1
|
Lin X, Yan C, Wang Y, Huang S, Yu H, Shih C, Jiang J, Xie F. The Genetic Architecture of Local Adaptation and Reproductive Character Displacement in Scutiger boulengeri Complex (Anura: Megophryidae). Mol Ecol 2025; 34:e17611. [PMID: 39681833 DOI: 10.1111/mec.17611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Speciation is a continuous process driven by barriers to gene flow. Based on genome-wide SNPs (single nucleotide polymorphisms) of 190 toads from 31 sampling sites of Scutiger boulengeri complex, we found evidence for monophyly which represented a continuous speciation process of at least six lineages in S. boulengeri, which radiated and exhibited varying degrees of divergence and gene flow. The SNP-based phylogenetic tree was largely discordant with the multilocus mitochondrial tree (i.e., S. mammatus and S. glandulatus nested in the lineages of S. boulengeri) published before. The Min Mountains (MM) and Qinghai-Tibet Plateau (QTP) lineages differ fundamentally in habitat (i.e., elevation) and morphology (i.e., SVL), we detected signatures of potential high-altitude and cold adaptation genes in QTP (vs. MM). We found the evidence of reproductive trait disparity (i.e., SVL and nuptial pads) is key to promoting sympatric rather than allopatric species pairs. In addition, we identified selection signals for genes related to sympatric character displacement, genes linked to obesity-related traits, nuptial spines morphology and enlarged chest nuptial pads in S. mammatus (vs. QTP group of S. boulengeri). Our study provided new insight and paradigm for a varied speciation pattern from local adaptation of allopatry to sympatric character displacement in the S. boulengeri complex.
Collapse
Affiliation(s)
- Xiuqin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfei Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sining Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoqi Yu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chungkun Shih
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Changdu, China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Hofmann S, Podsiadlowski L, Andermann T, Matschiner M, Baniya CB, Litvinchuk SN, Martin S, Masroor R, Yang J, Zheng Y, Jablonski D, Schmidt J. The last of their kind: Is the genus Scutiger (Anura: Megophryidae) a relict element of the paleo-Transhimalaya biota? Mol Phylogenet Evol 2024; 201:108166. [PMID: 39127262 DOI: 10.1016/j.ympev.2024.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The orographic evolution of the Himalaya-Tibet Mountain system continues to be a subject of controversy, leading to considerable uncertainty regarding the environment and surface elevation of the Tibetan Plateau during the Cenozoic era. As many geoscientific (but not paleontological) studies suggest, elevations close to modern heights exist in vast areas of Tibet since at least the late Paleogene, implicating the presence of large-scale alpine environments for more than 30 million years. To explore a recently proposed alternative model that assumes a warm temperate environment across paleo-Tibet, we carried out a phylogeographic survey using genomic analyses of samples covering the range of endemic lazy toads (Scutiger) across the Himalaya-Tibet orogen. We identified two main clades, with several, geographically distinct subclades. The long temporal gap between the stem and crown age of Scutiger may suggest high extinction rates. Diversification within the crown group, depending on the calibration, occurred either from the Mid-Miocene or Late-Miocene and continued until the Holocene. The present-day Himalayan Scutiger fauna could have evolved from lineages that existed on the southern edges of the paleo-Tibetan area (the Transhimalaya = Gangdese Shan), while extant species living on the eastern edge of the Plateau originated probably from the eastern edges of northern parts of the ancestral Tibetan area (Hoh Xil, Tanggula Shan). Based on the Mid-Miocene divergence time estimation and ancestral area reconstruction, we propose that uplift-associated aridification of a warm temperate Miocene-Tibet, coupled with high extirpation rates of ancestral populations, and species range shifts along drainage systems and epigenetic transverse valleys of the rising mountains, is a plausible scenario explaining the phylogenetic structure of Scutiger. This hypothesis aligns with the fossil record but conflicts with geoscientific concepts of high elevated Tibetan Plateau since the late Paleogene. Considering a Late-Miocene/Pliocene divergence time, an alternative scenario of dispersal from SE Asia into the East, Central, and West Himalaya cannot be excluded, although essential evolutionary and biogeographic aspects remain unresolved within this model.
