1
|
Jing Z, Zhang H, Wen Y, Cui S, Ren Y, Liu R, Duan S, Zhao W, Fan L. Epigenetic and transcriptomic alterations in the ClC-3-deficient mice consuming a normal diet. Front Cell Dev Biol 2023; 11:1196684. [PMID: 37287451 PMCID: PMC10242048 DOI: 10.3389/fcell.2023.1196684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Metabolic disorders are an important health concern that threatens life and burdens society severely. ClC-3 is a member of the chloride voltage-gated channel family, and ClC-3 deletion improved the phenotypes of dysglycemic metabolism and the impairment of insulin sensitivity. However, the effects of a healthy diet on transcriptome and epigenetics in ClC-3-/- mice were not explained in detail. Methods: Here, we performed transcriptome sequencing and Reduced Representation Bisulfite Sequencing for the liver of 3 weeks old WT and ClC-3-/- mice consuming a normal diet to insight into the epigenetic and transcriptomic alterations of ClC-3 deficient mice. Results: In the present study, we found that ClC-3-/- mice that were younger than 8 weeks old had smaller bodies compared to ClC-3+/+ mice with ad libitum self-feeding normal diet, and ClC-3-/- mice that were older than 10 weeks old had a similar body weight. Except for the spleen, lung, and kidney, the average weight of the heart, liver, and brain in ClC-3-/- mice was lower than that in ClC-3+/+ mice. TG, TC, HDL, and LDL in fasting ClC-3-/- mice were not significantly different from those in ClC-3+/+ mice. Fasting blood glucose in ClC-3-/- mice was lower than that in ClC-3+/+ mice; the glucose tolerance test indicated the response to blood glucose increasing for ClC-3-/- mice was torpid, but the efficiency of lowering blood glucose was much higher once started. Transcriptomic sequencing and reduced representation bisulfite sequencing for the liver of unweaned mice indicated that ClC-3 deletion significantly changed transcriptional expression and DNA methylation levels of glucose metabolism-related genes. A total of 92 genes were intersected between DEGs and DMRs-targeted genes, of which Nos3, Pik3r1, Socs1, and Acly were gathered in type II diabetes mellitus, insulin resistance, and metabolic pathways. Moreover, Pik3r1 and Acly expressions were obviously correlated with DNA methylation levels, not Nos3 and Socs1. However, the transcriptional levels of these four genes were not different between ClC-3-/- and ClC-3+/+ mice at the age of 12 weeks. Discussion: ClC-3 influenced the methylated modification to regulate glucose metabolism, of which the gene expressions could be driven to change again by a personalized diet-style intervention.
Collapse
Affiliation(s)
- Zhenghui Jing
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haifeng Zhang
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yunjie Wen
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Shiyu Cui
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuhua Ren
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Rong Liu
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sirui Duan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wenbao Zhao
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
| | - Lihong Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Affiliation(s)
- Chi‐ho To Phd
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Chi‐wing Kong Bsc
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Chu‐yan Chan Bsc
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Mohammad Shahidullah Phd
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Chi‐wai Do Phd
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| |
Collapse
|
3
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
4
|
Effect of salinity and temperature on the expression of genes involved in branchial ion transport processes in European sea bass. J Therm Biol 2019; 85:102422. [DOI: 10.1016/j.jtherbio.2019.102422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022]
|
5
|
Deng Z, Li W, Alahdal M, Zhang N, Xie J, Hu X, Chen Y, Fang H, Duan L, Gu L, Wang D. Overexpression of ClC-3 Chloride Channel in Chondrosarcoma: An In Vivo Immunohistochemical Study with Tissue Microarray. Med Sci Monit 2019; 25:5044-5053. [PMID: 31281178 PMCID: PMC6637820 DOI: 10.12659/msm.917382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Recently, ClC-3 chloride channel expression has been noted to be high in some tumors. In chondrosarcoma, which is a malignant tumor with a high incidence in the bone, there has been no previous literature regarding ClC-3 chloride channel expression. Here we evaluated the expression of ClC-3 chloride channel in chondrosarcoma and explored its clinical significance. Material/Methods In this study, 75 chondrosarcoma and 5 normal cartilage tissues were collected. Thereafter, tissue microarray was performed. Immunohistochemistry was also used to observe the level of ClC-3 chloride channel expression between normal and chondrosarcoma tissues. Results Results showed that the expression of ClC-3 chloride channel in the normal chondrocyte was thinner, since it showed distinct differentiation among chondrosarcoma specimens. Interestingly, we noticed that the moderately-differentiated chondrosarcoma (MDC) and the poorly-differentiated chondrosarcoma (PDC) exhibited 94.44% of ClC-3 chloride channel. Besides, the subcellular localization of ClC-3 chloride channel was changed in association with malignant degree changes. The subcellular localization of ClC-3 chloride channel in the MDC and PDC tissue was localized in the cytoplasm and both nucleus and cytoplasm: 83.33% (5 out of 6 cases) and 91.66% (11 out of 12 cases) respectively. On the other hand, we noticed that patient age and gender could have a relation with ClC-3 chloride channel expression; 30- to 60-year-old males showed more expression. Conclusions These results demonstrated a high frequency of ClC-3 chloride channel overexpression and subcellular localization differences in MDC and PDC tissue, suggesting a specific role of ClC-3 chloride channel in the pathogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Wencui Li
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Murad Alahdal
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Ningfeng Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Junxiong Xie
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Xiaotian Hu
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Yang Chen
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Huankun Fang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Liqiang Gu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
6
|
Sforna L, Cenciarini M, Belia S, Michelucci A, Pessia M, Franciolini F, Catacuzzeno L. Hypoxia Modulates the Swelling-Activated Cl Current in Human Glioblastoma Cells: Role in Volume Regulation and Cell Survival. J Cell Physiol 2016; 232:91-100. [PMID: 27028592 DOI: 10.1002/jcp.25393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/25/2016] [Indexed: 12/18/2022]
Abstract
The malignancy of glioblastoma multiforme (GBM), the most common human brain tumor, correlates with the presence of hypoxic areas, but the underlying mechanisms are unclear. GBM cells express abundant Cl channels whose activity supports cell volume and membrane potential changes, ultimately leading to cell proliferation, migration, and escaping death. In non-tumor tissues Cl channels are modulated by hypoxia, which prompted us to verify whether hypoxia would also modulate Cl channels in GBM cells. Our results show that in GBM cell lines, acute application of a hypoxic solution activates a Cl current displaying the biophysical and pharmacological features of the swelling-activated Cl current (ICl,swell ). We also found that acute hypoxia increased the cell volume by about 20%, and a 30% hypertonic solution partially inhibited the hypoxia-activated Cl current, suggesting that cell swelling and the activation of the Cl current are sequential events. Notably, the hypoxia-induced cell swelling was followed by a regulatory volume decrease (RVD) mediated mainly by ICl,swell . Since, a hypoxia-induced prolonged cell swelling is usually regarded as a death insult, we hypothesized that the hypoxia-activated Cl current could limit cell swelling and prevent necrotic death of GBM cells under hypoxic conditions. In accordance, we found that the ICl,swell inhibitor DCPIB hampered the RVD process, and more importantly it sensibly increased the hypoxia-induced necrotic death in these cells. Taken together, these results suggest that Cl channels are strongly involved in the survival of GBM cells in a hypoxic environment, and may thus represent a new therapeutic target for this malignant tumor. J. Cell. Physiol. 232: 91-100, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.,Department of Experimental Medicine, University of Perugia, Italy
| | - Marta Cenciarini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Antonio Michelucci
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti 'G. d'Annunzio', Italy
| | - Mauro Pessia
- Department of Experimental Medicine, University of Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
7
|
ClC-3 Chloride Channel Proteins Regulate the Cell Cycle by Up-regulating cyclin D1-CDK4/6 through Suppressing p21/p27 Expression in Nasopharyngeal Carcinoma Cells. Sci Rep 2016; 6:30276. [PMID: 27451945 PMCID: PMC4959003 DOI: 10.1038/srep30276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/03/2016] [Indexed: 12/24/2022] Open
Abstract
It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells with ClC-3 siRNA decreased the expression of cyclin D1, cyclin dependent kinase 4 and 6, and increased the expression of cyclin dependent kinase inhibitors (CDKIs), p21 and p27. Pretreatments of cells with p21 and p27 siRNAs depleted the inhibitory effects of ClC-3 siRNA on the expression of CDK4 and CDK6, but not on that of cyclin D1, indicating the requirement of p21 and p27 for the inhibitory effects of ClC-3 siRNA on CDK4 and CDK6 expression. ClC-3 siRNA inhibited cells to progress from the G1 phase to the S phase, but pretreatments of cells with p21 and p27 siRNAs abolished the inhibitory effects of ClC-3 siRNA on the cell cycle progress. Our data suggest that ClC-3 may regulate cell cycle transition between G0/G1 and S phases by up-regulation of the expression of CDK4 and CDK6 through suppression of p21 and p27 expression.
