1
|
Niklaus S, Glasauer SMK, Kovermann P, Farshori KF, Cadetti L, Früh S, Rieser NN, Gesemann M, Zang J, Fahlke C, Neuhauss SCF. Glutamate transporters are involved in direct inhibitory synaptic transmission in the vertebrate retina. Open Biol 2024; 14:240140. [PMID: 39079673 PMCID: PMC11288666 DOI: 10.1098/rsob.240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
In the central nervous system of vertebrates, glutamate serves as the primary excitatory neurotransmitter. However, in the retina, glutamate released from photoreceptors causes hyperpolarization in post-synaptic ON-bipolar cells through a glutamate-gated chloride current, which seems paradoxical. Our research reveals that this current is modulated by two excitatory glutamate transporters, EAAT5b and EAAT7. In the zebrafish retina, these transporters are located at the dendritic tips of ON-bipolar cells and interact with all four types of cone photoreceptors. The absence of these transporters leads to a decrease in ON-bipolar cell responses, with eaat5b mutants being less severely affected than eaat5b/eaat7 double mutants, which also exhibit altered response kinetics. Biophysical investigations establish that EAAT7 is an active glutamate transporter with a predominant anion conductance. Our study is the first to demonstrate the direct involvement of post-synaptic glutamate transporters in inhibitory direct synaptic transmission at a central nervous system synapse.
Collapse
Affiliation(s)
- Stephanie Niklaus
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stella M. K. Glasauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Leo-Brandt-Strasse, 52425 Jülich, Germany
| | - Kulsum F. Farshori
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lucia Cadetti
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon Früh
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicolas N. Rieser
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Gesemann
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Leo-Brandt-Strasse, 52425 Jülich, Germany
| | - Stephan C. F. Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D'Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. Nat Ecol Evol 2024; 8:1165-1179. [PMID: 38627529 DOI: 10.1038/s41559-024-02404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/20/2024] [Indexed: 04/30/2024]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions. The specialized downstream circuit for rod signalling, called the primary rod pathway, is well characterized in mammals, but circuitry for rod signalling in non-mammals is largely unknown. Here we demonstrate that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA sequencing, we identified two bipolar cell types in zebrafish that are related to mammalian rod bipolar cell (RBCs), the only bipolar type that directly carries rod signals from the outer to the inner retina in the primary rod pathway. By combining electrophysiology, histology and ultrastructural reconstruction of the zebrafish RBCs, we found that, similar to mammalian RBCs, both zebrafish RBC types connect with all rods in their dendritic territory and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells postsynaptic to one RBC type is strikingly similar to that of mammalian RBCs and their amacrine partners, suggesting that the cell types and circuit design of the primary rod pathway emerged before the divergence of teleost fish and mammals. The second RBC type, which forms separate pathways, was either lost in mammals or emerged in fish.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA, USA
| | - Yvonne Kölsch
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Florence D D'Orazi
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Vision Science Center, University of Washington, Seattle, WA, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Herwig Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO, USA.
- BioRTC, Yobe State University, Damatsuru, Yobe, Nigeria.
| |
Collapse
|
3
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D’Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. RESEARCH SQUARE 2023:rs.3.rs-3411693. [PMID: 37886445 PMCID: PMC10602083 DOI: 10.21203/rs.3.rs-3411693/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions. Mammals have a specialized downstream circuit for rod signaling called the primary rod pathway, which comprises specific cell types and wiring patterns that are thought to be unique to this lineage. Thus, it has been long assumed that the primary rod pathway evolved in mammals. Here, we challenge this view by demonstrating that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA-sequencing, we identified two bipolar cell (BC) types in zebrafish that are related to mammalian rod BCs (RBCs) of the primary rod pathway. By combining electrophysiology, histology, and ultrastructural reconstruction of the zebrafish RBCs, we found that, like mammalian RBCs, both zebrafish RBC types connect with all rods in their dendritic territory, and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells post-synaptic to one RBC type is strikingly similar to that of mammalian RBCs, suggesting that the cell types and circuit design of the primary rod pathway have emerged before the divergence of teleost fish and amniotes. The second RBC type, which forms separate pathways, is either lost in mammals or emerged in fish.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
| | - Yvonne Kölsch
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Florence D D’Orazi
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sachihiro C. Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, 80802 Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Vision Science Center, University of Washington, Seattle, WA 98195, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joshua R Sanes
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology & Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
- BioRTC, Yobe State University, Damatsuru, Yobe 620101, Nigeria
| |
Collapse
|
4
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D’Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557433. [PMID: 37771914 PMCID: PMC10525478 DOI: 10.1101/2023.09.12.557433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions1. Mammals have a specialized downstream circuit for rod signaling called the primary rod pathway, which comprises specific cell types and wiring patterns that are thought to be unique to this lineage2-6. Thus, it has been long assumed that the primary rod pathway evolved in mammals3,5-7. Here, we challenge this view by demonstrating that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA-sequencing, we identified two bipolar cell (BC) types in zebrafish that are related to mammalian rod BCs (RBCs) of the primary rod pathway. By combining electrophysiology, histology, and ultrastructural reconstruction of the zebrafish RBCs, we found that, like mammalian RBCs8, both zebrafish RBC types connect with all rods and red-cones in their dendritic territory, and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells post-synaptic to one RBC type is strikingly similar to that of mammalian RBCs. This suggests that the cell types and circuit design of the primary rod pathway may have emerged before the divergence of teleost fish and amniotes (mammals, bird, reptiles). The second RBC type in zebrafish, which forms separate pathways from the first RBC type, is either lost in mammals or emerged in fish to serve yet unknown roles.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
| | - Yvonne Kölsch
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Florence D D’Orazi
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sachihiro C. Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, 80802 Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Vision Science Center, University of Washington, Seattle, WA 98195, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joshua R Sanes
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology & Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
- BioRTC, Yobe State University, Damatsuru, Yobe 620101, Nigeria
| |
Collapse
|
5
|
Pushchin I, Kondrashev S, Borshcheva T. The structure and diversity of retinal ganglion cells in the masked greenling Hexagrammos octogrammus Pallas, 1814 (Pisces: Scorpaeniformes: Hexagrammidae). JOURNAL OF FISH BIOLOGY 2023; 102:550-563. [PMID: 36482763 DOI: 10.1111/jfb.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The authors studied the structure and diversity of retinal ganglion cells (GC) in the masked greenling Hexagrammos octogrammus. In vivo labelling with horseradish peroxidase revealed GCs of various structures in retinal wholemounts. A total of 154 cells were camera lucida drawn, and their digital models were generated. Each cell was characterized by 17 structural and topological parameters. Using nine clustering algorithms, a variety of clusterings were obtained. The optimum clustering was found using silhouette analysis. It was based on a set of three variables associated with dendritic field size and dendrite stratification depth in the retina. A total of nine cell types were discovered. A number of non-parametric tests showed significant pair-wise between-cluster differences in at least four parameters with medium and large effect sizes. Three large-field types differed mainly in dendritic field size, total dendrite length, level of dendrite stratification in the retina and position of somata. Six medium- to small-field types differed mainly in the structural complexity of dendritic arbors and level of dendrite arborization. Cells similar and obviously homologous to types 1-4 were identified in many fish species, including teleosts. Potential homologues of type 5 cells were identified in fewer teleost species. Cells similar to types 6-9 in relative dendritic field size and dendrite arborization pattern were also described in several teleostean species. Nonetheless, their homology is more questionable as their stratification patterns do not match so well as they do in large types. Potential functional matches of the GC types were identified in a number of teleostean species. Type 1 and 2 cells probably match spontaneously active units with the large receptive field centre, so-called dimming and lightening detectors; type 4 may be a counterpart of changing contrast detectors with medium receptive field centre size preferring fast-moving stimuli. Type 3 (biplexiform) cells have no obvious functional matches. Probable functional matches of types 6, 8 and 9 belong to ON-centre elements with small receptive fields such as ON-type direction-selective cells, ON-type spot detectors or ON-type spontaneously active units. Type 5 and 7 cells may match ON-OFF type units, in particular, changing contrast detectors or orientation-selective units. Potential functional matches of GC types presently described are involved in a wide spectrum of visual reactions related to adaptation to gradual change in illumination, predator escape, prey detection and capture, habitat selection and social behaviour.
