1
|
Januario M, Macedo-Rego RC, Rabosky DL. Evolutionary Lability of Sexual Selection and Its Implications for Speciation and Macroevolution. Am Nat 2025; 205:388-412. [PMID: 40179428 DOI: 10.1086/734457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
AbstractSexual selection is widely hypothesized to facilitate speciation and phenotypic evolution, but evidence from comparative studies has been mixed. Many previous studies have relied on proxy variables to quantify the intensity of sexual selection, raising the possibility that inconclusive results may reflect, in part, the imperfect measurement of this evolutionary process. Here, we test the relationship between phylogenetic speciation rates and indices of the opportunity for sexual selection drawn from populations of 82 vertebrate taxa. These indices provide a much more direct assessment of sexual selection intensity than proxy traits and allow straightforward comparisons among distantly related clades. We find no correlation between the opportunity for sexual selection and speciation rate, and this result is consistent across many complementary analyses. In addition, widely used proxy variables-sexual dimorphism and dichromatism-are not correlated with the indices employed here. Moreover, we find that the opportunity for sexual selection has low phylogenetic signal and that intraspecific variability in selection indices for many species approaches the range of variation observed across all vertebrates as a whole. Our results potentially reconcile a major paradox in speciation biology at the interface between microevolution and macroevolution: sexual selection can be important for speciation, yet the evolutionary lability of the process over deeper timescales restricts its impact on broad-scale patterns of biodiversity.
Collapse
|
2
|
Fowler-Finn KD, Ahuja S, Hercules J, Jocson D, Miller E, Sasson D. Variation in thermal courtship activity curves across individuals exceeds variation across populations and sexes. J Evol Biol 2025; 38:50-62. [PMID: 39392927 DOI: 10.1093/jeb/voae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/23/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The dynamics of mating interactions can vary in response to a wide variety of environmental factors. Here, we investigate the potential for individuals to vary consistently in the environmental conditions under which they actively engage in courtship. Specifically, we quantify variation in how courtship activity changes with environmental temperature across levels of biological organization in Enchenopa binotata treehoppers. Male E. binotata produce vibrational courtship signals and receptive females respond with their own sex-specific vibrational courtship signal. We tested each individual twice for the production of courtship signals across a range of ecologically relevant temperatures (18-36 °C). Then, we measured repeatability and variability in the resulting thermal courtship activity curves, including the temperature of peak activity and tolerance to thermal extremes. We also looked at patterns of variation across populations and sexes. We found minimal variation across populations, but significant variation across individuals. Specifically, we found prevalent repeatability in how thermally generalized or specialized individuals are. However, repeatability was limited to females only. We also found higher variability in female traits than in male traits, although patterns of variability did not always predict patterns of repeatability. These results suggest that thermal variation could alter the dynamics of mate competition and that-due to potentially different selective optima for males and females-the sexes may respond to changes in temperature in different ways. Specifically, females show a higher potential to adapt but males show a higher potential to be more robust to changes in temperature due to overall higher courtship activity across temperatures.
Collapse
Affiliation(s)
| | - Shivika Ahuja
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Jake Hercules
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Dowen Jocson
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Em Miller
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Daniel Sasson
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
3
|
Januario M, Pinsky ML, Rabosky DL. The Metapopulation Bridge to Macroevolutionary Speciation Rates: A Conceptual Framework and Empirical Test. Ecol Lett 2025; 28:e70021. [PMID: 39737715 DOI: 10.1111/ele.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 01/01/2025]
Abstract
Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates. We illustrate this conceptual approach by applying it to a long-term dataset on demersal fish communities from the North American continental shelf region. We find that one index of metapopulation persistence has phylogenetic signal, suggesting that traits are connected with range-wide demographic patterns. However, there is no relationship between demographic properties and speciation rate. These findings suggest a decoupling between ecological dynamics at decadal timescales and million-year clade dynamics, raising questions about the extent to which population-level processes observable over ecological timescales can be extrapolated to infer biodiversity dynamics more generally.
Collapse
Affiliation(s)
- Matheus Januario
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Daniel L Rabosky
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Schield DR, Carter JK, Scordato ESC, Levin II, Wilkins MR, Mueller SA, Gompert Z, Nosil P, Wolf JBW, Safran RJ. Sexual selection promotes reproductive isolation in barn swallows. Science 2024; 386:eadj8766. [PMID: 39666856 DOI: 10.1126/science.adj8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 12/14/2024]
Abstract
Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome. Sexual trait loci exhibit signatures of divergent selection in geographic isolation and barriers to gene flow in secondary contact. Linkage disequilibrium between these genes has been maintained by selection in hybrid zones beyond what would be expected under admixture alone. Our findings reveal that selection on coupled sexual trait loci promotes reproductive isolation, providing key empirical evidence for the role of sexual selection in speciation.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Javan K Carter
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Elizabeth S C Scordato
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Iris I Levin
- Department of Biology, Kenyon College, Gambier, OH, USA
| | - Matthew R Wilkins
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Galactic Polymath Education Studio, Minneapolis, MN, USA
| | - Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Patrik Nosil
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
5
|
Pollo P, Lagisz M, Yang Y, Culina A, Nakagawa S. Synthesis of sexual selection: a systematic map of meta-analyses with bibliometric analysis. Biol Rev Camb Philos Soc 2024; 99:2134-2175. [PMID: 38982618 DOI: 10.1111/brv.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.
Collapse
Affiliation(s)
- Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Yefeng Yang
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Antica Culina
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, 10000, Croatia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Lackey ACR, Scordato ESC, Keagy J, Tinghitella RM, Heathcote RJP. The role of mate competition in speciation and divergence: a systematic review. J Evol Biol 2024; 37:1225-1243. [PMID: 39276025 DOI: 10.1093/jeb/voae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Competition for mates can play a critical role in determining reproductive success, shaping phenotypic variation within populations, and influencing divergence. Yet, studies of the role of sexual selection in divergence and speciation have focused disproportionately on mate choice. Here, we synthesize the literature on how mate competition may contribute to speciation and integrate concepts from work on sexual selection within populations-mating systems, ecology, and mate choice. Using this synthesis, we generate testable predictions for how mate competition may contribute to divergence. Then, we identify the extent of existing support for these predictions in the literature with a systematic review of the consequences of mate competition for population divergence across a range of evolutionary, ecological, and geographic contexts. We broadly evaluate current evidence, identify gaps in available data and hypotheses that need testing, and outline promising directions for future work. A major finding is that mate competition may commonly facilitate further divergence after initial divergence has occurred, e.g., upon secondary contact and between allopatric populations. Importantly, current hypotheses for how mate competition contributes to divergence do not fully explain observed patterns. While results from many studies fit predictions of negative frequency-dependent selection, agonistic character displacement, and ecological selection, results from ~30% of studies did not fit existing conceptual models. This review identifies future research aims for scenarios in which mate competition is likely important but has been understudied, including how ecological context and interactions between mate choice and mate competition can facilitate or hinder divergence and speciation.
Collapse
Affiliation(s)
- Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, KY, United States
| | | | - Jason Keagy
- Department of Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Robin M Tinghitella
- Department of Biological Sciences, University of Denver, Denver, CO, United States
| | - Robert J P Heathcote
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Lerch BA, Bürger R, Servedio MR. Reconciling Santa Rosalia: Both Reproductive Isolation and Coexistence Constrain Diversification. Am Nat 2024; 204:E99-E114. [PMID: 39486036 DOI: 10.1086/732307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractUnderstanding patterns of diversification necessarily requires accounting for both the generation and the persistence of species. Formal models of speciation genetics, however, focus on the generation of new species without explicitly considering the maintenance of biodiversity (e.g., coexistence, the focus of ecological studies of diversity). Consequently, it remains unclear whether and how new species will coexist following a speciation event, a gap limiting our ability to understand the rate-limiting controls of diversification over macroevolutionary timescales. To connect coexistence and speciation theory and assess the relative importance of ecological versus genetic constraints in diversification events, we develop a deterministic, three-locus, population-genetic model that includes a skewed distribution of available resources (to generate variation in fitness differences), frequency-dependent competition, and assortative mating. Both ecology and genetics play vital and interacting roles in shaping initial speciation events and long-term eco-evolutionary outcomes. Ecological constraints are especially important when fitness differences are large and competition remains strong among dissimilar phenotypes. Ephemeral species can occur in our model and are typically lost because of competitive exclusion, a result demonstrating that species persistence may serve as the rate-limiting control of long-term diversification rates. More broadly, our model adds evidence that the unification of ecological and evolutionary (including genetic) perspectives on biodiversity is needed to predict large-scale patterns.
