1
|
Diamond KM, Nishiura L, Sakihara T, Schoenfuss HL, Blob RW. When to Go Against the Flow: Examining Patterns of Performance Over Multiday Migration Events in the Hawaiian Stream Fish, 'O'opu Nōpili (Sicyopterus stimpsoni). Integr Comp Biol 2024; 64:496-505. [PMID: 38925645 DOI: 10.1093/icb/icae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Many animals migrate across regions of their geographic range as part of extended events, with groups of individuals proceeding through areas of travel on several successive days. Early migrating individuals may have an advantage over late migrating individuals by gaining early access to the resources at the eventual destination. For situations where early access to resources would provide an advantage, specific sets of locomotor traits might be found among individuals that are earlier migrators. We tested for associations between migration timing and traits related to escape responses, climbing, and morphology in the amphidromous Hawaiian stream goby, 'o'opu nōpili (Sicyopterus stimpsoni). In this species, juvenile fish migrate in pulses over several days immediately following flash floods. We collected daily measurements of escape responses and waterfall climbing from juvenile fish arriving at streams from the ocean. We found that escape performance showed mainly stochastic variation across migrating individuals tested on successive days. In contrast, some metrics of climbing performance decrease over successive pulses during a migration event. We also found more variation in body shape among fish from early pulses during migration events compared to later in pulses. These results could have implications for guiding conservation efforts, identifying critical time windows for protection as periods with the greatest likelihood of successful migrants.
Collapse
Affiliation(s)
- Kelly M Diamond
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Lance Nishiura
- Department of Land and Natural Resources, Division of Aquatic Resources, State of Hawai'i, Hilo, HI 96720, USA
| | - Troy Sakihara
- Department of Land and Natural Resources, Division of Aquatic Resources, State of Hawai'i, Hilo, HI 96720, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Wang J, Wang S, Zheng L, Ren L. Adhesion Behavior in Fish: From Structures to Applications. Biomimetics (Basel) 2023; 8:534. [PMID: 37999175 PMCID: PMC10669881 DOI: 10.3390/biomimetics8070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
In nature, some fish can adhere tightly to the surface of stones, aquatic plants, and even other fish bodies. This adhesion behavior allows these fish to fix, eat, hide, and migrate in complex and variable aquatic environments. The adhesion function is realized by the special mouth and sucker tissue of fish. Inspired by adhesion fish, extensive research has recently been carried out. Therefore, this paper presents a brief overview to better explore underwater adhesion mechanisms and provide bionic applications. Firstly, the adhesion organs and structures of biological prototypes (e.g., clingfish, remora, Garra, suckermouth catfish, hill stream loach, and goby) are presented separately, and the underwater adhesion mechanisms are analyzed. Then, based on bionics, it is explained that the adhesion structures and components are designed and created for applications (e.g., flexible gripping adhesive discs and adhesive motion devices). Furthermore, we offer our perspectives on the limitations and future directions.
Collapse
Affiliation(s)
- Jinhao Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (J.W.); (L.R.)
- School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China;
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| | - Shukun Wang
- School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China;
| | - Long Zheng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (J.W.); (L.R.)
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (J.W.); (L.R.)
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| |
Collapse
|
3
|
Lagarde R, Ponton D. Predation pressure in amphidromous gobies: how their morphology is selected by predator species. J Zool (1987) 2022. [DOI: 10.1111/jzo.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Lagarde
- Environnements Méditerranéens, Centre de Formation et de Recherche sur les Université de Perpignan Via Domitia – CNRS Perpignan France
| | - D. Ponton
- ENTROPIE, IRD‐Université de La Réunion‐CNRS‐Université de la Nouvelle‐Calédonie‐IFREMER, c/o, Institut Halieutique et des Sciences Marines (IH.SM) Université de Toliara Toliara Madagascar
| |
Collapse
|
4
|
Naylor ER, Kawano SM. Mudskippers modulate their locomotor kinematics when moving on deformable and inclined substrates. Integr Comp Biol 2022; 62:icac084. [PMID: 35679069 DOI: 10.1093/icb/icac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many ecological factors influence animal movement, including properties of the media that they move on or through. Animals moving in terrestrial environments encounter conditions that can be challenging for generating propulsion and maintaining stability, such as inclines and deformable substrates that can cause slipping and sinking. In response, tetrapods tend to adopt a more crouched posture and lower their center of mass on inclines and increase the surface area of contact on deformable substrates, such as sand. Many amphibious fishes encounter the same challenges when moving on land, but how these finned animals modulate their locomotion with respect to different environmental conditions and how these modifications compare with those seen within tetrapods is relatively understudied. Mudskippers (Gobiidae: Oxudercinae) are a particularly