1
|
Li L, Ge Z, Liu S, Zheng K, Li Y, Chen K, Fu Y, Lei X, Cui Z, Wang Y, Huang J, Liu Y, Duan M, Sun Z, Chen J, Li L, Shen P, Wang G, Chen J, Li R, Li C, Yang Z, Ning Y, Luo A, Chen B, Seim I, Liu X, Wang F, Yao Y, Guo F, Yang M, Liu CH, Fan G, Wang L, Yang D, Zhang L. Multi-omics landscape and molecular basis of radiation tolerance in a tardigrade. Science 2024; 386:eadl0799. [PMID: 39446960 DOI: 10.1126/science.adl0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Tardigrades are captivating organisms known for their resilience in extreme environments, including ultra-high-dose radiation, but the underlying mechanisms of this resilience remain largely unknown. Using genome, transcriptome, and proteome analysis of Hypsibius henanensis sp. nov., we explored the molecular basis contributing to radiotolerance in this organism. A putatively horizontally transferred gene, DOPA dioxygenase 1 (DODA1), responds to radiation and confers radiotolerance by synthesizing betalains-a type of plant pigment with free radical-scavenging properties. A tardigrade-specific radiation-induced disordered protein, TRID1, facilitates DNA damage repair through a mechanism involving phase separation. Two mitochondrial respiratory chain complex assembly proteins, BCS1 and NDUFB8, accumulate to accelerate nicotinamide adenine dinucleotide (NAD+) regeneration for poly(adenosine diphosphate-ribosyl)ation (PARylation) and subsequent poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)-mediated DNA damage repair. These three observations expand our understanding of mechanisms of tardigrade radiotolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572006, China
| | | | | | | | | | | | | | | | | | | | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
2
|
Sadowska-Bartosz I, Bartosz G. Antioxidant Defense in the Toughest Animals on the Earth: Its Contribution to the Extreme Resistance of Tardigrades. Int J Mol Sci 2024; 25:8393. [PMID: 39125965 PMCID: PMC11313143 DOI: 10.3390/ijms25158393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Tardigrades are unique among animals in their resistance to dehydration, mainly due to anhydrobiosis and tun formation. They are also very resistant to high-energy radiation, low and high temperatures, low and high pressure, and various chemical agents, Interestingly, they are resistant to ionizing radiation both in the hydrated and dehydrated states to a similar extent. They are able to survive in the cosmic space. Apparently, many mechanisms contribute to the resistance of tardigrades to harmful factors, including the presence of trehalose (though not common to all tardigrades), heat shock proteins, late embryogenesis-abundant proteins, tardigrade-unique proteins, DNA repair proteins, proteins directly protecting DNA (Dsup and TDR1), and efficient antioxidant system. Antioxidant enzymes and small-molecular-weight antioxidants are an important element in the tardigrade resistance. The levels and activities of many antioxidant proteins is elevated by anhydrobiosis and UV radiation; one explanation for their induction during dehydration is provided by the theory of "preparation for oxidative stress", which occurs during rehydration. Genes coding for some antioxidant proteins are expanded in tardigrades; some genes (especially those coding for catalases) were hypothesized to be of bacterial origin, acquired by horizontal gene transfer. An interesting antioxidant protein found in tardigrades is the new Mn-dependent peroxidase.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
3
|
Nagwani AK, Melosik I, Kaczmarek Ł, Kmita H. Recovery from anhydrobiosis in the tardigrade Paramacrobiotus experimentalis: Better to be young than old and in a group than alone. Heliyon 2024; 10:e26807. [PMID: 38434295 PMCID: PMC10907786 DOI: 10.1016/j.heliyon.2024.e26807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Desiccation-tolerant organisms can survive dehydration in a state of anhydrobiosis. Tardigrades can recover from anhydrobiosis at any life stage and are considered among the toughest animals on Earth. However, the factors that influence recovery from anhydrobiosis are not well understood. The study aimed to evaluate the effect of sex, age, the presence of other individuals and the combination of the number and duration of anhydrobiosis episodes on the recovery of Paramacrobiotus experimentalis. The activity of 1200 individuals for up to 48 h after rehydration was evaluated using analysis of variance (ANOVA). Age was the main factor influencing return to activity, followed by the combination of number and duration of anhydrobiosis episodes, influence of the presence of other individuals, and sex. More individuals returned to activity after repeated short than repeated long anhydrobiosis episodes and older individuals were less likely to recover than younger individuals. In addition, when compared to single animals, the presence of other individuals resulted in higher number of active animals after dehydration and rehydration. The effect of sex was significant, but there was no general tendency for one sex to recover from anhydrobiosis better than the other one. The results contribute to a better understanding of the anhydrobiosis ability of Paramacrobiotus experimentalis and provide background for full explanation of molecular, cellular and environmental mechanisms of anhydrobiosis.
Collapse
Affiliation(s)
- Amit Kumar Nagwani
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Iwona Melosik
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
4
|
Hvidepil LKB, Møbjerg N. New insights into osmobiosis and chemobiosis in tardigrades. Front Physiol 2023; 14:1274522. [PMID: 37929212 PMCID: PMC10620314 DOI: 10.3389/fphys.2023.1274522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Tardigrades are renowned for their ability to enter the extremotolerant state of latent life known as cryptobiosis. While it is widely accepted that cryptobiosis can be induced by freezing (cryobiosis) and by desiccation (anhydrobiosis), the latter involving formation of a so-called tun, the exact mechanisms underlying the state-as well as the significance of other cryptobiosis inducing factors-remain ambiguous. Here, we focus on osmotic and chemical stress tolerance in the marine tidal tardigrade Echiniscoides sigismundi. We show that E. sigismundi enters the tun state following exposure to saturated seawater and upon exposure to locality seawater containing the mitochondrial uncoupler DNP. The latter experiments provide evidence of osmobiosis and chemobiosis, i.e., cryptobiosis induced by high levels of osmolytes and toxicants, respectively. A small decrease in survival was observed following simultaneous exposure to DNP and saturated seawater indicating that the tardigrades may not be entirely ametabolic while in the osmobiotic tun. The tardigrades easily handle exposure to ultrapure water, but hypo-osmotic shock impairs tun formation and when exposed to ultrapure water the tardigrades do not tolerate DNP, indicating that tolerance towards dilute solutions involves energy-consuming processes. We discuss our data in relation to earlier and more contemporary studies on cryptobiosis and we argue that osmobiosis should be defined as a state of cryptobiosis induced by high external osmotic pressure. Our investigation supports the hypothesis that the mechanisms underlying osmobiosis and anhydrobiosis are overlapping and that osmobiosis likely represents the evolutionary forerunner of cryptobiosis forms that involve body water deprivation.