Collapse
|
8
|
Walker JM, van der Heijden ESM, Maulana A, Rueda-M N, Näsvall K, Salazar PA, Meyer M, Meier JI. Common misconceptions of speciation. EVOLUTIONARY JOURNAL OF THE LINNEAN SOCIETY 2024; 3:kzae029. [PMID: 39600713 PMCID: PMC11590199 DOI: 10.1093/evolinnean/kzae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/29/2024]
Abstract
Speciation is a complex process that can unfold in many different ways. Speciation researchers sometimes simplify core principles in their writing in a way that implies misconceptions about the speciation process. While we think that these misconceptions are usually inadvertently implied (and not actively believed) by the researchers, they nonetheless risk warping how external readers understand speciation. Here we highlight six misconceptions of speciation that are especially widespread. First, species are implied to be clearly and consistently defined entities in nature, whereas in reality species boundaries are often fuzzy and semipermeable. Second, speciation is often implied to be 'good', which is two-fold problematic because it implies both that evolution has a goal and that speciation universally increases the chances of lineage persistence. Third, species-poor clades with species-rich sister clades are considered 'primitive' or 'basal', falsely implying a ladder of progress. Fourth, the evolution of species is assumed to be strictly tree-like, but genomic findings show widespread hybridization more consistent with network-like evolution. Fifth, a lack of association between a trait and elevated speciation rates in macroevolutionary studies is often interpreted as evidence against its relevance in speciation-even if microevolutionary case studies show that it is relevant. Sixth, obvious trait differences between species are sometimes too readily assumed to be (i) barriers to reproduction, (ii) a stepping-stone to inevitable speciation, or (iii) reflective of the species' whole divergence history. In conclusion, we call for caution, particularly when communicating science, because miscommunication of these ideas provides fertile ground for misconceptions to spread.
Collapse
Affiliation(s)
- Jonah M Walker
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Corpus Christi College, University of Cambridge, Cambridge, United Kingdom
| | - Eva S M van der Heijden
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- St John’s College, University of Cambridge, Cambridge, United Kingdom
| | - Arif Maulana
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Darwin College, University of Cambridge, Cambridge, United Kingdom
| | - Nicol Rueda-M
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Karin Näsvall
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Patricio A Salazar
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marco Meyer
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Joana I Meier
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- St John’s College, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
10
|
Macedo-Rego RC, Jennions MD, Santos ESA. Does the potential strength of sexual selection differ between mating systems with and without defensive behaviours? A meta-analysis. Biol Rev Camb Philos Soc 2024; 99:1504-1523. [PMID: 38597347 DOI: 10.1111/brv.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The Darwin-Bateman paradigm predicts that females enhance their fitness by being choosy and mating with high-quality males, while males should compete to mate with as many females as possible. In many species, males enhance their fitness by defending females and/or resources used by females. That is, males directly defend access to mating opportunities. However, paternity analyses have repeatedly shown that females in most species mate polyandrously, which contradicts traditional expectations that male defensive behaviours lead to monandry. Here, in an extensive meta-analysis, encompassing 109 species and 1026 effect sizes from across the animal kingdom, we tested if the occurrence of defensive behaviours modulates sexual selection on females and males. If so, we can illuminate the extent to which males really succeed in defending access to mating and fertilisation opportunities. We used four different indices of the opportunity for sexual selection that comprise pre-mating and/or post-mating episodes of selection. We found, for both sexes, that the occurrence of defensive behaviours does not modulate the potential strength of sexual selection. This implies that male defensive behaviours do not predict the true intensity of sexual selection. While the most extreme levels of sexual selection on males are in species with male defensive behaviours, which indicates that males do sometimes succeed in restricting females' re-mating ability (e.g. elephant seals, Mirounga leonina), estimates of the opportunity for sexual selection vary greatly across species, regardless of whether or not defensive behaviours occur. Indeed, widespread polyandry shows that females are usually not restricted by male defensive behaviours. In addition, our results indicate that post-mating episodes of selection, such as cryptic female choice and sperm competition, might be important factors modulating the opportunity for sexual selection. We discuss: (i) why male defensive behaviours fail to lower the opportunity for sexual selection among females or fail to elevate it for males; (ii) how post-mating events might influence sexual selection; and (iii) the role of females as active participants in sexual selection. We also highlight that inadequate data reporting in the literature prevented us from extracting effect sizes from many studies that had presumably collected the relevant data.
Collapse
Affiliation(s)
- Renato C Macedo-Rego
- Programa de Pós-graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, no. 321, São Paulo, SP 05508-090, Brazil
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Michael D Jennions
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch, 7600, South Africa
| | - Eduardo S A Santos
- Programa de Pós-graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, no. 321, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
11
|
Keagy J, Hofmann HA, Boughman JW. Mate choice in the brain: species differ in how male traits 'turn on' gene expression in female brains. Proc Biol Sci 2024; 291:20240121. [PMID: 39079663 PMCID: PMC11288669 DOI: 10.1098/rspb.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
Mate choice plays a fundamental role in speciation, yet we know little about the molecular mechanisms that underpin this crucial decision-making process. Stickleback fish differentially adapted to limnetic and benthic habitats are reproductively isolated and females of each species use different male traits to evaluate prospective partners and reject heterospecific males. Here, we integrate behavioural data from a mate choice experiment with gene expression profiles from the brains of females actively deciding whether to mate. We find substantial gene expression variation between limnetic and benthic females, regardless of behavioural context, suggesting general divergence in constitutive gene expression patterns, corresponding to their genetic differentiation. Intriguingly, female gene co-expression modules covary with male display traits but in opposing directions for sympatric populations of the two species, suggesting male displays elicit a dynamic neurogenomic response that reflects known differences in female preferences. Furthermore, we confirm the role of numerous candidate genes previously implicated in female mate choice in other species, suggesting evolutionary tinkering with these conserved molecular processes to generate divergent mate preferences. Taken together, our study adds important new insights to our understanding of the molecular processes underlying female decision-making critical for generating sexual isolation and speciation.
Collapse
Affiliation(s)
- Jason Keagy
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hans A. Hofmann
- Department of Integrative Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janette W. Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Zhou Y, Pan Y, Wang M, Wang X, Zheng X, Zhou Z. Fossil evidence sheds light on sexual selection during the early evolution of birds. Proc Natl Acad Sci U S A 2024; 121:e2309825120. [PMID: 38190528 PMCID: PMC10801838 DOI: 10.1073/pnas.2309825120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024] Open
Abstract
The impact of sexual selection on the evolution of birds has been widely acknowledged. Although sexual selection has been hypothesized as a driving force in the occurrences of numerous morphological features across theropod evolution, this hypothesis has yet to be comprehensively tested due to challenges in identifying the sex of fossils and by the limited sample size. Confuciusornis sanctus is arguably the best-known early avialan and is represented by thousands of well-preserved specimens from the Early Cretaceous Jehol lagerstätte, which provides us with a chance to decipher the strength of sexual selection on extinct vertebrates. Herein, we present a morphometric study of C. sanctus based on the largest sample size of this taxon collected up to now. Our results indicate that the characteristic elongated paired rectrices is a sexually dimorphic trait and statistically robust inferences of the sexual dimorphism in size, shape, and allometry that have been established, providing the earliest known sexual dimorphism in avian evolution. Our findings suggest that sexual selection, in conjunction with natural selection, does act upon body size and limb length ratio in early birds, thereby promoting a deeper understanding of the role of sexual selection in large-scale phylogenetic evolution.
Collapse
Affiliation(s)
- Yibo Zhou
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing210023, China
| | - Yanhong Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing210023, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing100044, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi276000, Shandong, China
- Shandong Tianyu Museum of Nature, Pingyi273300, Shandong, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi276000, Shandong, China
- Shandong Tianyu Museum of Nature, Pingyi273300, Shandong, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing100044, China
| |
Collapse
|
13
|
Castilho LB. Divergent preference functions generate directional selection in a jumping spider. Sci Rep 2023; 13:22794. [PMID: 38129564 PMCID: PMC10739821 DOI: 10.1038/s41598-023-50241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
Sexual selection has long been thought to promote speciation, but this possibility still remains a topic of controversy. Many theoretical models have been developed to understand the relationship between sexual selection and speciation, but such relationship seems complex and sexual selection has also been argued to prevent speciation in many scenarios. Here, I model for the first time the tendency of speciation due to sexual selection using realistic model parameters input collected from an existing species, the jumping spider Hasarius adansoni. I show that, even though the species has substantial female variance in preference (the model typically thought to link sexual selection to speciation), when realistic parameters are input in the model, it predicts directional selection, rather than disruptive selection. I propose that including realistic parameters in speciation models is a new tool that will help us understand how common sexual selection helps or hinders speciation in the real world.