noteworthy group of amphibious fishes in this context given that they navigate a wide range of environmental conditions, from flat mud to inclined mangrove trees. They use a unique form of terrestrial locomotion called 'crutching', where their pectoral fins synchronously lift and vault the front half of the body forward before landing on their pelvic fins while the lower half of the body and tail are kept straight. However, recent work has shown that mudskippers modify some aspects of their locomotion when crutching on deformable surfaces, particularly those at an incline. For example, on inclined dry sand, mudskippers bent their bodies laterally and curled and extended their tails to potentially act as a secondary propulsor and/or anti-slip device. In order to gain a more comprehensive understanding of the functional diversity and context-dependency of mudskipper crutching, we compared their kinematics on different combinations of substrate types (solid, mud, dry sand) and inclines (0°, 10°, 20°). In addition to increasing lateral bending on deformable and inclined substrates, we found that mudskippers increased the relative contact time and contact area of their paired fins while becoming more crouched, responses comparable to those seen in tetrapods and other amphibious fishes. Mudskippers on these substrates also exhibited previously undocumented behaviors, such as extending and adpressing the distal portions of their pectoral fins more anteriorly, dorsoventrally bending their trunk, "belly-flopping" on sand, and "gripping" the mud substrate with their pectoral fin rays. Our study highlights potential compensatory mechanisms shared among vertebrates in terrestrial environments while also illustrating that locomotor flexibility and even novelty can emerge when animals are challenged with environmental variation.
Collapse
Affiliation(s)
- Emily R Naylor
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| |
Collapse
|
5
|
Maie T. Locomotor challenges of waterfall-climbing gobies during transitions between media. Integr Comp Biol 2022; 62:922-933. [PMID: 35657728 DOI: 10.1093/icb/icac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
An amphidromous goby, Sicyopterus japonicus, migrates from the ocean to upstream regions of many streams and rivers in the Pacific coasts of Japan and Taiwan. Using its mouth and fused pelvic fins (pelvic sucker), this gobiid species exhibits a rock-climbing behavior and surmounts sizable waterfalls, which block the upstream movement of many of its competitors and predators. When gobies emerge from the water to commence their climbing behavior, the change in effective density (i.e., lack of buoyancy) that occurs in this transition substantially increases the force required for adhesion. Consequently, these fish must exert adhesive suction strong enough to support their body weight against gravity during climbing on the rock surface. Suction performance for adhesion and modulatory capacity of S. japonicus were evaluated with two different sets of experimental conditions: climbing on the vertical surface with no water flow, versus climbing on a 60o-inclined surface with 2 L/min flow. Individuals of S. japonicus showed 50.7% greater mean safety factor (suction force for adhesion/gravitational force) and 56.6% shorter time to reach maximum pressure differential during climbing on the 60o-inclined surface with water rushing over their bodies than during climbing on the vertical surface with no water flow. These results indicate that when climbing with drag force from flowing water, greater functional demands are imposed and therefore, S. japonicus is required to increase neuromuscular stimulation of the pelvic muscles to elevate suction performance. In addition, S. japonicus individuals at different ontogenetic stages modulate their climbing behaviors and strategies to accommodate changing functional demands as they make transitions between different inclines, as well as media, while ascending waterfalls.
Collapse
Affiliation(s)
- Takashi Maie
- Department of Biology, College of Arts and Sciences, University of Lynchburg, Hobbs Hall, 1501 Lakeside Drive, Lynchburg, VA 24501, USA
| |
Collapse
|
6
|
Lutek K, Donatelli CM, Standen EM. Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion. J Exp Biol 2022; 225:275243. [PMID: 35502693 DOI: 10.1242/jeb.242395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibiousness in fishes spans the actinopterygian tree from the earliest to the most recently derived species. The land environment requires locomotor force production different from that in water, and a diversity of locomotor modes have evolved across the actinopterygian tree. To compare locomotor mode between species, we mapped biomechanical traits on an established amphibious fish phylogeny. Although the diversity of fish that can move over land is large, we noted several patterns, including the rarity of morphological and locomotor specialization, correlations between body shape and locomotor mode, and an overall tendency for amphibious fish to be small. We suggest two idealized empirical metrics to consider when gauging terrestrial 'success' in fishes and discuss patterns of terrestriality in fishes considering biomechanical scaling, physical consequences of shape, and tissue plasticity. Finally, we suggest four ways in which neural control could change in response to a novel environment, highlighting the importance and challenges of deciphering when these control mechanisms are used. We aim to provide an overview of the diversity of successful amphibious locomotion strategies and suggest several frameworks that can guide the study of amphibious fish and their locomotion.
