrey Demuth
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Paula Stevens
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Alex Varbanov
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Feng Wang
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Robert J. Isfort
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
32
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
33
|
Qin L, Chen Y, Liu X, Ye S, Yu K, Huang Z, Yu J, Zhou X, Chen H, Mo D. Integrative analysis of porcine microRNAome during skeletal muscle development. PLoS One 2013; 8:e72418. [PMID: 24039761 PMCID: PMC3770649 DOI: 10.1371/journal.pone.0072418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development.
Collapse
Affiliation(s)
- Lijun Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Sanxing Ye
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Kaifan Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zheng Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jingwei Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xingyu Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
34
|
Montesano A, Luzi L, Senesi P, Terruzzi I. Modulation of cell cycle progression by 5-azacytidine is associated with early myogenesis induction in murine myoblasts. Int J Biol Sci 2013; 9:391-402. [PMID: 23678289 PMCID: PMC3654436 DOI: 10.7150/ijbs.4729] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 02/19/2013] [Indexed: 01/09/2023] Open
Abstract
Myogenesis is a multistep process, in which myoblasts withdraw from the cell cycle, cease to divide, elongate and fuse to form multinucleated myotubes. Cell cycle transition is controlled by a family of cyclin-dependent protein kinases (CDKs) regulated by association with cyclins, negative regulatory subunits and phosphorylation. Muscle differentiation is orchestrated by myogenic regulatory factors (MRFs), such as MyoD and Myf-5. DNA methylation is crucial in transcriptional control of genes involved in myogenesis. Previous work has indicated that treatment of fibroblasts with the DNA-demethylating agent 5-azacytidine (AZA) promotes MyoD expression. We studied the effects of AZA on cell cycle regulation and MRFs synthesis during myoblast proliferation and early myogenesis phases in C2C12 cells. During the proliferation phase, cells were incubated in growth medium with 5µM AZA (GMAZA) or without AZA (GM) for 24 hours. At 70% confluence, cells were kept in growth medium in order to spontaneously achieve differentiation or transferred to differentiation medium with 5μM AZA (DMAZA) or without AZA (DM) for 12 and 24 hours. Cells used as control were unstimulated. In the proliferation phase, AZA-treated cells seemed to lose their characteristic circular shape and become elongated. The presence of AZA resulted in significant increases in the protein contents of Cyclin-D (FC:1.23 GMAZA vs GM p≤0.05), p21 (FC: 1.23 GMAZA vs GM p≤0.05), Myf-5 (FC: 1.21 GMAZA vs GM p≤0.05) and MyoD (FC: 1.20 GMAZA vs GM p≤0.05). These results propose that AZA could inhibit cell proliferation. During 12 hours of differentiation, AZA decreased the downregulation of genes involved in cell cycle arrest and in restriction point (G1 and G1/S phase) and the expression of several cyclins, E2F Transcription Factors, cyclin-dependent kinase inhibitors, specific genes responsible of cell cycle negative regulation. During 24 hours of differentiation, AZA induced an increment in the protein expression of Myf-5 (FC: 1.57 GMAZA vs GM p≤0.05), MyoD (FC: 1.14 DM vs GM p≤0.05; FC: 1.47 DMAZA vs GM p≤0.05), p21 (FC: 1.36 GMAZA vs GM p≤0.01; FC: 1.49 DM vs GM p≤0.05; FC: 1.82 DMAZA vs GM p≤0.01) and MyHC (FC: 1.40 GMAZA vs GM p≤0.01; FC: 2.39 DM vs GM p≤0.05; FC: 3.51 DMAZA vs GM p≤0.01). Our results suggest that AZA-induced DNA demethylation can modulate cell cycle progression and enhance myogenesis. The effects of AZA may open novel clinical uses in the field of muscle injury research and treatment.