Collapse
Affiliation(s)
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Novotná Floriančičová K, Baltzis A, Smejkal J, Czerneková M, Kaczmarek Ł, Malý J, Notredame C, Vinopal S. Phylogenetic and functional characterization of water bears (Tardigrada) tubulins. Sci Rep 2023; 13:5194. [PMID: 36997657 PMCID: PMC10063605 DOI: 10.1038/s41598-023-31992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Tardigrades are microscopic ecdysozoans that can withstand extreme environmental conditions. Several tardigrade species undergo reversible morphological transformations and enter into cryptobiosis, which helps them to survive periods of unfavorable environmental conditions. However, the underlying molecular mechanisms of cryptobiosis are mostly unknown. Tubulins are evolutionarily conserved components of the microtubule cytoskeleton that are crucial in many cellular processes. We hypothesize that microtubules are necessary for the morphological changes associated with successful cryptobiosis. The molecular composition of the microtubule cytoskeleton in tardigrades is unknown. Therefore, we analyzed and characterized tardigrade tubulins and identified 79 tardigrade tubulin sequences in eight taxa. We found three α-, seven β-, one γ-, and one ε-tubulin isoform. To verify in silico identified tardigrade tubulins, we also isolated and sequenced nine out of ten predicted Hypsibius exemplaris tubulins. All tardigrade tubulins were localized as expected when overexpressed in mammalian cultured cells: to the microtubules or to the centrosomes. The presence of a functional ε-tubulin, clearly localized to centrioles, is attractive from a phylogenetic point of view. Although the phylogenetically close Nematoda lost their δ- and ε-tubulins, some groups of Arthropoda still possess them. Thus, our data support the current placement of tardigrades into the Panarthropoda clade.
Collapse
Affiliation(s)
- Kamila Novotná Floriančičová
- Department of Biology, Faculty of Science, J. E. Purkyně University (UJEP), Usti Nad Labem, Czech Republic
- Centre for Nanotechnology and Biotechnology, Faculty of Science, UJEP, Usti Nad Labem, Czech Republic
| | | | - Jiří Smejkal
- Centre for Nanotechnology and Biotechnology, Faculty of Science, UJEP, Usti Nad Labem, Czech Republic
| | - Michaela Czerneková
- Department of Biology, Faculty of Science, J. E. Purkyně University (UJEP), Usti Nad Labem, Czech Republic
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Jan Malý
- Centre for Nanotechnology and Biotechnology, Faculty of Science, UJEP, Usti Nad Labem, Czech Republic
| | - Cedric Notredame
- Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stanislav Vinopal
- Department of Biology, Faculty of Science, J. E. Purkyně University (UJEP), Usti Nad Labem, Czech Republic.
- Centre for Nanotechnology and Biotechnology, Faculty of Science, UJEP, Usti Nad Labem, Czech Republic.
| |
Collapse
|
6
|
Roszkowska M, Gołdyn B, Wojciechowska D, Księżkiewicz Z, Fiałkowska E, Pluskota M, Kmita H, Kaczmarek Ł. How long can tardigrades survive in the anhydrobiotic state? A search for tardigrade anhydrobiosis patterns. PLoS One 2023; 18:e0270386. [PMID: 36630322 PMCID: PMC9833599 DOI: 10.1371/journal.pone.0270386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Anhydrobiosis is a desiccation tolerance that denotes the ability to survive almost complete dehydration without sustaining damage. The knowledge on the survival capacity of various tardigrade species in anhydrobiosis is still very limited. Our research compares anhydrobiotic capacities of four tardigrade species from different genera, i.e. Echiniscus testudo, Paramacrobiotus experimentalis, Pseudohexapodibius degenerans and Macrobiotus pseudohufelandi, whose feeding behavior and occupied habitats are different. Additionally, in the case of Ech. testudo, we analyzed two populations: one urban and one from a natural habitat. The observed tardigrade species displayed clear differences in their anhydrobiotic capacity, which appear to be determined by the habitat rather than nutritional behavior of species sharing the same habitat type. The results also indicate that the longer the state of anhydrobiosis lasts, the more time the animals need to return to activity.
Collapse
Affiliation(s)
- Milena Roszkowska
- Faculty of Biology, Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
- Faculty of Biology, Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bartłomiej Gołdyn
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Daria Wojciechowska
- Faculty of Physics, Department of Biomedical Physics, Adam Mickiewicz University, Poznań, Poland
| | - Zofia Księżkiewicz
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mateusz Pluskota
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Kmita
- Faculty of Biology, Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Kaczmarek
- Faculty of Biology, Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
7
|
Sieger J, Brümmer F, Ahn H, Lee G, Kim S, Schill RO. Reduced ageing in the frozen state in the tardigrade
Milnesium inceptum
(Eutardigrada: Apochela). J Zool (1987) 2022. [DOI: 10.1111/jzo.13018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Sieger
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Stuttgart Germany
| | - F. Brümmer
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Stuttgart Germany
| | - H. Ahn
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - G. Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - S. Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - R. O. Schill
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Stuttgart Germany
| |
Collapse
|
8
|
Brom JA, Pielak GJ. Desiccation-tolerance and globular proteins adsorb similar amounts of water. Protein Sci 2022; 31:e4288. [PMID: 35481639 PMCID: PMC8994485 DOI: 10.1002/pro.4288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
When exposed to desiccation stress, extremotolerant organisms from all domains of life produce protective disordered proteins with the potential to inform the design of excipients for formulating biologics and industrial enzymes. However, the mechanism(s) of desiccation protection remain largely unknown. To investigate the role of water sorption in desiccation protection, we use thermogravimetric analysis to study water adsorption by two desiccation-tolerance proteins, cytosolic abundant heat soluble protein D from tardigrades and late embryogenesis abundant protein 4 from the anhydrobiotic midge Polypedilum vanderplanki, and, as a control, the globular B1 domain of staphylococcal protein G. All samples adsorb similar amounts of water, suggesting that modulated water retention is not responsible for dehydration protection by desiccation-tolerance proteins.