Collapse
|
14
|
Haghighatnia M, Machac A, Schmickl R, Lafon Placette C. Darwin's 'mystery of mysteries': the role of sexual selection in plant speciation. Biol Rev Camb Philos Soc 2023; 98:1928-1944. [PMID: 37337476 DOI: 10.1111/brv.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual selection is considered one of the key processes that contribute to the emergence of new species. While the connection between sexual selection and speciation has been supported by comparative studies, the mechanisms that mediate this connection remain unresolved, especially in plants. Similarly, it is not clear how speciation processes within plant populations translate into large-scale speciation dynamics. Here, we review the mechanisms through which sexual selection, pollination, and mate choice unfold and interact, and how they may ultimately produce reproductive isolation in plants. We also overview reproductive strategies that might influence sexual selection in plants and illustrate how functional traits might connect speciation at the population level (population differentiation, evolution of reproductive barriers; i.e. microevolution) with evolution above the species level (macroevolution). We also identify outstanding questions in the field, and suitable data and tools for their resolution. Altogether, this effort motivates further research focused on plants, which might potentially broaden our general understanding of speciation by sexual selection, a major concept in evolutionary biology.
Collapse
Affiliation(s)
- Mohammadjavad Haghighatnia
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Antonin Machac
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
| |
Collapse
|
15
|
Luría-Manzano R, Pinheiro PDP, Kohlsdorf T, Haddad CFB, Martins M. Evolution of territoriality in Hylinae treefrogs: Ecological and morphological correlates and lineage diversification. J Evol Biol 2023; 36:1090-1101. [PMID: 37322612 DOI: 10.1111/jeb.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Given the diverse nature of traits involved in territorial defence, they may respond to different selective pressures and then exhibit distinct patterns of evolution. These selective pressures also may cause territorial behaviour to be associated with environmental and morphological variables. Such associations, however, have mostly been studied at the intraspecific level, being phylogenetic analyses of territoriality in a broad taxonomic framework rare in the literature. We used the anuran subfamily Hylinae to test (1) whether two territorial-behaviour traits with different levels of aggression-territorial call and physical combat-are evolutionarily more labile than a morphological trait used in physical combat-the spine-shaped prepollex; (2) whether reproduction in lentic waters and phytotelmata, as well as resource scarcity, might favour the occurrence of territoriality; (3) if physical combat is more important than territorial call for the evolution of body size and sexual size dimorphism and (4) the relationships between territorial-behaviour traits and lineage diversification. We mainly used the literature to build two datasets with different levels of certainty. Territorial-behaviour traits exhibited intermediate levels of phylogenetic signal in Hylinae, whereas the phylogenetic signal for the presence of the spine-shaped prepollex was strong. We found support for the hypothesis that reproduction in lentic water favours the occurrence of territorial behaviour, because the expression of territorial-behaviour traits was more associated with reproduction in lentic than in lotic waters. Territorial-behaviour traits were not correlated with annual precipitation nor with habitat complexity. Body size and sexual size dimorphism were not correlated with the presence of territorial call nor with physical combat. We identified negative correlations between diversification rates and physical combat. Relationships of territorial call and physical combat with diversification rates suggest that these territorial behaviours influence evolutionary processes in different ways.
Collapse
Affiliation(s)
- Ricardo Luría-Manzano
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paulo D P Pinheiro
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiana Kohlsdorf
- Departmento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Célio F B Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Marcio Martins
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Murali G, Meiri S, Roll U. Chemical signaling glands are unlinked to species diversification in lizards. Evolution 2023; 77:1829-1841. [PMID: 37279331 DOI: 10.1093/evolut/qpad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Sexual selection has long been thought to increase species diversification. Sexually selected traits, such as sexual signals that contribute to reproductive isolation, were thought to promote diversification. However, studies exploring links between sexually selected traits and species diversification have thus far primarily focused on visual or acoustic signals. Many animals often employ chemical signals (i.e., pheromones) for sexual communications, but large-scale analyses on the role of chemical communications in driving species diversification have been missing. Here, for the first time, we investigate whether traits associated with chemical communications-the presence of follicular epidermal glands-promote diversification across 6,672 lizard species. In most analyses, we found no strong association between the presence of follicular epidermal glands and species diversification rates, either across all lizard species or at lower phylogenetic scales. Previous studies suggest that follicular gland secretions act as species recognition signals that prevent hybridization during speciation in lizards. However, we show that geographic range overlap was no different in sibling species pairs with and without follicular epidermal glands. Together, these results imply that either follicular epidermal glands do not primarily function in sexual communications or sexually selected traits in general (here chemical communication) have a limited effect on species diversification. In our additional analysis accounting for sex-specific differences in glands, we again found no detectable effect of follicular epidermal glands on species diversification rates. Thus, our study challenges the general role of sexually selected traits in broad-scale species diversification patterns.
Collapse
Affiliation(s)
- Gopal Murali
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environments and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - Shai Meiri
- School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Beersheva, Sede-Boqer Campus, 8499000, Israel
| | - Uri Roll
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environments and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
17
|
Ludoški J, Francuski L, Gojković N, Matić B, Milankov V. Sexual size and shape dimorphism, and allometric scaling in the pupal and adult traits of Eristalis tenax. Ecol Evol 2023; 13:e9907. [PMID: 36937060 PMCID: PMC10015363 DOI: 10.1002/ece3.9907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
The patterns and amount of variation in size, shape, and/or life history traits between females and males are fundamentally important to gain the comprehensive understanding of the evolution of phenotypic diversity. In addition, the covariation of phenotypic traits can significantly contribute to morphological diversification and sexual dimorphism (SD). Using linear and geometric morphometrics, 237 Eristalis tenax specimens sampled from five populations were, therefore, comparatively assessed for the variation in sexual size dimorphism (SSD), sexual shape dimorphism (SShD), and life history traits, as well as for trait covariation (ontogenetic and static allometry). Pupal body, adult wing, and body mass traits were analyzed. Female-biased SSD was observed for pupal length, width, and centroid size, adult wing centroid size, mass, wing loading, and wing area. Conversely, pupal length/width ratio, developmental time, and mass were not found to be sexually dimorphic. Next, wing SShD, but not pupal body SShD was revealed, while allometry was found to be an important "determinant of SD" at the adult stage, with only a minor impact at the pupal stage. By comparing the patterns of covariance (based on allometric slope and intercept) between respective body mass and morphometric traits of pupae and adults, greater variation in allometric slopes was found in adult traits, while static allometries of the two stages significantly differed, as well. Finally, the results indicate that changes in the allometric intercept could be an important source of intraspecific variation and SD in drone fly adults.
Collapse
Affiliation(s)
- Jasmina Ludoški
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Ljubinka Francuski
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
- Protix BVDongenThe Netherlands
| | - Nemanja Gojković
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Bojana Matić
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Vesna Milankov
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| |
Collapse
|
18
|
Hasegawa M. Macroevolutionary analysis of swallows revives the sight-line hypothesis. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Tuschhoff E, Wiens JJ. Evolution of sexually selected traits across animals. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1042747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sexual selection is thought to be a major driver of phenotypic diversity and diversification in animals, but large-scale evolutionary patterns in sexually selected (SS) traits remain largely unknown. Here, we survey and analyze the evolution of these traits across animal phylogeny. We find that female mate choice appears to be the most widespread mechanism of sexual selection, but male-male competition appears to be almost as frequent in chordates and male mate choice is also common in arthropods. Among sensory types, tactile traits appear to be most widespread whereas auditory traits are relatively uncommon. Rather than being ubiquitous or randomly distributed across animals, most of these different types of SS traits are confined to clades in arthropods and chordates, which form “hotspots” for the evolution of these diverse trait types. Thus, different sensory types show accelerated rates of evolution in these clades. Moreover, different types of SS traits are strongly correlated with each other in their evolution across animals. Finally, despite the intensive interest in the role of sexual selection in speciation, we find only limited support for the idea that SS traits drive large-scale patterns of diversification and species richness across all animals.
Collapse
|
20
|
Xia T, Nishimura T, Nagata N, Kubota K, Sota T, Takami Y. Reproductive isolation via divergent genital morphology due to cascade reinforcement in Ohomopterus ground beetles. J Evol Biol 2023; 36:169-182. [PMID: 36357996 DOI: 10.1111/jeb.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022]
Abstract
Secondary contact between incipient species and selection against maladaptive hybridization can drive reinforcement between populations in contact and result in reproductive character displacement (RCD). Resultant divergence in mating traits within a species may generate downstream reproductive isolation between populations with displaced and non-displaced traits, referred to as the cascade reinforcement hypothesis. We examined this hypothesis using three allopatric populations of the ground beetle Carabus maiyasanus with a genital lock-and-key system. This species shows RCD in male and female genital morphologies in populations in contact with the sister species C. iwawakianus. In a reciprocal mating experiment using three allopatric populations with differences in male and female genital sizes, insemination failure increased as the difference in genital size increased. Based on the reproductive isolation index, insemination failure was the major postmating-prezygotic isolation barrier, at least in one population pair with comparable total isolation to those of other species pairs. By contrast, there was only incomplete premating isolation among populations. These results suggest that RCD in genital morphologies drives incipient allopatric speciation, supporting the cascade reinforcement hypothesis. These findings provide insight into the roles of interspecific interactions and subsequent trait diversification in speciation processes.