Collapse
|
8
|
Liu LI, Cai S, Qiu G, Lin J. Fluid shear stress enhances the cell volume decrease of osteoblast cells by increasing the expression of the ClC-3 chloride channel. Biomed Rep 2016; 4:408-412. [PMID: 27073622 DOI: 10.3892/br.2016.595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022] Open
Abstract
ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity.
Collapse
Affiliation(s)
- L I Liu
- Department of Medical Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Siyi Cai
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Guixing Qiu
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jin Lin
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
9
|
Guo R, Pan F, Tian Y, Li H, Li S, Cao C. Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents. J Membr Biol 2016; 249:281-92. [DOI: 10.1007/s00232-015-9867-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/30/2015] [Indexed: 01/10/2023]
|
10
|
CIC-3 chloride channel blockade protects mouse photoreceptor-derived 661W cells against ischemia-reperfusion-induced injury in vitro. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Bulley S, Jaggar JH. Cl⁻ channels in smooth muscle cells. Pflugers Arch 2014; 466:861-72. [PMID: 24077695 DOI: 10.1007/s00424-013-1357-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
In smooth muscle cells (SMCs), the intracellular chloride ion (Cl−) concentration is high due to accumulation by Cl−/HCO3− exchange and Na+–K+–Cl− cotransportation. The equilibrium potential for Cl− (ECl) is more positive than physiological membrane potentials (Em), with Cl− efflux inducing membrane depolarization. Early studies used electrophysiology and nonspecific antagonists to study the physiological relevance of Cl− channels in SMCs. More recent reports have incorporated molecular biological approaches to identify and determine the functional significance of several different Cl− channels. Both "classic" and cGMP-dependent calcium (Ca2+)-activated (ClCa) channels and volume-sensitive Cl− channels are present, with TMEM16A/ANO1, bestrophins, and ClC-3, respectively, proposed as molecular candidates for these channels. The cystic fibrosis transmembrane conductance regulator (CFTR) has also been described in SMCs. This review will focus on discussing recent progress made in identifying each of these Cl− channels in SMCs, their physiological functions, and contribution to diseases that modify contraction, apoptosis, and cell proliferation.
Collapse
|
12
|
Cai S, Zhang T, Zhang D, Qiu G, Liu Y. Volume-sensitive chloride channels are involved in cisplatin treatment of osteosarcoma. Mol Med Rep 2014; 11:2465-70. [PMID: 25503821 PMCID: PMC4337627 DOI: 10.3892/mmr.2014.3068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/14/2014] [Indexed: 01/23/2023] Open
Abstract
Chemotherapy is the most common therapeutic strategy used to treat osteosarcoma. The present study aimed to investigate the effects of functionally activated chloride channels on cisplatin-induced apoptosis of MG-63 human osteosarcoma cells. An MTT assay and flow cytometry were used to detect proliferation and apoptosis of the cells, respectively. Live cell imaging was used to detect volume changes in response to treatment with cisplatin and/or chloride channel blockers. The effects of these treatments on chloride currents were also assayed using the patch-clamp technique. The results of the present study indicate that chloride channel blockers may suppress cisplatin-induced apoptosis. The MG-63 cells cultured with cisplatin demonstrated an apoptotic volume decrease, as well as suppression of cell proliferation; which were reversed by co-treatment with chloride channel blockers. These results suggest that cisplatin may activate chloride channels, and that channel activation is an early signal in the pathways that lead to cisplatin-induced apoptosis and inhibition of proliferation in MG-63 cells. In conclusion, these results indicate that chloride channels have an important role in cisplatin treatment of osteosarcoma.
Collapse
Affiliation(s)
- Siyi Cai
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| | - Tao Zhang
- Department of Internal Medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Dandan Zhang
- Department of Histology and Embryology, Medical College of Jinan University; Guangzhou, Guangdong 510632, P.R. China
| | - Guixing Qiu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| | - Yong Liu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| |
Collapse
|
13
|
Zhang J, Ho JCY, Chan YC, Lian Q, Siu CW, Tse HF. Overexpression of myocardin induces partial transdifferentiation of human-induced pluripotent stem cell-derived mesenchymal stem cells into cardiomyocytes. Physiol Rep 2014; 2:e00237. [PMID: 24744906 PMCID: PMC3966242 DOI: 10.1002/phy2.237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from human‐induced pluripotent stem cells (iPSCs) show superior proliferative capacity and therapeutic potential than those derived from bone marrow (BM). Ectopic expression of myocardin further improved the therapeutic potential of BM‐MSCs in a mouse model of myocardial infarction. The aim was of this study was to assess whether forced myocardin expression in iPSC‐MSCs could further enhance their transdifferentiation to cardiomyocytes and improve their electrophysiological properties for cardiac regeneration. Myocardin was overexpressed in iPSC‐MSCs using viral vectors (adenovirus or lentivirus). The expression of smooth muscle cell and cardiomyocyte markers, and ion channel genes was examined by reverse transcription‐polymerase chain reaction (RT‐PCR), immunofluorescence staining and patch clamp. The conduction velocity of the neonatal rat ventricular cardiomyocytes cocultured with iPSC‐MSC monolayer was measured by multielectrode arrays recording plate. Myocardin induced the expression of α‐MHC, GATA4, α‐actinin, cardiac MHC, MYH11, calponin, and SM α‐actin, but not cTnT, β‐MHC, and MLC2v in iPSC‐MSCs. Overexpression of myocardin in iPSC‐MSC enhanced the expression of SCN9A and CACNA1C, but reduced that of KCa3.1 and Kir2.2 in iPSC‐MSCs. Moreover, BKCa, IKir, ICl, Ito and INa.TTX were detected in iPSC‐MSC with myocardin overexpression; while only BKCa, IKir, ICl, IKDR, and IKCa were noted in iPSC‐MSC transfected with green florescence protein. Furthermore, the conduction velocity of iPSC‐MSC was significantly increased after myocardin overexpression. Overexpression of myocardin in iPSC‐MSCs resulted in partial transdifferentiation into cardiomyocytes phenotype and improved the electrical conduction during integration with mature cardiomyocytes. Forced myocardin expression in human‐induced pluripotent stem cell (hiPSC)‐derived mesenchymal stem cells lead to partial transdifferentiation into cardiomyocytes and smooth muscle cells phenotypes through modification in ion channel expression profile and electrical conduction velocity.