Collapse
Affiliation(s)
- K Lutek
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - E M Standen
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| |
Collapse
|
7
|
Maie T, Blob RW. Adhesive force and endurance of the pelvic sucker across different modes of waterfall-climbing in gobiid fishes: Contrasting climbing mechanisms share aspects of ontogenetic change. ZOOLOGY 2021; 149:125969. [PMID: 34601374 DOI: 10.1016/j.zool.2021.125969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022]
Abstract
Waterfall-climbing gobiids from oceanic islands use a suction-based adhesive mechanism formed by fused pelvic fins (pelvic sucker) and exhibit rock-climbing behavior during upstream migration. Although adhesion is a common feature of locomotion in these fishes, two distinct climbing styles - powerburst climbing and inching - have evolved. We compared the performance of the pelvic sucker during climbing across a range of body sizes between two species that use these different styles, collecting new data from the powerburst climber Lentipes concolor, and comparing these to published data for the inching climber Sicyopterus japonicus. Suction force for adhesion generated during continuous climbing did not differ between the species, with similar mean safety factors of 2.5-3.0. However, L. concolor engaged its pelvic sucker for a significantly longer duration of time (approximately 34 % longer per climbing cycle) than S. japonicus during continuous climbing. During sustained adhesion, both species exhibited non-linear scaling of fatigue time, with intermediate-sized individuals (e.g., large juveniles to small adults) showing the greatest endurance. However, the two species exhibited strikingly different maxima and variability in the endurance of their pelvic suckers. Maximum time to fatigue in L. concolor was less than half that of S. japonicus, but L. concolor showed more than double the variability of S. japonicus in time to fatigue. Our comparisons of these species reveal that despite differences in several aspects of their adhesive performance, some features of sucker function remain similar across climbing styles, including several related to how performance changes through ontogeny.
Collapse
Affiliation(s)
- Takashi Maie
- Department of Biology, College of Arts and Sciences, University of Lynchburg, Hobbs Hall, 1501 Lakeside Drive, Lynchburg, VA, 24501, USA.
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| |
Collapse
|
8
|
Diamond KM, Lagarde R, Griner JG, Ponton D, Powder KE, Schoenfuss HL, Walker JA, Blob RW. Interactions among multiple selective pressures on the form–function relationship in insular stream fishes. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Relationships between body shape and escape performance are well established for many species. However, organisms can face multiple selection pressures that might impose competing demands. Many fishes use fast starts for escaping predator attacks, whereas some species of gobiid fishes have evolved the ability to climb waterfalls out of predator-dense habitats. The ancestral ‘powerburst’ climbing mechanism uses lateral body undulations to move up waterfalls, whereas a derived ‘inching’ mechanism uses rectilinear locomotion. We examined whether fast-start performance is impacted by selection imposed from the new functional demands of climbing. We predicted that non-climbing species would show morphology and fast-start performance that facilitate predator evasion, because these fish live consistently with predators and are not constrained by the demands of climbing. We also predicted that, by using lateral undulations, powerburst climbers would show escape performance superior to that of inchers. We compared fast starts and body shape across six goby species. As predicted, non-climbing fish exhibited distinct morphology and responded more frequently to an attack stimulus than climbing species. Contrary to our predictions, we found no differences in escape performance among climbing styles. These results indicate that selection for a competing pressure need not limit the ability of prey to escape predator attacks.
Collapse
Affiliation(s)
- Kelly M Diamond
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Raphaël Lagarde
- Hydrô Réunion, Z.I. Les Sables, Etang Salé, La Réunion, France
- Université de Perpignan Via Domitia – CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR, Perpignan, France
| | - J Gill Griner
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Dominique Ponton
- ENTROPIE, IRD-Université de La Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr. Rabesandratana, BP, Toliara, Madagascar
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN, USA
| | - Jeffrey A Walker
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
9
|
Lagarde R, Courret D, Grondin H, Faivre L, Ponton D. Climbing for dummies: recommendation for multi‐specific fishways for the conservation of tropical eels and gobies. Anim Conserv 2021. [DOI: 10.1111/acv.12699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R. Lagarde
- Université de Perpignan Via Domitia Centre de Formation et de Recherche sur les Environnements Méditerranéens UMR 5110 Perpignan France
- CNRS Centre de Formation et de Recherche sur les Environnements Méditerranéens UMR 5110 Perpignan France
| | - D. Courret
- OFB DRAS Pôle R&D Ecohydraulique OFB‐IMFT‐Pprime Allée du professeur Camille Soula Toulouse France
| | | | - L. Faivre
- OCEA Consult’ Ravine des Cabris France
| | - D. Ponton
- ENTROPIE IRD Université de La Réunion CNRS Université de la Nouvelle‐Calédonie Ifremer c/o Institut Halieutique et des Sciences Marines (IH.SM) Université de Toliara Toliara Madagascar
| |
Collapse
|
10
|
Palecek AM, Schoenfuss HL, Blob RW. Sticking to it: testing passive pull-off forces in waterfall-climbing fishes across challenging substrates. J Exp Biol 2021; 224:jeb228718. [PMID: 33328291 DOI: 10.1242/jeb.228718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022]
Abstract
The pelvic sucker of Hawaiian waterfall climbing gobies allows these fishes to attach to substrates while climbing waterfalls tens to hundreds of meters tall. Climbing ability varies by species and may be further modulated by the physical characteristics of the waterfall substrate. In this study, we investigated the influence of surface wettability (hydrophobic versus hydrophilic surface charges) and substrate roughness on the passive adhesive system of four species of gobies with different climbing abilities. Overall, passive adhesive performance varied by species and substrate, with the strongest climbers showing the highest shear pull-off forces, particularly on rough surfaces. Thus, differences in passive adhesive performance may help to explain the ability of some species to migrate further upstream than others and contribute to their ability to invade new habitats.