Collapse
Affiliation(s)
- Tian Xia
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | - Taira Nishimura
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | - Nobuaki Nagata
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan.,National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | - Kohei Kubota
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Yasuoki Takami
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| |
Collapse
|
21
|
Beltrán DF, Araya-Salas M, Parra JL, Stiles FG, Rico-Guevara A. The evolution of sexually dimorphic traits in ecological gradients: an interplay between natural and sexual selection in hummingbirds. Proc Biol Sci 2022; 289:20221783. [PMID: 36515116 PMCID: PMC9748779 DOI: 10.1098/rspb.2022.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Traits that exhibit differences between the sexes have been of special interest in the study of phenotypic evolution. Classic hypotheses explain sexually dimorphic traits via intra-sexual competition and mate selection, yet natural selection may also act differentially on the sexes to produce dimorphism. Natural selection can act either through physiological and ecological constraints on one of the sexes, or by modulating the strength of sexual/social selection. This predicts an association between the degree of dimorphism and variation in ecological environments. Here, we characterize the variation in hummingbird dimorphism across ecological gradients using rich databases of morphology, colouration and song. We show that morphological dimorphism decreases with elevation in the understorey and increases with elevation in mixed habitats, that dichromatism increases at high altitudes in open and mixed habitats, and that song is less complex in mixed habitats. Our results are consistent with flight constraints, lower predation pressure at high elevations and with habitat effects on song transmission. We also show that dichromatism and song complexity are positively associated, while tail dimorphism and song complexity are negatively associated. Our results suggest that key ecological factors shape sexually dimorphic traits, and that different communication modalities do not always evolve in tandem.
Collapse
Affiliation(s)
- Diego F. Beltrán
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Marcelo Araya-Salas
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - F. Gary Stiles
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
22
|
Yuan ML, Westeen EP, Wogan GOU, Wang IJ. Female dewlap ornaments are evolutionarily labile and associated with increased diversification rates in Anolis lizards. Proc Biol Sci 2022; 289:20221871. [PMID: 36382524 PMCID: PMC9667357 DOI: 10.1098/rspb.2022.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2023] Open
Abstract
The evolution of costly signalling traits has largely focused on male ornaments. However, our understanding of ornament evolution is necessarily incomplete without investigating the causes and consequences of variation in female ornamentation. Here, we study the Anolis lizard dewlap, a trait extensively studied as a male secondary sexual characteristic but present in females of several species. We characterized female dewlaps for 339 species to test hypotheses about their evolution. Our results did not support the hypothesis that female dewlaps are selected against throughout the anole phylogeny. Rather, we found that female dewlaps were evolutionary labile. We also did not find support for the adaptive hypothesis that interspecific competition drove the evolution of female dewlaps. However, we did find support for the pleiotropy hypothesis as species with larger females and reduced sexual size dimorphism were more likely to possess female dewlaps. Lastly, we found that female dewlap presence influenced diversification rates in anoles, but only secondarily to a hidden state. Our results demonstrate that female ornamentation is widespread in anoles and the traditional hypothesis of divergent selection between the sexes does not fully explain their evolution. Instead, female ornamentation is likely to be subject to complex adaptive and non-adaptive evolutionary forces.
Collapse
Affiliation(s)
- Michael L. Yuan
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Erin P. Westeen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Guinevere O. U. Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ian J. Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Bao W, Kathait A, Li X, Ozaki K, Hanada Y, Thomas A, Carey GJ, Gou J, Davaasuren B, Hasebe M, Holt PI, Pelikan L, Fan Z, Wang S, Xing X. Subspecies Taxonomy and Inter-Population Divergences of the Critically Endangered Yellow-Breasted Bunting: Evidence from Song Variations. Animals (Basel) 2022; 12:ani12172292. [PMID: 36078012 PMCID: PMC9454650 DOI: 10.3390/ani12172292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The critically endangered Yellow-breasted Bunting has undergone population collapse globally because of illegal hunting and habitat deterioration. It was listed as critically endangered (CR) by the International Union for Conservation of Nature (IUCN) in 2017 and designated a Class I (highest level) national conservation bird species in China in 2021. Birdsong in the breeding season is the main communicative signal under sexual selection, and song variations have long been considered critical evidence of divergence among subspecies or populations. We compared the songs of 89 males from 18 populations to test subspecies taxonomy. We found that songs of the Yellow-breasted Bunting Emberiza aureola are subspecies specific and that three subspecies can be clearly discriminated by song divergences. Moreover, an analysis of multiple vocal traits supports the claim that insulana is distinct from aureola and ornata. Finally, at the geographic population level, populations can be clearly classified in accordance with the three subspecies, although the aureola population in Xinjiang, China is differentiated from other populations of the same subspecies. The results of this study demonstrate that all populations and subspecies are unique and should be protected to maintain intraspecies song diversity. In addition, several specific populations, such as insulana populations in Japan and the Xinjiang, China population of aureola, need to be paid special attention to prevent the extinction of unique or local taxa.
Collapse
Affiliation(s)
- Wenshuang Bao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Northeast Asia Biodiversity Research Center, Harbin 150040, China
| | - Atul Kathait
- School of Biosciences, Apeejay Stya University, Gurgaon 122103, India
| | - Xiang Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Northeast Asia Biodiversity Research Center, Harbin 150040, China
| | - Kiyoaki Ozaki
- Yamashina Institute for Ornithology, Abiko 270-1166, Japan
| | | | | | | | - Jun Gou
- Xinjiang BD Nature Co., Ltd., Urumqi 830000, China
| | - Batmunkh Davaasuren
- Wildlife Science and Conservation Center of Mongolia, Ulaanbaatar 14210, Mongolia
| | | | | | - Lukas Pelikan
- Faculty of Biology and Psychology, Georg-August-University, 37073 Göttingen, Germany
| | - Zhongyong Fan
- Zhejiang Museum of Natural History, Zhejiang Biodiversity Institute, Hangzhou 310012, China
| | - Siyu Wang
- Zhejiang Museum of Natural History, Zhejiang Biodiversity Institute, Hangzhou 310012, China
| | - Xiaoying Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Northeast Asia Biodiversity Research Center, Harbin 150040, China
- Correspondence:
| |
Collapse
|
24
|
Diversity and Sexual Dichromatism in Treefrog Throat Coloration: Potential Signal Function? J HERPETOL 2022. [DOI: 10.1670/21-047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Concerted evolution of metabolic rate, economics of mating, ecology, and pace of life across seed beetles. Proc Natl Acad Sci U S A 2022; 119:e2205564119. [PMID: 35943983 PMCID: PMC9388118 DOI: 10.1073/pnas.2205564119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coevolution between females and males has led to remarkable differences between the sexes but has taken very different routes, even in closely related animal species, for reasons that are not well understood. We studied the physiological processes that convert resources into offspring (metabolism) in males and females of several related beetle species. We found that ecological factors dictate metabolic rate, which, in turn, have predictable direct and indirect effects on male–female coevolution. Our findings suggest that a complete understanding of differences between the sexes requires an understanding of how ecology affects metabolic processes and how these differ in the sexes. Male–female coevolution has taken different paths among closely related species, but our understanding of the factors that govern its direction is limited. While it is clear that ecological factors, life history, and the economics of reproduction are connected, the divergent links are often obscure. We propose that a complete understanding requires the conceptual integration of metabolic phenotypes. Metabolic rate, a nexus of life history evolution, is constrained by ecological factors and may exert important direct and indirect effects on the evolution of sexual dimorphism. We performed standardized experiments in 12 seed beetle species to gain a rich set of sex-specific measures of metabolic phenotypes, life history traits, and the economics of mating and analyzed our multivariate data using phylogenetic comparative methods. Resting metabolic rate (RMR) showed extensive evolution and evolved more rapidly in males than in females. The evolution of RMR was tightly coupled with a suite of life history traits, describing a pace-of-life syndrome (POLS), with indirect effects on the economics of mating. As predicted, high resource competition was associated with a low RMR and a slow POLS. The cost of mating showed sexually antagonistic coevolution, a hallmark of sexual conflict. The sex-specific costs and benefits of mating were predictably related to ecology, primarily through the evolution of male ejaculate size. Overall, our results support the tenet that resource competition affects metabolic processes that, in turn, have predictable effects on both life history evolution and reproduction, such that ecology shows both direct and indirect effects on male–female coevolution.