Collapse
Affiliation(s)
- Julia A Brom
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
- Lineberger Cancer Center, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Tardigrada: An Emerging Animal Model to Study the Endoplasmic Reticulum Stress Response to Environmental Extremes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050872 DOI: 10.1007/978-3-030-67696-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Tardigrada (also known as "water bears") are hydrophilous microinvertebrates with a bilaterally symmetrical body and four pairs of legs usually terminating with claws. Water bears are quite complex animals and range from 50 to 1200 μm in length. Their body is divided into a head segment and four trunk segments, each bearing a pair of legs. They inhabit almost all terrestrial and aquatic environments, from the ocean depths to highest mountains ranges. However, one of their best known and unusual features is their capability for cryptobiosis. In this state tardigrades are able to survive extremely low and high temperatures and atmospheric pressures, complete lack of water, high doses of radiation, high concentrations of toxins and even a cosmic vacuum. The cellular mechanisms enabling cryptobiosis are poorly understood, although it appears the synthesis of certain types of molecules (sugars and proteins) enable the prevention of cellular damage at different levels. The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle able to integrate multiple extracellular and internal signals and generate adaptive cellular responses. However, the ER morphology and activity in the case of tardigrades has been studied rarely and in the context of oogenesis, functioning of the digestive system, and in the role and function of storage cells. Thus, there are no direct studies on the contribution of the ER in the ability of this organism to cope with environmental stress during cryptobiosis. Nevertheless, it is highly probable that the ER has a crucial role in this uncommon process. Since water bears are easy to handle laboratory animals, they may represent an ideal model organism to uncover the important role of the ER in the cell response to extreme environmental stress conditions.
Collapse
|
10
|
Wojciechowska D, Karachitos A, Roszkowska M, Rzeźniczak W, Sobkowiak R, Kaczmarek Ł, Kosicki JZ, Kmita H. Mitochondrial alternative oxidase contributes to successful tardigrade anhydrobiosis. Front Zool 2021; 18:15. [PMID: 33794934 PMCID: PMC8015188 DOI: 10.1186/s12983-021-00400-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Anhydrobiosis can be described as an adaptation to lack of water that enables some organisms, including tardigrades, to survive extreme conditions, even some that do not exist on Earth. The cellular mechanisms underlying anhydrobiosis are still not completely explained including the putative contribution of mitochondrial proteins. Since mitochondrial alternative oxidase (AOX), described as a drought response element in plants, was recently proposed for various invertebrates including tardigrades, we investigated whether AOX is involved in successful anhydrobiosis of tardigrades. Milnesium inceptum was used as a model for the study. We confirmed functionality of M. inceptum AOX and estimated its contribution to the tardigrade revival after anhydrobiosis of different durations. We observed that AOX activity was particularly important for M. inceptum revival after the long-term tun stage but did not affect the rehydration stage specifically. The results may contribute to our understanding and then application of anhydrobiosis underlying mechanisms.
Collapse
Affiliation(s)
- Daria Wojciechowska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.,Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andonis Karachitos
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Milena Roszkowska
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Wiktor Rzeźniczak
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Sobkowiak
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Z Kosicki
- Department of Avian Biology and Ecology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
11
|
Erdmann W, Idzikowski B, Kowalski W, Kosicki JZ, Kaczmarek Ł. Tolerance of two anhydrobiotic tardigrades Echiniscus testudo and Milnesium inceptum to hypomagnetic conditions. PeerJ 2021; 9:e10630. [PMID: 33604170 PMCID: PMC7863786 DOI: 10.7717/peerj.10630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
The open space is a hostile environment for all lifeforms not only due to vacuum, high radiation, low atmospheric pressure, and extremely low temperature, but also the absence of the geomagnetic field. The geomagnetic field protects Earth mainly from corpuscular radiation, that is, solar wind and cosmic radiation, but above all it influences organisms, including their cells, tissues and organs. Moreover, numerous studies conducted on plants and animals confirmed that hypomagnetic conditions (the term referring to all situations when the magnetic field is weaker than the typical geomagnetic field) have significant influence on the metabolism of living organisms. Although many studies dealt with a variety of aspects related mainly to the influence of hypomagnetic conditions on human health. Very few studies have considered the influence of hypomagnetic conditions on extremophiles. Astrobiologists have long been testing different extremofiles to find out if any multicellular organisms are able to survive in extreme conditions of open space. Among all multicellular extremophiles fit for such research, water bears (Tardigrada) are the most interesting. Not only are they one of the most resistant organisms on Earth, but results obtained from studies on these invertebrates can be extrapolated or applied to vertebrates (including humans). Despite this, studies on the influence of hypomagnetic conditions on tardigrades are rare, so far. In the present study, to test the influence of hypomagnetic conditions on the process of anhydrobiosis while entering and returning from anhydrobiosis, we used two terrestrial anhydrobiotic species that are Echiniscus testudo and Milnesium inceptum. To exclude the ambient magnetic field, experiments were carried out in a special magnetic field shielding chamber. In total, three experiments were conducted: (a) tardigrades in anhydrobiosis, (b) tardigrades entering anhydrobiosis and (c) tardigrades returning to active life. The obtained results clearly showed that even partial isolation from the geomagnetic field, that is, hypomagnetic conditions, has negative influence on anhydrobiotic abilities of both tested tardigrade species. In both species we observed lower survivability rate while entering anhydrobiosis, in anhydrobiotic state and returning to the active state. What is more, we observed a higher mortality rate in Ech. testudo than Mil. inceptum which suggest that different species response to the hypomagnetic conditions in different way. In conclusion, while current knowledge on the influence of hypomagnetic conditions on mortality of invertebrates is very limited, our results suggest that the presence of the magnetic field is a very important factor which should be considered in further research focused on potential survival of Earth organisms in outer space, spacecrafts or different planets and moons.
Collapse
Affiliation(s)
- Weronika Erdmann
- Department of Animal Taxonomy and Ecology/Faculty of Biology, Adam Mickiewicz University of Poznan, Poznań, Poland
| | - Bogdan Idzikowski
- Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
| | - Wojciech Kowalski
- Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
| | - Jakub Z. Kosicki
- Department of Avian Biology and Ecology/Faculty of Biology, Adam Mickiewicz University of Poznan, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology/Faculty of Biology, Adam Mickiewicz University of Poznan, Poznań, Poland
| |
Collapse
|
12
|
Guidetti R, Gneuß E, Cesari M, Altiero T, Schill RO. Life-history traits and description of the new gonochoric amphimictic Mesobiotus joenssoni (Eutardigrada: Macrobiotidae) from the island of Elba, Italy. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Comparative analyses of life-history theory studies are based on the characteristics of the life cycles of different species. For tardigrades, life-history traits are available only from laboratory cultures, most of which have involved parthenogenetic species. The discovery of a new gonochoristic bisexual Mesobiotus species in a moss collected on the island of Elba (Italy) provides us with the opportunity to describe Mesobiotus joenssoni sp. nov. and to collect data on the life-history traits of cultured specimens to increase our knowledge of the life-history strategies present in tardigrades. This new species is differentiated from all other species of the genus by the presence of granules (~1 µm in diameter) on the dorsal cuticle of the last two body segments, two large bulges (gibbosities) on the hindlegs and long, conical egg processes. The species exhibits sexual dimorphism in body length, with females being longer than males of the same age. The mean lifespan of specimens was 86 days, with a maximum of 150 days. The mean age at first oviposition was 19.8 days and the mean egg hatching time 15.4 days. The life-cycle traits correspond to those collected for the only other two macrobiotid species with gonochoric amphimictic reproduction examined so far.