Collapse
Affiliation(s)
- Sylvia Hofmann
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, 53113 Bonn, Germany.
| | - Lars Podsiadlowski
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, 53113 Bonn, Germany.
| | - Tobias Andermann
- Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden.
| | | | - Chitra B Baniya
- Central Department of Botany, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal
| | - Spartak N Litvinchuk
- Institute of Cytology of the Russian Academy of Sciences, St. Peterburg 194064, Russia
| | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, 53113 Bonn, Germany.
| | - Rafaqat Masroor
- Pakistan Museum of Natural History, Islamabad 44000, Pakistan
| | - Jianhuan Yang
- Kadoorie Conservation China, Kadoorie Farm and Botanic Garden, Hongkong, China.
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovakia.
| | - Joachim Schmidt
- General and Systematic Zoology, Institute of Biosciences, University of Rostock, 18055 Rostock, Germany
| |
Collapse
|
3
|
Fu QL, Mo ZQ, Xiang XG, Milne RI, Jacquemyn H, Burgess KS, Sun YN, Yan H, Qiu L, Yang BY, Tan SL. Plastome phylogenomics and morphological traits analyses provide new insights into the phylogenetic position, species delimitation and speciation of Triplostegia (Caprifoliaceae). BMC PLANT BIOLOGY 2023; 23:645. [PMID: 38097946 PMCID: PMC10722739 DOI: 10.1186/s12870-023-04663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. RESULTS Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. CONCLUSIONS Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegia.
Collapse
Affiliation(s)
- Qing-Li Fu
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhi-Qiong Mo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001, Leuven, Belgium
| | - Kevin S Burgess
- College of Letters and Sciences, Columbus State University, University System of Georgia, Columbus, GA, 31907-5645, USA
| | - Ya-Nan Sun
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hua Yan
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Li Qiu
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Bo-Yun Yang
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shao-Lin Tan
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
4
|
Yin Q, Ren Z, Wen X, Liu B, Song D, Zhang K, Dou H. Assessment of population genetic diversity and genetic structure of the North Chinese leopard (Panthera pardus japonensis) in fragmented habitats of the Loess Plateau, China. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
5
|
Lin XQ, Hou YM, Yang WZ, Shi SC, Zheng PY, Shih CK, Jiang JP, Xie F, Jiang JP, Xie F, 中国科学院大学, 北京100049, 中国, 首都师范大学生命科学学院, 北京100048, 中国, 美国国家自然历史博物馆, 史密森学会, 华盛顿20013–7012, 美国, 西藏生态安全监测网, 芒康生物多样性与生态监测站, 西藏 昌都854500, 中国, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Sciences, Capital Normal University, Beijing 100048, China, Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013–7012, USA, Mangkang Biodiversity and Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China. A wide hybrid zone mediated by precipitation contributed to confused geographical structure of Scutiger boulengeri. Zool Res 2023; 44:3-19. [PMID: 36171715 PMCID: PMC9841186 DOI: 10.24272/j.issn.2095-8137.2022.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Confused geographical structure of a population and mitonuclear discordance are shaped by a combination of rapid changes in population demographics and shifts in ecology. In this study, we generated a time-calibrated phylogeny of Scutiger boulengeri, an endemic Xizang alpine toad occurring in mountain streams on the Qinghai-Xizang (Tibet) Plateau (QTP). Based on three mitochondrial DNA (mtDNA) genes, eight clades were assigned to three deeply divergent lineages. Analysis of nuclear DNA (nuDNA) genes revealed three distinct clusters without geographic structure, indicating significantly high rates of gene flow. Coalescent theory framework analysis (approximate Bayesian computation model DIYABC and Migrate-N) suggested that divergence of the main intraspecific clusters was the result of hybridization after secondary contact in the Holocene around 0.59 million years ago (Ma). The ratio of mtDNA F ST (fixation index) to nuDNA F ST was 2.3, thus failing to show male-biased dispersal. Geographic cline analysis showed that a wide hybrid zone was initially established in southwestern China, without significant reproductive isolation but with strong introgression in S. boulengeri, suggesting high hybrid fitness. Furthermore, mtDNA genes exhibited isolation by distance (IBD) while nuDNA genes exhibited significant isolation by environment (IBE). Results suggested that mitonuclear discordance may have initially been caused by geographic isolation, followed by precipitation-mediated hybridization, producing a wide hybrid zone and geographic structure confusion of nuDNA genes in S. boulengeri. This study indicated that complicated historical processes may have led to specific genetic patterns, with a specific climate factor facilitating gene flow in the system.