Collapse
Affiliation(s)
- Igor Pushchin
- Laboratory of Physiology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Sergei Kondrashev
- Laboratory of Physiology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Tatiana Borshcheva
- Primorsky Aquarium, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
6
|
The Developmental Progression of Eight Opsin Spectral Signals Recorded from the Zebrafish Retinal Cone Layer Is Altered by the Timing and Cell Type Expression of Thyroxin Receptor β2 (trβ2) Gain-Of-Function Transgenes. eNeuro 2022; 9:ENEURO.0326-22.2022. [PMID: 36351817 PMCID: PMC9718360 DOI: 10.1523/eneuro.0326-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
Zebrafish retinal cone signals shift in spectral shape through larval, juvenile, and adult development as expression patterns of eight cone-opsin genes change. An algorithm extracting signal amplitudes for the component cone spectral types is developed and tested on two thyroxin receptor β2 (trβ2) gain-of-function lines crx:mYFP-2A-trβ2 and gnat2:mYFP-2A-trβ2, allowing correlation between opsin signaling and opsin immunoreactivity in lines with different developmental timing and cell-type expression of this red-opsin-promoting transgene. Both adult transgenics became complete, or nearly complete, "red-cone dichromats," with disproportionately large long-wavelength-sensitive (LWS)1 opsin amplitudes as compared with controls, where LWS1 and LWS2 amplitudes were about equal, and significant signals from SWS1, SWS2, and Rh2 opsins were detected. But in transgenic larvae and juveniles of both lines it was LWS2 amplitudes that increased, with LWS1 cone signals rarely encountered. In gnat2:mYFP-2A-trβ2 embryos at 5 d postfertilization (dpf), red-opsin immunoreactive cone density doubled, but red-opsin amplitudes (LWS2) increased <10%, and green-opsin, blue-opsin, and UV-opsin signals were unchanged, despite co-expressed red opsins, and the finding that an sws1 UV-opsin reporter gene was shut down by the gnat2:mYFP-2A-trβ2 transgene. By contrast both LWS2 red-cone amplitudes and the density of red-cone immunoreactivity more than doubled in 5-dpf crx:mYFP-2A-trβ2 embryos, while UV-cone amplitudes were reduced 90%. Embryonic cones with trβ2 gain-of-function transgenes were morphologically distinct from control red, blue or UV cones, with wider inner segments and shorter axons than red cones, suggesting cone spectral specification, opsin immunoreactivity and shape are influenced by the abundance and developmental timing of trβ2 expression.
Collapse
|
7
|
Bartel P, Yoshimatsu T, Janiak FK, Baden T. Spectral inference reveals principal cone-integration rules of the zebrafish inner retina. Curr Biol 2021; 31:5214-5226.e4. [PMID: 34653362 PMCID: PMC8669161 DOI: 10.1016/j.cub.2021.09.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023]
Abstract
Retinal bipolar cells integrate cone signals at dendritic and axonal sites. The axonal route, involving amacrine cells, remains largely uncharted. However, because cone types differ in their spectral sensitivities, insights into bipolar cells' cone integration might be gained based on their spectral tunings. We therefore recorded in vivo responses of bipolar cell presynaptic terminals in larval zebrafish to widefield but spectrally resolved flashes of light and mapped the results onto spectral responses of the four cones. This "spectral circuit mapping" allowed explaining ∼95% of the spectral and temporal variance of bipolar cell responses in a simple linear model, thereby revealing several notable integration rules of the inner retina. Bipolar cells were dominated by red-cone inputs, often alongside equal sign inputs from blue and green cones. In contrast, UV-cone inputs were uncorrelated with those of the remaining cones. This led to a new axis of spectral opponency where red-, green-, and blue-cone "Off" circuits connect to "natively-On" UV-cone circuits in the outermost fraction of the inner plexiform layer-much as how key color opponent circuits are established in mammals. Beyond this, and despite substantial temporal diversity that was not present in the cones, bipolar cell spectral tunings were surprisingly simple. They either approximately resembled both opponent and non-opponent spectral motifs already present in the cones or exhibited a stereotyped non-opponent broadband response. In this way, bipolar cells not only preserved the efficient spectral representations in the cones but also diversified them to set up a total of six dominant spectral motifs, which included three axes of spectral opponency.
Collapse
Affiliation(s)
- Philipp Bartel
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK
| | - Takeshi Yoshimatsu
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK
| | - Filip K Janiak
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK
| | - Tom Baden
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK; Institute of Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Yoshimatsu T, Schröder C, Nevala NE, Berens P, Baden T. Fovea-like Photoreceptor Specializations Underlie Single UV Cone Driven Prey-Capture Behavior in Zebrafish. Neuron 2020; 107:320-337.e6. [PMID: 32473094 PMCID: PMC7383236 DOI: 10.1016/j.neuron.2020.04.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/13/2020] [Accepted: 04/21/2020] [Indexed: 01/04/2023]
Abstract
In the eye, the function of same-type photoreceptors must be regionally adjusted to process a highly asymmetrical natural visual world. Here, we show that UV cones in the larval zebrafish area temporalis are specifically tuned for UV-bright prey capture in their upper frontal visual field, which may use the signal from a single cone at a time. For this, UV-photon detection probability is regionally boosted more than 10-fold. Next, in vivo two-photon imaging, transcriptomics, and computational modeling reveal that these cones use an elevated baseline of synaptic calcium to facilitate the encoding of bright objects, which in turn results from expressional tuning of phototransduction genes. Moreover, the light-driven synaptic calcium signal is regionally slowed by interactions with horizontal cells and later accentuated at the level of glutamate release driving retinal networks. These regional differences tally with variations between peripheral and foveal cones in primates and hint at a common mechanistic origin.
Collapse
Affiliation(s)
| | - Cornelius Schröder
- Institute of Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
| | - Noora E Nevala
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Philipp Berens
- Institute of Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen 72076, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; Institute of Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
9
|
McGinn TE, Galicia CA, Leoni DC, Partington N, Mitchell DM, Stenkamp DL. Rewiring the Regenerated Zebrafish Retina: Reemergence of Bipolar Neurons and Cone-Bipolar Circuitry Following an Inner Retinal Lesion. Front Cell Dev Biol 2019; 7:95. [PMID: 31245369 PMCID: PMC6562337 DOI: 10.3389/fcell.2019.00095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
We previously reported strikingly normal morphologies and functional connectivities of regenerated retinal bipolar neurons (BPs) in zebrafish retinas sampled 60 days after a ouabain-mediated lesion of inner retinal neurons (60 DPI) (McGinn et al., 2018). Here we report early steps in the birth of BPs and formation of their dendritic trees and axonal arbors during regeneration. Adult zebrafish were subjected to ouabain-mediated lesion that destroys inner retinal neurons but spares photoreceptors and Müller glia, and were sampled at 13, 17, and 21 DPI, a timeframe over which plexiform layers reemerge. We show that this timeframe corresponds to reemergence of two populations of BPs (PKCα+ and nyx::mYFP+). Sequential BrdU, EdU incorporation reveals that similar fractions of PKCα+ BPs and HuC/D+ amacrine/ganglion cells are regenerated concurrently, suggesting that the sequence of neuronal production during retinal regeneration does not strictly match that observed during embryonic development. Further, accumulation of regenerated BPs appears protracted, at least through 21 DPI. The existence of isolated, nyx::mYFP+ BPs allowed examination of cytological detail through confocal microscopy, image tracing, morphometric analyses, identification of cone synaptic contacts, and rendering/visualization. Apically-projecting neurites (=dendrites) of regenerated BPs sampled at 13, 17, and 21 DPI are either truncated, or display smaller dendritic trees when compared to controls. In cases where BP dendrites reach the outer plexiform layer (OPL), numbers of dendritic tips are similar to those of controls at all sampling times. Further, by 13-17 DPI, BPs with dendritic tips reaching the outer nuclear layer (ONL) show patterns of photoreceptor connections that are statistically indistinguishable from controls, while those sampled at 21 DPI slightly favor contacts with double cone synaptic terminals over those of blue-sensitive cones. These findings suggest that once regenerated BP dendrites reach the OPL, normal photoreceptor connectomes are established, albeit with some plasticity. Through 17 DPI, some basally-projecting neurites (=axons) of regenerated nyx::mYFP+ BPs traverse long distances, branch into inappropriate layers, or appear to abruptly terminate. These findings suggest that, after a tissue-disrupting lesion, regeneration of inner retinal neurons is a dynamic process that includes ongoing genesis of new neurons and changes in BP morphology.
Collapse
Affiliation(s)
- Timothy E McGinn
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Carlos A Galicia
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Dylan C Leoni
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Natalie Partington
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, United States
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
10
|
Meier A, Nelson R, Connaughton VP. Color Processing in Zebrafish Retina. Front Cell Neurosci 2018; 12:327. [PMID: 30337857 PMCID: PMC6178926 DOI: 10.3389/fncel.2018.00327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a model organism for vertebrate developmental processes and, through a variety of mutant and transgenic lines, various diseases and their complications. Some of these diseases relate to proper function of the visual system. In the US, the National Eye Institute indicates >140 million people over the age of 40 have some form of visual impairment. The causes of the impairments range from refractive error to cataract, diabetic retinopathy and glaucoma, plus heritable diseases such as retinitis pigmentosa and color vision deficits. Most impairments directly affect the retina, the nervous tissue at the back of the eye. Zebrafish with long or short-wavelength color blindness, altered retinal anatomy due to hyperglycemia, high intraocular pressure, and reduced pigment epithelium are all used, and directly applicable, to study how these symptoms affect visual function. However, many published reports describe only molecular/anatomical/structural changes or behavioral deficits. Recent work in zebrafish has documented physiological responses of the different cell types to colored (spectral) light stimuli, indicating a complex level of information processing and color vision in this species. The purpose of this review article is to consolidate published morphological and physiological data from different cells to describe how zebrafish retina is capable of complex visual processing. This information is compared to findings in other vertebrates and relevance to disorders affecting color processing is discussed.