Collapse
Affiliation(s)
- Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Elisa Gneuß
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Michele Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Tiziana Altiero
- Department of Education and Humanities, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy
| | - Ralph O Schill
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Kaczmarek Ł, Roszkowska M, Fontaneto D, Jezierska M, Pietrzak B, Wieczorek R, Poprawa I, Kosicki JZ, Karachitos A, Kmita H. Staying young and fit? Ontogenetic and phylogenetic consequences of animal anhydrobiosis. J Zool (1987) 2019. [DOI: 10.1111/jzo.12677] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ł. Kaczmarek
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - M. Roszkowska
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - D. Fontaneto
- National Research Council Water Research Institute (CNR‐IRSA) Verbania Italy
| | - M. Jezierska
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - B. Pietrzak
- Department of Hydrobiology Faculty of Biology Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | - R. Wieczorek
- Faculty of Chemistry University of Warsaw Warsaw Poland
| | - I. Poprawa
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - J. Z. Kosicki
- Department of Avian Biology and Ecology Faculty of Biology Adam Mickiewicz University Poznan Poznań Poland
| | - A. Karachitos
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - H. Kmita
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| |
Collapse
|
14
|
Vasanthan T, Nederveen JP, Stone J. Quantum-like decreased embryogenesis time with increased cold exposure time. Sci Rep 2019; 9:1229. [PMID: 30718526 PMCID: PMC6362279 DOI: 10.1038/s41598-018-35396-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 06/13/2018] [Indexed: 11/10/2022] Open
Abstract
Three theoretical models have been proposed to explain lifespan extension resulting from exposure to extreme conditions in microscopic animals: individuals become completely dormant and stop aging, continue to age or age but at a diminished rate. Here we show that the earliest life history stages, embryonic cell divisions, in the tardigrade species Hypsibius dujardini are retarded when eggs are reared at 0 °C. Compared to control specimens reared at 22 °C, juveniles that hatched from eggs exposed to 0 °C for 4 days and returned to 22 °C experienced a three-day lag, indicating that their biological age was less than their chronological age. As cold exposure duration increased (days = 10, 20, 40), incubation period at 22 °C decreased incrementally (days = 3, 2, 1), suggesting that tardigrades involve a threshold-determined, quantum-like, energetic-based system for controlling embryogenesis.
Collapse
Affiliation(s)
- Tarushika Vasanthan
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Origins Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada
| | - Joshua P Nederveen
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jonathon Stone
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada. .,Origins Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada.
| |
Collapse
|
15
|
Fontaneto D. Long-distance passive dispersal in microscopic aquatic animals. MOVEMENT ECOLOGY 2019; 7:10. [PMID: 30962931 PMCID: PMC6434837 DOI: 10.1186/s40462-019-0155-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 05/21/2023]
Abstract
Given their dormancy capability (long-term resistant stages) and their ability to colonise and reproduce, microscopic aquatic animals have been suggested having cosmopolitan distribution. Their dormant stages may be continuously moved by mobile elements through the entire planet to any suitable habitat, preventing the formation of biogeographical patterns. In this review, I will go through the evidence we have on the most common microscopic aquatic animals, namely nematodes, rotifers, and tardigrades, for each of the assumptions allowing long-distance dispersal (dormancy, viability, and reproduction) and all the evidence we have for transportation, directly from surveys of dispersing stages, and indirectly from the outcome of successful dispersal in biogeographical and phylogeographical studies. The current knowledge reveals biogeographical patterns also for microscopic organisms, with species-specific differences in ecological features that make some taxa indeed cosmopolitan with the potential for long-distance dispersal, but others with restricted geographic distributions.
Collapse
Affiliation(s)
- Diego Fontaneto
- National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| |
Collapse
|
16
|
Immediate and heritable costs of desiccation on the life history of the bdelloid rotifer Philodina roseola. ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-018-0379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Czerneková M, Janelt K, Student S, Jönsson KI, Poprawa I. A comparative ultrastructure study of storage cells in the eutardigrade Richtersius coronifer in the hydrated state and after desiccation and heating stress. PLoS One 2018; 13:e0201430. [PMID: 30096140 PMCID: PMC6086413 DOI: 10.1371/journal.pone.0201430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/16/2018] [Indexed: 02/03/2023] Open
Abstract
Tardigrades represent an invertebrate phylum with no circulatory or respiratory system. Their body cavity is filled with free storage cells of the coelomocyte-type, which are responsible for important physiological functions. We report a study comparing the ultrastructure of storage cells in anhydrobiotic and hydrated specimens of the eutardigrade Richtersius coronifer. We also analysed the effect of temperature stress on storage cell structure. Firstly, we verified two types of ultrastructurally different storage cells, which differ in cellular organelle complexity, amount and content of reserve material and connection to oogenetic stage. Type I cells were found to differ ultrastructurally depending on the oogenetic stage of the animal. The main function of these cells is energy storage. Storage cells of Type I were also observed in the single male that was found among the analysed specimens. The second cell type, Type II, found only in females, represents young undifferentiated cells, possibly stem cells. The two types of cells also differ with respect to the presence of nucleolar vacuoles, which are related to oogenetic stages and to changes in nucleolic activity during oogenesis. Secondly, this study revealed that storage cells are not ultrastructurally affected by six months of desiccation or by heating following this desiccation period. However, heating of the desiccated animals (tuns) tended to reduce animal survival, indicating that long-term desiccation makes these animals more vulnerable to heat stress. We confirmed the degradative pathways during the rehydration process after desiccation and heat stress. Our study is the first to document two ultrastructurally different types of storage cells in tardigrades and reveals new perspectives for further studies of tardigrade storage cells.
Collapse
Affiliation(s)
- Michaela Czerneková
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamil Janelt
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Silesian University of Technology, Institute of Automatic Control, Gliwice, Poland
| | - K. Ingemar Jönsson
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
18
|
Sørensen-Hygum TL, Stuart RM, Jørgensen A, Møbjerg N. Modelling extreme desiccation tolerance in a marine tardigrade. Sci Rep 2018; 8:11495. [PMID: 30065347 PMCID: PMC6068186 DOI: 10.1038/s41598-018-29824-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
It has recently been argued that the enigmatic tardigrades (water bears) will endure until the sun dies, surviving any astrophysical calamities in Earth's oceans. Yet, our knowledge of stress tolerance among marine tardigrade species is very limited and most investigations revolve around species living in moist habitats on land. Here, we investigate desiccation tolerance in the cosmopolitan marine tidal tardigrade, Echiniscoides sigismundi, providing the first thorough analysis on recovery upon desiccation from seawater. We test the influence on survival of desiccation surface, time spent desiccated (up to 1 year) and initial water volume. We propose analysis methods for survival estimates, which can be used as a future platform for evaluating and analysing recovery rates in organisms subjected to extreme stress. Our data reveal that marine tidal tardigrades tolerate extremely rapid and extended periods of desiccation from seawater supporting the argument that these animals are among the toughest organisms on Earth.