Collapse
Affiliation(s)
- Xiu-Qin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Meng Hou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Zhao Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Chao Shi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu-Yang Zheng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chung-Kun Shih
- College of Life Sciences, Capital Normal University, Beijing 100048, China,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013–7012, USA
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China,Mangkang Biodiversity and Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China,Mangkang Biodiversity and Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China,E-mail:
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Population genetic structure and evolutionary demographic patterns of Phrynoderma karaavali, an edible frog species of Kerala, India. J Genet 2022. [DOI: 10.1007/s12041-022-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Arekar K, Tiwari N, Sathyakumar S, Khaleel M, Karanth P. Geography vs. past climate: the drivers of population genetic structure of the Himalayan langur. BMC Ecol Evol 2022; 22:100. [PMID: 35971061 PMCID: PMC9377076 DOI: 10.1186/s12862-022-02054-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Contemporary species distribution, genetic diversity and evolutionary history in many taxa are shaped by both historical and current climate as well as topography. The Himalayas show a huge variation in topography and climatic conditions across its entire range, and have experienced major climatic fluctuations in the past. However, very little is known regarding how this heterogenous landscape has moulded the distribution of Himalayan fauna. A recent study examined the effect of these historical events on the genetic diversity of the Himalayan langurs in Nepal Himalaya. However, this study did not include the samples from the Indian Himalayan region (IHR). Therefore, here we revisit the questions addressed in the previous study with a near complete sampling from the IHR, along with the samples from the Nepal Himalaya. We used the mitochondrial Cytochrome-b (Cyt-b, 746 bp) region combined with multiple phylogeographic analyses and palaeodistribution modelling. Results Our dataset contained 144 sequences from the IHR as well as the Nepal Himalaya. Phylogenetic analysis showed a low divergent western clade nested within high divergent group of eastern lineages and in the network analysis we identified 22 haplotypes over the entire distribution range of the Himalayan langurs. Samples from the Nepal Himalaya showed geographically structured haplotypes corresponding to different river barriers, whereas samples from IHR showed star-like topology with no structure. Our statistical phylogeography analysis using diyABC supported the model of east to west colonisation of these langurs with founder event during colonisation. Analysis of demographic history showed that the effective population size of the Himalayan langurs decreased at the onset of last glacial maximum (LGM) and started increasing post LGM. The palaeodistribution modelling showed that the extent of suitable habitat shifted from low elevation central Nepal, and adjoining parts of north India, during LGM to the western Himalaya at present. Conclusion The current genetic diversity and distribution of Himalayan langurs in the Nepal Himalaya has been shaped by river barriers, whereas the rivers in the IHR had relatively less time to act as a strong genetic barrier after the recent colonisation event. Further, the post LGM expansion could have had confounding effect on Himalayan langur population structure in both Nepal Himalaya and IHR. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02054-1.
Collapse
|
8
|
Arifin U, Smart U, Husemann M, Hertwig ST, Smith EN, Iskandar DT, Haas A. Phylogeographic inference of Sumatran ranids bearing gastromyzophorous tadpoles with regard to the Pleistocene drainage systems of Sundaland. Sci Rep 2022; 12:12013. [PMID: 35853951 PMCID: PMC9296532 DOI: 10.1038/s41598-022-14722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Rivers are known to act as biogeographic barriers in several strictly terrestrial taxa, while possibly serving as conduits of dispersal for freshwater-tolerant or -dependent species. However, the influence of river systems on genetic diversity depends on taxa-specific life history traits as well as other geographic factors. In amphibians, several studies have demonstrated that river systems have only minor influence on their divergence. Here, we assess the role of the paleodrainage systems of the Sunda region (with a focus on the island of Sumatra) in shaping the evolutionary history of two genera of frogs (Sumaterana and Wijayarana) whose tadpoles are highly dependent on cascading stream habitats. Our phylogenetic results show no clear association between the genetic diversification patterns of both anurans genera and the existence of paleodrainage systems. Time-calibrated phylogenies and biogeographical models suggest that these frogs colonized Sumatra and diversified on the island before the occurrence of the Pleistocene drainage systems. Both genera demonstrate phylogenetic structuring along a north–south geographic axis, the temporal dynamics of which coincide with the geological chronology of proto Sumatran and -Javan volcanic islands. Our results also highlight the chronic underestimation of Sumatran biodiversity and call for more intense sampling efforts on the island.