Collapse
Affiliation(s)
- Amanda M Palecek
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
Wang J, Ji C, Wang W, Zou J, Yang H, Pan M. An adhesive locomotion model for the rock-climbing fish, Beaufortia kweichowensis. Sci Rep 2019; 9:16571. [PMID: 31719624 PMCID: PMC6851163 DOI: 10.1038/s41598-019-53027-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
The rock-climbing fish (Beaufortia kweichowensis) adheres to slippery, fouled surfaces and crawls both forward and backward in torrential streams. During locomotion, two suckers can be distinguished. Here, the general skeletal structure of the rock-climbing fish was determined using microtomography. Friction and adhesion were positively correlated, as were friction and fin ray angle. The unique adhesive locomotion system used by the rock-climbing fish was observed with a high speed camera. This system comprised two anisotropic suckers bearing two paired fins and two girdle muscles. A locomotion model was established based on these results. In this model, the fin states controlled the direction of motion using anisotropic friction, and alternate contractions of the girdle muscles provided propulsion during bidirectional crawling. This adhesive locomotion system was compared with other biological locomotion mechanisms. Based on these comparisons, we hypothesized that this novel system might represent an energy-saving solution for undulatory underwater vertical movement without detaching from the substrate.
Collapse
Affiliation(s)
- Jinrong Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
| | - Chen Ji
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Wei Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China.
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
| | - Min Pan
- Center for Power Transmission and Motion Control, Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
12
|
Lord C, Bellec L, Dettaï A, Bonillo C, Keith P. Does your lip stick? Evolutionary aspects of the mouth morphology of the Indo‐Pacific clinging goby of the Sicyopterusgenus (Teleostei: Gobioidei: Sicydiinae) based on mitogenome phylogeny. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clara Lord
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Université, Muséum national d’Histoire naturelle, Université de Caen Normandie, CNRS, IRD, CP26 Université des Antilles Paris France
| | - Laure Bellec
- IFREMER, Centre Brest, REM/EEP/LEP ZI de la Pointe du Diable Plouzané France
| | - Agnès Dettaï
- Institut Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, École Pratique des Hautes Études, CNRS, CP30 Sorbonne Université Paris France
| | - Céline Bonillo
- Département Systématique et Évolution, UMS 2700 “Outils et Méthodes de la Systématique Intégrative” MNHN‐CNRS, Service de Systématique Moléculaire Muséum national d’Histoire naturelle, CP26 Paris cedex 05 France
| | - Philippe Keith
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Université, Muséum national d’Histoire naturelle, Université de Caen Normandie, CNRS, IRD, CP26 Université des Antilles Paris France
| |
Collapse
|
13
|
Adhesive force and endurance during waterfall climbing in an amphidromous gobiid, Sicyopterus japonicus (Teleostei: Gobiidae): Ontogenetic scaling of novel locomotor performance. ZOOLOGY 2019; 133:10-16. [PMID: 30979386 DOI: 10.1016/j.zool.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 11/21/2022]
Abstract
An amphidromous sicydiine goby, Sicyopterus japonicus, exhibits rock-climbing behavior during upstream migration along rivers and streams. Using a pelvic sucker formed by fused pelvic fins, S. japonicus generates suction adhesion on the climbing surface. By measuring performance variables that correlate with successful rock-climbing capability, we evaluated scaling relationships of adhesive suction force generated by the pelvic sucker and fatigue during climbing in S. japonicus during ontogeny. In continuous climbing on the experimental 60°-inclined surface, the pelvic sucker of S. japonicus exhibited strong positive allometry in generating suction force for adhesion during ontogeny. In contrast, fatigue time of the pelvic sucker muscles for sustained adhesion scaled non-linearly with body mass during ontogeny. In addition, fatigue time and body mass showed the best fit to a quadratic regression, which predicted intermediate-sized individuals (large juveniles to small adults) to have better performance in adhesive endurance than smaller or larger individuals. Our experimental results indicate that different sizes of waterfall-climbing gobies have different performance capacities for rock climbing perhaps because of physiological differences in their pelvic muscles. In addition, our data from S. japonicus indicates that selection pressures on the locomotor capacities of waterfall-climbing gobiids vary during ontogeny.
