1
|
Lv Y, Ji L, Dai H, Qiu S, Wang Y, Teng C, Yu B, Mi D, Yao C. Identification of key regulatory genes involved in myelination after spinal cord injury by GSEA analysis. Exp Neurol 2024; 382:114966. [PMID: 39326824 DOI: 10.1016/j.expneurol.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/31/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Multilayer dense myelin tissue provides insulating space and nutritional support for axons in healthy spinal cord tissue. Oligodendrocyte precursor cells (OPCs) are the main glial cells that complement myelin loss in the central nervous system and play an important role in the repair of spinal cord injury (SCI). However, the regulation of axonal remyelination after SCI is still insufficient. In this study, we focused on the changes in genes related to myelin repair after rat hemisection SCI by gene set enrichment analysis (GSEA). Key genes proteolipid protein 1 (Plp1), hexosaminidase subunit alpha (Hexa), and hexosaminidase subunit beta (Hexb) during remyelination after SCI were found. Through quantitative real-time polymerase chain reaction (qPCR) experiments, we confirmed that within 28 days after rat hemisection SCI, the mRNA expression of gene Plp1 gradually decreased, while the expressions of gene Hexa and Hexb gradually increased, which was consistent with RNA sequencing results. In vitro, we performed EdU proliferation assays on OPC cell line OLN-93 and primary rat OPCs. We found that interference of Plp1 promoted OPC proliferation, while interference of Hexa and Hexb inhibited OPC proliferation. In addition, we performed in vitro differentiation experiments on primary rat OPCs. By measuring myelin sheath branch outgrowth and the fluorescence intensity of the mature myelin sheath marker myelin basic protein (MBP), we found that interference of Hexa or Hexb promoted OPC differentiation and maturation, but interference of Plp1 inhibited this process. Finally, we injected Hexb siRNA in vivo and found that interfering Hexb could improve motor movements and myelin regeneration after SCI in rats. Our results provide new target genes that can selectively regulate the proliferation and differentiation of endogenous OPCs, providing new ideas for promoting remyelination and functional recovery after SCI.
Collapse
Affiliation(s)
- Yehua Lv
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Traditional Chinese Medicine Hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Lingyun Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Traditional Chinese Medicine Hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Hui Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Traditional Chinese Medicine Hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Shanru Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Traditional Chinese Medicine Hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Yu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Traditional Chinese Medicine Hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Cheng Teng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Traditional Chinese Medicine Hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Traditional Chinese Medicine Hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Daguo Mi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Traditional Chinese Medicine Hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China.
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Traditional Chinese Medicine Hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Yao L, Zhu Z, Zhang C, Tian W, Cao L. PLP1 gene mutations cause spastic paraplegia type 2 in three families. Ann Clin Transl Neurol 2023; 10:328-338. [PMID: 36622199 PMCID: PMC10014006 DOI: 10.1002/acn3.51722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Spastic paraplegia type 2 (SPG2) is an X-linked recessive (XLR) form of hereditary spastic paraplegia (HSP) caused by mutations in proteolipid protein 1 (PLP1) gene. We described the clinical and genetic features of three unrelated families with PLP1 mutations and reviewed PLP1-related cases worldwide to summarize the genotype-phenotype correlations. METHODS The three probands were 23, 26, and 27 years old, respectively, with progressively aggravated walking difficulty as well as lower limb spasticity. Detailed physical examination showed elevated muscle tone, hyperreflexia, and Babinski signs in lower limbs. Brain MRI examinations were investigated for all cases. PLP1 mutations were identified by whole exome sequencing, followed by Sanger sequencing, family co-segregation, and phenotypic reevaluation. RESULTS A total of eight patients with SPG2 were identified in these three families. The probands additionally had cognitive impairment, urinary or fecal incontinence, ataxia, and white matter lesions (WML) in periventricular regions, with or without kinetic tremor. Three hemizygous mutations in PLP1 were identified, including c.453+159G>A, c.834A>T (p.*278C), and c.434G>A (p.W145*), of which c.834A>T was first associated with HSP. INTERPRETATION We identified three families with complicated SPG2 due to three PLP1 mutations. Our study supports the clinically inter-and intra-family heterogeneity of SPG2. The periventricular region WML and cognitive impairment are the most common characteristics. The kinetic tremor in upper limbs was observed in 2/3 families, suggesting the spectrum of PLP1-related disorders is still expanding.