Collapse
Affiliation(s)
- Umilaela Arifin
- Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Universität Hamburg, Edmund-Siemers-Allee 1, 20148, Hamburg, Germany.
| | - Utpal Smart
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.,Amphibian & Reptile Diversity Research Center Department of Biology, University of Texas at Arlington, Arlington, TX, 76019-0498, USA
| | - Martin Husemann
- Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Universität Hamburg, Edmund-Siemers-Allee 1, 20148, Hamburg, Germany
| | - Stefan T Hertwig
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Eric N Smith
- Amphibian & Reptile Diversity Research Center Department of Biology, University of Texas at Arlington, Arlington, TX, 76019-0498, USA
| | - Djoko T Iskandar
- Basic Science Committee, Indonesian Academy of Sciences, Jalan Medan Merdeka Selatan 11, Jakarta, 10110, Indonesia
| | - Alexander Haas
- Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Universität Hamburg, Edmund-Siemers-Allee 1, 20148, Hamburg, Germany
| |
Collapse
|
9
|
Zheng Y, Xie F. Underwater calling behavior in two high‐altitude frog species. J Zool (1987) 2022. [DOI: 10.1111/jzo.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Zheng
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
| | - F. Xie
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
| |
Collapse
|
10
|
Knutti J, Braunisch V, Pellet J, Arlettaz R. Improving longitudinal habitat connectivity in major river restoration projects through farmland re-allocation. J Nat Conserv 2021. [DOI: 10.1016/j.jnc.2021.126062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Lin X, Shih C, Hou Y, Shu X, Zhang M, Hu J, Jiang J, Xie F. Climatic-niche evolution with key morphological innovations across clades within Scutiger boulengeri (Anura: Megophryidae). Ecol Evol 2021; 11:10353-10368. [PMID: 34367580 PMCID: PMC8328447 DOI: 10.1002/ece3.7838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
The studies of climatic-niche shifts over evolutionary time accompanied by key morphological innovations have attracted the interest of many researchers recently. We applied ecological niche models (ENMs), ordination method (environment principal component analyses; PCA-env), combined phylogenetic comparative methods (PCMs), and phylogenetic generalized least squares (PGLS) regression methods to analyze the realized niche dynamics and correspondingly key morphological innovations across clades within Scutiger boulengeri throughout their distributions in Qinghai-Tibet Plateau (QTP) margins of China. Our results show there are six clades in S. boulengeri and obvious niche divergences caused by niche expansion in three clades. Moreover, in our system, niche expansion is more popular than niche unfilling into novel environmental conditions. Annual mean temperature, annual precipitation, and precipitation of driest month may contribute to such a shift. In addition, we identified several key climatic factors and morphological traits that tend to be associated with niche expansion in S. boulengeri clades correspondingly. We found phenotypic plasticity [i.e., length of lower arm and hand (LAHL), hind-limb length (HLL), and foot length (FL)] and evolutionary changes [i.e., snout-vent length (SVL)] may together contribute to niche expansion toward adapting novel niche, which provides us a potential pattern of how a colonizing toad might seed a novel habitat to begin the process of speciation and finally adaptive radiation. For these reasons, persistent phylogeographic divisions and accompanying divergences in niche occupancy and morphological adaption suggest that for future studies, distinct genetic structure and morphological changes corresponding to each genetic clade should be included in modeling niche evolution dynamics, but not just constructed at the species level.