Collapse
Affiliation(s)
- Jiao Zhang
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Jenny Chung-Yee Ho
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Chi Chan
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China ; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chung-Wah Siu
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Catacuzzeno L, Michelucci A, Sforna L, Aiello F, Sciaccaluga M, Fioretti B, Castigli E, Franciolini F. Identification of key signaling molecules involved in the activation of the swelling-activated chloride current in human glioblastoma cells. J Membr Biol 2013; 247:45-55. [PMID: 24240542 DOI: 10.1007/s00232-013-9609-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
The swelling-activated chloride current (I Cl,Vol) is abundantly expressed in glioblastoma (GBM) cells, where it controls cell volume and invasive migration. The transduction pathway mediating I Cl,Vol activation in GBM cells is, however, poorly understood. By means of pharmacological and electrophysiological approaches, on GL-15 human GBM cells we found that I Cl,Vol activation by hypotonic swelling required the activity of a U73122-sensitive phospholipase C (PLC). I Cl,Vol activation could also be induced by the membrane-permeable diacylglycerol (DAG) analog OAG. In contrast, neither calcium (Ca(2+)) chelation by BAPTA-AM nor changes in PKC activity were able to affect I Cl,Vol activation by hypotonic swelling. We further found that R59022, an inhibitor of diacylglycerol kinase (DGK), reverted I Cl,Vol activation, suggesting the involvement of phosphatidic acid. In addition, I Cl,Vol activation required the activity of a EHT1864-sensitive Rac1 small GTPase and the resulting actin polymerization, as I Cl,Vol activation was prevented by cytochalasin B. We finally show that I Cl,Vol can be activated by the promigratory fetal calf serum in a PLC- and DGK-dependent manner. This observation is potentially relevant because blood serum can likely come in contact with glioblastoma cells in vivo as a result of the tumor-related partial breakdown of the blood-brain barrier. Given the relevance of I Cl,Vol in GBM cell volume regulation and invasiveness, the several key signaling molecules found in this study to be involved in the activation of the I Cl,Vol may represent potential therapeutic targets against this lethal cancer.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Dipartimento di Biologia Cellulare e Ambientale, Universita' di Perugia, Via Pascoli 1, 06123, Perugia, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu J, Zhang D, Li Y, Chen W, Ruan Z, Deng L, Wang L, Tian H, Yiu A, Fan C, Luo H, Liu S, Wang Y, Xiao G, Chen L, Ye W. Discovery of bufadienolides as a novel class of ClC-3 chloride channel activators with antitumor activities. J Med Chem 2013; 56:5734-43. [PMID: 23799775 DOI: 10.1021/jm400881m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ClC-3 chloride (Cl(-)) channel has been shown to be involved in cell proliferation, cell cycle, and cell migration processes. Herein, we found that a series of bufadienolides isolated from toad venom were a novel class of ClC-3 Cl(-) channel activators with antitumor activities. Bufalin, which has the most potent antitumor activity, and 15β-acetyloxybufalin, which has no antitumor activity, were chosen as representative compounds to investigate the role of the ClC-3 Cl(-) channel. It was found that bufalin rapidly elicited activation of the ClC-3 Cl(-) channel and subsequently induced apoptosis through inhibition of the PI3K/Akt/mTOR pathway. The PI3K/Akt/mTOR pathway was attenuated by pretreatment with Cl(-) channel blockers [tamoxifen and 5-nitro-2-(3-phenylpropylamino)benzoic acid, NPPB] or ClC-3 small interfereing RNA. In summary, we discovered that activation of the ClC-3 Cl(-) channel, which subsequently induced inhibition of the PI3K/Akt/mTOR signaling pathway, was involved in the antitumor activities of bufadienolides.
Collapse
Affiliation(s)
- Junshan Liu
- College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and §Department of Pharmacology, College of Medicine, Jinan University , Guangzhou 510632, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bossus M, Charmantier G, Blondeau-Bidet E, Valletta B, Boulo V, Lorin-Nebel C. The ClC-3 chloride channel and osmoregulation in the European sea bass, Dicentrarchus labrax. J Comp Physiol B 2013; 183:641-62. [PMID: 23292336 DOI: 10.1007/s00360-012-0737-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/27/2012] [Accepted: 11/23/2012] [Indexed: 11/29/2022]
Abstract
Dicentrarchus labrax migrates between sea (SW), brackish and fresh water (FW) where chloride concentrations and requirements for chloride handling change: in FW, fish absorb chloride and restrict renal losses; in SW, they excrete chloride. In this study, the expression and localization of ClC-3 and Na(+)/K(+)-ATPase (NKA) were studied in fish adapted to SW, or exposed to FW from 10 min to 30 days. In gills, NKA-α1 subunit expression transiently increased from 10 min and reached a stabilized intermediate expression level after 24 h in FW. ClC-3 co-localized with NKA in the basolateral membrane of mitochondria-rich cells (MRCs) at all conditions. The intensity of MRC ClC-3 immunostaining was significantly higher (by 50 %) 1 h after the transfer to FW, whereas the branchial ClC-3 protein expression was 30 % higher 7 days after the transfer as compared to SW. This is consistent with the increased number of immunopositive MRCs (immunostained for NKA and ClC-3). However, the ClC-3 mRNA expression was significantly lower in FW gills. In the kidney, after FW transfer, a transient decrease in NKA-α1 subunit expression was followed by significantly higher stable levels from 24 h. The low ClC-3 protein expression detected at both salinities was not observed by immunocytochemistry in the SW kidney; ClC-3 was localized in the basal membrane of the collecting ducts and tubules 7 and 30 days after transfer to FW. Renal ClC-3 mRNA expression, however, seemed higher in SW than in FW. The potential role of this chloride channel ClC-3 in osmoregulatory and osmosensing mechanisms is discussed.
Collapse
Affiliation(s)
- Maryline Bossus
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR5119 - EcoSyM, UM2-UM1-CNRS-IRD-IFREMER, cc 092, Place E. Bataillon, 34095 Montpellier cedex 05, France.
| | | | | | | | | | | |
Collapse
|
17
|
Wang XG, Tao J, Ma MM, Tang YB, Zhou JG, Guan YY. Tyrosine 284 phosphorylation is required for ClC-3 chloride channel activation in vascular smooth muscle cells. Cardiovasc Res 2013; 98:469-78. [DOI: 10.1093/cvr/cvt063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Zhang H, Zhu L, Zuo W, Luo H, Mao J, Ye D, Li Y, Liu S, Wei Y, Ye W, Chen L, Wang L. The ClC-3 chloride channel protein is a downstream target of cyclin D1 in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 2013; 45:672-83. [DOI: 10.1016/j.biocel.2012.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/16/2012] [Indexed: 12/26/2022]
|
19
|
Wang L, Ma W, Zhu L, Ye D, Li Y, Liu S, Li H, Zuo W, Li B, Ye W, Chen L. ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol 2012; 303:C14-23. [DOI: 10.1152/ajpcell.00145.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acid-activated chloride currents have been reported in several cell types and may play important roles in regulation of cell function. However, the molecular identities of the channels that mediate the currents are not defined. In this study, activation of the acid-induced chloride current and the possible candidates of the acid-activated chloride channel were investigated in human nasopharyngeal carcinoma cells (CNE-2Z). A chloride current was activated when extracellular pH was reduced to 6.6 from 7.4. However, a further decrease of extracellular pH to 5.8 inhibited the current. The current was weakly outward-rectified and was suppressed by hypertonicity-induced cell shrinkage and by the chloride channel blockers 5-nitro-2–3-phenylpropylamino benzoic acid (NPPB), tamoxifen, and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS). The permeability sequence of the channel to anions was I− > Br− > Cl− > gluconate−. Among the ClC chloride channels, ClC-3 and ClC-7 were strongly expressed in CNE-2Z cells. Knockdown of ClC-3 expression with ClC-3 small interfering (si)RNA prevented the activation of the acid-induced current, but silence of ClC-7 expression with ClC-7 siRNA did not significantly affect the current. The results suggest that the chloride channel mediating the acid-induced chloride current was volume sensitive. ClC-3 is a candidate of the channel proteins that mediate or regulate the acid-activated chloride current in nasopharyngeal carcinoma cells.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Wenbo Ma
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China; and
| | - Dong Ye
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Yuan Li
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China; and
| | - Shanwen Liu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Huarong Li
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Wanhong Zuo
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Bingxue Li
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China; and
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China; and
| |
Collapse
|
20
|
Differential expression and roles of volume-activated chloride channels in control of growth of normal and cancerous nasopharyngeal epithelial cells. Biochem Pharmacol 2012; 83:324-34. [DOI: 10.1016/j.bcp.2011.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/29/2011] [Accepted: 11/08/2011] [Indexed: 11/16/2022]
|
21
|
Abstract
Malignant gliomas are highly invasive brain tumors that currently lack effective treatment. Unlike other cancers, gliomas do not metastasize via the vasculature but invade surrounding brain solely along extracellular routes, primarily moving along the vasculature and nerve tracts. This study uses several model systems to visualize and quantitatively assess cell volume changes of human glioma cells invading within the brain's extracellular space of C.B.17 severe combined immunodeficient (scid) mice and tumor cells invading in a modified Boyden chamber using three-dimensional multiphoton and confocal time-lapse microscopy. Regardless of model system used to quantitatively assess volume changes, invading glioma cells maximally decreased their volume by 30-35%, a value that was independent of barrier and cell size. Through osmotic challenges, we demonstrate that the observed cellular volume changes during invasion represent the smallest achievable cell volume and require glioma cells to release all free unbound cytoplasmic water. Water osmotically follows the release of Cl(-) through ion channels and cotransporters and blockade of Cl(-) flux inhibits both volume changes and cell invasion. Hence, invading glioma cells use hydrodynamic volume changes to meet the spatial constraints imposed within the brain, using essentially all free, unbound cytoplasmic water to maximally alter their volume as they invade.