Collapse
|
14
|
The Adhesive System and Anisotropic Shear Force of Guizhou Gastromyzontidae. Sci Rep 2016; 6:37221. [PMID: 27849018 PMCID: PMC5110960 DOI: 10.1038/srep37221] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/26/2016] [Indexed: 11/09/2022] Open
Abstract
The Guizhou gastromyzontidae (Beaufortia kweichowensis) can adhere to slippery and fouled surfaces in torrential streams. A unique adhesive system utilized by the fish was observed by microscope and CLSM as an attachment disc sealed by a round belt of micro bubbles. The system is effective in wet or underwater environments and can resist a normal pulling force up to 1000 times the fish’s weight. Moreover, a mechanism for passive anisotropic shear force was observed. The shear forces of the fish under different conditions were measured, showing that passive shear force plays an important role in wet environments. The adhesive system of the fish was compared with other biological adhesion principles, from which we obtained potential values for the system that refer to the unique micro sealing and enhanced adhesion in a wet environment.
Collapse
|
15
|
Magellan K. Amphibious adaptations in a newly recognized amphibious fish: Terrestrial locomotion and the influences of body size and temperature. AUSTRAL ECOL 2016. [DOI: 10.1111/aec.12332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kit Magellan
- Department of Ichthyology and Fisheries Sciences; Rhodes University; Grahamstown South Africa
| |
Collapse
|
16
|
Close PG, Ryan TJ, Morgan DL, Beatty SJ, Lawrence CS. First record of ‘climbing’ and ‘jumping’ by juvenile Galaxias truttaceus Valenciennes, 1846 (Galaxiidae) from south-western Australia. AUST J ZOOL 2014. [DOI: 10.1071/zo14004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Upstream migration of juvenile stages of temperate Australian amphidromous fish typically coincides with seasonally low river discharge when hydraulic (e.g. cascades) and physical (e.g. rock bars) barriers may be common. The ability to ‘climb’ or ‘jump’ may be expected to assist in negotiating low-flow barriers; however, it is presumed to be limited to a few native Australian freshwater fishes. Juvenile stages of Galaxias truttaceus Valenciennes, 1846 were observed ‘climbing’ and ‘jumping’ to successfully negotiate a low, vertical weir wall during their upstream recruitment migrations in south-western Australia. Based on this observation, we propose initial definitions for ‘climbing’ and ‘jumping’ to describe locomotory strategies employed by fishes to negotiate obstacles that would otherwise prevent free passage by normal swimming behaviour. Greater knowledge of the climbing, jumping and swimming performance, especially for small-bodied species and early life stages, will help improve the management of instream barriers for this critically endangered species and other freshwater fishes of southern Australia.
Collapse
|
17
|
Schoenfuss HL, Maie T, Moody KN, Lesteberg KE, Blob RW, Schoenfuss TC. Stairway to heaven: evaluating levels of biological organization correlated with the successful ascent of natural waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni. PLoS One 2013; 8:e84851. [PMID: 24386424 PMCID: PMC3873996 DOI: 10.1371/journal.pone.0084851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/19/2013] [Indexed: 12/02/2022] Open
Abstract
Selective pressures generated by locomotor challenges act at the level of the individual. However, phenotypic variation among individuals that might convey a selective advantage may occur across any of multiple levels of biological organization. In this study, we test for differences in external morphology, muscle mechanical advantage, muscle fiber type and protein expression among individuals of the waterfall climbing Hawaiian fish Sicyopterus stimpsoni collected from sequential pools increasing in elevation within a single freshwater stream. Despite predictions from previous laboratory studies of morphological selection, few directional morphometric changes in body shape were observed at successively higher elevations. Similarly, lever arm ratios associated with the main pelvic sucker, central to climbing ability in this species, did not differ between elevations. However, among climbing muscles, the adductor pelvicus complex (largely responsible for generating pelvic suction during climbing) contained a significantly greater red muscle fiber content at upstream sites. A proteomic analysis of the adductor pelvicus revealed two-fold increases in expression levels for two respiratory chain proteins (NADH:ubiquinone reductase and cytochrome b) that are essential for aerobic respiration among individuals from successively higher elevations. Assessed collectively, these evaluations reveal phenotypic differences at some, but not all levels of biological organization that are likely the result of selective pressures experienced during climbing.