Collapse
Affiliation(s)
- Thomas L Sørensen-Hygum
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Robyn M Stuart
- Data Science Laboratory, Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aslak Jørgensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadja Møbjerg
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Giovannini I, Altiero T, Guidetti R, Rebecchi L. Will the Antarctic tardigrade Acutuncus antarcticus be able to withstand environmental stresses related to global climate change? ACTA ACUST UNITED AC 2018; 221:jeb.160622. [PMID: 29242185 DOI: 10.1242/jeb.160622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023]
Abstract
Because conditions in continental Antarctica are highly selective and extremely hostile to life, its biota is depauperate, but well adapted to live in this region. Global climate change has the potential to impact continental Antarctic organisms because of increasing temperatures and ultraviolet radiation. This research evaluates how ongoing climate changes will affect Antarctic species, and whether Antarctic organisms will be able to adapt to the new environmental conditions. Tardigrades represent one of the main terrestrial components of Antarctic meiofauna; therefore, the pan-Antarctic tardigrade Acutuncus antarcticus was used as model to predict the fate of Antarctic meiofauna threatened by climate change. Acutuncus antarcticus individuals tolerate events of desiccation, increased temperature and UV radiation. Both hydrated and desiccated animals tolerate increases in UV radiation, even though the desiccated animals are more resistant. Nevertheless, the survivorship of hydrated and desiccated animals is negatively affected by the combination of temperature and UV radiation, with the hydrated animals being more tolerant than desiccated animals. Finally, UV radiation has a negative impact on the life history traits of successive generations of A. antarcticus, causing an increase in egg reabsorption and teratological events. In the long run, A. antarcticus could be at risk of population reductions or even extinction. Nevertheless, because the changes in global climate will proceed gradually and an overlapping of temperature and UV increase could be limited in time, A. antarcticus, as well as many other Antarctic organisms, could have the potential to overcome global warming stresses, and/or the time and capability to adapt to the new environmental conditions.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Tiziana Altiero
- Department of Education and Humanities, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
20
|
|
21
|
Seybold AC, Wharton DA, Thorne MAS, Marshall CJ. Investigating trehalose synthesis genes after cold acclimation in the Antarctic nematode Panagrolaimus sp. DAW1. Biol Open 2017; 6:1953-1959. [PMID: 29175859 PMCID: PMC5769639 DOI: 10.1242/bio.023341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Panagrolaimus sp. DAW1 is a freeze-tolerant Antarctic nematode which survives extensive intracellular ice formation. The molecular mechanisms of this extreme adaptation are still poorly understood. We recently showed that desiccation-enhanced RNA interference (RNAi) soaking can be used in conjunction with quantitative polymerase chain reaction (qPCR) to screen for phenotypes associated with reduced expression of candidate genes in Panagrolaimus sp. DAW1. Here, we present the use of this approach to investigate the role of trehalose synthesis genes in this remarkable organism. Previous studies have shown that acclimating Panagrolaimus sp. DAW1 at 5°C before freezing or desiccation substantially enhances survival. In this study, the expression of tps-2 and other genes associated with trehalose metabolism, as well as lea-1, hsp-70 and gpx-1, in cold-acclimated and non-acclimated nematodes was analyzed using qPCR. Pd-tps-2 and Pd-lea-1 were significantly upregulated after cold acclimation, indicating an inducible expression in the cold adaptation of Panagrolaimus sp. DAW1. The role of trehalose synthesis genes in Panagrolaimus sp. DAW1 was further investigated by RNAi. Compared to the controls, Pd-tps-2a(RNAi)-treated and cold-acclimated nematodes showed a significant decrease in mRNA, but no change in trehalose content or freezing survival. The involvement of two other trehalose synthesis genes (tps-2b and gob-1) was also investigated. These findings provide the first functional genomic investigation of trehalose synthesis genes in the non-model organism Panagrolaimus sp. DAW1. The presence of several trehalose synthesis genes with different RNAi sensitivities suggests the existence of multiple backup systems in Panagrolaimus sp. DAW1, underlining the importance of this sugar in preparation for freezing. Summary: Functional genomics was used to investigate trehalose synthesis genes after cold acclimation in Panagrolaimus sp. DAW1, an Antarctic nematode with the ability to survive intracellular freezing.
Collapse
Affiliation(s)
- Anna C Seybold
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - David A Wharton
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, United Kingdom
| | - Craig J Marshall
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand .,Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
22
|
Jönsson KI, Schill RO, Rabbow E, Rettberg P, Harms-Ringdahl M. The fate of the TARDIS offspring: no intergenerational effects of space exposure. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Ingemar Jönsson
- School of Education and Environment; Kristianstad University; Kristianstad Sweden
| | - Ralph O. Schill
- Department of Zoology; Institute of Biomaterials and Biomolecular Systems; University of Stuttgart; Stuttgart Germany
| | - Elke Rabbow
- Radiation Biology; Institute of Aerospace Medicine, DLR; Cologne Germany
| | - Petra Rettberg
- Radiation Biology; Institute of Aerospace Medicine, DLR; Cologne Germany
| | - Mats Harms-Ringdahl
- Centre for Radiation Protection Research; Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| |
Collapse
|
23
|
Hygum TL, Clausen LKB, Halberg KA, Jørgensen A, Møbjerg N. Tun formation is not a prerequisite for desiccation tolerance in the marine tidal tardigradeEchiniscoides sigismundi. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas L. Hygum
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
| | - Lykke K. B. Clausen
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
| | - Kenneth A. Halberg
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
- Institute of Molecular, Cell and Systems Biology; College of Medical, Veterinary and Life Sciences, University of Glasgow; Davidson Building Room 324 Glasgow G12 8QQ UK
| | - Aslak Jørgensen
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
| | - Nadja Møbjerg
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
| |
Collapse
|
24
|
Czernekova M, Jönsson KI. Experimentally Induced Repeated Anhydrobiosis in the Eutardigrade Richtersius coronifer. PLoS One 2016; 11:e0164062. [PMID: 27828978 PMCID: PMC5102368 DOI: 10.1371/journal.pone.0164062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
Tardigrades represent one of the main animal groups with anhydrobiotic capacity at any stage of their life cycle. The ability of tardigrades to survive repeated cycles of anhydrobiosis has rarely been studied but is of interest to understand the factors constraining anhydrobiotic survival. The main objective of this study was to investigate the patterns of survival of the eutardigrade Richtersius coronifer under repeated cycles of desiccation, and the potential effect of repeated desiccation on size, shape and number of storage cells. We also analyzed potential change in body size, gut content and frequency of mitotic storage cells. Specimens were kept under non-cultured conditions and desiccated under controlled relative humidity. After each desiccation cycle 10 specimens were selected for analysis of morphometric characteristics and mitosis. The study demonstrates that tardigrades may survive up to 6 repeated desiccations, with declining survival rates with increased number of desiccations. We found a significantly higher proportion of animals that were unable to contract properly into a tun stage during the desiccation process at the 5th and 6th desiccations. Also total number of storage cells declined at the 5th and 6th desiccations, while no effect on storage cell size was observed. The frequency of mitotic storage cells tended to decline with higher number of desiccation cycles. Our study shows that the number of consecutive cycles of anhydrobiosis that R. coronifer may undergo is limited, with increased inability for tun formation and energetic constraints as possible causal factors.