Collapse
|
22
|
Li A, Banerjee J, Leung CT, Peterson-Yantorno K, Stamer WD, Civan MM. Mechanisms of ATP release, the enabling step in purinergic dynamics. Cell Physiol Biochem 2011; 28:1135-44. [PMID: 22179002 DOI: 10.1159/000335865] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
The only effective intervention to slow onset and progression of glaucomatous blindness is to lower intraocular pressure (IOP). Among other modulators, adenosine receptors (ARs) exert complex regulation of IOP. Agonists of A(3)ARs in the ciliary epithelium activate Cl(-) channels, favoring increased formation of aqueous humor and elevated IOP. In contrast, stimulating A(1)ARs in the trabecular outflow pathway enhances release of matrix metalloproteinases (MMPs) from trabecular meshwork (TM) cells, reducing resistance to outflow of aqueous humor to lower IOP. These opposing actions are thought to be initiated by cellular release of ATP and its ectoenzymatic conversion to adenosine. This view is now supported by our identification of six ectoATPases in trabecular meshwork (TM) cells and by our observation that external ATP enhances TM-cell secretion of MMPs through ectoenzymatic formation of adenosine. ATP release is enhanced by cell swelling and stretch. Also, enhanced ATP release and downstream MMP secretion is one mediator of the action of actin depolymerization to reduce outflow resistance. Inflow and outflow cells share pannexin-1 and connexin hemichannel pathways for ATP release. However, vesicular release and P2X(7) release pathways were functionally limited to inflow and outflow cells, respectively, suggesting that blocking exocytosis might selectively inhibit inflow, lowering IOP.
Collapse
Affiliation(s)
- Ang Li
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tang CH, Hwang LY, Shen ID, Chiu YH, Lee TH. Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:709-724. [PMID: 21336594 DOI: 10.1007/s10695-011-9471-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
Opposite patterns of branchial Na(+)/K(+)-ATPase (NKA) responses were found in euryhaline milkfish (Chanos chanos) and pufferfish (Tetraodon nigroviridis) upon salinity challenge. Because the electrochemical gradient established by NKA is thought to be the driving force for transcellular Cl(-) transport in fish gills, the aim of this study was to explore whether the differential patterns of NKA responses found in milkfish and pufferfish would lead to distinct distribution of Cl(-) transporters in their gill epithelial cells indicating different Cl(-) transport mechanisms. In this study, immunolocalization of various Cl(-) transport proteins, including Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), anion exchanger 1 (AE1), and chloride channel 3 (ClC-3), were double stained with NKA, the basolateral marker of branchial mitochondrion-rich cells (MRCs), to reveal the localization of these transporter proteins in gill MRC of FW- or SW-acclimated milkfish and pufferfish. Confocal microscopic observations showed that the localization of these transport proteins in the gill MRCs of the two studied species were similar. However, the number of gill NKA-immunoreactive (IR) cells in milkfish and pufferfish exhibited to vary with environmental salinities. An increase in the number of NKA-IR cells should lead to the elevation of NKA activity in FW milkfish and SW pufferfish. Taken together, the opposite branchial NKA responses observed in milkfish and pufferfish upon salinity challenge could be attributed to alterations in the number of NKA-IR cells. Furthermore, the localization of these Cl(-) transporters in gill MRCs of the two studied species was identical. It depicted the two studied euryhaline species possess the similar Cl(-) transport mechanisms in gills.
Collapse
Affiliation(s)
- Cheng-Hao Tang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Yang L, Ye D, Ye W, Jiao C, Zhu L, Mao J, Jacob TJC, Wang L, Chen L. ClC-3 is a main component of background chloride channels activated under isotonic conditions by autocrine ATP in nasopharyngeal carcinoma cells. J Cell Physiol 2011; 226:2516-26. [PMID: 21792908 DOI: 10.1002/jcp.22596] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, the activation mechanisms of the background chloride current and the role of the current in maintaining of basal cell volume were investigated in human nasopharyngeal carcinoma CNE-2Z cells. Under isotonic conditions, a background chloride current was recorded by the patch clamp technique. The current presented the properties similar to those of the volume-activated chloride current in the same cell line and was inhibited by chloride channel blockers or by cell shrinkage induced by hypertonic challenges. Extracellular applications of reactive blue 2, a purinergic receptor antagonist, suppressed the background chloride current in a concentration-dependent manner under isotonic conditions. Depletion of extracellular ATP with apyrase or inhibition of ATP release from cells by gadolinium chloride decreased the background current. Extracellular applications of micromolar concentrations of ATP activated a chloride current which was inhibited by chloride channel blockers and hypertonic solutions. Extracellular ATP could also reverse the action of gadolinium chloride. Transfection of CNE-2Z cells with ClC-3 siRNA knocked down expression of ClC-3 proteins, attenuated the background chloride current and prevented activation of the ATP-induced current. Furthermore, knockdown of ClC-3 expression or exposures of cells to ATP (10 mM), the chloride channel blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen, or reactive blue 2 increased cell volume under isotonic conditions. The results suggest that ClC-3 protein may be a main component of background chloride channels which can be activated under isotonic conditions by autocrine/paracrine ATP through purinergic receptor pathways; the background current is involved in maintenance of basal cell volume.
Collapse
Affiliation(s)
- Linjie Yang
- Medical College, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tang CH, Lee TH. Ion-Deficient Environment Induces the Expression of Basolateral Chloride Channel, ClC-3-Like Protein, in Gill Mitochondrion-Rich Cells for Chloride Uptake of the Tilapia Oreochromis mossambicus. Physiol Biochem Zool 2011; 84:54-67. [DOI: 10.1086/657161] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Tian M, Duan Y, Duan X. Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells. Arch Oral Biol 2010; 55:938-45. [PMID: 20832772 DOI: 10.1016/j.archoralbio.2010.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 08/04/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022]
Abstract
Voltage gated chloride channels (ClCs) play an important role in the regulation of intracellular pH and cell volume homeostasis. Mutations of these genes result in genetic diseases with abnormal bone deformation and body size, indicating that ClCs may have a role in chondrogenesis. In the present study, we isolated chicken mandibular mesenchymal cells (CMMC) from Hamburg-Hamilton (HH) stage 26 chick embryos and induced chondrocyte maturation by using ascorbic acid and β-glycerophosphate (AA-BGP). We also determined the effect of the chloride channel inhibitor NPPB [5-nitro-2-(3-phenylpropylamino) benzoic acid] on regulation of growth, differentiation, and gene expression in these cells using MTT and real-time PCR assays. We found that CLCN1 and CLCN3-7 mRNA were expressed in CMMC and NPPB reduced expression of CLCN3, CLCN5, and CLCN7 mRNA in these cells. At the same time, NPPB inhibited the growth of the CMMC, but had no effect on the mRNA level of cyclin D1 and cyclin E (P>0.05) with/without AA-BGP treatment. AA-BGP increased markers for early chondrocyte differentiation including type II collagen, aggrecan (P<0.01) and Sox9 (P<0.05), whilst had no effect on the late chondrocyte differentiation marker type X collagen. NPPB antagonized AA-BGP-induced expression of type II collagen and aggrecan (P<0.05). Furthermore, NPPB downregulated type X collagen (P<0.05) with/without AA-BGP treatment. We conclude that abundant chloride channel genes in CMMC play important roles in regulating chondrocyte proliferation and differentiation. Type X collagen might function as a target of chloride channel inhibitors during the differentiation process.
Collapse
Affiliation(s)
- Meiyu Tian
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, Shaanxi 710032, PR China
| | | | | |
Collapse
|
27
|
Xu B, Mao J, Wang L, Zhu L, Li H, Wang W, Jin X, Zhu J, Chen L. ClC-3 chloride channels are essential for cell proliferation and cell cycle progression in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2010; 42:370-80. [PMID: 20539936 DOI: 10.1093/abbs/gmq031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ClC-3, a gene encoding a candidate protein for volume-activated chloride (C(-)) channels, may be involved in tumor development. Herein we report a study using an antisense "knock-down" strategy to investigate the mechanism by which ClC-3 affects cell proliferation in nasopharyngeal carcinoma CNE-2Z cells. With immunoblots and MTT assays we demonstrated that the expression of ClC-3 was cell cycle dependent and in a similar concentration-dependent manner, an antisense oligonucleotide specific for ClC-3 inhibited ClC-3 protein expression and cell proliferation. The expression level of ClC-3 correlated with cell proliferation. Moreover, in the cells exposed to a ClC-3 antisense oligonucleotide, the cloning efficiency was inhibited, and cells were arrested in the S phase. The ClC-3 antisense oligonucleotide inhibited the volume-activated C(-) current (I(Cl,vol)) and the regulatory volume decrease (RVD) in a concentration-dependent manner. Additionally, the I(Cl,vol) or RVD was positively correlated with cell proliferation in the treated cells. In conclusion, ClC-3 is involved in cell proliferation and cell cycle progression through a mechanism involving modulation of I(Cl,vol) and RVD. CIC-3 may represent a therapeutic target in human cancer.