Collapse
Affiliation(s)
- Heiko L. Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Takashi Maie
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristine N. Moody
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kelsey E. Lesteberg
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Richard W. Blob
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tonya C. Schoenfuss
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
18
|
Tweedley JR, Bird DJ, Potter IC, Gill HS, Miller PJ, O'Donovan G, Tjakrawidjaja AH. Species compositions and ecology of the riverine ichthyofaunas in two Sulawesian islands in the biodiversity hotspot of Wallacea. JOURNAL OF FISH BIOLOGY 2013; 82:1916-1950. [PMID: 23731145 DOI: 10.1111/jfb.12121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
This account of the riverine ichthyofaunas from the islands of Buton and Kabaena, off south-eastern mainland Sulawesi, represents the first detailed quantitative checklist and ecological study of the riverine fish faunas in the biological hotspot of Wallacea. The results are based on analysis of samples collected by electrofishing at a wide range of sites from July to September in both 2001 and 2002. While the fauna was diverse, with the 2179 fishes caught comprising 64 species representing 43 genera and 22 families, the catches were dominated by the Gobiidae (26 species and 25% by numbers), Eleotridae (seven species and 27% by numbers), Zenarchopteridae (three species and 22% by numbers) and Anguillidae (two species and 12% by numbers). The most abundant species were the eleotrids Eleotris aff. fusca-melanosoma and Ophieleotris aff. aporos, the anguillid Anguilla celebesensis, the zenarchopterids Nomorhamphus sp. and Nomorhamphus ebrardtii and the gobiids Sicyopterus sp. and Glossogobius aff. celebius-kokius. The introduced catfish Clarias batrachus was moderately abundant at a few sites. Cluster analysis, allied with the similarity profiles routine SIMPROF, identified seven discrete groups, which represented samples from sites entirely or predominantly in either Buton (five clusters) or Kabaena (two clusters). Species composition was related to geographical location, distance from river mouth, per cent contribution of sand and silt, altitude and water temperature. The samples from the two islands contained only one species definitively endemic to Sulawesi, i.e. N. ebrardtii and another presumably so, i.e. Nomorhamphus sp., contrasting starkly with the 57 species that are endemic to Sulawesi and, most notably, its large central and deep lake systems on the mainland. This accounts for the ichthyofaunas of these two islands, as well as those of rivers in northern mainland Sulawesi and Flores, being more similar to each other than to those of the central mainland lake systems. This implies that the major adaptive radiation of freshwater fishes in Sulawesi occurred in those lacustrine environments rather than in rivers.
Collapse
Affiliation(s)
- J R Tweedley
- Centre for Fish and Fisheries Research, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Cooney PB, Kwak TJ. Spatial Extent and Dynamics of Dam Impacts on Tropical Island Freshwater Fish Assemblages. Bioscience 2013. [DOI: 10.1525/bio.2013.63.3.6] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Evolutionary novelty versus exaptation: oral kinematics in feeding versus climbing in the waterfall-climbing Hawaiian Goby Sicyopterus stimpsoni. PLoS One 2013; 8:e53274. [PMID: 23308184 PMCID: PMC3537660 DOI: 10.1371/journal.pone.0053274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 11/21/2022] Open
Abstract
Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. These fish use an “inching” behavior to climb waterfalls, in which an oral sucker is cyclically protruded and attached to the climbing surface. They also exhibit a distinctive feeding behavior, in which the premaxilla is cyclically protruded to scrape diatoms from the substrate. Given the similarity of these patterns, we hypothesized that one might have been coopted from the other. To evaluate this, we filmed climbing and feeding in Sicyopterus stimpsoni from Hawai’i, and measured oral kinematics for two comparisons. First, we compared feeding kinematics of S. stimpsoni with those for two suction feeding gobiids (Awaous guamensis and Lentipes concolor), assessing what novel jaw movements were required for algal grazing. Second, we quantified the similarity of oral kinematics between feeding and climbing in S. stimpsoni, evaluating the potential for either to represent an exaptation from the other. Premaxillary movements showed the greatest differences between scraping and suction feeding taxa. Between feeding and climbing, overall profiles of oral kinematics matched closely for most variables in S. stimpsoni, with only a few showing significant differences in maximum values. Although current data cannot resolve whether oral movements for climbing were coopted from feeding, or feeding movements coopted from climbing, similarities between feeding and climbing kinematics in S. stimpsoni are consistent with evidence of exaptation, with modifications, between these behaviors. Such comparisons can provide insight into the evolutionary mechanisms facilitating exploitation of extreme habitats.