Collapse
Affiliation(s)
- Michaela Czernekova
- School of Education and Environment, Kristianstad University, Kristianstad, Sweden
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail:
| | - K. Ingemar Jönsson
- School of Education and Environment, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
25
|
Abstract
To survive exposure to space conditions, organisms should have certain characteristics including a high tolerance for freezing, radiation and desiccation. The organisms with the best chance for survival under such conditions are extremophiles, like some species of Bacteria and Archea, Rotifera, several species of Nematoda, some of the arthropods and Tardigrada (water bears). There is no denying that tardigrades are one of the toughest animals on our planet and are the most unique in the extremophiles group. Tardigrada are very small animals (50 to 2,100 μm in length), and they inhabit great number of Earth environments. Ever since it was proven that tardigrades have high resistance to the different kinds of stress factors associated with cosmic journeys, combined with their relatively complex structure and their relative ease of observation, they have become a perfect model organism for space research. This taxon is now the focus of astrobiologists from around the world. Therefore, this paper presents a short review of the space research performed on tardigrades as well as some considerations for further studies.
Collapse
|
26
|
Grohme MA, Mali B, Wełnicz W, Michel S, Schill RO, Frohme M. The Aquaporin Channel Repertoire of the Tardigrade Milnesium tardigradum. Bioinform Biol Insights 2013; 7:153-65. [PMID: 23761966 PMCID: PMC3666991 DOI: 10.4137/bbi.s11497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Limno-terrestrial tardigrades are small invertebrates that are subjected to periodic drought of their micro-environment. They have evolved to cope with these unfavorable conditions by anhydrobiosis, an ametabolic state of low cellular water. During drying and rehydration, tardigrades go through drastic changes in cellular water content. By our transcriptome sequencing effort of the limno-terrestrial tardigrade Milnesium tardigradum and by a combination of cloning and targeted sequence assembly, we identified transcripts encoding eleven putative aquaporins. Analysis of these sequences proposed 2 classical aquaporins, 8 aquaglyceroporins and a single potentially intracellular unorthodox aquaporin. Using quantitative real-time PCR we analyzed aquaporin transcript expression in the anhydrobiotic context. We have identified additional unorthodox aquaporins in various insect genomes and have identified a novel common conserved structural feature in these proteins. Analysis of the genomic organization of insect aquaporin genes revealed several conserved gene clusters.
Collapse
Affiliation(s)
- Markus A Grohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Magazù S, Migliardo F, Gonzalez MA, Mondelli C, Parker SF, Vertessy BG. Molecular mechanisms of survival strategies in extreme conditions. Life (Basel) 2012; 2:364-76. [PMID: 25371270 PMCID: PMC4187154 DOI: 10.3390/life2040364] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/08/2012] [Accepted: 11/26/2012] [Indexed: 01/04/2023] Open
Abstract
Today, one of the major challenges in biophysics is to disclose the molecular mechanisms underlying biological processes. In such a frame, the understanding of the survival strategies in extreme conditions received a lot of attention both from the scientific and applicative points of view. Since nature provides precious suggestions to be applied for improving the quality of life, extremophiles are considered as useful model-systems. The main goal of this review is to present an overview of some systems, with a particular emphasis on trehalose playing a key role in several extremophile organisms. The attention is focused on the relation among the structural and dynamic properties of biomolecules and bioprotective mechanisms, as investigated by complementary spectroscopic techniques at low- and high-temperature values.
Collapse
Affiliation(s)
- Salvatore Magazù
- Department of Physics, University of Messina, Viale D'Alcontres 31, P.O. Box 55-98166, Messina, Italy.
| | - Federica Migliardo
- Department of Physics, University of Messina, Viale D'Alcontres 31, P.O. Box 55-98166, Messina, Italy.
| | - Miguel A Gonzalez
- Institut Laue Langevin, 6, Rue Jules Horowitz, F-38042 Grenoble Cedex 9, France.
| | - Claudia Mondelli
- CNR-IOM-OGG, Institut Laue Langevin, 6, Rue Jules Horowitz, F-38042 Grenoble Cedex 9, France.
| | - Stewart F Parker
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxon, OX11 0QX, UK.
| | - Beata G Vertessy
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Science, Budapest, Hungary.
| |
Collapse
|
28
|
Fontaneto D, Bunnefeld N, Westberg M. Long-term survival of microscopic animals under desiccation is not so long. ASTROBIOLOGY 2012; 12:863-869. [PMID: 22924877 DOI: 10.1089/ast.2012.0828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
More frequent events of drought are predicted to happen in the future, but our ability to predict the effect on the biota may be limited by our partial understanding of extremophiles. Among the few animals that are able to survive in the absence of water for long periods of time are rotifers, tardigrades, and nematodes. Here, we take advantage of lichen collections stored dry at ambient temperature and humidity for years in museums, and through statistical modeling we demonstrate that the survival rates over time do not differ among animal groups but are strongly influenced by the type of substrate (the different lichen species). Our results suggest that desiccated organisms are prone to irreversible damage to biological structures, independently of the different biochemical processes involved in desiccation tolerance by different animals. The influence of the environment overcomes any taxon-specific response to survive extreme droughts. The predicted ability to survive for up to 10 years while desiccated enables these organisms to achieve potential global distributions, endurance against parasites, and even survival when exposed to outer space.
