1
|
Gonsalvez DG, Tran G, Fletcher JL, Hughes RA, Hodgkinson S, Wood RJ, Yoo SW, De Silva M, Agnes WW, McLean C, Kennedy P, Kilpatrick TJ, Murray SS, Xiao J. A Brain-Derived Neurotrophic Factor-Based p75 NTR Peptide Mimetic Ameliorates Experimental Autoimmune Neuritis Induced Axonal Pathology and Demyelination. eNeuro 2017; 4:ENEURO.0142-17.2017. [PMID: 28680965 PMCID: PMC5496185 DOI: 10.1523/eneuro.0142-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Axonal damage and demyelination are major determinants of disability in patients with peripheral demyelinating neuropathies. The neurotrophin family of growth factors are essential for the normal development and myelination of the peripheral nervous system (PNS), and as such are potential therapeutic candidates for ameliorating axonal and myelin damage. In particular, BDNF promotes peripheral nerve myelination via p75 neurotrophin receptor (p75NTR) receptors. Here, we investigated the therapeutic efficacy of a small structural mimetic of the region of BDNF that binds to p75NTR (cyclo-dPAKKR) in experimental autoimmune neuritis (EAN), an established animal model of peripheral demyelinating neuropathy. Examination of rodents induced with EAN revealed that p75NTR is abundantly expressed in affected peripheral nerves. We found that systemic administration of cyclo-dPAKKR ameliorates EAN disease severity and accelerates recovery. Animals treated with cyclo-dPAKKR displayed significantly better motor performance compared to control animals. Histological assessment revealed that cyclo-dPAKKR administration limits the extent of inflammatory demyelination and axonal damage, and protects against the disruption of nodal architecture in affected peripheral nerves. In contrast, a structural control peptide of cyclo-dPAKKR exerted no influence. Moreover, all the beneficial effects of cyclo-dPAKKR in EAN are abrogated in p75NTR heterozygous mice, strongly suggesting a p75NTR-dependent effect. Taken together, our data demonstrate that cyclo-dPAKKR ameliorates functional and pathological defects of EAN in a p75NTR-dependant manner, suggesting that p75NTR is a therapeutic target to consider for future treatment of peripheral demyelinating diseases and targeting of p75NTR is a strategy worthy of further investigation.
Collapse
MESH Headings
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Axons/drug effects
- Axons/pathology
- Axons/ultrastructure
- Demyelinating Diseases/drug therapy
- Demyelinating Diseases/etiology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Myelin Basic Protein/metabolism
- Neuritis, Autoimmune, Experimental/complications
- Neuritis, Autoimmune, Experimental/genetics
- Neuritis, Autoimmune, Experimental/pathology
- Oligopeptides/therapeutic use
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Nerve Growth Factor/chemistry
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/therapeutic use
- Statistics, Nonparametric
Collapse
Affiliation(s)
- David G. Gonsalvez
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC 3010, Australia
| | - Giang Tran
- Liverpool Hospital, The University of New South Wales, NSW 2170, Australia
| | - Jessica L. Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC 3010, Australia
| | - Richard A. Hughes
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC 3010, Australia
| | - Suzanne Hodgkinson
- Liverpool Hospital, The University of New South Wales, NSW 2170, Australia
| | - Rhiannon J. Wood
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC 3010, Australia
| | - Sang Won Yoo
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC 3010, Australia
| | - Mithraka De Silva
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC 3010, Australia
| | - Wong W. Agnes
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC 3010, Australia
| | - Catriona McLean
- Victorian Neuromuscular Laboratory Services, Alfred Health, VIC 3004, Australia
| | - Paul Kennedy
- Victorian Neuromuscular Laboratory Services, Alfred Health, VIC 3004, Australia
| | - Trevor J. Kilpatrick
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC 3010, Australia
| | - Simon S. Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC 3010, Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Raychaudhuri SP, Raychaudhuri SK, Atkuri KR, Herzenberg LA, Herzenberg LA. Nerve growth factor: A key local regulator in the pathogenesis of inflammatory arthritis. ACTA ACUST UNITED AC 2013; 63:3243-52. [PMID: 21792838 DOI: 10.1002/art.30564] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The effect of nerve growth factor (NGF) and its receptor (NGFR) in inflammatory diseases is a novel research field. The purpose of this study was to investigate the role of NGF/NGFR in human T cell subpopulations and fibroblast-like synovial cells (FLS) and examine its pathophysiologic significance in psoriatic arthritis (PsA) and rheumatoid arthritis (RA). METHODS Expression of NGF/NGFR was examined in synovial fluid (SF), FLS, peripheral blood (PB)-derived T cells, and SF-derived T cells from patients with PsA, RA, and osteoarthritis (OA). NGF levels were determined by enzyme-linked immunosorbent assay. NGF-induced T cell/FLS proliferation was examined by MTT assay. Low-affinity (p75)/high-affinity (TrkA) NGFR expression was determined by high-dimensional fluorescence-activated cell sorting. A monochlorobimane assay was used to determine the effect of NGF on T cell survival. RESULTS Levels of NGF were higher in SF samples from PsA and RA patients as compared to SF samples from OA patients. NGF-induced FLS proliferation was more marked in PsA and RA patients. TrkA was up-regulated on activated SF T cells from PsA (mean ± SD 22 ± 6.2%) and RA (8 ± 1.3%) patients, whereas in SF samples from OA patients, TrkA+CD3+ T cells were not detectable. NGF induced the proliferation of PB T cells, induced the phosphorylation of Akt in activated T cells, and consistent with known pAkt activity, inhibited tumor necrosis factor α-induced cell death in these T cells. CONCLUSION Based on our findings, we propose a model in which NGF secreted by FLS into PsA and RA synovium promotes the survival of activated autoreactive T cells as well as FLS proliferation. Thus, NGF has the potential to sustain the chronic inflammatory cascades of arthritis of autoimmune origin.
Collapse
Affiliation(s)
- Siba P Raychaudhuri
- University of California School of Medicine, Davis, VA Medical Center, Sacramento, California, USA.
| | | | | | | | | |
Collapse
|
3
|
Abstract
The reticulo-epithelial (RE) cellular network of the thymic stromal cellular microenvironment plays a vital role in neuroendocrine regulation and lymphoid cell homing and development. Transmission electronmicroscopic observations have confirmed that there are four functional subtypes of medullar RE cells: undifferentiated; squamous; villous; and cystic. Immunocytochemical observations have shown that the secreted thymic hormones, thymosin alpha1 and thymopoietin (and its short form, thymopentin or TP5), are both produced by RE cells. Thymic RE cells also produce numerous cytokines, including IL-1 and -6, G-CSF, macrophage-CSF and GM-CSF that likely are important during the various stages of thymocyte activation and differentiation. The coexistence of pituitary hormone and neuropeptide secretion, such as growth hormone, prolactin, adrenocorticotopic hormone and thyroid-stimulating hormone, among many others, and the production of a number of interleukins and growth factors, as well as the expression of receptors for all, by the same RE cell, is an unique molecular biological phenomenon. The thymic RE cell network represents an important cellular and humoral microenvironment in the neuroendocrine homeopathic regulatory mechanisms of the multicellular organism.
Collapse
Affiliation(s)
- Bela Bodey
- University of Southern California, Department of Pathology, Keck School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Perez-Pinera P, Garcia-Suarez O, Menendez-Rodriguez P, Mortimer J, Chang Y, Astudillo A, Deuel TF. The receptor protein tyrosine phosphatase (RPTP)beta/zeta is expressed in different subtypes of human breast cancer. Biochem Biophys Res Commun 2007; 362:5-10. [PMID: 17706593 PMCID: PMC2084077 DOI: 10.1016/j.bbrc.2007.06.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 01/19/2023]
Abstract
Increasing evidence suggests mutations in human breast cancer cells that induce inappropriate expression of the 18-kDa cytokine pleiotrophin (PTN, Ptn) initiate progression of breast cancers to a more malignant phenotype. Pleiotrophin signals through inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP)beta/zeta, leading to increased tyrosine phosphorylation of different substrate proteins of RPTPbeta/zeta, including beta-catenin, beta-adducin, Fyn, GIT1/Cat-1, and P190RhoGAP. PTN signaling thus has wide impact on different important cellular systems. Recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTPbeta/zeta signaling pathway; this discovery potentially is very important, since constitutive ALK activity of nucleophosmin (NPM)-ALK fusion protein is causative of anaplastic large cell lymphomas, and, activated ALK is found in other malignant cancers. Recently ALK was identified in each of 63 human breast cancers from 22 subjects. We now demonstrate that RPTPbeta/zeta is expressed in each of these same 63 human breast cancers that previously were found to express ALK and in 10 additional samples of human breast cancer. RPTPbeta/zeta furthermore was localized not only in its normal association with the cell membrane but also scattered in cytoplasm and in nuclei in different breast cancer cells and, in the case of infiltrating ductal carcinomas, the distribution of RPTPbeta/zeta changes as the breast cancer become more malignant. The data suggest that the PTN/RPTPbeta/zeta signaling pathway may be constitutively activated and potentially function to constitutively activate ALK in human breast cancer.