Collapse
|
26
|
Yukilevich R, Aoki F. Evolution of choosiness dictates whether search costs of mate choice enhance speciation by sexual selection. J Evol Biol 2022; 35:1045-1059. [PMID: 35830473 DOI: 10.1111/jeb.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
The role of sexual selection in speciation is implicated in both empirical case studies and larger comparative works. However, sexual selection faces two major problems in driving speciation. First, because females with novel preferences search for their initially rare males, search costs are expected to curtail initial sexual divergence. Second, if these populations come back into sympatry, sexual divergence may be erased due to hybridization. A major goal is to understand which conditions increase the likelihood of overcoming these problems. Here we generated a diploid population genetic model of how female search costs and evolution of female 'choosiness' (i.e. preference strength) interact to drive speciation in allopatry and secondary contact. We studied the model using numerical simulations in the context of two different male traits, ecologically 'arbitrary' versus 'magic' traits. First, in allopatry, without female search costs only minor and fluctuating sexual isolation evolved. In contrast, with female search costs, sexual isolation was highly curtailed with arbitrary male traits but was greatly facilitated with magic traits. However, because search costs selected for reduced choosiness, sexual isolation with magic traits was eventually eroded, the rate determined by the genetic architecture of choosiness. These factors also played a key role in secondary contact; with evolvable choosiness and female search costs, pure sexual selection models collapsed upon secondary contact. However, when we added selection against hybrids (i.e. reinforcement) to this model, we found that speciation could be maintained under a wide range of conditions with arbitrary male traits, but not with magic male traits. This surprisingly suggests that arbitrary male traits are in some cases more likely to aid speciation than magic male traits. We discuss these findings and relate them to empirical literature on female choosiness within species and in hybrids.
Collapse
Affiliation(s)
- Roman Yukilevich
- Department of Biology, Union College, Schenectady, New York, USA
| | - Fumio Aoki
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
27
|
Hasegawa M, Arai E. Extrapair mating opportunity explains the evolutionary transition between the presence and absence of tail ornamentation in swallows. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Female preference for super-sized male ornaments and its implications for the evolution of ornament allometry. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10181-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIt has been argued that disproportionately larger ornaments in bigger males—positive allometry—is the outcome of sexual selection operating on the size of condition dependent traits. We reviewed the literature and found a general lack of empirical testing of the assumed link between female preferences for large ornaments and a pattern of positive allometry in male ornamentation. We subsequently conducted a manipulative experiment by leveraging the unusual terrestrial fish, Alticus sp. cf. simplicirrus, on the island of Rarotonga. Males in this species present a prominent head crest to females during courtship, and the size of this head crest in the genus more broadly exhibits the classic pattern of positive allometry. We created realistic male models standardized in body size but differing in head crest size based on the most extreme allometric scaling recorded for the genus. This included a crest size well outside the observed range for the study population (super-sized). The stimuli were presented to free-living females in a manner that mimicked the spatial distribution of courting males. Females directed greater attention to the male stimulus that exhibited the super-sized crest, with little difference in attention direct to other size treatments. These data appear to be the only experimental evidence from the wild of a female preference function that has been implicitly assumed to drive selection that results in the evolution of positive allometry in male ornamentation.
Collapse
|
29
|
Edelaar P. Sexual Selection May Not Often Reduce Gene Flow Between Locally Adapted Populations. A Review of Some Evidence, and Suggestions for Better Tests. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.804910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexually selected traits often depend on an individual’s physical condition, or otherwise indirectly reflect the ecological performance of individuals. When individuals disperse between populations that are locally adapted to different environments, their ecological performance may decline. This in turn may result in more poorly expressed sexual traits, and therefore in a lower reproductive success. Hence, sexual selection may reduce the effective gene flow between populations, and thereby maintain or even enhance population divergence. This hypothesis was published in a highly visible journal (van Doorn et al., 2009, Science). Here I review the subsequently published empirical tests of this hypothesis. I downloaded all metadata (incl. abstracts) of papers citing van Doorn et al. (2009) and read those papers that undertook relevant tests. To my surprise, only very few papers provided explicit tests of the hypothesis, this never involved plants, and only one study found support for it. While sexual selection may therefore not often reduce gene flow between locally adapted populations, some improvements to experimental design and choice of study system are noted. I therefore also provide a detailed list of suggestions for high quality tests of this hypothesis. This hopefully acts as a catalyst for more and better studies to test whether sexual and natural selection can work in synergy to reduce effective dispersal, and thereby protect and promote adaptive population divergence.
Collapse
|
30
|
Singhal S, Colli GR, Grundler MR, Costa GC, Prates I, Rabosky DL. No link between population isolation and speciation rate in squamate reptiles. Proc Natl Acad Sci U S A 2022; 119:e2113388119. [PMID: 35058358 PMCID: PMC8795558 DOI: 10.1073/pnas.2113388119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022] Open
Abstract
Rates of species formation vary widely across the tree of life and contribute to massive disparities in species richness among clades. This variation can emerge from differences in metapopulation-level processes that affect the rates at which lineages diverge, persist, and evolve reproductive barriers and ecological differentiation. For example, populations that evolve reproductive barriers quickly should form new species at faster rates than populations that acquire reproductive barriers more slowly. This expectation implicitly links microevolutionary processes (the evolution of populations) and macroevolutionary patterns (the profound disparity in speciation rate across taxa). Here, leveraging extensive field sampling from the Neotropical Cerrado biome in a biogeographically controlled natural experiment, we test the role of an important microevolutionary process-the propensity for population isolation-as a control on speciation rate in lizards and snakes. By quantifying population genomic structure across a set of codistributed taxa with extensive and phylogenetically independent variation in speciation rate, we show that broad-scale patterns of species formation are decoupled from demographic and genetic processes that promote the formation of population isolates. Population isolation is likely a critical stage of speciation for many taxa, but our results suggest that interspecific variability in the propensity for isolation has little influence on speciation rates. These results suggest that other stages of speciation-including the rate at which reproductive barriers evolve and the extent to which newly formed populations persist-are likely to play a larger role than population isolation in controlling speciation rate variation in squamates.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747;
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Maggie R Grundler
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| | - Gabriel C Costa
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109;
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
31
|
Differences in plumage coloration predict female but not male territorial responses in three antbird sister species pairs. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Lyu L, Wang R, Wen H, Li Y, Li J, Wang X, Yao Y, Li J, Qi X. Cyclooxygenases of ovoviviparous black rockfish (Sebastes schlegelii): Cloning, tissue distribution and potential role in mating and parturition. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110677. [PMID: 34653596 DOI: 10.1016/j.cbpb.2021.110677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
Prostaglandins are a series of unsaturated fatty acids that play critical roles in regulating reproductive events. The prostaglandins endoperoxide H synthases-1/2 (PGHS-1/2; also named cyclooxygenases-1/2, COX-1/2) catalyse the commitment step in prostaglandin synthesis. However, the of the cox genes in teleosts, especially ovoviviparous teleosts, is still unclear. The aim of the present study was to determine the potential role of cox genes in mating and parturition behaviour using black rockfish (Sebastes schlegelii) as a model species. Two transcripts, cox1 and cox2, were cloned. The phylogenetic analysis results revealed that both cox genes were closely related to mammalian coxs. qPCR analyses of their tissue distribution showed that cox1 was mainly expressed in the heart in both sexes, while cox2 was mainly expressed in the testis and ovary. Detection of cox expression in samples from reproductive-related stages further showed that both cox genes may play important roles in mating and parturition processes. In situ hybridization further detected positive cox mRNA signals in the testis and ovary, where they are known to be involved in mating and parturition behaviour. These data suggest that cox1 and cox2 are crucial in inducing mating, gonad regeneration and parturition behaviour.
Collapse
Affiliation(s)
- Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ru Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
33
|
Speciation by sexual selection: 20 years of progress. Trends Ecol Evol 2021; 36:1153-1163. [PMID: 34607719 DOI: 10.1016/j.tree.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022]
Abstract
Twenty years ago, a seminal paper summarized the role of sexual selection in speciation as the coordinated evolution of (male) courtship signals and (female) preferences leading to prezygotic (behavioral) isolation between divergent lineages. Here, we discuss areas of progress that inspire an updated perspective. First, research has identified multiple mechanisms of sexual selection, in addition to female mate choice, that drive the origin and maintenance of species. Second, reviews and empirical data now conclude that sexual selection alone will rarely lead to reproductive isolation without ecological divergence, and we discuss the assumptions and possible exceptions underlying that conclusion. Finally, we consider the variable ways in which sexual selection contributes to divergence according to the spatial, temporal, social, ecological, and genomic context of speciation.