Collapse
Affiliation(s)
- Diego Fontaneto
- National Research Council, Institute of Ecosystem Study, Verbania Pallanza, Italy.
| | | | | |
Collapse
|
29
|
Wełnicz W, Grohme MA, Kaczmarek L, Schill RO, Frohme M. Anhydrobiosis in tardigrades--the last decade. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:577-583. [PMID: 21440551 DOI: 10.1016/j.jinsphys.2011.03.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
The current state of knowledge about anhydrobiosis in tardigrades is presented. In response to adverse environmental conditions tardigrades arrest their metabolic activity and after complete dehydration enter the so-called "tun" state. In this ametabolic state they are able to tolerate exposure to various chemical and physical extremes. These micrometazoans have evolved various kinds of morphological, physiological and molecular adaptations to reduce the effects of desiccation. In this review we address behavioral adaptation, morphological features and molecules which determine the anhydrobiotic survival. The influence of the time spent in anhydrobiotic state on the lifespan and DNA and the role of the antioxidant defense system are also considered. Finally we summarize recent input from the "omics" sciences.
Collapse
Affiliation(s)
- Weronika Wełnicz
- Molecular Biology and Functional Genome Analysis, University of Applied Sciences Wildau, Germany.
| | | | | | | | | |
Collapse
|
30
|
Clegg JS. Stress-related proteins compared in diapause and in activated, anoxic encysted embryos of the animal extremophile, Artemia franciscana. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:660-664. [PMID: 21147115 DOI: 10.1016/j.jinsphys.2010.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 11/27/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
Previous work indicated similarities between diapause and anoxic quiescence in encysted embryos (cysts) of the brine shrimp Artemia franciscana. That possibility was examined further in the present study through an immunochemical study of the following stress-related proteins in low speed supernatants and pellets: hsc70, artemin, p26, hsp21, LEA Group 1 protein and p8. Changes in the amounts and locations of these proteins occurred during the initial period after release of diapause cysts from females, and after activated (diapause-terminated) cysts were made anoxic. However, with the passage of incubation time the patterns seen in both kinds of cysts were more similar than different, lending further support to the possibility that activated anoxic embryos retain many of the mechanisms operative in the previous diapause condition.
Collapse
Affiliation(s)
- James S Clegg
- Section of Molecular and Cellular Biology and Bodega Marine Laboratory, University of California, Davis, Bodega Bay, Davis, CA 94923, USA.
| |
Collapse
|
31
|
Grohme MA, Mali B, Schill RO, Frohme M. cDNA representational difference analysis for identifying transcripts regulated under anhydrobiosis in the tardigrade
Milnesium tardigradum. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2010.00610.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Markus A. Grohme
- Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Wildau, Germany
| | - Brahim Mali
- Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Wildau, Germany
| | - Ralph O. Schill
- Zoology, Biological Institute, Universität Stuttgart, Stuttgart, Germany
| | - Marcus Frohme
- Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
32
|
Guidetti R, Altiero T, Rebecchi L. On dormancy strategies in tardigrades. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:567-76. [PMID: 21402076 DOI: 10.1016/j.jinsphys.2011.03.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 05/19/2023]
Abstract
In this review we analyze the dormancy strategies of metazoans inhabiting "hostile to life" habitats, which have a strong impact on their ecology and in particular on the traits of their life history. Tardigrades are here considered a model animal, being aquatic organisms colonizing terrestrial habitats. Tardigrades evolved a large variety of dormant stages that can be ascribed to diapause (encystment, cyclomorphosis, resting eggs) and cryptobiosis (anhydrobiosis, cryobiosis, anoxibiosis). In tardigrades, diapause and cryptobiosis can occur separately or simultaneously, consequently the adoption of one adaptive strategy is not necessarily an alternative to the adoption of the other. Encystment and cyclomorphosis are characterized by seasonal cyclic changes in morphology and physiology of the animals. They share several common features and their evolution is strictly linked to the molting process. A bet-hedging strategy with different patterns of egg hatching time has been observed in a tardigrade species. Four categories of eggs have been identified: subitaneous, delayed-hatching, abortive and diapause resting eggs, which needs a stimulus to hatch (rehydration after a period of desiccation). Cryptobiotic tardigrades are able to withstand desiccation (anhydrobiosis) and freezing (cryobiosis) at any stage of their life-cycle. This ability involves a complex array of factors working at molecular (bioprotectans), physiological and structural levels. Animal survival and the accumulation of molecular damage are related to the time spent in the cryptobiotic state, to the abiotic parameters during the cryptobiotic state, and to the conditions during initial and final phases of the process. Cryptobiosis evolved independently at least two times in tardigrades, in eutardigrades and in echiniscoids. Within each evolutionary line, the absence of cryptobiotic abilities is more related to selective pressures to local habitat adaptation than to phylogenetic relationships. The selective advantages of cryptobiosis (e.g. persistency in "hostile to life" habitats, reduction of competitors, parasites and predators, escaping in time from stressful conditions) could explain the high tardigrade species diversity and number of specimens found in habitats that dry out compared to freshwater habitats.
Collapse
Affiliation(s)
- Roberto Guidetti
- Department of Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy.
| | | | | |
Collapse
|
33
|
Lemloh M, Brümmer F, Schill RO. Life‐history traits of the bisexual tardigrades
Paramacrobiotus tonollii
and
Macrobiotus sapiens. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2010.00599.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marie‐louise Lemloh
- Biological Institute, Zoology, Universität Stuttgart, Pfaffenwaldring, Stuttgart, Germany
| | - Franz Brümmer
- Biological Institute, Zoology, Universität Stuttgart, Pfaffenwaldring, Stuttgart, Germany
| | - Ralph O. Schill
- Biological Institute, Zoology, Universität Stuttgart, Pfaffenwaldring, Stuttgart, Germany
| |
Collapse
|
34
|
Boschetti C, Pouchkina-Stantcheva N, Hoffmann P, Tunnacliffe A. Foreign genes and novel hydrophilic protein genes participate in the desiccation response of the bdelloid rotifer Adineta ricciae. J Exp Biol 2011; 214:59-68. [DOI: 10.1242/jeb.050328] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SUMMARY
Bdelloid rotifers are aquatic micro-invertebrates with the ability to survive extreme desiccation, or anhydrobiosis, at any life stage. To gain insight into the molecular mechanisms used by bdelloids during anhydrobiosis, we constructed a cDNA library enriched for genes that are upregulated in Adineta ricciae 24 h after onset of dehydration. Resulting expressed sequence tags (ESTs) were analysed and sequences grouped into categories according to their probable identity. Of 75 unique sequences, approximately half (36) were similar to known genes from other species. These included genes encoding an unusual group 3 late embryogenesis abundant protein, and a number of other stress-related and DNA repair proteins. Open reading frames from a further 39 novel sequences, without counterparts in the database, were screened for the characteristics of intrinsically disordered proteins, i.e. hydrophilicity and lack of stable secondary structure. Such proteins have been implicated in desiccation tolerance and at least five were found. The majority of the genes identified was confirmed by real-time quantitative PCR to be capable of upregulation in response to evaporative water loss. Remarkably, further database and phylogenetic analysis highlighted four ESTs that are present in the A. ricciae genome but which represent genes probably arising from fungi or bacteria by horizontal gene transfer. Therefore, not only can bdelloid rotifers accumulate foreign genes and render them transcriptionally competent, but their expression pattern can be modified for participation in the desiccation stress response, and is presumably adaptive in this context.