Collapse
|
21
|
Kawano SM, Bridges WC, Schoenfuss HL, Maie T, Blob RW. Differences in locomotor behavior correspond to different patterns of morphological selection in two species of waterfall-climbing gobiid fishes. Evol Ecol 2012. [DOI: 10.1007/s10682-012-9621-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Maie T, Schoenfuss HL, Blob RW. Performance and scaling of a novel locomotor structure: adhesive capacity of climbing gobiid fishes. J Exp Biol 2012; 215:3925-36. [DOI: 10.1242/jeb.072967] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Many species of gobiid fishes adhere to surfaces using a sucker formed from fusion of the pelvic fins. Juveniles of many amphidromous species use this pelvic sucker to scale waterfalls during migrations to upstream habitats after an oceanic larval phase. However, adults may still use suckers to re-scale waterfalls if displaced. If attachment force is proportional to sucker area and if growth of the sucker is isometric, then increases in the forces that climbing fish must resist might outpace adhesive capacity, causing climbing performance to decline through ontogeny. To test for such trends, we measured pressure differentials and adhesive suction forces generated by the pelvic sucker across wide size ranges in six goby species, including climbing and non-climbing taxa. Suction was achieved via two distinct growth strategies: (1) small suckers with isometric (or negatively allometric) scaling among climbing gobies and (2) large suckers with positively allometric growth in non-climbing gobies. Species using the first strategy show a high baseline of adhesive capacity that may aid climbing performance throughout ontogeny, with pressure differentials and suction forces much greater than expected if adhesion were a passive function of sucker area. In contrast, large suckers possessed by non-climbing species may help compensate for reduced pressure differentials, thereby producing suction sufficient to support body weight. Climbing Sicyopterus species also use oral suckers during climbing waterfalls, and these exhibited scaling patterns similar to those for pelvic suckers. However, oral suction force was considerably lower than that for pelvic suckers, reducing the ability for these fish to attach to substrates by the oral sucker alone.
Collapse
Affiliation(s)
- Takashi Maie
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Heiko L. Schoenfuss
- Aquatic Toxicology Laboratory, St Cloud State University, 273 Wick Science Building, 720 Fourth Avenue South, St Cloud, MN 56301, USA
| | - Richard W. Blob
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| |
Collapse
|
23
|
Pace CM, Gibb AC. Locomotor behavior across an environmental transition in the ropefish, Erpetoichthys calabaricus. J Exp Biol 2011; 214:530-7. [DOI: 10.1242/jeb.047902] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Many amphibious organisms undergo repeated aquatic to terrestrial transitions during their lifetime; limbless, elongate organisms that make such transitions must rely on axial-based locomotion in both habitats. How is the same anatomical structure employed to produce an effective behavior across such disparate habitats? Here, we examine an elongate amphibious fish, the ropefish (Erpetoichthys calabaricus), and ask: (1) how do locomotor movements change during the transition between aquatic and terrestrial environments and (2) do distantly related amphibious fishes demonstrate similar modes of terrestrial locomotion? Ropefish were examined moving in four experimental treatments (in which the water level was to lowered mimic the transition between environments) that varied from fully aquatic to fully terrestrial. Kinematic parameters (lateral excursion, wavelength, amplitude and frequency) were calculated for points along the midline of the body and compared across treatments. Terrestrial locomotion in the ropefish is characterized by long, slow, large-amplitude undulations down the length of the body; in contrast, aquatic locomotion is characterized by short-wavelength, small-amplitude, high-frequency undulations that gradually increase in an anterior to posterior direction. Experimental treatments with intermediate water levels were more similar to aquatic locomotion in that they demonstrated an anterior to posterior pattern of increasing lateral excursion and wave amplitude, but were more similar to terrestrial locomotion with regard to wavelength, which did not change in an anterior to posterior direction. Finally, the ropefish and another elongate amphibious fish, the eel, consistently exhibit movements characterized by ‘path following’ when moving on land, which suggests that elongate fishes exhibit functional convergence during terrestrial locomotion.