Collapse
Affiliation(s)
- Li Yao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Suzhou Hospital of Anhui Medical University, Suzhou Municipal Hospital of Anhui Province, Suzhou, 234000, China
| | - Zeyu Zhu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Zhang
- Suzhou Hospital of Anhui Medical University, Suzhou Municipal Hospital of Anhui Province, Suzhou, 234000, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
3
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
4
|
Aberrant Ganglioside Functions to Underpin Dysregulated Myelination, Insulin Signalling, and Cytokine Expression: Is There a Link and a Room for Therapy? Biomolecules 2022; 12:biom12101434. [PMID: 36291644 PMCID: PMC9599472 DOI: 10.3390/biom12101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Gangliosides are molecules widely present in the plasma membranes of mammalian cells, participating in a variety of processes, including protein organization, transmembrane signalling and cell adhesion. Gangliosides are abundant in the grey matter of the brain, where they are critically involved in postnatal neural development and function. The common precursor of the majority of brain gangliosides, GM3, is formed by the sialylation of lactosylceramide, and four derivatives of its a- and b-series, GM1, GD1a, GD1b and GT1b, constitute 95% of all the brain gangliosides. Impairments in ganglioside metabolism due to genetic abnormalities of GM-synthases are associated with severe neurological disorders. Apart from that, the latest genome-wide association and translational studies suggest a role of genes involved in brain ganglioside synthesis in less pervasive psychiatric disorders. Remarkably, the most recent animal studies showed that abnormal ganglioside functions result in dysregulated neuroinflammation, aberrant myelination and altered insulin receptor signalling. At the same time, these molecular features are well established as accompanying developmental psychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). This led us to hypothesize a role of deficient ganglioside function in developmental neuropsychiatric disorders and warrants further gene association clinical studies addressing this question. Here, we critically review the literature to discuss this hypothesis and focus on the recent studies on ST3GAL5-deficient mice. In addition, we elaborate on the therapeutic potential of various anti-inflammatory remedies for treatment of developmental neuropsychiatric conditions related to aberrant ganglioside functions.
Collapse
|
5
|
The Puzzle of Hereditary Spastic Paraplegia: From Epidemiology to Treatment. Int J Mol Sci 2022; 23:ijms23147665. [PMID: 35887006 PMCID: PMC9321931 DOI: 10.3390/ijms23147665] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 01/03/2023] Open
Abstract
Inherited neurodegenerative pathology characterized by lower muscle tone and increasing spasticity in the lower limbs is termed hereditary spastic paraplegia (HSP). HSP is associated with changes in about 80 genes and their products involved in various biochemical pathways, such as lipid droplet formation, endoplasmic reticulum shaping, axon transport, endosome trafficking, and mitochondrial function. With the inheritance patterns of autosomal dominant, autosomal recessive, X-linked recessive, and mitochondrial inheritance, HSP is prevalent around the globe at a rate of 1–5 cases in every 100,000 individuals. Recent technology and medical interventions somewhat aid in recognizing and managing the malaise. However, HSP still lacks an appropriate and adequate therapeutic approach. Current therapies are based on the clinical manifestations observed in the patients, for example, smoothing the relaxant spastic muscle and physiotherapies. The limited clinical trial studies contribute to the absence of specific pharmaceuticals for HSPs. Our current work briefly explains the causative genes, epidemiology, underlying mechanism, and the management approach undertaken to date. We have also mentioned the latest approved drugs to summarise the available knowledge on therapeutic strategies for HSP.
Collapse
|
6
|
The wmN1 Enhancer Region of the Mouse Myelin Proteolipid Protein Gene (mPlp1) is Indispensable for Expression of an mPlp1-lacZ Transgene in Both the CNS and PNS. Neurochem Res 2019; 45:663-671. [PMID: 31782102 DOI: 10.1007/s11064-019-02919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
The myelin proteolipid protein gene (PLP1) encodes the most abundant protein in CNS myelin. Expression of the gene must be strictly regulated, as evidenced by human X-linked leukodystrophies resulting from variations in PLP1 copy number, including elevated dosages as well as deletions. Recently, we showed that the wmN1 region in human PLP1 (hPLP1) intron 1 is required to promote high levels of an hPLP1-lacZ transgene in mice, using a Cre-lox approach. The current study tests whether loss of the wmN1 region from a related transgene containing mouse Plp1 (mPlp1) DNA produces similar results. In addition, we investigated the effects of loss of another region (ASE) in mPlp1 intron 1. Previous studies have shown that the ASE is required to promote high levels of mPlp1-lacZ expression by transfection analysis, but had no effect when removed from the native gene in mouse. Whether this is due to compensation by another regulatory element in mPlp1 that was not included in the mPlp1-lacZ constructs, or to differences in methodology, is unclear. Two transgenic mouse lines were generated that harbor mPLP(+)Z/FL. The parental transgene utilizes mPlp1 sequences (proximal 2.3 kb of 5'-flanking DNA to the first 37 bp of exon 2) to drive expression of a lacZ reporter cassette. Here we demonstrate that mPLP(+)Z/FL is expressed in oligodendrocytes, oligodendrocyte precursor cells, olfactory ensheathing cells and neurons in brain, and Schwann cells in sciatic nerve. Loss of the wmN1 region from the parental transgene abolished expression, whereas removal of the ASE had no effect.