Collapse
Affiliation(s)
- April Meier
- Zebrafish Ecotoxicology, Neuropharmacology, and Vision Lab, Department of Biology, and Center for Behavioral Neuroscience, American University, Washington, DC, United States
| | - Ralph Nelson
- Neural Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Victoria P Connaughton
- Zebrafish Ecotoxicology, Neuropharmacology, and Vision Lab, Department of Biology, and Center for Behavioral Neuroscience, American University, Washington, DC, United States
| |
Collapse
|
11
|
Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes. Curr Biol 2018; 28:2018-2032.e5. [DOI: 10.1016/j.cub.2018.04.075] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023]
|
12
|
Restoration of Dendritic Complexity, Functional Connectivity, and Diversity of Regenerated Retinal Bipolar Neurons in Adult Zebrafish. J Neurosci 2017; 38:120-136. [PMID: 29133431 DOI: 10.1523/jneurosci.3444-16.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022] Open
Abstract
Adult zebrafish (Danio rerio) are capable of regenerating retinal neurons that have been lost due to mechanical, chemical, or light damage. In the case of chemical damage, there is evidence that visually mediated behaviors are restored after regeneration, consistent with recovery of retinal function. However, the extent to which regenerated retinal neurons attain appropriate morphologies and circuitry after such tissue-disrupting lesions has not been investigated. Adult zebrafish of both sexes were subjected to intravitreal injections of ouabain, which destroys the inner retina. After retinal regeneration, cell-selective markers, confocal microscopy, morphometrics, and electrophysiology were used to examine dendritic and axonal morphologies, connectivities, and the diversities of each, as well as retinal function, for a subpopulation of regenerated bipolar neurons (BPs). Although regenerated BPs were reduced in numbers, BP dendritic spreads, dendritic tree morphologies, and cone-bipolar connectivity patterns were restored in regenerated retinas, suggesting that regenerated BPs recover accurate input pathways from surviving cone photoreceptors. Morphological measurements of bipolar axons found that numbers and types of stratifications were also restored; however, the thickness of the inner plexiform layer and one measure of axon branching were slightly reduced after regeneration, suggesting some minor differences in the recovery of output pathways to downstream partners. Furthermore, ERG traces from regenerated retinas displayed waveforms matching those of controls, but with reduced b-wave amplitudes. These results support the hypothesis that regenerated neurons of the adult zebrafish retina are capable of restoring complex morphologies and circuitry, suggesting that complex visual functions may also be restored.SIGNIFICANCE STATEMENT Adult zebrafish generate new retinal neurons after a tissue-disrupting lesion. Existing research does not address whether regenerated neurons of adults successfully reconnect with surrounding neurons and establish complex morphologies and functions. We report that, after a chemical lesion that ablates inner retinal neurons, regenerated retinal bipolar neurons (BPs), although reduced in numbers, reconnected to undamaged cone photoreceptors with correct wiring patterns. Regenerated BPs had complex morphologies similar to those within undamaged retina and a physiological measure of photoreceptor-BP connectivity, the ERG, was restored to a normal waveform. This new understanding of neural connectivity, morphology, and physiology suggests that complex functional processing is possible within regenerated adult retina and offers a system for the future study of synaptogenesis during adult retinal regeneration.
Collapse
|
13
|
Martemyanov KA, Sampath AP. The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease. Annu Rev Vis Sci 2017; 3:25-51. [PMID: 28715957 DOI: 10.1146/annurev-vision-102016-061338] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our robust visual experience is based on the reliable transfer of information from our photoreceptor cells, the rods and cones, to higher brain centers. At the very first synapse of the visual system, information is split into two separate pathways, ON and OFF, which encode increments and decrements in light intensity, respectively. The importance of this segregation is borne out in the fact that receptive fields in higher visual centers maintain a separation between ON and OFF regions. In the past decade, the molecular mechanisms underlying the generation of ON signals have been identified, which are unique in their use of a G-protein signaling cascade. In this review, we consider advances in our understanding of G-protein signaling in ON-bipolar cell (BC) dendrites and how insights about signaling have emerged from visual deficits, mostly night blindness. Studies of G-protein signaling in ON-BCs reveal an intricate mechanism that permits the regulation of visual sensitivity over a wide dynamic range.
Collapse
Affiliation(s)
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, University of California, Los Angeles, California 90095;
| |
Collapse
|
14
|
Carvan MJ, Kalluvila TA, Klingler RH, Larson JK, Pickens M, Mora-Zamorano FX, Connaughton VP, Sadler-Riggleman I, Beck D, Skinner MK. Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish. PLoS One 2017; 12:e0176155. [PMID: 28464002 PMCID: PMC5413066 DOI: 10.1371/journal.pone.0176155] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/06/2017] [Indexed: 01/10/2023] Open
Abstract
Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant, with human exposures predominantly resulting from fish consumption. Developmental exposure of zebrafish to MeHg is known to alter their neurobehavior. The current study investigated the direct exposure and transgenerational effects of MeHg, at tissue doses similar to those detected in exposed human populations, on sperm epimutations (i.e., differential DNA methylation regions [DMRs]) and neurobehavior (i.e., visual startle and spontaneous locomotion) in zebrafish, an established human health model. F0 generation embryos were exposed to MeHg (0, 1, 3, 10, 30, and 100 nM) for 24 hours ex vivo. F0 generation control and MeHg-exposed lineages were reared to adults and bred to yield the F1 generation, which was subsequently bred to the F2 generation. Direct exposure (F0 generation) and transgenerational actions (F2 generation) were then evaluated. Hyperactivity and visual deficit were observed in the unexposed descendants (F2 generation) of the MeHg-exposed lineage compared to control. An increase in F2 generation sperm epimutations was observed relative to the F0 generation. Investigation of the DMRs in the F2 generation MeHg-exposed lineage sperm revealed associated genes in the neuroactive ligand-receptor interaction and actin-cytoskeleton pathways being effected, which correlate to the observed neurobehavioral phenotypes. Developmental MeHg-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in F2 generation adult zebrafish. Therefore, mercury can promote the epigenetic transgenerational inheritance of disease in zebrafish, which significantly impacts its environmental health considerations in all species including humans.
Collapse
Affiliation(s)
- Michael J. Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Thomas A. Kalluvila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Rebekah H. Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Jeremy K. Larson
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Matthew Pickens
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Francisco X. Mora-Zamorano
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | | | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
15
|
Pushchin I. Structure and diversity of retinal ganglion cells in steller's sculpinMyoxocephalus stelleritilesius, 1811. J Comp Neurol 2016; 525:1122-1138. [DOI: 10.1002/cne.24121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Igor Pushchin
- Laboratory of Physiology, A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Vladivostok Russia
| |
Collapse
|
16
|
Klooster J, Kamermans M. An Ultrastructural and Immunohistochemical Analysis of the Outer Plexiform Layer of the Retina of the European Silver Eel (Anguilla anguilla L). PLoS One 2016; 11:e0152967. [PMID: 27032102 PMCID: PMC4816530 DOI: 10.1371/journal.pone.0152967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
Here we studied the ultrastructural organization of the outer retina of the European silver eel, a highly valued commercial fish species. The retina of the European eel has an organization very similar to most vertebrates. It contains both rod and cone photoreceptors. Rods are abundantly present and immunoreactive for rhodopsin. Cones are sparsely present and only show immunoreactivity for M-opsin and not for L-, S- or UV-cone opsins. As in all other vertebrate retinas, Müller cells span the width of the retina. OFF-bipolar cells express the ionotropic glutamate receptor GluR4 and ON-bipolar cells, as identified by their PKCα immunoreactivity, express the metabotropic receptor mGluR6. Both the ON- and the OFF-bipolar cell dendrites innervate the cone pedicle and rod spherule. Horizontal cells are surrounded by punctate Cx53.8 immunoreactivity indicating that the horizontal cells are strongly electrically coupled by gap-junctions. Connexin-hemichannels were found at the tips of the horizontal cell dendrites invaginating the photoreceptor synapse. Such hemichannels are implicated in the feedback pathway from horizontal cells to cones. Finally, horizontal cells are surrounded by tyrosine hydroxylase immunoreactivity, illustrating a strong dopaminergic input from interplexiform cells.