Collapse
Affiliation(s)
- Anna Montesano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
35
|
Guarnieri S, Morabito C, Paolini C, Boncompagni S, Pilla R, Fanò-Illic G, Mariggiò MA. Growth associated protein 43 is expressed in skeletal muscle fibers and is localized in proximity of mitochondria and calcium release units. PLoS One 2013; 8:e53267. [PMID: 23308181 PMCID: PMC3538766 DOI: 10.1371/journal.pone.0053267] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022] Open
Abstract
The neuronal Growth Associated Protein 43 (GAP43), also known as B-50 or neuromodulin, is involved in mechanisms controlling pathfinding and branching of neurons during development and regeneration. For many years this protein was classified as neuron-specific, but recent evidences suggest that a) GAP43 is expressed in the nervous system not only in neurons, but also in glial cells, and b) probably it is present also in other tissues. In particular, its expression was revealed in muscles from patients affected by various myopathies, indicating that GAP43 can no-longer considered only as a neuron-specific molecule. We have investigated the expression and subcellular localization of GAP43 in mouse satellite cells, myotubes, and adult muscle (extensor digitorum longus or EDL) using Western blotting, immuno-fluorescence combined to confocal microscopy and electron microscopy. Our in vitro results indicated that GAP43 is indeed expressed in both myoblasts and differentiating myotubes, and its cellular localization changes dramatically during maturation: in myoblasts the localization appeared to be mostly nuclear, whereas with differentiation the protein started to display a sarcomeric-like pattern. In adult fibers, GAP43 expression was evident with the protein labeling forming (in longitudinal views) a double cross striation reminiscent of the staining pattern of other organelles, such as calcium release units (CRUs) and mitochondria. Double immuno-staining and experiments done in EDL muscles fixed at different sarcomere lengths, allowed us to determine the localization, from the sarcomere Z-line, of GAP43 positive foci, falling between that of CRUs and of mitochondria. Staining of cross sections added a detail to the puzzle: GAP43 labeling formed a reticular pattern surrounding individual myofibrils, but excluding contractile elements. This work leads the way to further investigation about the possible physiological and structural role of GAP43 protein in adult fiber function and disease.
Collapse
Affiliation(s)
- Simone Guarnieri
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Caterina Morabito
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Cecilia Paolini
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Simona Boncompagni
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Raffaele Pilla
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Giorgio Fanò-Illic
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Maria A. Mariggiò
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| |
Collapse
|
36
|
|
37
|
Al-Shanti N, Stewart CE. Inhibitory effects of IL-6 on IGF-1 activity in skeletal myoblasts could be mediated by the activation of SOCS-3. J Cell Biochem 2012; 113:923-33. [PMID: 22033984 DOI: 10.1002/jcb.23420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In elderly people, low and high levels of insulin-like growth factor 1 (IGF-1) and interleukin-6 (IL-6), respectively, are well documented and may contribute to reduced muscle mass and poor muscle function of ageing and suggesting a biological interactions between IGF-1 and IL-6. However, the dual effect of IGF-1/IL-6 on skeletal muscle differentiation and proliferation has not been fully investigated. We therefore hypothesised that IL-6 impairs the biological activity of IGF-1 in skeletal muscle through inhibiting its signalling pathways, ERK1/2 and Akt. Our aim was to examine the combined effects of these factors on models of muscle wasting, with objectives to examine skeletal muscle differentiation and proliferation using the murine C2 skeletal muscle cell line. Cells were cultured with DM, IGF-1 and IL-6 alone (control treatments), or co-cultured with IGF-1/IL-6. Co-incubation of C2 cells in IGF-1 plus IL-6 resulted in maximal cell death (22 ± 4%; P < 0.005) compared with control treatments (14 ± 2.9%). This was also confirmed by cyclin D1 expression levels in co-incubation treatments (7 ± 3.5%; P < 0.05) compared with control treatments (≈ 23%). The expression levels of myogenic-specific transcriptional factor mRNAs (myoD and myogenin) were also significantly (P < 0.005) reduced by 70% and 90%, respectively, under the co-incubation regimes, compared with control treatments. Signalling investigations showed significant phosphorylation reduction by 20%, (P < 0.05) of ERK1/2 and Akt in co-incubation treatments relative to either treatment alone. Expression studies for SOCS-3 (1.6-fold ± 0.08, P < 0.05) and IRS-1 (0.65-fold ± 0.13 P < 0.005) mRNAs showed significant elevation and reduction for both genes, respectively, in co-treatments relative to control treatments. These data may suggest that IL-6 exerts its inhibitory effects on IGF-1 signalling pathways (ERK1/2 and Akt) through blocking its receptor substrate IRS-1 by SOCS-3.
Collapse
Affiliation(s)
- Nasser Al-Shanti
- School of Healthcare Science, Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Oxford Road, Manchester, M1 5GD, England, UK.