Collapse
Affiliation(s)
- Bin Xu
- Guangdong Pharmaceutical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tang CH, Hwang LY, Lee TH. Chloride channel ClC-3 in gills of the euryhaline teleost, Tetraodon nigroviridis: expression, localization and the possible role of chloride absorption. ACTA ACUST UNITED AC 2010; 213:683-93. [PMID: 20154183 DOI: 10.1242/jeb.040212] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous studies have reported the mechanisms of ion absorption and secretion by diverse membrane transport proteins in gills of various teleostean species. To date, however, the chloride channel expressed in the basolateral membrane of mitochondrion-rich (MR) cells for Cl(-) uptake in freshwater (FW) fish is still unknown. In this study, the combination of bioinformatics tools [i.e. National Center for Biotechnology Information (NCBI) database, Tetraodon nigroviridis (spotted green pufferfish) genome database (Genoscope), BLAT and BLASTn] were used to identify the gene of ClC-3 (TnClC-3), a member of the CLC chloride channel family in the T. nigroviridis genome. RT-PCR analysis revealed that the gene encoding for the ClC-3 protein was widely expressed in diverse tissues (i.e. gill, kidney, intestine, liver and brain) of FW- and seawater (SW)-acclimated pufferfish. In whole-mount double immunofluorescent staining, branchial ClC-3-like immunoreactive protein was localized to the basolateral membrane of Na(+)/K(+)-ATPase (NKA) immunoreactive cells in both the FW- and SW-acclimated pufferfish. In response to salinity, the levels of transcript of branchial TnClC-3 were similar between FW and SW fish. Moreover, the membrane fraction of ClC-3-like protein in gills was 2.7-fold higher in FW compared with SW pufferfish. To identify whether the expression of branchial ClC-3-like protein specifically responded to lower environmental [Cl(-)], the pufferfish were acclimated to artificial waters either with a normal (control) or lower Cl(-) concentration (low-Cl). Immunoblotting of membrane fractions of gill ClC-3-like protein showed the expression was about 4.3-fold higher in pufferfish acclimated to the low-Cl environment than in the control group. Furthermore, branchial ClC-3-like protein was rapidly elevated in response to acute changes of environmental salinity or [Cl(-)]. Taken together, pufferfish ClC-3-like protein was expressed in the basolateral membrane of gill MR cells, and the protein amounts were stimulated by hyposmotic and low-Cl environments. The enhancement of ClC-3-like protein may trigger the step of basolateral Cl(-) absorption of the epithelium to carry out iono- and osmoregulatory functions of euryhaline pufferfish gills.
Collapse
Affiliation(s)
- Cheng-Hao Tang
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | |
Collapse
|
29
|
CLC-3 chloride channels in the pulmonary vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:237-47. [PMID: 20204734 DOI: 10.1007/978-1-60761-500-2_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Volume-sensitive outwardly rectifying anion channels (VSOACs) are expressed in pulmonary artery smooth muscle cells (PASMCs) and have been implicated in cell proliferation, growth, apoptosis and protection against oxidative stress. In this chapter, we review the properties of native VSOACs in PASMCs, and consider the evidence that ClC-3, a member of the ClC superfamily of voltage dependent Cl- channels, may be responsible for native VSOACs in PASMCs. Finally, we examine whether or not native VSOACs and heterologously expressed ClC-3 channels function as bona fide chloride channels or as chloride/proton antiporters.
Collapse
|
30
|
Zuo W, Zhu L, Bai Z, Zhang H, Mao J, Chen L, Wang L. Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells. Biochem Biophys Res Commun 2009; 387:666-70. [PMID: 19619505 DOI: 10.1016/j.bbrc.2009.07.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 07/15/2009] [Indexed: 11/15/2022]
Abstract
Chloride channel activity is one of the critical factors responsible for cell apoptotic volume decrease (AVD). However, the roles of chloride channels in apoptosis have not been fully understood. In the current study, we assessed the role of chloride channels in hydrogen peroxide (H(2)O(2))-induced apoptosis of pheochromocytoma cells (PC12). Extracellular application of H(2)O(2) activated a chloride current and induced cell volume decrease in a few minutes. Incubation of cells with H(2)O(2) elevated significantly the membrane permeability to the DNA dye Hoechst 33258 in 1h and induced apoptosis of most PC12 cells tested in 24h. The chloride channel blocker NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) prevented appearance of H(2)O(2)-induced high membrane permeability and cell shrinkage, suppressed H(2)O(2)-activated chloride currents and protected PC12 cells from apoptosis induced by H(2)O(2). The results suggest that chloride channels may contribute to H(2)O(2)-induced apoptosis by ways of elevation of membrane permeability and AVD in PC12 cells.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Physiology, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Cardiac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice. J Mol Cell Cardiol 2009; 48:211-9. [PMID: 19615374 DOI: 10.1016/j.yjmcc.2009.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/19/2009] [Accepted: 07/06/2009] [Indexed: 11/24/2022]
Abstract
Native volume-sensitive outwardly rectifying anion channels (VSOACs) play a significant role in cell volume homeostasis in mammalian cells. However, the molecular correlate of VSOACs has been elusive to identify. The short isoform of ClC-3 (sClC-3) is a member of the mammalian ClC gene family and has been proposed to be a molecular candidate for VSOACs in cardiac myocytes and vascular smooth muscle cells. To directly test this hypothesis, and assess the physiological role of ClC-3 in cardiac function, we generated a novel line of cardiac-specific inducible ClC-3 knock-out mice. These transgenic mice were maintained on a doxycycline diet to preserve ClC-3 expression; removal of doxycycline activates Cre recombinase to inactivate the Clcn3 gene. Echocardiography revealed dramatically reduced ejection fraction and fractional shortening, and severe signs of myocardial hypertrophy and heart failure in the knock-out mice at both 1.5 and 3 weeks off doxycycline. In mice off doxycycline, time-dependent inactivation of ClC-3 gene expression was confirmed in atrial and ventricular cells by qRT-PCR and Western blot analysis. Electrophysiological examination of native VSOACs in isolated atrial and ventricular myocytes 3 weeks off doxycycline revealed a complete elimination of the currents, whereas at 1.5 weeks, VSOAC current densities were significantly reduced, compared to age-matched control mice maintained on doxycycline. These results indicate that ClC-3 is a key component of native VSOACs in mammalian heart and plays a significant cardioprotective role against cardiac hypertrophy and failure.
Collapse
|
32
|
Functional and molecular characterizations of chloride channels in rat pleural mesothelial cells. Eur J Pharmacol 2009; 614:22-9. [DOI: 10.1016/j.ejphar.2009.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/27/2009] [Accepted: 05/07/2009] [Indexed: 11/20/2022]
|
33
|
Xiong D, Wang GX, Burkin DJ, Yamboliev IA, Singer CA, Rawat S, Scowen P, Evans R, Ye L, Hatton WJ, Tian H, Keller PS, McCloskey DT, Duan D, Hume JR. CARDIAC-SPECIFIC OVEREXPRESSION OF THE HUMAN SHORT CLC-3 CHLORIDE CHANNEL ISOFORM IN MICE. Clin Exp Pharmacol Physiol 2009; 36:386-93. [PMID: 18986326 DOI: 10.1111/j.1440-1681.2008.05069.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. ClC-3 has been proposed as a molecular candidate responsible for volume-sensitive outwardly rectifying anion channels (VSOAC) in cardiac and smooth muscle cells. To further test this hypothesis, we produced a novel line of transgenic mice with cardiac-specific overexpression of the human short ClC-3 isoform (hsClC-3). 2. Northern and western blot analyses demonstrated that mRNA and protein levels of the short isoform (sClC-3) in the heart were significantly increased in hsClC-3-overexpressing (OE) mice compared with wild-type (WT) mice. Heart weight : bodyweight ratios for OE mice were significantly smaller compared with age-matched WT mice. 3. Electrocardiogram recordings indicated no difference at rest, whereas echocardiographic recordings revealed consistent reductions in left ventricular diastolic diameter, left ventricular posterior wall thickness at end of diastole and interventricular septum thickness in diastole in OE mice. 4. The VSOAC current densities in atrial cardiomyocytes were significantly increased by ClC-3 overexpression compared with WT cells. No differences in VSOAC current properties in OE and WT atrial myocytes were observed in terms of outward rectification, anion permeability (I(-) > Cl(-) > Asp(-)) and inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid and glibenclamide. The VSOAC in atrial myocytes from both groups were totally abolished by phorbol-12,13-dibutyrate (a protein kinase C activator) and by intracellular dialysis of an N-terminal anti-ClC-3 antibody. 5. Cardiac cell volume measurements revealed a significant acceleration of the rate of regulatory volume decrease (RVD) in OE myocytes compared with WT. 6. In conclusion, enhanced VSOAC currents and acceleration of the time-course of RVD in atrial myocytes of OE mice is strong evidence supporting an essential role of sClC-3 in native VSOAC function in mouse atrial myocytes.