Collapse
Affiliation(s)
- Jan Klooster
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Maarten Kamermans
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Boije H, Rulands S, Dudczig S, Simons BD, Harris WA. The Independent Probabilistic Firing of Transcription Factors: A Paradigm for Clonal Variability in the Zebrafish Retina. Dev Cell 2015; 34:532-43. [PMID: 26343455 PMCID: PMC4572358 DOI: 10.1016/j.devcel.2015.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/29/2015] [Accepted: 08/13/2015] [Indexed: 01/31/2023]
Abstract
Early retinal progenitor cells (RPCs) in vertebrates produce lineages that vary greatly both in terms of cell number and fate composition, yet how this variability is achieved remains unknown. One possibility is that these RPCs are individually distinct and that each gives rise to a unique lineage. Another is that stochastic mechanisms play upon the determinative machinery of equipotent early RPCs to drive clonal variability. Here we show that a simple model, based on the independent firing of key fate-influencing transcription factors, can quantitatively account for the intrinsic clonal variance in the zebrafish retina and predict the distributions of neuronal cell types in clones where one or more of these fates are made unavailable. A simple quantitative model can explain clonal variability in the retina This model is based on the firing probabilities of key transcription factors These probabilities are shown to be largely independent of each other The environment has only a minor effect on these probabilities
Collapse
Affiliation(s)
- Henrik Boije
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK; Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Steffen Rulands
- Department of Physics, Cambridge University, Cambridge CB3 0HE, UK
| | - Stefanie Dudczig
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | | | - William A Harris
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK.
| |
Collapse
|
18
|
Popova E. ON-OFF Interactions in the Retina: Role of Glycine and GABA. Curr Neuropharmacol 2014; 12:509-26. [PMID: 25977678 PMCID: PMC4428025 DOI: 10.2174/1570159x13999150122165018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/03/2023] Open
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells and it apparently remains as signals propagate to higher brain visual centers. A fundamental question in visual neuroscience is how these two parallel pathways function: are they independent from each other or do they interact somehow? In the latter case, what kinds of mechanisms are involved and what are the consequences from this cross-talk? This review summarizes current knowledge about the types of interactions between the ON and OFF channels in nonmammalian and mammalian retina. Data concerning the ON-OFF interactions in distal retina revealed by recording of single bipolar cell activity and electroretinographic ON (b-wave) and OFF (d-wave) responses are presented. Special emphasis is put on the ON-OFF interactions in proximal retina and their dependence on the state of light adaptation in mammalian retina. The involvement of the GABAergic and glycinergic systems in the ON-OFF crosstalk is also discussed.
Collapse
Affiliation(s)
- Elka Popova
- Department of Physiology, Medical Phaculty, Medical University, 1431 Sofia, Country Bulgaria
| |
Collapse
|
19
|
Pushchin I, Karetin Y. Retinal ganglion cells in the Pacific redfin,Tribolodon brandtiidybowski, 1872: Morphology and diversity. J Comp Neurol 2014; 522:1355-72. [DOI: 10.1002/cne.23489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Igor Pushchin
- Laboratory of Physiology; A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences; Vladivostok 690059 Russia
| | - Yuriy Karetin
- Laboratory of Embryology; A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences; Vladivostok 690059 Russia
- Laboratory of Cell Biology; School of Natural Sciences; Far Eastern Federal University; Vladivostok 690950 Russia
| |
Collapse
|
20
|
Esposti F, Johnston J, Rosa JM, Leung KM, Lagnado L. Olfactory stimulation selectively modulates the OFF pathway in the retina of zebrafish. Neuron 2013; 79:97-110. [PMID: 23849198 PMCID: PMC3710973 DOI: 10.1016/j.neuron.2013.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 01/11/2023]
Abstract
Cross-modal regulation of visual performance by olfactory stimuli begins in the retina, where dopaminergic interneurons receive projections from the olfactory bulb. However, we do not understand how olfactory stimuli alter the processing of visual signals within the retina. We investigated this question by in vivo imaging activity in transgenic zebrafish expressing SyGCaMP2 in bipolar cell terminals and GCaMP3.5 in ganglion cells. The food-related amino acid methionine reduced the gain and increased sensitivity of responses to luminance and contrast transmitted through OFF bipolar cells but not ON. The effects of olfactory stimulus were blocked by inhibiting dopamine uptake and release. Activation of dopamine receptors increased the gain of synaptic transmission in vivo and potentiated synaptic calcium currents in isolated bipolar cells. These results indicate that olfactory stimuli alter the sensitivity of the retina through the dopaminergic regulation of presynaptic calcium channels that control the gain of synaptic transmission through OFF bipolar cells. Olfactory stimuli regulate transmission of signals through retinal bipolar cells Modulation of synaptic gain and sensitivity occur in OFF bipolar cells but not ON An inhibitor of dopamine uptake blocks odor-induced changes in synaptic gain Dopamine potentiates presynaptic calcium channels in isolated bipolar cells
Collapse
Affiliation(s)
- Federico Esposti
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | | | | | | | | |
Collapse
|
21
|
Li YN, Tsujimura T, Kawamura S, Dowling JE. Bipolar cell-photoreceptor connectivity in the zebrafish (Danio rerio) retina. J Comp Neurol 2013; 520:3786-802. [PMID: 22907678 DOI: 10.1002/cne.23168] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bipolar cells convey luminance, spatial, and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red-(R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which-G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod, and RRod bipolar cells-accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further subdivided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the nine common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels.
Collapse
Affiliation(s)
- Yong N Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
22
|
Muto A, Ohkura M, Abe G, Nakai J, Kawakami K. Real-time visualization of neuronal activity during perception. Curr Biol 2013; 23:307-11. [PMID: 23375894 DOI: 10.1016/j.cub.2012.12.040] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/23/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
To understand how the brain perceives the external world, it is desirable to observe neuronal activity in the brain in real time during perception. The zebrafish is a suitable model animal for fluorescence imaging studies to visualize neuronal activity because its body is transparent through the embryonic and larval stages. Imaging studies have been carried out to monitor neuronal activity in the larval spinal cord and brain using Ca(2+) indicator dyes and DNA-encoded Ca(2+) indicators, such as Cameleon, GFP-aequorin, and GCaMPs. However, temporal and spatial resolution and sensitivity of these tools are still limited, and imaging of brain activity during perception of a natural object has not yet been demonstrated. Here we demonstrate visualization of neuronal activity in the optic tectum of larval zebrafish by genetically expressing the new version of GCaMP. First, we demonstrate Ca(2+) transients in the tectum evoked by a moving spot on a display and identify direction-selective neurons. Second, we show tectal activity during perception of a natural object, a swimming paramecium, revealing a functional visuotopic map. Finally, we image the tectal responses of a free-swimming larval fish to a paramecium and thereby correlate neuronal activity in the brain with prey capture behavior.
Collapse
Affiliation(s)
- Akira Muto
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
23
|
Gestri G, Link BA, Neuhauss SCF. The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 2012; 72:302-27. [PMID: 21595048 DOI: 10.1002/dneu.20919] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae.The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases.Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.
Collapse
Affiliation(s)
- Gaia Gestri
- Department of Cell and Developmental Biology, University College, London,UK.
| | | | | |
Collapse
|
24
|
Tarboush R, Chapman GB, Connaughton VP. Ultrastructure of the distal retina of the adult zebrafish, Danio rerio. Tissue Cell 2012; 44:264-79. [PMID: 22608306 DOI: 10.1016/j.tice.2012.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 02/07/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system.
Collapse
Affiliation(s)
- R Tarboush
- Department of Biology, American University, Washington, DC 20016, USA.
| | | | | |
Collapse
|
25
|
Abstract
AbstractZebrafish are an existing model for genetic and developmental studies due to their rapid external development and transparent embryos, which allow easy manipulation and observation of early developmental stages. The application of the zebrafish model to vision research has allowed for examination of retinal development and the characteristics of different retinal cell types, including bipolar cells. In particular, bipolar cell development, including differentiation, maturation, and gene expression, has been documented, as has physiological properties, such as voltage- and ligand-gated currents, and neurotransmitter receptor and ion channel expression. Mutant strains and transgenic lines have been used to document how bipolar cell connections and/or development may be altered, and toxicological studies examining how environmental factors may impact bipolar cell activity have been performed. The purpose of this paper was to review the existing literature on zebrafish bipolar cells, to provide a comprehensive overview of current information pertaining to this retinal cell type.
Collapse
|
26
|
Pignatelli V, Marshall J. Morphological characterization of retinal bipolar cells in the marine teleost Rhinecanthus aculeatus. J Comp Neurol 2010; 518:3117-29. [PMID: 20533363 DOI: 10.1002/cne.22386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The marine teleost Rhinecanthus aculeatus (Balistidae) has recently been shown to possess trichromatic color vision supported by a retinal combination of double and single cones. Double cones are composed of two members with different spectral sensitivity. It is not known whether a correlation exists between the chromatic wiring of double cones to the inner retina and trichromacy, nor how unmixed, chromatic information is extracted from the two members of the couple. In mammalians, bipolar cells determine color segregation by means of the midget system, central to trichromatic color vision; however, midget bipolar cells have never been described in teleosts. On the basis of its likely importance in transferring chromatic photoreceptor signals to the inner retina, we have morphologically characterized the retinal bipolar cell types of R. aculeatus using DiOlistic staining techniques to verify if an anatomical specialization of this group of cells is required to support trichromatic color vision. Thirteen cell types are described: eight putative OFF types and five putative ON types. Of these, four had axonal boutons ramifying in both sublayers (ON and OFF) of the inner plexiform layer, six had terminals restricted to the OFF layer, and three cell types had terminals restricted to the ON layer. Dendritic arbors of bipolar cells had narrower diameters (5-40 microm) in comparison to bipolar cells of other teleost species; this supports the idea that a low degree of photoreceptor to bipolar convergence is correlated with trichromacy in this retina and possibly with the function of double cones as color receptors.