| | | |
Collapse
|
38
|
Webb SE, Cheung CCY, Chan CM, Love DR, Miller AL. Application of complementary luminescent and fluorescent imaging techniques to visualize nuclear and cytoplasmic Ca²⁺ signalling during the in vivo differentiation of slow muscle cells in zebrafish embryos under normal and dystrophic conditions. Clin Exp Pharmacol Physiol 2012; 39:78-86. [PMID: 21824171 DOI: 10.1111/j.1440-1681.2011.05582.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Evidence is accumulating for a role for Ca²⁺ signalling in the differentiation and development of embryonic skeletal muscle. 2. Imaging of intact, normally developing transgenic zebrafish that express the protein component of the Ca²⁺-sensitive complex aequorin, specifically in skeletal muscle, show that two distinct periods of spontaneous synchronised Ca²⁺ transients occur in the trunk: one at approximately 17.5-19.5 h post-fertilization (h.p.f.; termed signalling period SP1) and the other after approximately 23 h.p.f. (termed SP2). These periods of intense Ca²⁺ signalling activity are separated by a quiet period. 3. Higher-resolution confocal imaging of embryos loaded with the fluorescent Ca²⁺ reporter calcium green-1 dextran shows that the Ca²⁺ signals are generated almost exclusively in the slow muscle cells, the first muscle cells to differentiate, with distinct nuclear and cytoplasmic components. 4. Here, we show that coincidental with the SP1 Ca²⁺ signals, dystrophin becomes localized to the vertical myoseptae of the myotome. Introduction of a dmd morpholino (dmd-MO) resulted in no dystrophin being expressed in the vertical myoseptae, as well as a disruption of myotome morphology and sarcomere organization. In addition, the Ca²⁺ signalling signatures of dmd-MO-injected embryos or homozygous sapje mutant embryos were abnormal such that the frequency, amplitude and timing of the Ca²⁺ signals were altered compared with controls. 5. Our new data suggest that, in addition to a structural role, dystrophin may function in the regulation of [Ca²⁺](i) during the early stages of slow muscle cell differentiation when the Ca²⁺ signals generated in these cells coincide with the first spontaneous contractions of the trunk.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and Key State Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
39
|
Hojman P, Brolin C, Gissel H. Calcium influx determines the muscular response to electrotransfer. Am J Physiol Regul Integr Comp Physiol 2012; 302:R446-53. [DOI: 10.1152/ajpregu.00383.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell membrane permeabilization by electric pulses (electropermeabilization), results in free exchange of ions across the cell membrane. The role of electrotransfer-mediated Ca2+-influx on muscle signaling pathways involved in degeneration (β-actin and MurF), inflammation (IL-6 and TNF-α), and regeneration (MyoD1, myogenin, and Myf5) was investigated, using pulse parameters of both electrochemotherapy (8 HV) and DNA delivery (HVLV). Three pulsing conditions were used: 8 high-voltage pulses (8 HV), resulting in large permeabilization and ion flux, and a combination of one high-voltage pulse and one low-voltage pulse (HVLV), either alone or in combination with injection of DNA. Mice and rats were anesthetized before pulsing. At the times given, animals were killed, and intact tibialis cranialis muscles were excised for analysis. Uptake of Ca2+ was assessed using 45Ca as a tracer. Using gene expression analyses and histology, we showed a clear association between Ca2+ influx and muscular response. Moderate Ca2+ influx induced by HVLV pulses results in activation of pathways involved in immediate repair and hypertrophy. This response could be attenuated by intramuscular injection of EGTA reducing Ca2+ influx. Larger Ca2+ influx as induced by 8-HV pulses leads to muscle damage and muscle fiber regeneration through recruitment of satellite cells. The extent of Ca2+ influx determines the muscular response to electrotransfer and, thus, the success of a given application. In the case of electrochemotherapy, in which the objective is cell death, a large influx of Ca2+ may be beneficial, whereas for DNA electrotransfer, muscle recovery should occur without myofiber loss to ensure preservation of plasmid DNA.
Collapse
Affiliation(s)
- Pernille Hojman
- The Centre of Inflammation and Metabolism, Department of Infectious Diseases and Copenhagen Muscle Research Centre, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen
- Department of Oncology 5405, Copenhagen University Hospital Herlev, Denmark; and
| | - Camilla Brolin
- Department of Oncology 5405, Copenhagen University Hospital Herlev, Denmark; and
| | - Hanne Gissel
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
40
|
Matthews GDK, Huang CLH, Sun L, Zaidi M. Translational musculoskeletal science: is sarcopenia the next clinical target after osteoporosis? Ann N Y Acad Sci 2012; 1237:95-105. [PMID: 22082371 DOI: 10.1111/j.1749-6632.2011.06236.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Translational medicine must increasingly turn its attention to the aging population and the musculoskeletal deterioration that it entails. The latter involves the integrated function of both muscle and bone. Musculoskeletal science has an established interest in such problems in relationship to osteoporosis of bone. The introductory concepts in this paper consider the extent to which loss of muscle mass and function, or sarcopenia, will be the next major translational target. Its epidemiology shows parallels with that of osteoporosis, and the two tissues have a close functional relationship. Its etiology likely involves a loss of motor units combined with cellular signaling and endocrine changes. Finally, the possibility of modification of these physiological changes in the context of management of the sarcopenic condition is considered.