Collapse
Affiliation(s)
- Dazhi Xiong
- Center of Biomedical Research Excellence, Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mao J, Chen L, Xu B, Wang L, Wang W, Li M, Zheng M, Li H, Guo J, Li W, Jacob TJ, Wang L. Volume-activated chloride channels contribute to cell-cycle-dependent regulation of HeLa cell migration. Biochem Pharmacol 2009; 77:159-68. [DOI: 10.1016/j.bcp.2008.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/23/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
35
|
Do CW, Civan MM. Species variation in biology and physiology of the ciliary epithelium: similarities and differences. Exp Eye Res 2008; 88:631-40. [PMID: 19056380 DOI: 10.1016/j.exer.2008.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/04/2008] [Accepted: 11/10/2008] [Indexed: 11/30/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Lowering intraocular pressure (IOP) is the only strategy documented to delay the appearance and retard the progression of vision loss. One major approach for lowering IOP is to slow the rate of aqueous humor formation by the ciliary epithelium. As discussed in the present review, the transport basis for this secretion is largely understood. However, several substantive issues are yet to be resolved, including the integrated regulation of secretion, the functional topography of the ciliary epithelium, and the degree and significance of species variation in aqueous humor inflow. This review discusses species differences in net secretion, particularly of Cl(-) and HCO(3)(-) secretion. Identifying animal models most accurately mimicking aqueous humor formation in the human will facilitate development of future novel initiatives to lower IOP.
Collapse
Affiliation(s)
- Chi Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | | |
Collapse
|
36
|
Abstract
Although most brain cells are postmitotic, small populations of progenitor or stem cells can divide throughout life. These cells are believed to be the most likely source for primary brain malignancies including gliomas. Such tumors share many common features with nonmalignant glial cells but, because of their insidious growth, form cancers that are typically incurable. In studying the growth regulation of these tumors, we recently discovered that glioma cell division is preceded by a cytoplasmic condensation that we called premitotic condensation (PMC). PMC represents an obligatory step in cell replication and is linked to chromatin condensation. If perturbed, the time required to complete a division is significantly prolonged. We now show that PMC is a feature shared more commonly among normal and malignant cells and that the reduction of cell volume is accomplished by Cl(-) efflux through ClC3 Cl(-) channels. Patch-clamp electrophysiology demonstrated a significant upregulation of chloride currents at M phase of the cell cycle. Colocalization studies and coimmunoprecipitation experiments showed the channel on the plasma membrane and at the mitotic spindle. To demonstrate a mechanistic role for ClC3 in PMC, we knocked down ClC3 expression using short hairpin RNA constructs. This resulted in a significant reduction of chloride currents at M phase that was associated with a decrease in the rate of PMC and a similar impairment of DNA condensation. These data suggest that PMC is an integral part of cell division and is dependent on ClC3 channel function.
Collapse
|
37
|
Mao J, Chen L, Xu B, Wang L, Li H, Guo J, Li W, Nie S, Jacob TJC, Wang L. Suppression of ClC-3 channel expression reduces migration of nasopharyngeal carcinoma cells. Biochem Pharmacol 2008; 75:1706-16. [PMID: 18359479 DOI: 10.1016/j.bcp.2008.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/19/2008] [Accepted: 01/22/2008] [Indexed: 11/18/2022]
Abstract
Recent studies suggest that chloride (Cl-) channels regulate tumor cell migration. In this report, we have used antisense oligonucleotides specific for ClC-3, the most likely molecular candidate for the volume-activated Cl- channel, to investigate the role of ClC-3 in the migration of nasopharyngeal carcinoma cells (CNE-2Z) in vitro. We found that suppression of ClC-3 expression inhibited the migration of CNE-2Z cells in a concentration-dependent manner. Whole-cell patch-clamp recordings and image analysis further demonstrated that ClC-3 suppression inhibited the volume-activated Cl- current (I(Cl,vol)) and regulatory volume decrease (RVD) of CNE-2Z cells. The expression of ClC-3 positively correlated with cell migration, I(Cl,vol) and RVD. These results strongly suggest that ClC-3 is a component or regulator of the volume-activated Cl- channel. ClC-3 may regulate CNE-2Z cell migration by modulating cell volume. ClC-3 may be a new target for cancer therapies.
Collapse
Affiliation(s)
- Jianwen Mao
- Institute of Basic Medical Sciences and Department of Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yin Z, Tong Y, Zhu H, Watsky MA. ClC-3 is required for LPA-activated Cl− current activity and fibroblast-to-myofibroblast differentiation. Am J Physiol Cell Physiol 2008; 294:C535-42. [DOI: 10.1152/ajpcell.00291.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the effects of chloride channel 3 (ClC-3) knockdown and overexpression on lysophosphatidic acid (LPA)- and volume-regulated anion channel Cl− currents ( ICl,LPA and ICl,VRAC, respectively), cell differentiation, and cell volume regulation, a short hairpin RNA (shRNA) expression system based on a mouse U6 promoter was used to knock down ClC-3 in human corneal keratocytes and human fetal lung fibroblasts. ClC-3 overexpression was achieved by electroporating full-length ClC-3, within a pcDNA3.1 vector, into these two cell lines. RT-PCR and Western blot analysis were used to detect ClC-3 mRNA and protein levels. Whole cell perforated patch-clamp recording was used to measure ICl,LPA and ICl,VRAC currents, and fluorescence-activated cell sorting analysis was used to measure cell volume regulation. ClC-3 knockdown significantly decreased ICl,LPA and ICl,VRAC activity in the presence of transforming growth factor-β1 (TGF-β1) compared with controls, whereas ClC-3 overexpression resulted in increased ICl,LPA activity in the absence of TGF-β1. ClC-3 knockdown also resulted in a reduction of α-smooth muscle actin (α-SMA) protein levels in the presence of TGF-β1, whereas ClC-3 overexpression increased α-SMA protein expression in the absence of TGF-β1. In addition, keratocytes transfected with ClC-3 shRNA had a significantly blunted regulatory volume decrease response following hyposmotic stimulation compared with controls. These data confirm that ClC-3 is important in VRAC function and cell volume regulation, is associated with the ICl,LPA current activity, and participates in the fibroblast-to-myofibroblast transition.
Collapse
|
39
|
Abstract
This article discusses three largely unrecognized aspects related to fluid movement in ocular tissues; namely, (a) the dynamic changes in water permeability observed in corneal and conjunctival epithelia under anisotonic conditions, (b) the indications that the fluid transport rate exhibited by the ciliary epithelium is insufficient to explain aqueous humor production, and (c) the evidence for fluid movement into and out of the lens during accommodation. We have studied each of these subjects in recent years and present an evaluation of our data within the context of the results of others who have also worked on electrolyte and fluid transport in ocular tissues. We propose that (1) the corneal and conjunctival epithelia, with apical aspects naturally exposed to variable tonicities, are capable of regulating their water permeabilities as part of the cell-volume regulatory process, (2) fluid may directly enter the anterior chamber of the eye across the anterior surface of the iris, thereby representing an additional entry pathway for aqueous humor production, and (3) changes in lens volume occur during accommodation, and such changes are best explained by a net influx and efflux of fluid.