Collapse
|
7
|
Stumpf SK, Berghoff SA, Trevisiol A, Spieth L, Düking T, Schneider LV, Schlaphoff L, Dreha-Kulaczewski S, Bley A, Burfeind D, Kusch K, Mitkovski M, Ruhwedel T, Guder P, Röhse H, Denecke J, Gärtner J, Möbius W, Nave KA, Saher G. Ketogenic diet ameliorates axonal defects and promotes myelination in Pelizaeus-Merzbacher disease. Acta Neuropathol 2019; 138:147-161. [PMID: 30919030 PMCID: PMC6570703 DOI: 10.1007/s00401-019-01985-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/24/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is an untreatable and fatal leukodystrophy. In a model of PMD with perturbed blood-brain barrier integrity, cholesterol supplementation promotes myelin membrane growth. Here, we show that in contrast to the mouse model, dietary cholesterol in two PMD patients did not lead to a major advancement of hypomyelination, potentially because the intact blood-brain barrier precludes its entry into the CNS. We therefore turned to a PMD mouse model with preserved blood-brain barrier integrity and show that a high-fat/low-carbohydrate ketogenic diet restored oligodendrocyte integrity and increased CNS myelination. This dietary intervention also ameliorated axonal degeneration and normalized motor functions. Moreover, in a paradigm of adult remyelination, ketogenic diet facilitated repair and attenuated axon damage. We suggest that a therapy with lipids such as ketone bodies, that readily enter the brain, can circumvent the requirement of a disrupted blood-brain barrier in the treatment of myelin disease.
Collapse
Affiliation(s)
- Sina K Stumpf
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Andrea Trevisiol
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Tim Düking
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Lennart V Schneider
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Lennart Schlaphoff
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center, 37075, Göttingen, Germany
| | - Annette Bley
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dinah Burfeind
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Miso Mitkovski
- Light Microscopy Facility, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Philipp Guder
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Heiko Röhse
- Light Microscopy Facility, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Jonas Denecke
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
8
|
Kadnikova VA, Ryzhkova OP, Rudenskaya GE, Polyakov AV. Molecular Genetic Diversity and DNA Diagnostics of Hereditary Spastic Paraplegia. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s2079086419020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Drug screening for Pelizaeus-Merzbacher disease by quantifying the total levels and membrane localization of PLP1. Mol Genet Metab Rep 2019; 20:100474. [PMID: 31110947 PMCID: PMC6510973 DOI: 10.1016/j.ymgmr.2019.100474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023] Open
Abstract
Background Pelizaeus-Merzbacher disease (PMD) is caused by point mutations or copy number changes in the proteolipid protein 1 gene (PLP1). PLP1 is exclusively localized in the myelin sheath of oligodendrocytes. Amino acid-substituted PLP1 protein is unable to fold properly and is subsequently degraded and/or restrictedly translated, resulting in a decrease in the PLP1 protein level and a failure to localize to the membrane. Furthermore, misfolded proteins increase the burden on the intracellular quality control system and trafficking, finally resulting in cell apoptosis. The objective of this study was to identify therapeutic chemicals for PMD by quantifying the total levels and membrane localization of PLP1. Method We established a cell line stably expressing PLP1A243V fused with green fluorescent protein in oligodendrocyte-derived MO3.13 cells. We screened a chemical library composed of drugs approved for central nervous system disorders that increased both the total intensity of PLP1A243V in the whole cell and the cell membrane localization. We analyzed the change in the endoplasmic reticulum (ER) stress and the gene expression of candidate chemicals using a micro-array analysis. Finally, we tested the in vivo effectiveness using myelin synthesis deficient (msd) mice with PlpA243V. Results and conclusion Piracetam significantly increased the PLP1A243V intensity and membrane localization and decreased the ER stress. It was also shown to reverse the gene expression changes induced by PLP1A243V in a micro-array analysis. However, in vivo treatment of piracetam did not improve the survival of msd mice (Plp1A243V).
Collapse
Key Words
- CNS, Central nervous systems
- Drug screening
- EGFP, Enhanced green fluorescent protein
- ER, Endoplasmic reticulum
- ER-associated degradation
- Gene expression
- IPA, Ingenuity pathways analysis
- IRE1 α, Inositol requiring enzyme 1 α
- Membrane protein
- Oligodendrocyte
- PLP1
- PLP1, Proteolipid protein 1
- PMD, Pelizaeus-Merzbacher disease
- UPR, Unfolded protein response
- XBP1, X-box binding protein 1
- msd, Myelin synthesis deficient
Collapse
|
10
|
Lüders KA, Nessler S, Kusch K, Patzig J, Jung RB, Möbius W, Nave KA, Werner HB. Maintenance of high proteolipid protein level in adult central nervous system myelin is required to preserve the integrity of myelin and axons. Glia 2019; 67:634-649. [PMID: 30637801 DOI: 10.1002/glia.23549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.
Collapse
Affiliation(s)
- Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
11
|
Stassart RM, Möbius W, Nave KA, Edgar JM. The Axon-Myelin Unit in Development and Degenerative Disease. Front Neurosci 2018; 12:467. [PMID: 30050403 PMCID: PMC6050401 DOI: 10.3389/fnins.2018.00467] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Axons are electrically excitable, cable-like neuronal processes that relay information between neurons within the nervous system and between neurons and peripheral target tissues. In the central and peripheral nervous systems, most axons over a critical diameter are enwrapped by myelin, which reduces internodal membrane capacitance and facilitates rapid conduction of electrical impulses. The spirally wrapped myelin sheath, which is an evolutionary specialisation of vertebrates, is produced by oligodendrocytes and Schwann cells; in most mammals myelination occurs during postnatal development and after axons have established connection with their targets. Myelin covers the vast majority of the axonal surface, influencing the axon's physical shape, the localisation of molecules on its membrane and the composition of the extracellular fluid (in the periaxonal space) that immerses it. Moreover, myelinating cells play a fundamental role in axonal support, at least in part by providing metabolic substrates to the underlying axon to fuel its energy requirements. The unique architecture of the myelinated axon, which is crucial to its function as a conduit over long distances, renders it particularly susceptible to injury and confers specific survival and maintenance requirements. In this review we will describe the normal morphology, ultrastructure and function of myelinated axons, and discuss how these change following disease, injury or experimental perturbation, with a particular focus on the role the myelinating cell plays in shaping and supporting the axon.