Collapse
Affiliation(s)
- Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Natalia Pouchkina-Stantcheva
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Pia Hoffmann
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| |
Collapse
|
35
|
Reuner A, Hengherr S, Mali B, Förster F, Arndt D, Reinhardt R, Dandekar T, Frohme M, Brümmer F, Schill RO. Stress response in tardigrades: differential gene expression of molecular chaperones. Cell Stress Chaperones 2010; 15:423-30. [PMID: 19943197 PMCID: PMC3082643 DOI: 10.1007/s12192-009-0158-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022] Open
Abstract
Semi-terrestrial tardigrades exhibit a remarkable tolerance to desiccation by entering a state called anhydrobiosis. In this state, they show a strong resistance against several kinds of physical extremes. Because of the probable importance of stress proteins during the phases of dehydration and rehydration, the relative abundance of transcripts coding for two alpha-crystallin heat-shock proteins (Mt-sHsp17.2 and Mt-sHsp19.5), as well for the heat-shock proteins Mt-sHsp10, Mt-Hsp60, Mt-Hsp70 and Mt-Hsp90, were analysed in active and anhydrobiotic tardigrades of the species Milnesium tardigradum. They were also analysed in the transitional stage (I) of dehydration, the transitional stage (II) of rehydration and in heat-shocked specimens. A variable pattern of expression was detected, with most candidates being downregulated. Gene transcripts of one Mt-hsp70 isoform in the transitional stage I and Mt-hsp90 in the anhydrobiotic stage were significantly upregulated. A high gene expression (778.6-fold) was found for the small alpha-crystallin heat-shock protein gene Mt-sHsp17.2 after heat shock. We discuss the limited role of the stress-gene expression in the transitional stages between the active and anhydrobiotic tardigrades and other mechanisms which allow tardigrades to survive desiccation.
Collapse
Affiliation(s)
- Andy Reuner
- Zoology, Biological Institute, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Steffen Hengherr
- Zoology, Biological Institute, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Brahim Mali
- Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Bahnhofstraße 1, Gebäude 15, 15745 Wildau, Germany
| | - Frank Förster
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
| | - Detlev Arndt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69012 Heidelberg, Germany
| | - Richard Reinhardt
- MPI for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin-Dahlem, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
| | - Marcus Frohme
- Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Bahnhofstraße 1, Gebäude 15, 15745 Wildau, Germany
| | - Franz Brümmer
- Zoology, Biological Institute, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Ralph O. Schill
- Zoology, Biological Institute, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
36
|
Vogt G. Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontology 2010; 11:643-69. [PMID: 20582627 DOI: 10.1007/s10522-010-9291-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/11/2010] [Indexed: 12/20/2022]
Abstract
This article examines the suitability of the parthenogenetic marbled crayfish for research on ageing and longevity. The marbled crayfish is an emerging laboratory model for development, epigenetics and toxicology that produces up to 400 genetically identical siblings per batch. It is easily cultured, has an adult size of 4-9 cm, a generation time of 6-7 months and a life span of 2-3 years. Experimental data and biological peculiarities like isogenicity, direct development, indeterminate growth, high regeneration capacity and negligible senescence suggest that the marbled crayfish is particularly suitable to investigate the dependency of ageing and longevity from non-genetic factors such as stochastic developmental variation, allocation of metabolic resources, damage and repair, caloric restriction and social stress. It is also well applicable to examine alterations of the epigenetic code with increasing age and to identify mechanisms that keep stem cells active until old age. As a representative of the sparsely investigated crustaceans and of animals with indeterminate growth and extended brood care the marbled crayfish may even contribute to evolutionary theories of ageing and longevity. Some relatives are recommended as substitutes for investigation of topics, for which the marbled crayfish is less suitable like genetics of ageing and achievement of life spans of decades under conditions of low food and low temperature. Research on ageing in the marbled crayfish and its relatives is of practical relevance for crustacean fisheries and aquaculture and may offer starting points for the development of novel anti-ageing interventions in humans.
Collapse
Affiliation(s)
- Günter Vogt
- Department of Zoology, University of Heidelberg, Germany.
| |
Collapse
|
37
|
|
38
|
Ice crystallization and freeze tolerance in embryonic stages of the tardigrade Milnesium tardigradum. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:151-5. [DOI: 10.1016/j.cbpa.2010.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/19/2010] [Accepted: 01/23/2010] [Indexed: 11/17/2022]
|
39
|
Rebecchi L, Cesari M, Altiero T, Frigieri A, Guidetti R. Survival and DNA degradation in anhydrobiotic tardigrades. ACTA ACUST UNITED AC 2010; 212:4033-9. [PMID: 19946082 DOI: 10.1242/jeb.033266] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anhydrobiosis is a highly stable state of suspended animation in an organism due to its desiccation, which is followed by recovery after rehydration. Changes occurring during drying could damage molecules, including DNA. Using the anhydrobiotic tardigrade Paramacrobiotus richtersi as a model organism, we have evaluated the effects of environmental factors, such as temperature and air humidity level (RH), on the survival of desiccated animals and on the degradation of their DNA. Tardigrades naturally desiccated in leaf litter and tardigrades experimentally desiccated on blotting paper were considered. Replicates were kept at 37 degrees C and at different levels of RH for 21 days. RH values and temperature, as well as time of exposure to these environmental factors, have a negative effect on tardigrade survival and on the time required by animals to recover active life after desiccation. DNA damages (revealed as single strand breaks) occurred only in desiccated tardigrades kept for a long time at high RH values. These results indicate that during the anhydrobiotic state, damages take place and accumulate with time. Two hypotheses can be formulated to explain the results: (i) oxidative damages occur in desiccated specimens of P. richtersi, and (ii) high temperatures and high RH values change the state of the disaccharide trehalose, reducing its protective role.
Collapse
Affiliation(s)
- L Rebecchi
- Department of Animal Biology, University of Modena and Reggio Emilia, Italy.
| | | | | | | | | |
Collapse
|
40
|
Ricci C, Fontaneto D. The importance of being a bdelloid: Ecological and evolutionary consequences of dormancy. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11250000902773484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Schill RO, Mali B, Dandekar T, Schnölzer M, Reuter D, Frohme M. Molecular mechanisms of tolerance in tardigrades: New perspectives for preservation and stabilization of biological material. Biotechnol Adv 2009; 27:348-52. [DOI: 10.1016/j.biotechadv.2009.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|