Collapse
Affiliation(s)
- Vincenzo Pignatelli
- Sensory Neurobiology Group (SNG), Brisbane, University of Queensland, 4020, Australia.
| | | |
Collapse
|
27
|
Wu SM. Synaptic organization of the vertebrate retina: general principles and species-specific variations: the Friedenwald lecture. Invest Ophthalmol Vis Sci 2010; 51:1263-74. [PMID: 20185835 DOI: 10.1167/iovs.09-4396] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
28
|
Dorostkar MM, Dreosti E, Odermatt B, Lagnado L. Computational processing of optical measurements of neuronal and synaptic activity in networks. J Neurosci Methods 2010; 188:141-50. [PMID: 20152860 PMCID: PMC2849931 DOI: 10.1016/j.jneumeth.2010.01.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 12/20/2022]
Abstract
Imaging of optical reporters of neural activity across large populations of neurones is a widely used approach for investigating the function of neural circuits in slices and in vivo. Major challenges in analysing such experiments include the automatic identification of neurones and synapses, extraction of dynamic signals, and assessing the temporal and spatial relationships between active units in relation to the gross structure of the circuit. We have developed an integrated set of software tools, named SARFIA, by which these aspects of dynamic imaging experiments can be analysed semi-automatically. Key features are image-based detection of structures of interest using the Laplace operator, determining the positions of units in a layered network, clustering algorithms to classify units with similar functional responses, and a database to store, exchange and analyse results across experiments. We demonstrate the use of these tools to analyse synaptic activity in the retina of live zebrafish by multi-photon imaging of SyGCaMP2, a genetically encoded synaptically localised calcium reporter. By simultaneously recording activity across tens of bipolar cell terminals distributed throughout the IPL we made a functional map of the ON and OFF signalling channels and found that these were only partially separated. The automated detection of signals across many neurones in the retina allowed the reliable detection of small populations of neurones generating “ectopic” signals in the “ON” and “OFF” sublaminae. This software should be generally applicable for the analysis of dynamic imaging experiments across hundreds of responding units.
Collapse
|
29
|
|
30
|
A spectral model for signal elements isolated from zebrafish photopic electroretinogram. Vis Neurosci 2009; 26:349-63. [PMID: 19723365 DOI: 10.1017/s0952523809990113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The zebrafish photopic electroretinogram (ERG) sums isolatable elements. In each element, red-, blue-, green-, and UV- (r, g, b, and u) cone signals combine in a way that reflects retinal organization. ERG responses to monochromatic stimuli of different wavelengths and irradiances were recorded on a white rod suppressing background using superfused eyecups. Onset elements were isolated with glutamatergic blockers and response subtractions. CNQX-blocked ionotropic (AMPA/kainate) glutamate receptors; l-AP4 or CPPG-blocked metabotropic (mGluR6) glutamate receptors; TBOA-blocked glutamate transporters; and l-aspartate inactivated all glutamatergic mechanisms. Seven elements emerged: photopic PIII, the l-aspartate-isolated cone response; b1, a CNQX-sensitive early b-wave element of inner retinal origin; PII, a photopic, CNQX-insensitive composite b-wave element from ON bipolar cells; PIIm, an l-AP4/CPPG-sensitive, CNQX-insensitive, metabotropic subelement of PII; PIInm, an l-AP4/CPPG/CNQX-insensitive nonmetabotropic subelement of PII; a1nm, a TBOA-sensitive, CNQX/l-AP4/CPPG-insensitive, nonmetabotropic, postphotoreceptor a-wave element; and a2, a CNQX-sensitive a-wave element linked to OFF bipolar cells. The first five elements were fit with a spectral model that demonstrates independence of cone-color pathways. From this, Vmax and half-saturation values (k) for the contributing r-, g-, b-, and u-cone signals were calculated. Two signal patterns emerged. For PIII or PIInm, the Vmax order was Vr > Vg >> Vb approximately Vu. For b1, PII, and PIIm, the Vmax order was Vr approximately Vb > Vg > Vu. In either pattern, u-cone amplitude (Vu) was smallest, but u-cone sensitivity (ku362) was greatest, some 10-30 times greater than r cone (kr570). The spectra of b1/PII/PIIm elements peaked near b- and u-cone absorbance maxima regardless of criteria, but the spectra of PIII/PIInm elements shifted from b- toward r-cone absorbance maxima as criterion levels increased. The greatest gains in Vmax relative to PIII occurred for the b- and u-cone signals in the b1/PII/PIIm b-wave elements. This suggests a high-gain prolific metabotropic circuitry for b- and u-cone bipolar cells.
Collapse
|
31
|
Vitorino M, Jusuf PR, Maurus D, Kimura Y, Higashijima SI, Harris WA. Vsx2 in the zebrafish retina: restricted lineages through derepression. Neural Dev 2009; 4:14. [PMID: 19344499 PMCID: PMC2683830 DOI: 10.1186/1749-8104-4-14] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 04/03/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neurons in the vertebrate retina arise from multipotent retinal progenitor cells (RPCs). It is not clear, however, which progenitors are multipotent or why they are multipotent. RESULTS In this study we show that the homeodomain transcription factor Vsx2 is initially expressed throughout the retinal epithelium, but later it is downregulated in all but a minor population of bipolar cells and all Müller glia. The Vsx2-negative daughters of Vsx2-positive RPCs divide and give rise to all other cell types in the retina. Vsx2 is a repressor whose targets include transcription factors such as Vsx1, which is expressed in the progenitors of distinct non-Vsx2 bipolars, and the basic helix-loop-helix transcription factor Ath5, which restricts the fate of progenitors to retinal ganglion cells, horizontal cells, amacrine cells and photoreceptors fates. Foxn4, expressed in the progenitors of amacrine and horizontal cells, is also negatively regulated by Vsx2. CONCLUSION Our data thus suggest Vsx2-positive RPCs are fully multipotent retinal progenitors and that when Vsx2 is downregulated, Vsx2-negative progenitors escape Vsx2 repression and so are able to express factors that restrict lineage potential.
Collapse
Affiliation(s)
- Marta Vitorino
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Ultrastructural analysis of the glutamatergic system in the outer plexiform layer of zebrafish retina. J Chem Neuroanat 2009; 37:254-65. [PMID: 19481010 DOI: 10.1016/j.jchemneu.2009.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 11/23/2022]
Abstract
L-Glutamate, the photoreceptor neurotransmitter, depolarizes horizontal cells and OFF-bipolar cells by ionotropic receptors and hyperpolarizes ON-bipolar cells by metabotropic receptors. Despite extensive light microscopy on the distribution of glutamate receptors in zebrafish retina, there are little ultrastructural data. Given the importance of zebrafish in studies on the genetic manipulation of retinal development and function, precise data on the synaptic neurochemical organization of the zebrafish retina is needed. Immunohistochemical techniques were used to determine the ultrastructural localization of glutamate receptor subunits GluR2, GluR4, NMDA2B (NR2B) and mGluR1alpha in zebrafish outer plexiform layer (OPL). These antibodies were chosen because of an apparent conservation of localization of GluR2, GluR4 and mGluR1alpha in the vertebrate OPL, while there is some support for NMDA receptors in the OPL. GluR2-immunoreactivity (IR) was in all horizontal cell dendrites that invaginated cone pedicles and rod spherules. Three arrangements of dendrites contained GluR-IR in rod spherules: classical-type with GluR2-IR on lateral horizontal cell dendrites, a butterfly-shaped horizontal cell dendrite, and a goblet-shaped dendrite, likely of bipolar cell origin. GluR4-IR was restricted to dendrites of OFF-bipolar cells that innervated rod and cone terminals. NR2B-IR was restricted to a subtype of cone ON-bipolar cell. mGluR1alpha-IR was restricted to ON mixed rod/cone (Mb) bipolar cells whose dendrites innervated rod and cone synaptic terminals. The presence of mGluR1alpha on Mb bipolar cell dendrites is consistent with a role in retrograde endocannabinoid suppression. The subunit composition of glutamate receptors should affect the kinetics and pharmacology of these cells to glutamate receptor activation.
Collapse
|
33
|
Yeo JY, Lee ES, Jeon CJ. Parvalbumin-immunoreactive neurons in the inner nuclear layer of zebrafish retina. Exp Eye Res 2008; 88:553-60. [PMID: 19084520 DOI: 10.1016/j.exer.2008.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/07/2008] [Accepted: 11/12/2008] [Indexed: 11/27/2022]
Abstract
The purpose of this investigation is to characterize parvalbumin-immunoreactive (IR) neurons in the inner nuclear layer (INL) of zebrafish retina through immunocytochemistry, quantitative analysis, and confocal microscopy. In the INL, parvalbumin-IR neurons were located in the inner marginal portion of the INL. On the basis of dendritic stratification in the inner plexiform layer (IPL), at least two types of amacrine cells were IR for parvalbumin. The first one formed distinctive laminar tiers within s4 (PVs4) of the IPL, and the second within s5 (PVs5). The average number of PVs4 cells was 8263 cells per retina (n=3), and the mean density was 1671cells/mm(2). The average number of PVs5 cells was 1037 cells per retina (n=3), and the mean density was 210cells/mm(2). Quantitatively, 88.9% of anti-parvalbumin labeled neurons were PVs4 cells and 11.1% were PVs5 cells. Their density was highest in the midcentral region of the ventrotemporal retina and lowest in the periphery of the dorsonasal retina. The average regularity index of the PVs4 cell mosaic was 4.09, while the average regularity index of the PVs5 cell mosaic was 3.46. No parvalbumin-IR cells expressed calretinin or disabled-1, markers for AII amacrine cells, in several animals. These results indicate that parvalbumin-IR neurons in zebrafish are limited to specific subpopulations of amacrine cells and the expressional pattern of parvalbumin may not correspond to AII amacrine cells in several other animals. Their distribution suggests that parvalbumin-IR neurons are mainly involved in ON pathway information flow.