Collapse
Affiliation(s)
- Ruth M. Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Department of Neuropathology, University Medical Center Leipzig, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Julia M. Edgar
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Abstract
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurologic disorders with the common feature of prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. The HSPs exist not only in "pure" forms but also in "complex" forms that are associated with additional neurologic and extraneurologic features. The HSPs are among the most genetically diverse neurologic disorders, with well over 70 distinct genetic loci, for which about 60 mutated genes have already been identified. Numerous studies elucidating the molecular pathogenesis underlying HSPs have highlighted the importance of basic cellular functions - especially membrane trafficking, mitochondrial function, organelle shaping and biogenesis, axon transport, and lipid/cholesterol metabolism - in axon development and maintenance. An encouragingly small number of converging cellular pathogenic themes have been identified for the most common HSPs, and some of these pathways present compelling targets for future therapies.
Collapse
Affiliation(s)
- Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
13
|
Wight PA. Effects of Intron 1 Sequences on Human PLP1 Expression: Implications for PLP1-Related Disorders. ASN Neuro 2017; 9:1759091417720583. [PMID: 28735559 PMCID: PMC5528184 DOI: 10.1177/1759091417720583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alterations in the myelin proteolipid protein gene ( PLP1) may result in rare X-linked disorders in humans such as Pelizaeus-Merzbacher disease and spastic paraplegia type 2. PLP1 expression must be tightly regulated since null mutations, as well as elevated PLP1 copy number, both lead to disease. Previous studies with Plp1-lacZ transgenic mice have demonstrated that mouse Plp1 ( mPlp1) intron 1 DNA (which accounts for slightly more than half of the gene) is required for the mPlp1 promoter to drive significant levels of reporter gene expression in brain. However not much is known about the mechanisms that control expression of the human PLP1 gene ( hPLP1). Therefore this review will focus on sequences in hPLP1 intron 1 DNA deemed important for hPLP1 gene activity as well as a couple of "human-specific" supplementary exons within the first intron which are utilized to generate novel splice variants, and the potential role that these sequences may play in PLP1-linked disorders.
Collapse
Affiliation(s)
- Patricia A Wight
- 1 Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
14
|
Pan S, Chan JR. Regulation and dysregulation of axon infrastructure by myelinating glia. J Cell Biol 2017; 216:3903-3916. [PMID: 29114067 PMCID: PMC5716274 DOI: 10.1083/jcb.201702150] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Pan and Chan discuss the role of myelinating glia in axonal development and the impact of demyelination on axon degeneration. Axon loss and neurodegeneration constitute clinically debilitating sequelae in demyelinating diseases such as multiple sclerosis, but the underlying mechanisms of secondary degeneration are not well understood. Myelinating glia play a fundamental role in promoting the maturation of the axon cytoskeleton, regulating axon trafficking parameters, and imposing architectural rearrangements such as the nodes of Ranvier and their associated molecular domains. In the setting of demyelination, these changes may be reversed or persist as maladaptive features, leading to axon degeneration. In this review, we consider recent insights into axon–glial interactions during development and disease to propose that disruption of the cytoskeleton, nodal architecture, and other components of axon infrastructure is a potential mediator of pathophysiological damage after demyelination.