Collapse
Affiliation(s)
- Oscar A Candia
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
40
|
|
41
|
Matsuda JJ, Filali MS, Volk KA, Collins MM, Moreland JG, Lamb FS. Overexpression of CLC-3 in HEK293T cells yields novel currents that are pH dependent. Am J Physiol Cell Physiol 2008; 294:C251-62. [DOI: 10.1152/ajpcell.00338.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ClC-3 is a member of the ClC family of anion channels/transporters. Recently, the closely related proteins ClC-4 and ClC-5 were shown to be Cl−/H+antiporters ( 39 , 44 ). The function of ClC-3 has been controversial. We studied anion currents in HEK293T cells expressing wild-type or mutant ClC-3. The basic biophysical properties of ClC-3 currents were very similar to those of ClC-4 and ClC-5, and distinct from those of the swelling-activated anion channel. ClC-3 expression induced currents with time-dependent activation that rectified sharply in the outward direction. The reversal potential of the current shifted by −48.3 ± 2.5 mV per 10-fold (decade) change in extracellular Cl−concentration, which did not conform to the behavior of an anion-selective channel based upon the Nernst equation, which predicts a −58.4 mV/decade shift at 22°C. Manipulation of extracellular pH (6.35–8.2) altered reversal potential by 10.2 ± 3.0 mV/decade, suggesting that ClC-3 currents were coupled to proton movement. Mutation of a specific glutamate residue (E224A) changed voltage dependence in a manner similar to that observed in other ClC Cl−/H+antiporters. Mutant currents exhibited Nernstian changes in reversal potential in response to altered extracellular Cl−concentration that averaged −60 ± 3.4 mV/decade and were pH independent. Thus ClC-3 overexpression induced a pH-sensitive conductance in HEK293T cells that is biophysically similar to ClC-4 and ClC-5.
Collapse
|
42
|
Capó-Aponte JE, Iserovich P, Reinach PS. Characterization of regulatory volume behavior by fluorescence quenching in human corneal epithelial cells. J Membr Biol 2007; 207:11-22. [PMID: 16463139 DOI: 10.1007/s00232-005-0800-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/01/2005] [Indexed: 10/25/2022]
Abstract
An in-depth understanding of the mechanisms underlying regulatory volume behavior in corneal epithelial cells has been in part hampered by the lack of adequate methodology for characterizing this phenomenon. Accordingly, we developed a novel approach to characterize time-dependent changes in relative cell volume induced by anisosmotic challenges in calcein-loaded SV40-immortalized human corneal epithelial (HCE) cells with a fluorescence microplate analyzer. During a hypertonic challenge, cells shrank rapidly, followed by a temperature-dependent regulatory volume increase (RVI), tau(c) = 19 min. In contrast, a hypotonic challenge induced a rapid (tau(c) = 2.5 min) regulatory volume decrease (RVD). Temperature decline from 37 to 24 degrees C reduced RVI by 59%, but did not affect RVD. Bumetanide (50 microM), ouabain (1 mM), DIDS (1 mM), EIPA (100 microM), or Na(+)-free solution reduced the RVI by 60, 61, 39, 32, and 69%, respectively. K+, Cl- channel and K(+)-Cl(-) cotransporter (KCC) inhibition obtained with either 4-AP (1 mM), DIDS (1 mM), DIOA (100 microM), high K+ (20 mM) or Cl(-)-free solution, suppressed RVD by 42, 47, 34, 52 and 58%, respectively. KCC activity also affects steady-state cell volume, since its inhibition or stimulation induced relative volume alterations under isotonic conditions. Taken together, K+ and Cl- channels in parallel with KCC activity are important mediators of RVD, whereas RVI is temperature-dependent and is essentially mediated by the Na(+)-K(+)-2Cl(-) cotransporter (Na(+)-K(+)-2Cl(-)) and the Na(+)-K(+) pump. Inhibition of K+ and Cl- channels and KCC but not Na(+)-K(+)-2Cl(-) affect steady-state cell volume under isotonic conditions. This is the first report that KCC activity is required for HCE cell volume regulation and maintenance of steady-state cell volume.
Collapse
Affiliation(s)
- J E Capó-Aponte
- Department of Biological Sciences, College of Optometry, State University of New York, New York, NY 10036, USA
| | | | | |
Collapse
|
43
|
Abstract
Cell growth and osmotic volume regulation are undoubtedly linked to the progression of the cell cycle as with each division, a newly generated cell must compensate for loss of half of its volume to its sister cell. The extent to which size influences cell cycle decisions, however, is controversial in mammalian cells. Further, a mechanism by which cells can monitor and therefore regulate their size has not been fully elucidated. Despite an ongoing debate, there have been few studies which directly address the question in single cell real-time experiments. In this study we used fluorescent time-lapse imaging to quantitatively assess volume in individual spontaneously dividing cells throughout the cell cycle. Together with biophysical studies, these establish that the efflux of salt and water brings about a condensation of cytoplasmic volume as glioma cells progress through mitosis. As cells undergo this pre-mitotic condensation (PMC) they approach a preferred cell volume preceding each division. This is functionally linked to chromatin condensation, suggesting that PMC plays an integral role in mitosis.
Collapse
Affiliation(s)
| | - Harald Sontheimer
- *Correspondence to: Harald Sontheimer; 1719 6th Ave. S., CIRC 425; Birmingham, Alabama 35294 USA; Tel.: 205.975.5805; Fax: 205.975.6320;
| |
Collapse
|
44
|
Chen LX, Zhu LY, Jacob TJC, Wang LW. Roles of volume-activated Cl- currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells. Cell Prolif 2007; 40:253-67. [PMID: 17472731 PMCID: PMC6496325 DOI: 10.1111/j.1365-2184.2007.00432.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/31/2006] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Previously it has been shown, that the volume-activated plasma membrane chloride channel is associated with regulatory volume decrease (RVD) of cells and may play an important role in control of cell proliferation. We have demonstrated that both expression of the channel and RVD capacity are actively regulated in the cell cycle. In this study, we aimed to further study the role of the volume-activated chloride current and RVD in cell cycle progression and overall in cell proliferation. MATERIALS AND METHODS Whole-cell currents, RVD, cell cycle distribution, cell proliferation and cell viability were measured or detected with the patch-clamp technique, the cell image analysis technique, flow cytometry, the MTT assay and the trypan blue assay respectively, in nasopharyngeal carcinoma cells (CNE-2Z cells). RESULTS The Cl- channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen, inhibit the volume-activated chloride current, RVD and proliferation of CNE-2Z cells in a dose-dependent manner. Analysis of relationships between the current, RVD and cell proliferation showed that both the current and RVD were positively correlated with cell proliferation. NPPB (100 microM) and tamoxifen (20 microM) did not significantly induce cell death, but inhibited cell proliferation, implying that the blockers may inhibit cell proliferation by affecting cell cycle progression. This was verified by the observation that tamoxifen (20 microM) and NPPB (100 microM) inhibited cell cycle progress and arrested cells at the G0/G1 phase boundary. CONCLUSIONS Activity of the volume-activated chloride channel is one of the important factors that regulate the passage of cells through the G1 restriction point and that the Cl- current associated with RVD plays an important role in cell proliferation.
Collapse
Affiliation(s)
- L X Chen
- Medical College, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
45
|
Tang CH, Lee TH. The effect of environmental salinity on the protein expression of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter, cystic fibrosis transmembrane conductance regulator, anion exchanger 1, and chloride channel 3 in gills of a euryhaline teleost, Tetraodon nigroviridis. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:521-8. [PMID: 17347004 DOI: 10.1016/j.cbpa.2007.01.679] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 01/30/2007] [Accepted: 01/30/2007] [Indexed: 11/29/2022]
Abstract
Chloride transport mechanisms in the gills of the estuarine spotted green pufferfish (Tetraodon nigroviridis) were investigated. Protein abundance of Na(+)/K(+)-ATPase (NKA) and the other four chloride transporters, i.e., Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), Cl(-)/HCO(3)(-) anion exchanger 1 (AE1), and chloride channel 3 (CLC-3) in gills of the seawater- (SW; 35 per thousand) or freshwater (FW)-acclimatized fish were examined by immunoblot analysis. Appropriate negative controls were used to confirm the specificity of the antibodies to the target proteins. The relative protein abundance of NKA was higher (i.e., 2-fold) in gills of the SW group compared to the FW group. NKCC and CFTR were expressed in gills of the SW group but not in the FW group. In contrast, the levels of relative protein abundance of branchial AE1 and CLC-3 in the FW group were 23-fold and 2.7-fold higher, respectively, compared to those of the SW group. This study is first of its kind to provide direct in vivo evidence of the protein expression of CLC-3 in teleostean gills, as well as to examine the simultaneous protein expression of the Cl(-) transporters, especially AE1 and CLC-3 of FW- and SW-acclimatized teleosts. The differential protein expression of NKA, chloride transporters in gills of the FW- and SW-acclimatized T. nigroviridis observed in the present study shows their close relationship to the physiological homeostasis (stable blood osmolality), as well as explains the impressive ionoregulatory ability of this euryhaline species in response to salinity challenges.