Collapse
Affiliation(s)
- Ji-Youn Yeo
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | | | | |
Collapse
|
34
|
Transporter-mediated GABA responses in horizontal and bipolar cells of zebrafish retina. Vis Neurosci 2008; 25:155-65. [PMID: 18442438 DOI: 10.1017/s0952523808080310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GABA-mediated interactions between horizontal cells (HCs) and bipolar cells (BCs) transform signals within the image-processing circuitry of distal retina. To further understand this process, we have studied the GABA-driven membrane responses from isolated retinal neurons. Papain-dissociated retinal cells from adult zebrafish were exposed to GABAergic ligands while transmembrane potentials were monitored with a fluorescent voltage-sensitive dye (oxonol, DiBaC4(5)). In HCs hyperpolarizing, ionotropic GABA responses were almost never seen, nor were responses to baclofen or glycine. A GABA-induced depolarization followed by after hyperpolarization (dep/AHP) occurred in 38% of HCs. The median fluorescence increase (dep component) was 0.17 log units, about 22 mV. HC dep/AHP was not blocked by bicuculline or picrotoxin. Muscimol rarely evoked dep/AHP responses. In BCs picrotoxin sensitive, hyperpolarizing, ionotropic GABA and muscimol responses occurred in most cells. A picrotoxin insensitive dep/AHP response was seen in about 5% of BCs. The median fluorescence increase (dep component) was 0.18 log units, about 23 mV. Some BCs expressed both muscimol-induced hyperpolarizations and GABA-induced dep/AHP responses. For all cells, the pooled Hill fit to median dep amplitudes, in response to treatments with a GABA concentration series, gave an apparent k of 0.61 muM and an n of 1.1. The dep/AHP responses of all cells required both extracellular Na+ and Cl(-), as dep/AHP was blocked reversibly by Li+ substituted for Na+ and irreversibly by isethionate substituted for Cl(-). All cells with dep/AHP responses in zebrafish have the membrane physiology of neurons expressing GABA transporters. These cells likely accumulate GABA, a characteristic of GABAergic neurons. We suggest Na+ drives GABA into these cells, depolarizing the plasma membrane and triggering Na+, K+-dependent ATPase. The ATPase activity generates AHP. In addition to a GABA clearance function, these large-amplitude transporter responses may provide an outer plexiform layer GABA sensor mechanism.
Collapse
|
35
|
Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells. Vis Neurosci 2008; 25:139-53. [PMID: 18442437 DOI: 10.1017/s0952523808080322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To refine inhibitory circuitry models for ON and OFF pathways in zebrafish retina, GABAergic properties of zebrafish bipolar cells were studied with two techniques: whole cell patch responses to GABA puffs in retinal slice, and voltage probe responses in isolated cells. Retinal slices documented predominantly axon terminal responses; isolated cells revealed mainly soma-dendritic responses. In the slice, GABA elicited a conductance increase, GABA responses were more robust at axon terminals than dendrites, and Erev varied with [Cl(-)]in. Axon terminals of ON- and OFF-type cells were similarly sensitive to GABA (30-40 pA peak current); axotomized cells were unresponsive. Bicuculline-sensitive, picrotoxin-sensitive, and picrotoxin-insensitive components were identified. Muscimol was as effective as GABA; baclofen was ineffective. Isolated bipolar cells were either intact or axotomized. Even in cells without an axon, GABA or muscimol (but not baclofen) hyperpolarized dendritic and somatic regions, suggesting significant distal expression. Median fluorescence change for GABA was -0.22 log units (approximately -16 mV); median half-amplitude dose was 0.4 microM. Reduced [Cl(-)]out blocked GABA responses. GABA hyperpolarized isolated ON-bipolar cells; OFF-cells were either unresponsive or depolarized. Hyperpolarizing GABA responses in isolated cells were bicuculline and TPMPA insensitive, but blocked or partially blocked by picrotoxin or zinc. In summary, axon terminals contain bicuculline-sensitive GABAA receptors and both picrotoxin-sensitive and insensitive GABAC receptors. Dendritic processes express zinc- and picrotoxin-sensitive GABAC receptors.
Collapse
|
36
|
Wong KY, Gray J, Hayward CJC, Adolph AR, Dowling JE. Glutamatergic mechanisms in the outer retina of larval zebrafish: analysis of electroretinogram b- and d-waves using a novel preparation. Zebrafish 2008; 1:121-31. [PMID: 18248224 DOI: 10.1089/zeb.2004.1.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A new preparation is described for recording the electroretinogram (ERG) from larval zebrafish (5-8 days postfertilization) which has allowed the investigation of the pharmacology of cone photoreceptor inputs onto bipolar cells. By using a pharmacological cocktail to isolate the photoreceptors and bipolar cells from inhibitory influences, it was found that an excitatory amino acid transporter (EAAT) presumably linked to a Cl() channel mediates most of the synaptic transmission from the cone photoreceptors to the ON bipolar cells, although metabotropic glutamate receptors (presumably mGluR6) also make a small contribution. On the other hand, alpha-amino-3-hydroxy- 5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors mediate synaptic transmission from cone photoreceptors to OFF bipolar cells. The glutamatergic input mechanisms underlying bipolar cell responses in the larval zebrafish are adultlike and similar to those in other teleost species.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Synaptic transmission from photoreceptors to all types of ON bipolar cells is primarily mediated by the mGluR6 receptor. This receptor, which is apparently expressed uniquely in the nervous system by ON bipolar cells, couples negatively to a nonselective cation channel. This arrangement results in a sign reversal at photoreceptor/ON bipolar cell synapse, which is necessary in order to establish parallel ON and OFF pathways in the retina. The synapse is an important target for second messenger molecules that are known to modulate synaptic transmission elsewhere in the nervous system, second messengers that act on a time scale ranging from milliseconds to minutes. This review focuses on two of these molecules, Ca2+ and cGMP, summarizing our current knowledge of how they modulate gain at the photoreceptor/ON bipolar cell synapse, as well as their proposed sites of action within the mGluR6 cascade. The implications of plasticity at this synapse for retinal function will also be examined.
Collapse
Affiliation(s)
- Josefin Snellman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, SHM-B103, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Over the last decade, the use of the zebrafish as a genetic model has moved beyond the proof-of-concept for the analysis of vertebrate embryonic development to demonstrated utility as a mainstream model organism for the understanding of human disease. The initial identification of a variety of zebrafish mutations affecting the eye and retina, and the subsequent cloning of mutated genes have revealed cellular, molecular and physiological processes fundamental to visual system development. With the increasing development of genetic manipulations, sophisticated techniques for phenotypic characterization, behavioral approaches and screening strategies, the identification of novel genes or novel gene functions will have important implications for our understanding of human eye diseases, pathogenesis, and treatment.
Collapse
Affiliation(s)
- James M Fadool
- Department of Biological Science, Graduate Program in Neuroscience, Florida State University, Tallahassee, FL 32312, USA.
| | | |
Collapse
|
39
|
Weber DN, Connaughton VP, Dellinger JA, Klemer D, Udvadia A, Carvan MJ. Selenomethionine reduces visual deficits due to developmental methylmercury exposures. Physiol Behav 2007; 93:250-60. [PMID: 17905328 PMCID: PMC2265788 DOI: 10.1016/j.physbeh.2007.08.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/09/2007] [Accepted: 08/29/2007] [Indexed: 11/26/2022]
Abstract
Developmental exposures to methylmercury (MeHg) have life-long behavioral effects. Many micronutrients, including selenium, are involved in cellular defenses against oxidative stress and may reduce the severity of MeHg-induced deficits. Zebrafish embryos (<4 h post fertilization, hpf) were exposed to combinations of 0.0-0.30 microM MeHg and/or selenomethionine (SeMet) until 24 hpf then placed in clean medium. Fish were tested as adults under low light conditions ( approximately 60 microW/m(2)) for visual responses to a rotating black bar. Dose-dependent responses to MeHg exposure were evident (ANOVA, P<0.001) as evidenced by reduced responsiveness, whereas SeMet did not induce deficits except at 0.3 microM. Ratios of SeMet:MeHg of 1:1 or 1:3 resulted in responses that were indistinguishable from controls (ANOVA, P<0.001). No gross histopathologies were observed (H&E stain) in the retina or optic tectum at any MeHg concentration. Whole-cell, voltage-gated, depolarization-elicited outward K(+) currents of bipolar cells in intact retina of slices adult zebrafish were recorded and outward K(+) current amplitude was larger in bipolar cells of MeHg-treated fish. This was due to the intense response of cells expressing the delayed rectifying I(K) current; cells expressing the transient I(A) current displayed a slight trend for smaller amplitude among MeHg-treated fish. Developmental co-exposure to SeMet reduced but did not eliminate the increase in the MeHg-induced I(K) response, however, I(A) responses increased significantly over MeHg-treated fish to match control levels. Electrophysiological deficits parallel behavioral patterns in MeHg-treated fish, i.e., initial reactions to the rotating bar were followed by periods of inactivity and then a resumption of responses.