Collapse
|
41
|
Kano Y, Sonobe T, Inagaki T, Sudo M, Poole DC. Mechanisms of exercise-induced muscle damage and fatigue: Intracellular calcium accumulation. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Kramer A, Ritzmann R, Gruber M, Gollhofer A. Four weeks of training in a sledge jump system improved the jump pattern to almost natural reactive jumps. Eur J Appl Physiol 2011; 112:285-93. [PMID: 21544569 DOI: 10.1007/s00421-011-1981-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
|
43
|
Zielinska AE, Walker EA, Stewart PM, Lavery GG. Biochemistry and physiology of hexose-6-phosphate knockout mice. Mol Cell Endocrinol 2011; 336:213-8. [PMID: 21146583 DOI: 10.1016/j.mce.2010.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
Hexose-6-phosphate dehydrogenase (H6PDH) has emerged as an important factor in setting the redox status of the endoplasmic reticulum (ER) lumen. An important role of H6PDH is to generate a high NADPH/NADP(+) ratio which permits 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to act as an oxo-reductase, catalyzing the activation of glucocorticoids (GCs). In H6PDH knockout mice 11β-HSD1 assumes dehydrogenase activity and inactivates GCs, rendering the target cell relatively GC insensitive. Consequently, H6PDHKO mice have a phenotype consistent with defects in the permissive and adaptive actions of GCs upon physiology. H6PDHKO mice have also offered an insight into muscle physiology as they also present with a severe vacuolating myopathy, abnormalities of glucose homeostasis and activation of the unfolded protein response due to ER stress, and a number of mechanisms driving this phenotype are thought to be involved. This article will review what we understand of the redox control of GC hormone metabolism regulated by H6PDH, and how H6PDHKO mice have allowed an in-depth understanding of its potentially novel, GC-independent roles in muscle physiology.
Collapse
Affiliation(s)
- Agnieszka E Zielinska
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
44
|
Webb SE, Miller AL. Visualization of Ca²+ signaling during embryonic skeletal muscle formation in vertebrates. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004325. [PMID: 21421918 DOI: 10.1101/cshperspect.a004325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dynamic changes in cytosolic and nuclear Ca(2+) concentration are reported to play a critical regulatory role in different aspects of skeletal muscle development and differentiation. Here we review our current knowledge of the spatial dynamics of Ca(2+) signals generated during muscle development in mouse, rat, and Xenopus myocytes in culture, in the exposed myotome of dissected Xenopus embryos, and in intact normally developing zebrafish. It is becoming clear that subcellular domains, either membrane-bound or otherwise, may have their own Ca(2+) signaling signatures. Thus, to understand the roles played by myogenic Ca(2+) signaling, we must consider: (1) the triggers and targets within these signaling domains; (2) interdomain signaling, and (3) how these Ca(2+) signals integrate with other signaling networks involved in myogenesis. Imaging techniques that are currently available to provide direct visualization of these Ca(2+) signals are also described.
Collapse
Affiliation(s)
- Sarah E Webb
- Section of Biochemistry and Cell Biology, and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PRC
| | | |
Collapse
|
45
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Susilowati H, Okamura H, Hirota K, Shono M, Yoshida K, Murakami K, Tabata A, Nagamune H, Haneji T, Miyake Y. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells. Biochem Biophys Res Commun 2010; 404:57-61. [PMID: 21094139 DOI: 10.1016/j.bbrc.2010.11.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 11/14/2010] [Indexed: 12/31/2022]
Abstract
Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca(2+)]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-κB translocation in human hepatic HepG2 cells, ILY did not affect NF-κB localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca(2+)]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.
Collapse
Affiliation(s)
- Heni Susilowati
- Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The past two decades revealed a plethora of Ca2+-responsive proteins and downstream targets in plants, of which several are unique to plants. More recent high-throughput 'omics' approaches and bioinformatics are exposing Ca2+-responsive cis-elements and the corresponding Ca2+-responsive genes. Here, we review the current knowledge on Ca2+-signaling pathways that regulate gene expression in plants, and we link these to mechanisms by which plants respond to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Yael Galon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University 69978, Tel-Aviv, Israel
| | | | | |
Collapse
|
48
|
Holton ML, Wang W, Emerson M, Neyses L, Armesilla AL. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways. World J Biol Chem 2010; 1:201-8. [PMID: 21537369 PMCID: PMC3083965 DOI: 10.4331/wjbc.v1.i6.201] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/22/2010] [Accepted: 06/24/2010] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular free calcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulin-dependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.
Collapse
Affiliation(s)
- Mary Louisa Holton
- Mary Louisa Holton, Angel L Armesilla, Molecular Pharmacology Group, Department of Pharmacy, Research Institute in Healthcare Sciences, Room MA 228, School of Applied sciences, University of Wolverhampton, WV1 1SB, Wolverhampton, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol 2010; 2010:721219. [PMID: 20379369 PMCID: PMC2850156 DOI: 10.1155/2010/721219] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/09/2010] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.
Collapse
|