Collapse
Affiliation(s)
- Simon Pan
- Department of Neurology, University of California, San Francisco, San Francisco, CA .,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, San Francisco, CA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
15
|
Lüders KA, Patzig J, Simons M, Nave KA, Werner HB. Genetic dissection of oligodendroglial and neuronalPlp1function in a novel mouse model of spastic paraplegia type 2. Glia 2017; 65:1762-1776. [DOI: 10.1002/glia.23193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Katja A. Lüders
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Julia Patzig
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Mikael Simons
- Cellular Neuroscience; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Hauke B. Werner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| |
Collapse
|
16
|
Groh J, Martini R. Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: Understanding pathogenesis and chances for treatment. Glia 2017; 65:1407-1422. [PMID: 28568966 DOI: 10.1002/glia.23162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Genetically caused neurological disorders of the central nervous system (CNS) are usually orphan diseases with poor or even fatal clinical outcome and few or no treatments that will improve longevity or at least quality of life. Neuroinflammation is common to many of these disorders, despite the fact that a plethora of distinct mutations and molecular changes underlie the disorders. In this article, data from corresponding animal models are analyzed to define the roles of innate and adaptive inflammation as modifiers and amplifiers of disease. We describe both common and distinct patterns of neuroinflammation in genetically mediated CNS disorders and discuss the contrasting mechanisms that lead to adverse versus neuroprotective effects. Moreover, we identify the juxtaparanode as a neuroanatomical compartment commonly associated with inflammatory cells and ongoing axonopathic changes, in models of diverse diseases. The identification of key immunological effector pathways that amplify neuropathic features should lead to realistic possibilities for translatable therapeutic interventions using existing immunomodulators. Moreover, evidence emerges that neuroinflammation is not only able to modify primary neural damage-related symptoms but also may lead to unexpected clinical outcomes such as neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| |
Collapse
|
17
|
Ikeda M, Hossain MI, Zhou L, Horie M, Ikenaka K, Horii A, Takebayashi H. Histological detection of dynamic glial responses in the dysmyelinating Tabby-jimpy mutant brain. Anat Sci Int 2016; 93:119-127. [PMID: 27888476 DOI: 10.1007/s12565-016-0383-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/11/2016] [Indexed: 11/27/2022]
Abstract
Oligodendrocytes (OLs) are glial cells that form myelin sheaths surrounding the axons in the central nervous system (CNS). Jimpy (jp) mutant mice are dysmyelinating disease models that show developmental abnormalities in myelinated OLs in the CNS. The causative gene in jp mice is the proteolipid protein (PLP) located on the X chromosome. Mutations in the jp allele result in exon 5 skipping and expression of abnormal PLP containing a C-terminal frame shift. Many lines of evidence suggest that abnormal PLP in OLs results in endoplasmic reticulum (ER) stress and cell death. To histologically detect glial responses in the jp mutant brain, we performed staining with lineage-specific markers. Using OL markers and OL progenitor cell marker staining, we identified reduced numbers of OL lineage cells in the jp mutant brain. Nuclear staining of the transcription factor Olig1 was observed in the Tabby-jp brain, whereas cytoplasmic Olig1 staining was observed in the wild-type brain at postnatal day 21, suggesting that active myelination was present in the mutant brain. Many microglial cells with activated morphology and intensive staining of CD11b microglia marker were observed in the internal capsule of the mutant brain, a region of white matter containing residual OLs. Activated astrocytes with high glial fibrillary acidic protein-immunoreactivity were also mainly observed in white matter. Finally, we performed in situ hybridization using C/EBP homologous protein (CHOP) antisense probes to detect ER stressed cells. CHOP mRNA was strongly expressed in residual OLs in the Tabby-jp mutant mice at postnatal stages. These data show that microglia and astrocytes exhibit dynamic glial activation in response to cell death of OLs during Tabby-jp pathogenesis, and that CHOP antisense probes may be a good marker for the detection of ER-stressed OLs in jp mutant mice.
Collapse
Affiliation(s)
- Masanao Ikeda
- Division of Neurobiology and Anatomy, Niigata University, Niigata, 951-8510, Japan
- Department of Otolaryngology Head and Neck Surgery, Niigata University, Niigata, 951-8510, Japan
| | - M Ibrahim Hossain
- Division of Neurobiology and Anatomy, Niigata University, Niigata, 951-8510, Japan
| | - Li Zhou
- Division of Neurobiology and Anatomy, Niigata University, Niigata, 951-8510, Japan
| | - Masao Horie
- Division of Neurobiology and Anatomy, Niigata University, Niigata, 951-8510, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
| | - Arata Horii
- Department of Otolaryngology Head and Neck Surgery, Niigata University, Niigata, 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Niigata University, Niigata, 951-8510, Japan.
| |
Collapse
|
18
|
Marteyn A, Baron-Van Evercooren A. Is involvement of inflammation underestimated in Pelizaeus-Merzbacher disease? J Neurosci Res 2016; 94:1572-1578. [PMID: 27661457 DOI: 10.1002/jnr.23931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 11/11/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating leukodystrophy resulting from proteolipid protein 1 gene (PLP1) mutations leading to oligodendrocyte loss. While neuroinflammation has recently become a common feature and actor in neurodegenerative diseases, the involvement of inflammation in PMD physiopathology is still highly debated despite evidence for strong astrogliosis and microglial cell activation. Activation of the innate immune system, and more particularly, of microglia and astrocytes, is mostly associated with the deleterious role of neuroinflammation. However, in diseases such as multiple sclerosis, microglia appear beneficial for repair based on their role in myelin debris removal or recruitment and differentiation of oligodendrocyte progenitor cells. In this review, we will discuss recent published data in terms of their relevance to the role of microglia in PMD evolution, and of their impact on the improvement of therapeutic approaches combining immunomodulation and cell therapy to promote optimal recovery. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antoine Marteyn
- INSERM, U1127, F-75013, Paris, France.,CNRS, UMR 7225, F-75013, Paris, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, F-75013, Paris, France.,Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Anne Baron-Van Evercooren
- INSERM, U1127, F-75013, Paris, France. .,CNRS, UMR 7225, F-75013, Paris, France. .,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, F-75013, Paris, France. .,Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.