Collapse
|
34
|
Lin SW, Lopardo L, Uhl G. Diversification through gustatory courtship: an X-ray micro-computed tomography study on dwarf spiders. Front Zool 2021; 18:51. [PMID: 34583721 PMCID: PMC8480068 DOI: 10.1186/s12983-021-00435-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual selection has been considered to promote diversification and speciation. Sexually dimorphic species have been used to explore the supposed effect, however, with mixed results. In dwarf spiders (Erigoninae), many species are sexually dimorphic-males possess marked prosomal modifications. These male traits vary from moderate elevations to bizarre shapes in various prosomal regions. Previous studies established that male dwarf spiders produce substances in these prosomal modifications that are taken up by the females. These substances can act as nuptial gifts, which increase the mating probability of males and the oviposition rate in females. Therefore, these dimorphic traits have evolved in the context of sexual selection. Here, we explore the evolutionary lability of this gustatory trait complex with the aim of assessing the role of this trait complex in species divergence by investigating (1) if erigonine modified prosomata are inherently linked to nuptial-gift-producing glands, (2) if the evolution of the glands evolution preceded that of the modified prosomal shapes, and by assessing (3) the occurrence of convergent/divergent evolution and cryptic differentiation. RESULTS We reconstructed the position and extent of the glandular tissue along with the muscular anatomy in the anterior part of the prosoma of 76 erigonine spiders and three outgroup species using X-ray micro-computed tomography. In all but one case, modified prosomata are associated with gustatory glands. We incorporated the location of glands and muscles into an existing matrix of somatic and genitalic morphological traits of these taxa and reanalyzed their phylogenetic relationship. Our analysis supports that the possession of glandular equipment is the ancestral state and that the manifold modifications of the prosomal shape have evolved convergently multiple times. We found differences in gland position between species with both modified and unmodified prosomata, and reported on seven cases of gland loss. CONCLUSIONS Our findings suggest that the occurrence of gustatory glands in sexually monomorphic ancestors has set the stage for the evolution of diverse dimorphic external modifications in dwarf spiders. Differences among congeners suggest that the gland position is highly susceptible to evolutionary changes. The multiple incidences might reflect costs of glandular tissue maintenance and nuptial feeding. Our results indicate divergent evolutionary patterns of gustatory-courtship-related traits, and thus a likely facilitating effect of sexual selection on speciation.
Collapse
Affiliation(s)
- Shou-Wang Lin
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany.
| | - Lara Lopardo
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | - Gabriele Uhl
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Tibbetts EA, Snell-Rood EC. Reciprocal plasticity and the diversification of communication systems. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Miller EC, Mesnick SL, Wiens JJ. Sexual Dichromatism Is Decoupled from Diversification over Deep Time in Fishes. Am Nat 2021; 198:232-252. [PMID: 34260865 DOI: 10.1086/715114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSexually selected traits have long been thought to drive diversification, but support for this hypothesis has been persistently controversial. In fishes, sexually dimorphic coloration is associated with assortative mating and speciation among closely related species, as shown in classic studies. However, it is unclear whether these results can generalize to explain diversity patterns across ray-finned fishes, which contain the majority of vertebrate species and 96% of fishes. Here, we use phylogenetic approaches to test for an association between sexual dichromatism and diversification rates (speciation minus extinction) in ray-finned fishes. We assembled dichromatism data for 10,898 species, a data set of unprecedented size. We found no difference in diversification rates between monochromatic and dichromatic species when including all ray-finned fishes. However, at lower phylogenetic scales (within orders and families), some intermediate-sized clades did show an effect of dichromatism on diversification. Surprisingly, dichromatism could significantly increase or decrease diversification rates. Moreover, we found no effect in many of the clades initially used to link dichromatism to speciation in fishes (e.g., cichlids) or an effect only at shallow scales (within subclades). Overall, we show how the effects of dichromatism on diversification are highly variable in direction and restricted to certain clades and phylogenetic scales.
Collapse
|
37
|
Melo BF, Sidlauskas BL, Near TJ, Roxo FF, Ghezelayagh A, Ochoa LE, Stiassny MLJ, Arroyave J, Chang J, Faircloth BC, MacGuigan DJ, Harrington RC, Benine RC, Burns MD, Hoekzema K, Sanches NC, Maldonado-Ocampo JA, Castro RMC, Foresti F, Alfaro ME, Oliveira C. Accelerated Diversification Explains the Exceptional Species Richness of Tropical Characoid Fishes. Syst Biol 2021; 71:78-92. [PMID: 34097063 DOI: 10.1093/sysbio/syab040] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
The Neotropics harbor the most species-rich freshwater fish fauna on the planet, but the timing of that exceptional diversification remains unclear. Did the Neotropics accumulate species steadily throughout their long history, or attain their remarkable diversity recently? Biologists have long debated the relative support for these museum and cradle hypotheses, but few phylogenies of megadiverse tropical clades have included sufficient taxa to distinguish between them. We used 1,288 ultraconserved element loci (UCE) spanning 293 species, 211 genera and 21 families of characoid fishes to reconstruct a new, fossil-calibrated phylogeny and infer the most likely diversification scenario for a clade that includes a third of Neotropical fish diversity. This phylogeny implies paraphyly of the traditional delimitation of Characiformes because it resolves the largely Neotropical Characoidei as the sister lineage of Siluriformes (catfishes), rather than the African Citharinodei. Time-calibrated phylogenies indicate an ancient origin of major characoid lineages and reveal a much more recent emergence of most characoid species. Diversification rate analyses infer increased speciation and decreased extinction rates during the Oligocene at around 30 million years ago (Ma) during a period of mega-wetland formation in the proto-Orinoco-Amazonas. Three species-rich and ecomorphologically diverse lineages (Anostomidae, Serrasalmidae, and Characidae) that originated more than 60 Ma in the Paleocene experienced particularly notable bursts of Oligocene diversification and now account collectively for 68% of the approximately 2,150 species of Characoidei. In addition to paleogeographic changes, we discuss potential accelerants of diversification in these three lineages. While the Neotropics accumulated a museum of ecomorphologically diverse characoid lineages long ago, this geologically dynamic region also cradled a much more recent birth of remarkable species-level diversity.
Collapse
Affiliation(s)
- Bruno F Melo
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| | - Brian L Sidlauskas
- Dept of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Thomas J Near
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Fabio F Roxo
- Sector of Zoology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | - Ava Ghezelayagh
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Luz E Ochoa
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Palmira, Valle del Cauca, 763547, Colombia
| | - Melanie L J Stiassny
- Dept of Ichthyology, American Museum of Natural History, New York, NY, 10024, USA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Jonathan Chang
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Brant C Faircloth
- Dept of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Daniel J MacGuigan
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Richard C Harrington
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Ricardo C Benine
- Sector of Zoology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | - Michael D Burns
- Cornell Lab of Ornithology, Cornell University Museum of Vertebrates, Ithaca, NY, 14850, USA
| | - Kendra Hoekzema
- Dept of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Natalia C Sanches
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| | - Javier A Maldonado-Ocampo
- Dept de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia (in memoriam)
| | - Ricardo M C Castro
- Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Fausto Foresti
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| | - Michael E Alfaro
- Dept of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Claudio Oliveira
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| |
Collapse
|
38
|
Su Q, Lv J, Li WX, Sun JW, Li SH, Zhang WQ. Identification of putative abdominal vibration-related genes through transcriptome analyses in the brown planthopper (Nilaparvata lugens). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100856. [PMID: 34090066 DOI: 10.1016/j.cbd.2021.100856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/13/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The sexually mature female brown planthoppers (BPHs) send out abdominal vibration (AV) signals through the rice so that the males can obtain intraspecific, gender, and localization information to prepare for mating. Destroying vibration signals is an alternative biological method for pest control. However, the regulatory mechanism of AV in female BPHs remains elusive, which presents an obstacle to pest control. We observed that before mating female BHPs emitted abdominal vibration signals that disappeared immediately after mating and reappeared after 6 days. Therefore, ovarian and brain samples of female BPHs from Unmated-6h+ (with AV), Mated-6h- (without AV) and Mated-6d+ (with AV) individuals were collected for transcript analyses. By transcriptional sequencing analyses, 33 candidate genes that might involve in the regulation of female AV were obtained. After selecting 4 candidate genes of them for verification by RNA interference (RNAi), it was found that interference of juvenile hormone binding protein (JHBP) could greatly reduce the probability and frequency of AV for female BPHs. In general, this study identified AV-related candidate genes in female BPHs through transcriptome analyses and provided an important basis for future research on pest control in BPHs.
Collapse
Affiliation(s)
- Qin Su
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Lv
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wan-Xue Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wei Sun
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Hui Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Beltrán DF, Shultz AJ, Parra JL. Speciation rates are positively correlated with the rate of plumage color evolution in hummingbirds. Evolution 2021; 75:1665-1680. [PMID: 34037257 DOI: 10.1111/evo.14277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
A fascinating pattern in nature is the uneven distribution of biodiversity among clades, some with low species richness and phenotypic variation in contrast to others with remarkable species richness and phenotypic diversity. In animals, communication signals are crucial for intra- and interspecific interactions and are likely an important factor in speciation. However, evidence for the association between the evolution of such signals and speciation is mixed. In hummingbirds, plumage coloration is an important communication signal, particularly for mate selection. Here, using reflectance data for 237 hummingbird species (∼66% of total diversity), we demonstrate that color evolution rates are associated with speciation rates, and that differences among feather patches are consistent with an interplay between natural and sexual selection. We found that female color evolution rates of multiple plumage elements, including the gorget, were similar to those of males. Although male color evolution in this patch was associated with speciation, female gorget color evolution was not. In other patches, the relationship between speciation and color evolution rates was pervasive between sexes. We anticipate that future studies on animal communication will likely find that evolution of signaling traits of both sexes has played a vital role in generating signal and species diversity.