Collapse
Affiliation(s)
- Daniel N Weber
- Marine and Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, United States.
| | | | | | | | | | | |
Collapse
|
40
|
Ott M, Walz BC, Paulsen UJ, Mack AF, Wagner HJ. Retinotectal ganglion cells in the zebrafish, Danio rerio. J Comp Neurol 2007; 501:647-58. [PMID: 17278143 DOI: 10.1002/cne.21269] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The morphology of retinotectal ganglion cells was investigated by retrograde transport of dextran amines applied into the optic tectum in vitro. Based on criteria such as stratification pattern and size of the dendritic processes, as well as the shape and position of the soma within the dendritic field, three main groups of ganglion cell types with a total of nine different types were identified. The first group included monostratified cells, of which two types (Ma(2) and Mb(5)) may be ON- and OFF-variants, and the third (Mb(6)) had its dendritic field as a narrow band at the inner border of the inner plexiform layer. These three cells had the largest dendritic fields, with areas exceeding 40,000 microm(2). In two additional monostratified cells the dendrites were spread over the entire width of either sublamina a or sublamina b of the inner plexiform layer (Ma, Mb). They were of intermediate size with mean dendritic field areas between 10,000 and 20,000 microm(2). The second group contained two types of bistratified cells (Bb(4/5) and Bb(4,5/5,6)) with two distinct bands of dendritic stratifications in sublamina b. One of them had the smallest dendritic field (below 5,000,mm(2)) of all cell types in the sample. The diffuse cells of the third group had their dendrites across the entire width of the inner plexiform layer. The sample of retinotectal cells investigated in this study included types described previously (Mangrum et al. [2002] Vis Neurosci 19:767-779) but also new types not described previously.
Collapse
Affiliation(s)
- Matthias Ott
- Anatomisches Institut, Universität Tübingen, Germany.
| | | | | | | | | |
Collapse
|
41
|
Osswald IK, Galan A, Bowie D. Light triggers expression of philanthotoxin-insensitive Ca2+-permeable AMPA receptors in the developing rat retina. J Physiol 2007; 582:95-111. [PMID: 17430992 PMCID: PMC2075288 DOI: 10.1113/jphysiol.2007.127894] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ca2+-permeable AMPA receptors (AMPARs) are expressed throughout the adult CNS but yet their role in development is poorly understood. In the developing retina, most investigations have focused on Ca2+ influx through NMDARs in promoting synapse maturation and not on AMPARs. However, NMDARs are absent from many retinal cells suggesting that other Ca2+-permeable glutamate receptors may be important to consider. Here we show that inhibitory horizontal and AII amacrine cells lack NMDARs but express Ca2+-permeable AMPARs. Before eye-opening, AMPARs were fully blocked by philanthotoxin (PhTX), a selective antagonist of Ca2+-permeable AMPARs. After eye-opening, however, a subpopulation of Ca2+-permeable AMPARs were unexpectedly PhTX resistant. Furthermore, Joro spider toxin (JSTX) and IEM-1460 also failed to antagonize, demonstrating that this novel pharmacology is shared by several AMPAR channel blockers. Interestingly, PhTX-insensitive AMPARs failed to express in retinae from dark-reared animals demonstrating that light entering the eye triggers their expression. Eye-opening coincides with the consolidation of inhibitory cell connections suggesting that the developmental switch to a Ca2+-permeable AMPAR with novel pharmacology may be critical to synapse maturation in the mammalian retina.
Collapse
Affiliation(s)
- Ingrid K Osswald
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, Room 1317, McGill University, Montreal, Québec, Canada H3A 1Y6
| | | | | |
Collapse
|
42
|
Schroeter EH, Wong ROL, Gregg RG. In vivo development of retinal ON-bipolar cell axonal terminals visualized in nyx::MYFP transgenic zebrafish. Vis Neurosci 2006; 23:833-43. [PMID: 17020638 DOI: 10.1017/s0952523806230219] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 05/12/2006] [Indexed: 12/20/2022]
Abstract
Axonal differentiation of retinal bipolar cells has largely been studied by comparing the morphology of these interneurons in fixed tissue at different ages. To better understand how bipolar axonal terminals develop in vivo, we imaged fluorescently labeled cells in the zebrafish retina using time-lapse confocal and two photon microscopy. Using the upstream regulatory sequences from the nyx gene that encodes nyctalopin, we constructed a transgenic fish in which a subset of retinal bipolar cells express membrane targeted yellow fluorescent protein (MYFP). Axonal terminals of these YFP-labeled bipolar cells laminated primarily in the inner half of the inner plexiform layer, suggesting that they are likely to be ON-bipolar cells. Transient expression of MYFP in isolated bipolar cells indicates that two or more subsets of bipolar cells, with one or two terminal boutons, are labeled. Live imaging of YFP-expressing bipolar cells in the nyx::MYFP transgenic fish at different ages showed that initially, filopodial-like structures extend and retract from their primary axonal process throughout the inner plexiform layer (IPL). Over time, filopodial exploration becomes concentrated at discrete foci prior to the establishment of large terminal boutons, characteristic of the mature form. This sequence of axonal differentiation suggests that synaptic targeting by bipolar cell axons may involve an early process of trial and error, rather than a process of directed outgrowth and contact. Our observations represent the first in vivo visualization of axonal development of bipolar cells in a vertebrate retina.
Collapse
Affiliation(s)
- Eric H Schroeter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
43
|
Huang L, Li L. Differential expression of voltage-activated calcium currents in zebrafish retinal ganglion cells. J Neurosci Res 2006; 84:497-504. [PMID: 16721759 DOI: 10.1002/jnr.20951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report a study on the characterization of voltage-activated calcium currents (I(Ca)) in retinal ganglion cells (RGCs) and the topographic distribution of RGCs that express different types of I(Ca) in zebrafish retinas. In acutely isolated zebrafish RGCs, both high-voltage-activated (HVA; peak activation potential +7.4 +/- 1.1 mV) and low-voltage-activated (LVA; peak activation potential -33.0 +/- 1.2 mV) I(Ca) were recorded. HVA I(Ca) were recorded in all of the tested RGCs, whereas LVA I(Ca) were recorded in approximately one-third of the tested cells. In RGCs that expressed both HVA and LVA I(Ca), the two currents were readily separated by depolarizing the cell membrane to different voltages from different holding potentials. Among RGCs that expressed LVA I(Ca), some cells expressed large LVA I(Ca) (up to 130 pA), whereas others expressed small LVA I(Ca) (approximately 20 pA). RGCs that expressed large and small LVA I(Ca) were designated as class I and class II cells, respectively, and RGCs that expressed only HVA I(Ca) were designated as class III cells. The topographic distribution of cell classes was similar in various areas of the retina. In the nasal-ventral retina, for example, class III cells outnumbered class I and class II cells by 10.8- and 2.6-fold, respectively. In the temporal and dorsal retinas, the density of class III cells slightly decreased, whereas the density of class I and class II cells increased. The differential expression of I(Ca) in RGCs may correlate with the development and function of the retina.
Collapse
Affiliation(s)
- Luoxiu Huang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
44
|
Pujic Z, Omori Y, Tsujikawa M, Thisse B, Thisse C, Malicki J. Reverse genetic analysis of neurogenesis in the zebrafish retina. Dev Biol 2006; 293:330-47. [PMID: 16603149 DOI: 10.1016/j.ydbio.2005.12.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 12/08/2005] [Accepted: 12/12/2005] [Indexed: 11/23/2022]
Abstract
To gain an understanding of molecular events that underlie pattern formation in the retina, we evaluated the expression profiles of over 8000 transcripts randomly selected from an embryonic zebrafish library. Detailed analysis of cDNAs that display restricted expression patterns revealed factors that are specifically expressed in single cell classes and are potential regulators of neurogenesis. These cDNAs belong to numerous molecular categories and include cell surface receptors, cytoplasmic enzymes, and transcription factors. To test whether expression patterns that we have uncovered using this approach are indicative of function in neurogenesis, we used morpholino-mediated knockdown approach. The knockdown of soxp, a transcript expressed in the vicinity of the inner plexiform layer, revealed its role in cell type composition of amacrine and ganglion cell layers. Blocking the function of cxcr4b, a chemokine receptor specifically expressed in ganglion cells, suggests a role in ganglion cell survival. These experiments demonstrate that in situ hybridization-based reverse genetic screens can be applied to isolate genetic regulators of neurogenesis. This approach very well complements forward genetic mutagenesis studies previously used to study retinal neurogenesis in zebrafish.