| |
Collapse
|
19
|
Duncan ID, Radcliff AB. Inherited and acquired disorders of myelin: The underlying myelin pathology. Exp Neurol 2016; 283:452-75. [PMID: 27068622 PMCID: PMC5010953 DOI: 10.1016/j.expneurol.2016.04.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/26/2023]
Abstract
Remyelination is a major therapeutic goal in human myelin disorders, serving to restore function to demyelinated axons and providing neuroprotection. The target disorders that might be amenable to the promotion of this repair process are diverse and increasing in number. They range primarily from those of genetic, inflammatory to toxic origin. In order to apply remyelinating strategies to these disorders, it is essential to know whether the myelin damage results from a primary attack on myelin or the oligodendrocyte or both, and whether indeed these lead to myelin breakdown and demyelination. In some disorders, myelin sheath abnormalities are prominent but demyelination does not occur. This review explores the range of human and animal disorders where myelin pathology exists and focusses on defining the myelin changes in each and their cause, to help define whether they are targets for myelin repair therapy. We reviewed myelin disorders of the CNS in humans and animals. Myelin damage results from primary attack on the oligodendrocyte or myelin sheath. All major categories of disease can affect CNS myelin. Myelin vacuolation is common, yet does not always result in demyelination.
Collapse
Affiliation(s)
- Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
| | - Abigail B Radcliff
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
20
|
Porcu G, Serone E, De Nardis V, Di Giandomenico D, Lucisano G, Scardapane M, Poma A, Ragnini-Wilson A. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation. PLoS One 2015; 10:e0144550. [PMID: 26658258 PMCID: PMC4689554 DOI: 10.1371/journal.pone.0144550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022] Open
Abstract
One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library® of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases.
Collapse
Affiliation(s)
- Giampiero Porcu
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | - Eliseo Serone
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L’Aquila, Italy
| | - Velia De Nardis
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | - Daniele Di Giandomenico
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | - Giuseppe Lucisano
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
- Dipartimento di Scienze Mediche di Base, Neuroscienze ed Organi di Senso, Università di Bari Aldo Moro, Bari, Italy
| | - Marco Scardapane
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L’Aquila, Italy
| | - Antonella Ragnini-Wilson
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- * E-mail:
| |
Collapse
|
21
|
Epplen DB, Prukop T, Nientiedt T, Albrecht P, Arlt FA, Stassart RM, Kassmann CM, Methner A, Nave KA, Werner HB, Sereda MW. Curcumin therapy in a Plp1 transgenic mouse model of Pelizaeus-Merzbacher disease. Ann Clin Transl Neurol 2015; 2:787-96. [PMID: 26339673 PMCID: PMC4554440 DOI: 10.1002/acn3.219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/07/2015] [Accepted: 05/07/2015] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Pelizaeus-Merzbacher disease (PMD) is a progressive and lethal leukodystrophy caused by mutations affecting the proteolipid protein (PLP1) gene. The most common cause of PMD is a duplication of PLP1 and at present there is no curative therapy available. METHODS By using transgenic mice carrying additional copies of Plp1, we investigated whether curcumin diet ameliorates PMD symptoms. The diet of Plp1 transgenic mice was supplemented with curcumin for 10 consecutive weeks followed by phenotypical, histological and immunohistochemical analyses of the central nervous system. Plp1 transgenic and wild-type mice fed with normal chow served as controls. RESULTS Curcumin improved the motor phenotype performance of Plp1 transgenic mice by 50% toward wild-type level and preserved myelinated axons by 35% when compared to Plp1 transgenic controls. Furthermore, curcumin reduced astrocytosis, microgliosis and lymphocyte infiltration in Plp1 transgenic mice. Curcumin diet did not affect the pathologically increased Plp1 mRNA abundance. However, high glutathione levels indicating an oxidative misbalance in the white matter of Plp1 transgenic mice were restored by curcumin treatment. INTERPRETATION Curcumin may potentially serve as an antioxidant therapy of PMD caused by PLP1 gene duplication.
Collapse
Affiliation(s)
- Dirk B Epplen
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | - Thomas Prukop
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany ; Institute of Clinical Pharmacology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Tobias Nientiedt
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Friederike A Arlt
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | - Ruth M Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany ; Institute of Neuropathology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Celia M Kassmann
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | - Axel Methner
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), Department of Neurology, Johannes Gutenberg University Medical Center Mainz Mainz, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | - Michael W Sereda
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany ; Department of Clinical Neurophysiology, University Medical Center Göttingen (UMG) Göttingen, Germany
| |
Collapse
|
22
|
Wei L, Hao J, Lacher RK, Abbott T, Chung L, Colangelo CM, Kaffman A. Early-Life Stress Perturbs Key Cellular Programs in the Developing Mouse Hippocampus. Dev Neurosci 2015; 37:476-88. [PMID: 26068561 DOI: 10.1159/000430861] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/21/2015] [Indexed: 01/07/2023] Open
Abstract
Conflicting reports are available with regard to the effects of childhood abuse and neglect on hippocampal function in children. While earlier imaging studies and some animal work have suggested that the effects of early-life stress (ELS) manifest only in adulthood, more recent studies have documented impaired hippocampal function in maltreated children and adolescents. Additional work using animal modes is needed to clarify the effects of ELS on hippocampal development. In this regard, genomic, proteomic, and molecular tools uniquely available in the mouse make it a particularly attractive model system to study this issue. However, very little work has been done so far to characterize the effects of ELS on hippocampal development in the mouse. To address this issue, we examined the effects of brief daily separation (BDS), a mouse model of ELS that impairs hippocampal-dependent memory in adulthood, on hippocampal development in 28-day-old juvenile mice. This age was chosen because it corresponds to the developmental period in which human imaging studies have revealed abnormal hippocampal development in maltreated children. Exposure to BDS caused a significant decrease in the total protein content of synaptosomes harvested from the hippocampus of 28-day-old male and female mice, suggesting that BDS impairs normal synaptic development in the juvenile hippocampus. Using a novel liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM) assay, we found decreased expression of many synaptic proteins, as well as proteins involved in axonal growth, myelination, and mitochondrial activity. Golgi staining in 28-day-old BDS mice showed an increase in the number of immature and abnormally shaped spines and a decrease in the number of mature spines in CA1 neurons, consistent with defects in synaptic maturation and synaptic pruning at this age. In 14-day-old pups, BDS deceased the expression of proteins involved in axonal growth and myelination, but did not affect the total protein content of synaptosomes harvested from the hippocampus, or protein levels of other synaptic markers. These results add two important findings to previous work in the field. First, our findings demonstrate that in 28-day-old juvenile mice, BDS impairs synaptic maturation and reduces the expression of proteins that are necessary for axonal growth, myelination, and mitochondrial function. Second, the results suggest a sequential model in which BDS impairs normal axonal growth and myelination before it disrupts synaptic maturation in the juvenile hippocampus.