Collapse
Affiliation(s)
- Pablo Perez-Pinera
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Olivia Garcia-Suarez
- Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain
| | | | - J Mortimer
- Moore's Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Y Chang
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - A Astudillo
- Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain
| | - T F Deuel
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Lee HW, Kim SM, Shim NR, Bae SK, Jung IG, Kwak JY, Kim BS, Kim JB, Moon JO, Chung JS, Yoon S. Expression of nerve growth factor is upregulated in the rat thymic epithelial cells during thymus regeneration following acute thymic involution. ACTA ACUST UNITED AC 2007; 141:86-95. [PMID: 17316840 DOI: 10.1016/j.regpep.2006.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 12/05/2006] [Accepted: 12/21/2006] [Indexed: 11/21/2022]
Abstract
Neuroimmune networks in the thymic microenvironment are thought to be involved in the regulation of T cell development. Nerve growth factor (NGF) is increasingly recognized as a potent immunomodulator, promoting "cross-talk" between various types of immune system cells. The present study describes the expression of NGF during thymus regeneration following acute involution induced by cyclophosphamide in the rat. Immunohistochemical stain demonstrated not only the presence of NGF but also its upregulated expression mainly in the subcapsular, paraseptal, and perivascular epithelial cells, and medullary epithelial cells including Hassall's corpuscles in both the normal and regenerating thymus. Biochemical data obtained using Western blot and RT-PCR supported these results and showed that thymic extracts contain NGF protein and mRNA, at higher levels during thymus regeneration. Thus, our results suggest that NGF expressed in these thymic epithelial cells plays a role in the T lymphopoiesis associated with thymus regeneration during recovery from acute thymic involution.
Collapse
Affiliation(s)
- Hee-Woo Lee
- Department of Anatomy, Pusan National University School of Medicine, Seo-Gu, Busan, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Park HJ, Kim MN, Kim JG, Bae YH, Bae MK, Wee HJ, Kim TW, Kim BS, Kim JB, Bae SK, Yoon S. Up-regulation of VEGF expression by NGF that enhances reparative angiogenesis during thymic regeneration in adult rat. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1462-72. [PMID: 17586065 DOI: 10.1016/j.bbamcr.2007.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 12/25/2022]
Abstract
Angiogenesis is important for adult tissue regeneration as well as normal development. Vascular endothelial growth factor (VEGF) is a unique potent angiogenic factor, and plays an essential role in regulating angiogenesis during embryonic development, normal tissue growth, and tissue regeneration. Recent evidence shows that nerve growth factor (NGF) also plays a role as an angiogenic regulator as well as a well-known neurotrophic factor. The aim of this study was to investigate whether thymus regeneration accompanies reparative angiogenesis and also to evaluate whether the thymic expression of VEGF is regulated by NGF in vivo and in vitro. Here, we show that high VEGF mRNA and protein levels are concomitant with reparative angiogenesis that occurs dramatically during regeneration following acute involution induced by cyclophosphamide (CY) in the rat thymus. Fluorescent thymus angiography using FITC-dextran showed that thymic regeneration is associated with a much denser capillary network compared with normal control thymus. Furthermore, the expressions of NGF and TrkA were highly increased during thymic regeneration. We also show that NGF mediates thymic epithelial induction of VEGF expression in vitro and in vivo. Taken together, our results suggest that NGF-mediated VEGF up-regulation in thymic epithelial cells may contribute to reparative angiogenesis during thymic regeneration in adult.