Collapse
Affiliation(s)
- Zac Pujic
- Department of Ophthalmology, Harvard Medical School, MEEI, r513, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
45
|
Yu CJ, Li L. Dopamine modulates voltage-activated potassium currents in zebrafish retinal on bipolar cells. J Neurosci Res 2006; 82:368-76. [PMID: 16206280 DOI: 10.1002/jnr.20637] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report a study of the characterization of voltage-activated potassium (K+) currents in retinal ON bipolar cells in zebrafish. At single-channels levels, the open probability of the K+ channels increased when the membrane potential was increased. The maximal open proportion was 0.76+/-0.05 under our testing conditions. In whole-cell recordings, the K+ current displayed two exponential components with the activation time constants of 11-22 msec (tau1) and 0.8-4 msec (tau2). Dopamine modulated the K+ current. Dopamine reduced the time constant tau2 when the membrane potential was depolarized to high voltages. A decrease in K+ current was seen when dopamine D1 receptors were selectively activated by SKF38393 or when the D1 receptor-coupled G-proteins were activated by GTP-gamma-S. The activation of adenylate cyclase by forskolin or the increase of intracellular cAMP concentrations by 8-Br-cAMP or Sp-cAMPS also resulted in a decrease in K+ current. Together, the data suggest that dopamine modulates the K+ current via D1 receptor-coupled G-protein pathways.
Collapse
Affiliation(s)
- Chuan-Jiang Yu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
46
|
Wong KY, Dowling JE. Retinal bipolar cell input mechanisms in giant danio. III. ON-OFF bipolar cells and their color-opponent mechanisms. J Neurophysiol 2005; 94:265-72. [PMID: 15758056 DOI: 10.1152/jn.00271.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch recording was performed from morphologically identified cone-driven on-off bipolar cells (Cabs) in giant danio retinal slices to study their glutamate receptors and light-evoked responses. Specific agonists were puffed in the presence of cobalt, picrotoxin, and strychnine to identify glutamate receptors on these cells. Most Cabs responded to both the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor agonist kainate and the excitatory amino acid transporter (EAAT) substrate D-aspartate, and both responses were localized to the dendrites. Kainate generated depolarizations whereas D-aspartate had E(rev) close to E(Cl) and generated hyperpolarizations, indicating that the AMPA/kainate receptors are sign-preserving, whereas the EAATs are sign-inverting. In response to white light, some Cabs gave on bipolar cell-like responses whereas others gave off bipolar cell-like ones, but many cells' responses had both on and off bipolar cell components. In response to appropriately colored center-selective stimuli, many Cabs responded to short and long wavelengths with opposite polarities and were thus double color-opponent. The depolarizing components of the responses to white or colored stimuli were suppressed by the EAAT blocker DL-threo-beta-benzyloxyaspartate (TBOA), whereas the hyperpolarizing components were reduced by the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). These results are consistent with the hypothesis that both EAATs and AMPA/kainate receptors are involved in the generation of light-evoked responses in Cabs and that they confer these cells with on and off bipolar cell properties, respectively. Cabs can generate double color-opponent center responses by receiving inputs from certain cones through EAATs and from other cones through AMPA/kainate receptors.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
47
|
Wong KY, Cohen ED, Dowling JE. Retinal Bipolar Cell Input Mechanisms in Giant Danio. II. Patch-Clamp Analysis of on Bipolar Cells. J Neurophysiol 2005; 93:94-107. [PMID: 15229214 DOI: 10.1152/jn.00270.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate receptors on giant danio retinal on bipolar cells were studied with whole cell patch clamping using a slice preparation. Cone-driven on bipolars (Cbs) and mixed-input on bipolars (Mbs) were identified morphologically. Most Cbs responded to the excitatory amino acid transporter (EAAT) substrate d-aspartate but not to the group III metabotropic glutamate receptor (mGluR) agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4) or the AMPA/kainate receptor agonist kainate, suggesting EAATs are the primary glutamate receptors on Cbs. The EAAT inhibitor dl- threo-β-benzyloxyasparate (TBOA) blocked all light-evoked responses of Cbs, suggesting these responses are mediated exclusively by EAATs. Conversely, all Mbs responded to d-aspartate and l-AP4 but not to kainate, indicating they have both EAATs and group III mGluRs (presumably mGluR6). The light responses of Mbs involve both receptors because they could be blocked by TBOA plus (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG, a group III mGluR antagonist) but not by either alone. Under dark-adapted conditions, the responses of Mbs to green (rod-selective) stimuli were reduced by CPPG but enhanced by TBOA. In contrast, both antagonists reduced the responses to red (cone-selective) stimuli, although TBOA was more effective. Furthermore, under photopic conditions, TBOA failed to eliminate light-evoked responses of Mbs. Thus on Mbs, rod inputs are mediated predominantly by mGluR6, whereas cone inputs are mediated mainly by EAATs but also by mGluR6 to some extent. Finally, we explored the interactions between EAATs and mGluR6 in Mbs. Responses to d-aspartate were reduced by l-AP4 and vice versa. Therefore mGluR6 and EAATs suppress each other, and this might underlie mutual suppression between rod and cone signals in Mbs.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | | | | |
Collapse
|
48
|
Qian H, Chappell RL, Redenti S, Ripps H. Potassium currents distinguish the two subtypes of morphologically distinct skate bipolar cells. THE BIOLOGICAL BULLETIN 2004; 207:191-194. [PMID: 15616349 DOI: 10.2307/1543207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Haohua Qian
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA.
| | | | | | | |
Collapse
|
49
|
Bilotta J, Trace SE, Vukmanic EV, Risner ML. Ultraviolet‐ and short‐wavelength cone contributions alter the early components of the ERG of young zebrafish. Int J Dev Neurosci 2004; 23:15-25. [PMID: 15730883 DOI: 10.1016/j.ijdevneu.2004.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 09/14/2004] [Accepted: 09/15/2004] [Indexed: 10/26/2022] Open
Abstract
The electroretinogram (ERG) is a commonly used measure to examine retinal processing in both basic and clinical research. The purpose of this study was to determine the retinal mechanisms responsible for the developmental differences found in the zebrafish ERG waveform. The ERG of young zebrafish possesses a voltage-negative response to ultraviolet- and short-wavelength stimuli, but not to middle- and long-wavelength stimuli; the ERG of adult zebrafish does not possess this response component. ERGs were obtained from young zebrafish before and after the introduction of either aspartate, or a combination of APB (DL-2-amino-4-phosphonobutyric acid) and PDA (cis-2,3-piperidinedicarboxylic acid) in order to suppress the responses of various types of retinal neurons. Log irradiance versus response amplitude functions of the ERG response to 200-ms stimuli of various wavelengths at various times following stimulus onset (70 and 120 ms) was derived as well as spectral sensitivity. Aspartate eliminated all voltage-positive responses regardless of stimulus wavelength; irradiance-response functions following aspartate were similar to the early responses of young control fish to ultraviolet- and short-wavelength stimuli. APB + PDA produced similar but not identical results as aspartate, suggesting that the combination of these agents does not completely eliminate all post-receptoral contributions to the ERG. Spectral sensitivity functions derived from aspartate-exposed subjects at various time measurements were dominated by contributions from ultraviolet- and short-wavelength-sensitive cone types. These wavelength-dependent ERG responses are similar to those found in humans with enhanced S-cone syndrome. Finally, ERG waveform differences across stimulus wavelength suggest that the circuitry of ultraviolet- and short-wavelength cone types is different to that of middle- and long-wavelength cone types in young zebrafish.
Collapse
Affiliation(s)
- Joseph Bilotta
- Department of Psychology and Biotechnology Center, Western Kentucky University, 1 Big Red Way, Bowling Green, KY 42101, USA.
| | | | | | | |
Collapse
|
50
|
Connaughton VP, Graham D, Nelson R. Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina. J Comp Neurol 2004; 477:371-85. [PMID: 15329887 DOI: 10.1002/cne.20261] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Horizontal, bipolar, and amacrine cells in the zebrafish retina were morphologically characterized using DiOlistic techniques. In this method, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-coated microcarriers are shot at high speed onto the surfaces of living retinal slices where the DiI then delineates axons, somata, and dendrites of isolated neurons. Zebrafish retinal somata were 5-10 microm in diameter. Three horizontal cell types (HA-1, HA-2, and HB) were identified; dendritic tree diameters averaged 25-40 microm. HA somata were round. Cells classified as HA-2 were larger than HA-1 cells and possessed an axon. HB somata were flattened, without an axon, although short fusiform structure(s) projected from the soma. Bipolar cells were separated into 17 morphological types. Dendritic trees ranged from 10 to 70 microM. There were six B(on) types with axon boutons only in the ON sublamina of the inner plexiform layer (IPL), and seven B(off) types with axon boutons or branches only in the OFF sublamina. Four types of bistratified bipolar cells displayed boutons in both ON and OFF layers. Amacrine cells occurred in seven types. A(off) cells (three types) were monostratified and ramified in the IPL OFF sublamina. Dendritic fields were 60-150 microM. A(on) pyriform cells (three types) branched in the ON sublamina. Dendritic fields were 50-170 microM. A(diffuse) cells articulated processes in all IPL strata. Dendritic fields were 15-90 microM. These findings are important for studies examining signal processing in zebrafish retina and for understanding changes in function resulting from mutations and perturbations of retinal organization.
Collapse
Affiliation(s)
- V P Connaughton
- Department of Biology, American University, Washington, DC 20016, USA.
| | | | | |
Collapse
|