Collapse
Affiliation(s)
- Lan Wei
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn., USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Hamdan H, Kockara NT, Jolly LA, Haun S, Wight PA. Control of human PLP1 expression through transcriptional regulatory elements and alternatively spliced exons in intron 1. ASN Neuro 2015; 7:7/1/1759091415569910. [PMID: 25694552 PMCID: PMC4342368 DOI: 10.1177/1759091415569910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
These authors contributed equally to this work. Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period. Other studies have suggested that within mPlp1 intron 1 (>8 kb) lie several regions with enhancer-like activity. To test whether these sequences (and possibly others) in hPLP1 intron 1 are functional, deletion-transfection analysis was performed with hPLP1-lacZ constructs that contain various portions of the intron, or lack it altogether. Results presented here demonstrate the importance of hPLP1 intron 1 in achieving maximal levels of expression in the immortalized oligodendroglial cell line, Oli-neu. Deletion analysis indicates that the intron contains multiple positive regulatory elements which are active in Oli-neu cells. Some of these elements appear to be functionally conserved between human and mouse, while others are not. Furthermore, our studies demonstrate that multiple splice variants can be formed due to inclusion of extra (supplementary) exons from what is classically thought of as hPLP1 intron 1. Thus, splicing of these novel exons (which are not recognized as such in mPlp1 due to lack of conserved splice sites) must utilize factors common to both human and mouse since Oli-neu cells are of mouse origin.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lee Ann Jolly
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shirley Haun
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
24
|
Laššuthová P, Žaliová M, Inoue K, Haberlová J, Sixtová K, Sakmaryová I, Paděrová K, Mazanec R, Zámečník J, Šišková D, Garbern J, Seeman P. Three new PLP1 splicing mutations demonstrate pathogenic and phenotypic diversity of Pelizaeus-Merzbacher disease. J Child Neurol 2014; 29:924-31. [PMID: 23771846 DOI: 10.1177/0883073813492387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
Pelizaeus-Merzbacher disease is a severe X-linked disorder of central myelination caused by mutations affecting the proteolipid protein gene. We describe 3 new PLP1 splicing mutations, their effect on splicing and associated phenotypes. Mutation c.453_453+6del7insA affects the exon 3B donor splice site and disrupts the PLP1-transcript without affecting the DM20, was found in a patient with severe Pelizaeus-Merzbacher disease and in his female cousin with early-onset spastic paraparesis. Mutation c.191+1G>A causes exon 2 skipping with a frame shift, is expected to result in a functionally null allele, and was found in a patient with mild Pelizaeus-Merzbacher disease and in his aunt with late-onset spastic paraparesis. Mutation c.696+1G>A utilizes a cryptic splice site in exon 5, causes partial exon 5 skipping and in-frame deletion, and was found in an isolated patient with a severe classical Pelizaeus-Merzbacher. PLP1 splice-site mutations express a variety of disease phenotypes mediated by different molecular pathogenic mechanisms.
Collapse
Affiliation(s)
- Petra Laššuthová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Markéta Žaliová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jana Haberlová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Klára Sixtová
- Department of Paediatric Neurology, Thomayer's Hospital, Prague, Czech Republic
| | - Iva Sakmaryová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Kateřina Paděrová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Radim Mazanec
- Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Dana Šišková
- Department of Paediatric Neurology, Thomayer's Hospital, Prague, Czech Republic
| | - Jim Garbern
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pavel Seeman
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| |
Collapse
|
25
|
Prukop T, Epplen D, Nientiedt T, Wichert S, Fledrich R, Stassart R, Rossner M, Edgar J, Werner H, Nave KA, Sereda M. Progesterone antagonist therapy in a Pelizaeus-Merzbacher mouse model. Am J Hum Genet 2014; 94:533-46. [PMID: 24680886 DOI: 10.1016/j.ajhg.2014.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy, and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. Although Plp1 mRNA levels are increased 1.8-fold in PMD mice compared to wild-type controls, daily Lonaprisan treatment reduced overexpression at the RNA level to about 1.5-fold, which was sufficient to significantly improve the poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of proapoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration.