Collapse
Affiliation(s)
- Hyun-Joo Park
- Department of Anatomy, School of Medicine, Pusan National University, Busan, 602-739, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Perez-Pinera P, Chang Y, Astudillo A, Mortimer J, Deuel T. Anaplastic lymphoma kinase is expressed in different subtypes of human breast cancer. Biochem Biophys Res Commun 2007; 358:399-403. [PMID: 17490616 PMCID: PMC1945107 DOI: 10.1016/j.bbrc.2007.04.137] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 12/24/2022]
Abstract
Pleiotrophin (PTN, Ptn) is an 18kDa cytokine expressed in human breast cancers. Since inappropriate expression of Ptn stimulates progression of breast cancer in transgenic mice and a dominant negative PTN reverses the transformed phenotype of human breast cancer cells that inappropriately express Ptn, it is suggested that constitutive PTN signaling in breast cancer cells that inappropriately express Ptn activates pathways that promote a more aggressive breast cancer phenotype. Pleiotrophin signals by inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP)beta/zeta, and, recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTPbeta/zeta signaling pathway in PTN-stimulated cells, not through a direct interaction of PTN with ALK and thus not through the PTN-enforced dimerization of ALK. Since full-length ALK is activated in different malignant cancers and activated ALK is a potent oncogenic protein, we examined human breast cancers to test the possibility that ALK may be expressed in breast cancers and potentially activated through the PTN/RPTPbeta/zeta signaling pathway; we now demonstrate that ALK is strongly expressed in different histological subtypes of human breast cancer; furthermore, ALK is expressed in both nuclei and cytoplasm and, in the ;;dotted" pattern characteristic of ALK fusion proteins in anaplastic large cell lymphoma. This study thus supports the possibility that activated ALK may be important in human breast cancers and potentially activated either through the PTN/RPTPbeta/zeta signaling pathway, or, alternatively, as an activated fusion protein to stimulate progression of breast cancer in humans.
Collapse
Affiliation(s)
| | - Y. Chang
- The Scripps Research Institute. La Jolla. California
| | - A. Astudillo
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J. Mortimer
- Moore’s Cancer Center, University of California San Diego, San Diego, California, USA
| | - T.F. Deuel
- The Scripps Research Institute. La Jolla. California
- * Address correspondence to: Thomas F. Deuel, M.D. The Scripps Research Institute. 10550 North Torrey Pines Road. La Jolla, CA 92037. Tel. 858.784.7923. Fax. 858.784.7977.
| |
Collapse
|
8
|
Tacconelli A, Farina AR, Cappabianca L, Cea G, Panella S, Chioda A, Gallo R, Cinque B, Sferra R, Vetuschi A, Campese AF, Screpanti I, Gulino A, Mackay AR. TrkAIII expression in the thymus. J Neuroimmunol 2007; 183:151-61. [PMID: 17241672 DOI: 10.1016/j.jneuroim.2006.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
The alternative TrkAIII splice variant is expressed by murine and human thymus. Alternative TrkAIII splicing predominates in postembryonic day E13 (E17 and E18), postnatal murine (3 week and 3 month) and human thymuses, with TrkAIII mRNA expressed by selected thymocyte subsets and thymic epithelial cells (TECs) and a 100 kDa immunoprecipitable TrkAIII-like protein detected in purified thymocyte and whole thymus extracts. FACS and immunohistochemical analysis indicate a non-cell surface localisation for the TrkAIII-like protein in cortical CD4+/CD8+ double positive and, to a lesser extent, single positive thymocyte subsets at the cortex/medulla boundary and in Hassle's corpuscles, reticular epithelial and dendritic cells of the thymic medulla. TrkA(I/II) expression, on the other hand, predominates in sub-capsular regions of the thymus. TrkAIII-like immunoreactivity at the cortex/medulla boundary associates with regions of thymocyte proliferation and not apoptosis. A potential role for thymic hypoxia in thymocyte alternative TrkAIII splicing is supported by reversal to TrkAI splicing by normoxic but not hypoxic culture and induction of Jurkat T cell alternative TrkAIII splicing by the hypoxia mimic CoCl2. In contrast, TEC expression of TrkAIII predominates in both normoxic and hypoxic culture conditions. The data support a potential role for TrkAIII in thymic development and function, of particular relevance to intermediate stage CD4+/CD8+ thymocyte subsets and TECs, which potentially reflects a reversible thymocyte and more permanent TEC adaptation to thymic environment. Since intracellular TrkAIII neither binds nor responds to NGF and can impede regular NGF/TrkA signalling (Tacconelli et al., Cancer Cell, 2004), its expression would be expected to provide an alternative and/or impediment to regular NGF/TrkA signalling within the developing and developed thymus of potential functional importance.
Collapse
Affiliation(s)
- Antonella Tacconelli
- Department of Experimental Medicine, University of L'Aquila, Coppito 2, Via Vetoio, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|