Collapse
Affiliation(s)
- Diego F Beltrán
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia.,Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, California, 90007, USA
| | - Juan L Parra
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
40
|
de Alencar LRV, Quental TB. Linking population-level and microevolutionary processes to understand speciation dynamics at the macroevolutionary scale. Ecol Evol 2021; 11:5828-5843. [PMID: 34141187 PMCID: PMC8207422 DOI: 10.1002/ece3.7511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/05/2022] Open
Abstract
Although speciation dynamics have been described for several taxonomic groups in distinct geographic regions, most macroevolutionary studies still lack a detailed mechanistic view on how or why speciation rates change. To help partially fill this gap, we suggest that the interaction between the time taken by a species to geographically expand and the time populations take to evolve reproductive isolation should be considered when we are trying to understand macroevolutionary patterns. We introduce a simple conceptual index to guide our discussion on how demographic and microevolutionary processes might produce speciation dynamics at macroevolutionary scales. Our framework is developed under different scenarios: when speciation is mediated by geographical or resource-partitioning opportunities, and when diversity is limited or not. We also discuss how organismal intrinsic properties and different overall geographical settings can influence the tempo and mode of speciation. We argue that specific conditions observed at the microscale might produce a pulse in speciation rates even without a pulse in either climate or physical barriers. We also propose a hypothesis to reconcile the apparent inconsistency between speciation measured at the microscale and macroscale, and emphasize that diversification rates are better seen as an emergent property. We hope to bring the reader's attention to interesting mechanisms to be further studied, to motivate the development of new theoretical models that connect microevolution and macroevolution, and to inspire new empirical and methodological approaches to more adequately investigate speciation dynamics either using neontological or paleontological data.
Collapse
Affiliation(s)
| | - Tiago Bosisio Quental
- Departamento de EcologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
41
|
Wiberg RAW, Veltsos P, Snook RR, Ritchie MG. Experimental evolution supports signatures of sexual selection in genomic divergence. Evol Lett 2021; 5:214-229. [PMID: 34136270 PMCID: PMC8190450 DOI: 10.1002/evl3.220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has contributed to the growing evidence that sexual selection is an important component of evolutionary divergence and speciation. Divergence by sexual selection is implicated in faster rates of divergence of the X chromosome and of genes thought to underlie sexually selected traits, including genes that are sex biased in expression. However, accurately inferring the relative importance of complex and interacting forms of natural selection, demography, and neutral processes that occurred in the evolutionary past is challenging. Experimental evolution provides an opportunity to apply controlled treatments for multiple generations and examine the consequent genomic divergence. Here, we altered sexual selection intensity, elevating sexual selection in polyandrous lines and eliminating it in monogamous lines, and examined patterns of allele frequency divergence in the genome of Drosophila pseudoobscura after more than 160 generations of experimental evolution. Divergence is not uniform across the genome but concentrated in "islands," many of which contain candidate genes implicated in mating behaviors and other sexually selected phenotypes. These are more often seen on the X chromosome, which also shows greater divergence in F ST than neutral expectations. There are characteristic signatures of selection seen in these regions, with lower diversity on the X chromosome than the autosomes, and differences in diversity on the autosomes between selection regimes. Reduced Tajima's D within some of the divergent regions may imply that selective sweeps have occurred, despite considerable recombination. These changes are associated with both differential gene expression between the lines and sex-biased gene expression within the lines. Our results are very similar to those thought to implicate sexual selection in divergence between species and natural populations, and hence provide experimental support for the likely role of sexual selection in driving such types of genetic divergence, but also illustrate how variable outcomes can be for different genomic regions.
Collapse
Affiliation(s)
- R. Axel W. Wiberg
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Current Address: Department of Environmental SciencesZoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| | - Paris Veltsos
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| | - Rhonda R. Snook
- Department of ZoologyStockholm UniversityStockholm106 91Sweden
| | - Michael G. Ritchie
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
42
|
Emberts Z, Wiens JJ. Do sexually selected weapons drive diversification? Evolution 2021; 75:2411-2424. [PMID: 33738793 DOI: 10.1111/evo.14212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Sexual selection is often thought to promote speciation. This expectation is largely driven by the fact that sexually selected traits can influence mating patterns and contribute to reproductive isolation. Indeed, some comparative studies have shown that clades with sexually selected traits have increased rates of speciation and diversification. However, these studies have almost exclusively focused on one mechanism of sexual selection: female choice. Another widespread mechanism is male-male competition. Few empirical studies (if any) have investigated the role of this alternative mechanism in driving diversification. Nevertheless, recent reviews have suggested that male-male competition can increase speciation rates. Here, we investigated whether traits associated with precopulatory male-male competition (i.e., sexually selected weapons) have promoted speciation and diversification in insects. We focused on three clades with both weapons and suitable phylogenies: leaf-footed and broad-headed bugs (Coreidae+Alydidae; ∼2850 species), stick insects and relatives (Phasmatodea; ∼3284 species), and scarab beetles (Scarabaeoidea; ∼39,717 species). We found no evidence that weapon-bearing lineages in these clades have higher rates of speciation or diversification than their weaponless relatives. Thus, our results suggest that precopulatory male-male competition may not have strong, general effects on speciation and diversification in insects, a group encompassing ∼60% of all described species.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| |
Collapse
|
43
|
Cally JG, Stuart-Fox D, Holman L, Dale J, Medina I. Male-biased sexual selection, but not sexual dichromatism, predicts speciation in birds. Evolution 2021; 75:931-944. [PMID: 33559135 DOI: 10.1111/evo.14183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
Sexual selection is thought to shape phylogenetic diversity by affecting speciation or extinction rates. However, the net effect of sexual selection on diversification is hard to predict because many of the hypothesized effects on speciation or extinction have opposing signs and uncertain magnitudes. Theoretical work also suggests that the net effect of sexual selection on diversification should depend strongly on ecological factors, though this prediction has seldom been tested. Here, we test whether variation in sexual selection can predict speciation and extinction rates across passerine birds (up to 5812 species, covering most genera) and whether this relationship is mediated by environmental factors. Male-biased sexual selection, and specifically sexual size dimorphism, predicted two of the three measures of speciation rates that we examined. The link we observed between sexual selection and speciation was independent of environmental variability, though species with smaller ranges had higher speciation rates. There was no association between any proxies of sexual selection and extinction rate. Our findings support the view that male-biased sexual selection, as measured by frequent predictors of male-male competition, has shaped diversification in the largest radiation of birds.
Collapse
Affiliation(s)
- Justin G Cally
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Luke Holman
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James Dale
- School of Natural and Computational Sciences, Massey University (Albany Campus), Auckland, 0632, New Zealand
| | - Iliana Medina
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
44
|
Girard MB, Elias DO, Azevedo G, Bi K, Kasumovic MM, Waldock JM, Rosenblum EB, Hedin M. Phylogenomics of peacock spiders and their kin (Salticidae: Maratus), with implications for the evolution of male courtship displays. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Understanding diversity has been a pursuit in evolutionary biology since its inception. A challenge arises when sexual selection has played a role in diversification. Questions of what constitutes a ‘species’, homoplasy vs. synapomorphy, and whether sexually selected traits show phylogenetic signal have hampered work on many systems. Peacock spiders are famous for sexually selected male courtship dances and peacock-like abdominal ornamentation. This lineage of jumping spiders currently includes over 90 species classified into two genera, Maratus and Saratus. Most Maratus species have been placed into groups based on secondary sexual characters, but evolutionary relationships remain unresolved. Here we assess relationships in peacock spiders using phylogenomic data (ultraconserved elements and RAD-sequencing). Analyses reveal that Maratus and the related genus Saitis are paraphyletic. Many, but not all, morphological groups within a ‘core Maratus’ clade are recovered as genetic clades but we find evidence for undocumented speciation. Based on original observations of male courtship, our comparative analyses suggest that courtship behaviour and peacock-like abdominal ornamentation have evolved sequentially, with some traits inherited from ancestors and others evolving repeatedly and independently from ‘simple’ forms. Our results have important implications for the taxonomy of these spiders, and provide a much-needed evolutionary framework for comparative studies of the evolution of sexual signal characters.
Collapse
Affiliation(s)
- Madeline B Girard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Damian O Elias
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Guilherme Azevedo
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael M Kasumovic
- Ecology & Evolution Research Centre, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, Australia
| | - Julianne M Waldock
- Collections and Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
45
|
Couvreur TL, Dauby G, Blach‐Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC, Mackinder BA, Sonké B, Sosef MS, Stévart T, Svenning J, Wieringa JJ, Faye A, Missoup AD, Tolley KA, Nicolas V, Ntie S, Fluteau F, Robin C, Guillocheau F, Barboni D, Sepulchre P. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol Rev Camb Philos Soc 2021; 96:16-51. [PMID: 32924323 PMCID: PMC7821006 DOI: 10.1111/brv.12644] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.