Collapse
|
26
|
White R, Krämer-Albers EM. Axon-glia interaction and membrane traffic in myelin formation. Front Cell Neurosci 2014; 7:284. [PMID: 24431989 PMCID: PMC3880936 DOI: 10.3389/fncel.2013.00284] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasizing the central role of the Src-family kinase Fyn during central nervous system (CNS) myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of proteolipid protein (PLP) transport by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.
Collapse
Affiliation(s)
- Robin White
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | |
Collapse
|
27
|
de Monasterio-Schrader P, Patzig J, Möbius W, Barrette B, Wagner TL, Kusch K, Edgar JM, Brophy PJ, Werner HB. Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2. Glia 2013; 61:1832-47. [DOI: 10.1002/glia.22561] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022]
Affiliation(s)
| | - Julia Patzig
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Wiebke Möbius
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Göttingen Germany
| | - Benoit Barrette
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Tadzio L. Wagner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Kathrin Kusch
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Julia M. Edgar
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow; Bearsden Road, Glasgow G61 1QH United Kingdom
| | - Peter J. Brophy
- Centre for Neuroregeneration; University of Edinburgh; United Kingdom
| | - Hauke B. Werner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
28
|
de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB. Systematic approaches to central nervous system myelin. Cell Mol Life Sci 2012; 69:2879-94. [PMID: 22441408 PMCID: PMC11114939 DOI: 10.1007/s00018-012-0958-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022]
Abstract
Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.
Collapse
Affiliation(s)
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven P. Wichert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
29
|
Zlomuzica A, Tress O, Binder S, Rovira C, Willecke K, Dere E. Changes in object recognition and anxiety-like behaviour in mice expressing a Cx47 mutation that causes Pelizaeus-Merzbacher-like disease. Dev Neurosci 2012; 34:277-87. [PMID: 22832166 DOI: 10.1159/000339305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/03/2012] [Indexed: 12/27/2022] Open
Abstract
Pelizaeus-Merzbacher-like disease is characterized by impaired psychomotor development, ataxia, progressive spasticity and mental retardation. It is induced by mutations in the gap junction gene GJC2 that encodes for the gap junction protein connexin 47. Mice bearing a human Cx47M283T missense mutation have been generated as a transgenic mouse model of Pelizaeus-Merzbacher-like disease. Homozygous expression of the mutant connexin 47 gene in oligodendrocytes resulted in a complex and variable neuropathologic phenotype, which was associated with impairments in motor coordination in juvenile, but not adult mice. In the present study, we have investigated anxiety-like behaviour and spatial working memory in juvenile (P23) and adult (3-month-old) Cx47M282T mutant mice. Adult Cx47M282T mice were also evaluated in terms of neuromotor functions and in the novel object recognition test. Juvenile Cx47M282T mutant mice exhibited an increase in anxiety-like behaviour in the open field test, but no changes in spatial working memory performance. No significant changes in anxiety-like behaviour, spatial working memory or neuromotor functions were observed in the adult Cx47M282T mutant mice. However, novel object recognition was significantly impaired in adult Cx47M282T mice. Our results suggest that the expression of the human Cx47M282T mutation in the mouse causes changes in anxiety-like behaviour in juvenile and novel object recognition impairments in adult mice. It appears that the distortion of panglial gap junction coupling in white and grey matter tissue in the Cx47M282T mice is associated with a complex age-dependent behavioural phenotype including changes in psychomotor, emotional and memory functions.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Human voluntary movement is controlled by the pyramidal motor system, a long CNS pathway comprising corticospinal and lower motor neurons. Hereditary spastic paraplegias (HSPs) are a large, genetically diverse group of inherited neurologic disorders characterized by a length-dependent distal axonopathy of the corticospinal tracts, resulting in lower limb spasticity and weakness. A range of studies are converging on alterations in the shaping of organelles, particularly the endoplasmic reticulum, as well as intracellular membrane trafficking and distribution as primary defects underlying the HSPs, with clear relevance for other long axonopathies affecting peripheral nerves and lower motor neurons.
Collapse
Affiliation(s)
- Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
31
|
Timmerman V, Clowes VE, Reid E. Overlapping molecular pathological themes link Charcot-Marie-Tooth neuropathies and hereditary spastic paraplegias. Exp Neurol 2012; 246:14-25. [PMID: 22285450 DOI: 10.1016/j.expneurol.2012.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/29/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
In this review we focus on Charcot-Marie-Tooth (CMT) neuropathies and hereditary spastic paraplegias (HSPs). Although these diseases differ in whether they primarily affect the peripheral or central nervous system, both are genetically determined, progressive, long axonopathies that affect motor and sensory pathways. This commonality suggests that there might be similarities in the molecular pathology underlying these conditions, and here we compare the molecular genetics and cellular pathology of the two groups.
Collapse
Affiliation(s)
- Vincent Timmerman
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium.
| | | | | |
Collapse
|