Collapse
Affiliation(s)
- Cinnamon M. Pace
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| | - Alice C. Gibb
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| |
Collapse
|
24
|
Blob RW, Kawano SM, Moody KN, Bridges WC, Maie T, Ptacek MB, Julius ML, Schoenfuss HL. Morphological Selection and the Evaluation of Potential Tradeoffs Between Escape from Predators and the Climbing of Waterfalls in the Hawaiian Stream Goby Sicyopterus stimpsoni. Integr Comp Biol 2010; 50:1185-99. [DOI: 10.1093/icb/icq070] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Maie T, Schoenfuss HL, Blob RW. Jaw lever analysis of Hawaiian gobioid stream fishes: a simulation study of morphological diversity and functional performance. J Morphol 2009; 270:976-83. [PMID: 19274745 DOI: 10.1002/jmor.10737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Differences in feeding behavior and performance among the five native Hawaiian gobioid stream fishes (Sicyopterus stimpsoni, Lentipes concolor, Awaous guamensis, Stenogobius hawaiiensis, and Eleotris sandwicensis) have been proposed based on the skeletal anatomy of their jaws and dietary specialization. However, performance of the feeding apparatus likely depends on the proportions and configurations of the jaw muscles and the arrangement of the jaw skeleton. We used a published mathematical model of muscle function to evaluate potential differences in jaw closing performance and their correlations with morphology among these species. For example, high output force calculated for the adductor mandibulae muscles (A2 and A3) of both A. guamensis and E. sandwicensis matched expectations based on the morphology of these species because these muscles are larger than in the other species. In contrast, Stenogobius hawaiiensis exhibited an alternative morphological strategy for achieving high relative output forces of both A2 and A3, in which the placement and configuration of the muscles conveyed high mechanical advantage despite only moderate cross-sectional areas. These differing anatomical pathways to similar functional performance suggest a pattern of many-to-one mapping of morphology to performance. In addition, a functional differentiation between A2 and A3 was evident for all species, in which A2 was better suited for producing forceful jaw closing and A3 for rapid jaw closing. Thus, the diversity of feeding performance of Hawaiian stream gobies seems to reflect a maintenance of functional breadth through the retention of some primitive traits in combination with novel functional capacities in several species.
Collapse
Affiliation(s)
- Takashi Maie
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA.
| | | | | |
Collapse
|
26
|
Abstract
New lamprey-friendly fishways feature inclined ramps that facilitate passage of Pacific lampreys ( Lampetra tridentata (Richardson, 1836)) over Bonneville Dam on the Columbia River, USA. We observed the lampreys moving against water at two flow volumes and on two ramps of 45° and 18° angles relative to horizontal. We documented climbing movements using high-speed video (125 frames/s). Lampreys advanced on the ramps by repeated cycles of attaching to the ramps by their sucker mouths (resting phase), bending their bodies into a W shape (stage II), and then, rapidly straightening the body to propel themselves up the ramp, with simultaneous brief (20–140 ms) release of suction (stage III). We inferred that lampreys were using burst swimming to propel themselves up the ramp, because we observed inflection points in the body curvature traveling toward the posterior of the body and the center of mass moving up, during stage III. This climbing behavior is not described for any other fish species. Vertical motion, relative to the ground, during each cycle of movement was greatest in the 45° ramp – low water flow volume treatment (mean of 0.07 L/cycle), but the movement upstream along the ramp plane was greatest on the 18° ramp, regardless of flow volume. These findings can be used to develop ramp designs that maximize lamprey climbing performance.
Collapse
Affiliation(s)
- U. G. Reinhardt
- Biology Department Eastern Michigan University, 316 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Department of Curriculum and Teaching, W1032 Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
- Zoology Department, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - L. Eidietis
- Biology Department Eastern Michigan University, 316 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Department of Curriculum and Teaching, W1032 Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
- Zoology Department, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - S. E. Friedl
- Biology Department Eastern Michigan University, 316 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Department of Curriculum and Teaching, W1032 Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
- Zoology Department, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - M. L. Moser
- Biology Department Eastern Michigan University, 316 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Department of Curriculum and Teaching, W1032 Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
- Zoology Department, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| |
Collapse
|
27
|
Blob RW, Bridges WC, Ptacek MB, Maie T, Cediel RA, Bertolas MM, Julius ML, Schoenfuss HL. Morphological selection in an extreme flow environment: body shape and waterfall-climbing success in the Hawaiian stream fish Sicyopterus stimpsoni. Integr Comp Biol 2008. [DOI: 10.1093/icb/icn086 10.1093/icb/icp111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Blob RW, Bridges WC, Ptacek MB, Maie T, Cediel RA, Bertolas MM, Julius ML, Schoenfuss HL. Morphological selection in an extreme flow environment: body shape and waterfall-climbing success in the Hawaiian stream fish Sicyopterus stimpsoni. Integr Comp Biol 2008; 48:734-49. [DOI: 10.1093/icb/icn086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Muscle fiber type distribution in climbing Hawaiian gobioid fishes: Ontogeny and correlations with locomotor performance. ZOOLOGY 2008; 111:114-22. [DOI: 10.1016/j.zool.2007.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/08/2007] [Accepted: 06/09/2007] [Indexed: 11/23/2022]
|