Collapse
Affiliation(s)
| | - Gilles Dauby
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - Anne Blach‐Overgaard
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Vincent Deblauwe
- Center for Tropical Research (CTR), Institute of the Environment and SustainabilityUniversity of California, Los Angeles (UCLA)Los AngelesCA90095U.S.A.
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | | | - Vincent Droissart
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Oliver J. Hardy
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - David J. Harris
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghU.K.
| | | | - Alexandra C. Ley
- Institut für Geobotanik und Botanischer GartenUniversity Halle‐WittenbergNeuwerk 21Halle06108Germany
| | | | - Bonaventure Sonké
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
| | | | - Tariq Stévart
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Jan J. Wieringa
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333 CRThe Netherlands
| | - Adama Faye
- Laboratoire National de Recherches sur les Productions Végétales (LNRPV)Institut Sénégalais de Recherches Agricoles (ISRA)Route des Hydrocarbures, Bel Air BP 1386‐ CP18524DakarSenegal
| | - Alain D. Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaPO Box 24157DoualaCameroon
| | - Krystal A. Tolley
- South African National Biodiversity InstituteKirstenbosch Research CentrePrivate Bag X7, ClaremontCape Town7735South Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag 3Wits2050South Africa
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesCP51, 57 rue CuvierParis75005France
| | - Stéphan Ntie
- Département de Biologie, Faculté des SciencesUniversité des Sciences et Techniques de MasukuFrancevilleBP 941Gabon
| | - Frédiéric Fluteau
- Institut de Physique du Globe de Paris, CNRSUniversité de ParisParisF‐75005France
| | - Cécile Robin
- CNRS, Géosciences Rennes, UMR6118University of RennesRennes35042France
| | | | - Doris Barboni
- CEREGE, Aix‐Marseille University, CNRS, IRD, Collège de France, INRA, Technopole Arbois MéditerranéeBP80Aix‐en‐Provence cedex413545France
| | - Pierre Sepulchre
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteF‐91191France
| |
Collapse
|
46
|
Abstract
Spiders (Araneae) make up a remarkably diverse lineage of predators that have successfully colonized most terrestrial ecosystems. All spiders produce silk, and many species use it to build capture webs with an extraordinary diversity of forms. Spider diversity is distributed in a highly uneven fashion across lineages. This strong imbalance in species richness has led to several causal hypotheses, such as codiversification with insects, key innovations in silk structure and web architecture, and loss of foraging webs. Recent advances in spider phylogenetics have allowed testing of some of these hypotheses, but results are often contradictory, highlighting the need to consider additional drivers of spider diversification. The spatial and historical patterns of diversity and diversification remain contentious. Comparative analyses of spider diversification will advance only if we continue to make progress with studies of species diversity, distribution, and phenotypic traits, together with finer-scale phylogenies and genomic data.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, 5020 Bergen, Norway;
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA;
| |
Collapse
|
47
|
Roberts NS, Mendelson TC. Identifying female phenotypes that promote behavioral isolation in a sexually dimorphic species of fish Etheostoma zonale. Curr Zool 2020; 67:225-236. [PMID: 33854540 PMCID: PMC8026156 DOI: 10.1093/cz/zoaa054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
In sexually dimorphic species characterized by exaggerated male ornamentation, behavioral isolation is often attributed to female preferences for conspecific male signals. Yet, in a number of sexually dimorphic species, male mate choice also results in behavioral isolation. In many of these cases, the female traits that mediate species boundaries are unclear. Females in sexually dimorphic species typically lack many of the elaborate traits that are present in males and that are often used for taxonomic classification of species. In a diverse and largely sexually dimorphic group of fishes called darters (Percidae: Etheostoma), male mate choice contributes to behavioral isolation between a number of species; however, studies addressing which female traits males prefer are lacking. In this study, we identified the dominant female pattern for two sympatric species, Etheostoma zonale and Etheostoma barrenense, using pattern energy analysis, and we used discriminate function analysis to identify which aspects of female patterning can reliably classify species. We then tested the role of female features in male mate choice for E. zonale, by measuring male preference for computer animations displaying the identified (species-specific) conspecific features. We found that the region above the lateral line is important in mediating male mate preferences, with males spending a significantly greater proportion of time with animations exhibiting conspecific female patterning in this region than with animations exhibiting heterospecific female patterning. Our results suggest that the aspects of female phenotypes that are the target of male mate choice are different from the conspicuous male phenotypes that traditionally characterize species.
Collapse
Affiliation(s)
- Natalie S Roberts
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Tamra C Mendelson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| |
Collapse
|
48
|
Yang Y, Richards-Zawacki CL. Male–male contest limits the expression of assortative mate preferences in a polymorphic poison frog. Behav Ecol 2020. [DOI: 10.1093/beheco/araa114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Codivergence of sexual traits and mate preferences can lead to assortative mating and subsequently reproductive isolation. However, mate choice rarely operates without intrasexual competition, and the effects of the latter on speciation are often overlooked. Maintaining trait polymorphisms despite gene flow and limiting assortative female preferences for less-competitive male phenotypes are two important roles that male–male competition may play in the speciation process. Both roles rely on the assumption that male–male competition limits the expression of divergent female preferences. We tested this assumption in the highly color-polymorphic strawberry poison frog (Oophaga pumilio). Females prefer males of the local color, suggesting that reproductive isolation may be evolving among color morphs. However, this inference does not account for male–male competition, which is also color-mediated. We housed females with two differently colored males, and compared reproductive patterns when the more attractive male was the territory holder versus when he was the nonterritorial male. Females mated primarily with the territory winner, regardless of coloration, suggesting that when a choice must be made between the two, male territoriality overrides female preferences for male coloration. Our results highlight the importance of considering the combined effects of mate choice and intrasexual competition in shaping phenotypic divergence and speciation.
Collapse
Affiliation(s)
- Yusan Yang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corinne L Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Smithsonian Tropical Research Institute Tupper, Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
49
|
Rowe M, Whittington E, Borziak K, Ravinet M, Eroukhmanoff F, Sætre GP, Dorus S. Molecular Diversification of the Seminal Fluid Proteome in a Recently Diverged Passerine Species Pair. Mol Biol Evol 2020; 37:488-506. [PMID: 31665510 PMCID: PMC6993853 DOI: 10.1093/molbev/msz235] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Seminal fluid proteins (SFPs) mediate an array of postmating reproductive processes that influence fertilization and fertility. As such, it is widely held that SFPs may contribute to postmating, prezygotic reproductive barriers between closely related taxa. We investigated seminal fluid (SF) diversification in a recently diverged passerine species pair (Passer domesticus and Passer hispaniolensis) using a combination of proteomic and comparative evolutionary genomic approaches. First, we characterized and compared the SF proteome of the two species, revealing consistencies with known aspects of SFP biology and function in other taxa, including the presence and diversification of proteins involved in immunity and sperm maturation. Second, using whole-genome resequencing data, we assessed patterns of genomic differentiation between house and Spanish sparrows. These analyses detected divergent selection on immunity-related SF genes and positive selective sweeps in regions containing a number of SF genes that also exhibited protein abundance diversification between species. Finally, we analyzed the molecular evolution of SFPs across 11 passerine species and found a significantly higher rate of positive selection in SFPs compared with the rest of the genome, as well as significant enrichments for functional pathways related to immunity in the set of positively selected SF genes. Our results suggest that selection on immunity pathways is an important determinant of passerine SF composition and evolution. Assessing the role of immunity genes in speciation in other recently diverged taxa should be prioritized given the potential role for immunity-related proteins in reproductive incompatibilities in Passer sparrows.
Collapse
Affiliation(s)
- Melissah Rowe
- Natural History Museum, University of Oslo, Oslo, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| | - Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Fabrice Eroukhmanoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| |
Collapse
|
50
|
Mejías MA, Roncal J, Imfeld TS, Boisen S, Wilson DR. Relationships of song structure to phylogenetic history, habitat, and morphology in the vireos, greenlets, and allies (Passeriformes: Vireonidae). Evolution 2020; 74:2494-2511. [DOI: 10.1111/evo.14099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Miguel A. Mejías
- Department of Biology Memorial University of Newfoundland St. John's A1B 3X9 Canada
| | - Julissa Roncal
- Department of Biology Memorial University of Newfoundland St. John's A1B 3X9 Canada
| | - Tyler S. Imfeld
- Department of Ecology Evolution and Behavior University of Minnesota St. Paul MN 55108 USA
- Bell Museum University of Minnesota St. Paul MN 55108 USA
| | - Sander Boisen
- Department of Biology Memorial University of Newfoundland St. John's A1B 3X9 Canada
| | - David R. Wilson
- Department of Psychology Memorial University of Newfoundland St. John's A1B 3X9 Canada
| |
Collapse
|