Collapse
Affiliation(s)
- C H Tang
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | | |
Collapse
|
46
|
Zhang HN, Zhou JG, Qiu QY, Ren JL, Guan YY. ClC-3 chloride channel prevents apoptosis induced by thapsigargin in PC12 cells. Apoptosis 2006; 11:327-36. [PMID: 16520896 DOI: 10.1007/s10495-006-3980-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell volume can be altered by two different ways, swelling and shrinkage. Cell swelling is regulated by volume-regulated Cl- channel (VRC). It is not well understood whether shrinkage is regulated by VRC. We previously found that antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) prevented cell proliferation, which was related to cell swell volume regulation. In the present study, we further studied the role of ClC-3 Cl- channel in cell apoptosis which was related to cell shrinkage volume regulation by using antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) and ClC-3 cDNA transfection techniques. We found that thapsigargin (TG), a specific inhibitor of the endoplasmic reticulum calcium ATPase, evoked apoptotic morphological changes (including cytoplasmic blebbing, condensation of nuclear chromatin, and the formation of apoptotic bodies), DNA laddering, and caspase-3 activation in PC12 cells (Pheochromocytoma-derived cell line). TG increased the cell apoptotic population with a decrease in cell viability. These effects were consistent with the decrease in endogenous ClC-3 protein expression, which was also induced by TG. Overexpression of ClC-3 significantly inhibited TG effect on PC12 cell apoptosis, whereas the ClC-3 antisense produced opposite effects and facilitated apoptosis induced by TG. Our data strongly suggest that ClC-3 channel in PC12 cells mediates TG-induced apoptotic process through inhibitory mechanism. Thus, it appears that ClC-3 Cl- channel mediates both cell proliferation and apoptosis through accelerative and inhibitory fashions, respectively.
Collapse
Affiliation(s)
- H-N Zhang
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan 2 Road, Guangzhou, Guangdong, 510089, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Guan YY, Wang GL, Zhou JG. The ClC-3 Cl− channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci 2006; 27:290-6. [PMID: 16697056 DOI: 10.1016/j.tips.2006.04.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 03/09/2006] [Accepted: 04/19/2006] [Indexed: 01/23/2023]
Abstract
The volume-regulated Cl(-) current (I(Cl.vol)) is responsible for the transmembrane Cl(-) transport that is involved in cell volume regulatory mechanisms. Although the regulation of cell volume is a fundamental function of healthy cells for maintaining constant size, the molecular genetic identification of I(Cl.vol) is still being debated. Recent studies in vascular smooth muscle support the idea that ClC-3, a member of the voltage-gated ClC Cl(-) channel family, is the molecular component involved in the activation or regulation of I(Cl.vol). Moreover, gene-targeting studies in vascular smooth muscle cells (VSMCs) and other cell types indicate emerging roles of ClC-3 in cell proliferation and apoptosis. These findings indicate that ClC-3 might be involved in modulating vascular remodeling in hypertension and arteriosclerosis.
Collapse
Affiliation(s)
- Yong-Yuan Guan
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-sen University, 74 Zhongshan 2 Road, Guangzhou 510089, China.
| | | | | |
Collapse
|
48
|
Rossow CF, Duan D, Hatton WJ, Britton F, Hume JR, Horowitz B. Functional role of amino terminus in ClC-3 chloride channel regulation by phosphorylation and cell volume. Acta Physiol (Oxf) 2006; 187:5-19. [PMID: 16734738 DOI: 10.1111/j.1748-1716.2006.01550.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM This study investigated the functional role of the ClC-3 amino-terminus in channel regulation in response to changes in cell volume. METHODS Wild-type sClC-3 tagged with a green fluorescence protein (GFP) at the C-terminus was used as a template to construct a number of deletion mutants which were functionally expressed in NIH-3T3 cells. Whole cell and single channel patch-clamp electrophysiology was used to determine the functional properties of heterologously expressed channels. RESULTS The first 100 amino acids of the ClC-3 N-terminus were removed and the truncated channel (sClC-3DeltaNT) was functionally expressed. Immunocytochemistry confirmed membrane expression of both wtsClC-3 and sClC-3DeltaNT channels in NIH/3T3 cells. sClC-3DeltaNT yielded constitutively active functional channels, which showed no response to protein kinase C or changes in cell volume. Deletion of a cluster of negatively charged amino acids 16-21 (sClC-3Delta16-21) within the N-terminus also yielded a constitutively active open channel phenotype, indicating these amino acids are involved in the N-type regulation. Intracellular delivery of a thiol-phosphorylated peptide corresponding to N-terminal residues 12-61 (NT peptide) markedly inhibited sClC-3DeltaNT whole-cell and single-channel currents, further confirming the essential role of the N-terminus in volume regulation of channel activity. CONCLUSIONS These data strongly suggest the N-terminus of sClC-3 channels acts as a blocking particle inhibiting the flow of anions through the channel pore. This 'N-type' regulation of sClC-3 channels may be an important transducing mechanism linking changes in cell volume and channel protein phosphorylation to channel gating.
Collapse
Affiliation(s)
- C F Rossow
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
49
|
Do CW, Civan MM. Swelling-activated chloride channels in aqueous humour formation: on the one side and the other. Acta Physiol (Oxf) 2006; 187:345-52. [PMID: 16734771 DOI: 10.1111/j.1748-1716.2006.01548.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aqueous humour is secreted by the ciliary epithelium comprising pigmented and non-pigmented cell layers facing the stroma and aqueous humour respectively. Net chloride secretion likely limits the rate of aqueous humour formation and proceeds in three steps: stromal chloride entry into pigmented cells, diffusion through gap junctions and final non-pigmented cell secretion. Swelling-activated chloride channels function on both epithelial surfaces. At the stromal surface, swelling- and cyclic adenosine monophosphate-activated maxi-chloride channels can recycle chloride, reducing net chloride secretion. At the aqueous-humour surface, swelling- and A3 adenosine receptor-activated chloride channels subserve chloride release into the aqueous humour. The similar macroscopic properties of the two non-pigmented cell chloride currents suggest that both flow through a common conduit. In addition, measurements of intraocular pressure (IOP) in living wild-type and mutant mice have confirmed that A3 adenosine receptor-activated agonists and antagonists increase and lower IOP respectively. Isolated ciliary epithelial cells are commonly perfused with hypotonic solution to probe and characterize chloride channels, but the physiological role of swelling-activated channels has been unclear without knowing their epithelial distribution. Recently, hypotonic challenge has been found to stimulate the chloride-sensitive short-circuit current across the intact bovine ciliary epithelium, suggesting that the net effect of the swelling-activated chloride currents is oriented to enhance aqueous humour formation. Taken together, the results suggest that swelling-activated chloride channels are predominantly oriented to enhance aqueous humour secretion, and these chloride channels at the aqueous surface may be identical with adenosine receptor-activated chloride channels which likely modulate aqueous inflow and IOP in the living mouse.
Collapse
Affiliation(s)
- C W Do
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
50
|
Vessey JP, Shi C, Jollimore CA, Stevens KT, Coca-Prados M, Barnes S, Kelly ME. Hyposmotic activation of ICl,swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane. Biochem Cell Biol 2005; 82:708-18. [PMID: 15674438 DOI: 10.1139/o04-107] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammalian nonpigmented ciliary epithelial (NPE) cells, hyposmotic stimulation leading to cell swelling activates an outwardly rectifying Cl(-) conductance (I(Cl,swell)), which, in turn, results in regulatory volume decrease. The aim of this study was to determine whether increased trafficking of intracellular ClC-3 Cl channels to the plasma membrane could contribute to the I(Cl,swell) following hyposmotic stimulation. Our results demonstrate that hyposmotic stimulation reversibly activates an outwardly rectifying Cl(-) current that is inhibited by phorbol-12-dibutyrate and niflumic acid. Transfection with ClC-3 antisense, but not sense, oligonucleotides reduced ClC-3 expression as well as I(Cl,swell). Intracellular dialysis with 2 different ClC-3 antibodies abolished activation of I(Cl,swell). Immunofluorescence microscopy showed that hyposmotic stimulation increased ClC-3 immunoreactivity at the plasma membrane. To determine whether this increased expression of ClC-3 at the plasma membrane could be due to increased vesicular trafficking, we examined membrane dynamics with the fluorescent membrane dye FM1-43. Hyposmotic stimulation rapidly increased the rate of exocytosis, which, along with ICl,swell, was inhibited by the phosphoinositide-3-kinase inhibitor wortmannin and the microtubule disrupting agent, nocodazole. These findings suggest that ClC-3 channels contribute to I(Cl,swell) following hyposmotic stimulation through increased trafficking of channels to the plasma membrane.
Collapse
Affiliation(s)
- John P Vessey
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4H7, Canada
| | | | | | | | | | | | | |
Collapse
|