Collapse
Affiliation(s)
- Xiuqin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chungkun Shih
- College of Life Sciences and Academy for Multidisciplinary StudiesCapital Normal UniversityBeijingChina
- Department of PaleobiologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Yinmeng Hou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoxiao Shu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meihua Zhang
- University of Chinese Academy of SciencesBeijingChina
| | - Junhua Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
- Mangkang Ecological StationTibet Ecological Safety Monitor NetworkChangduChina
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Liu Y, Yao L, Ci Y, Cao X, Zhao M, Li Y, Zhang X. Genetic differentiation of geographic populations of Rattus tanezumi based on the mitochondrial Cytb gene. PLoS One 2021; 16:e0248102. [PMID: 33735257 PMCID: PMC7971478 DOI: 10.1371/journal.pone.0248102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/21/2021] [Indexed: 11/18/2022] Open
Abstract
Rattus tanezumi is a common domestic rat and host of the bubonic plague pathogen in China and Southeast Asia (SEA). The origin, genetic differentiation and dispersal of R. tanezumi have received increasing attention from researchers. The population genetics of R. tanezumi based on its mitochondrial cytochrome b gene have been studied to explain the origin, relationships and dispersal of populations. In this study, we captured a total of 229 rats; morphological and molecular biological identification cytochrome oxidase subunit I (COI) confirmed 131 R. tanezumi individuals collected from 6 provincial areas, and their Cytb gene sequences were analyzed. The results showed that the population in Mohan (MH), Yunnan, had the highest genetic diversity, while that in Ningde (ND), Fujian, had the lowest. Tajima’s D statistic for all populations was negative and nonsignificant, indicating the possible expansion of R. tanezumi populations. Low gene flow occurred between the Zhangmu (ZM) R. tanezumi population and other populations, and the genetic differentiation among them was high. Furthermore, our analyses revealed the ZM lineage was the oldest lineage among the groups and diverged ~1.06 Mya, followed by the Luoyang (LY) lineages (~0.51 Mya) and Yunnan lineage (~0.33 Mya). In southeastern Yunnan, the Jinshuihe (JSH) and MH populations were more closely related to the populations in southeastern China (Fuzhou (FZ), ND, Quanzhou (QZ), Nanchang (NC)) and inland areas (Chongqing (CQ), LY) than to those in other areas of Yunnan (Jiegao (JG) and Qingshuihe (QSH)), indicating that R. tanezumi may have spread from southeastern Yunnan to the interior of China. In summary, R. tanezumi may have originated in ZM and adjacent areas, spread to Yunnan, and then spread from the southeast of Yunnan inland or directly eastward from ZM to inland China.
Collapse
Affiliation(s)
- Yingying Liu
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lisi Yao
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Ying Ci
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xiaomei Cao
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Minghui Zhao
- Jiangxi International Travel Health Care Center, Nanchang, Jiangxi, China
| | - Ying Li
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - XiaoLong Zhang
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Wei X, Huang M, Yue Q, Ma S, Li B, Mu Z, Peng C, Gao W, Liu W, Zheng J, Weng X, Sun X, Zuo Q, Bo S, Yuan X, Zhang W, Yang G, Ding Y, Wang X, Wang T, Hua P, Wang Z. Long-term urbanization impacts the eastern golden frog ( Pelophylax plancyi) in Shanghai City: Demographic history, genetic structure, and implications for amphibian conservation in intensively urbanizing environments. Evol Appl 2021; 14:117-135. [PMID: 33519960 PMCID: PMC7819575 DOI: 10.1111/eva.13156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Understanding the mechanisms of how urbanization influences the evolution of native species is vital for urban wildlife ecology and conservation in the Anthropocene. With thousands of years of agriculture-dominated historical urbanization followed by 40 years of intensive and rapid urbanization, Shanghai provides an ideal environment to study how the two-stage urbanization process influences the evolution of indigenous wildlife, especially of anuran species. Therefore, in this study, we used mitochondrial Cyt-b gene, microsatellite (SSR), and single nucleotide polymorphism (SNP) data to evaluate the demographic history and genetic structure of the eastern golden frog (Pelophylax plancyi), by sampling 407 individuals from 15 local populations across Shanghai, China. All local populations experienced bottlenecks during historical urbanization, while the local populations in urban areas maintained comparable contemporary effective population sizes (N e) and genetic diversity with suburban and rural populations. Nevertheless, the rapid modern urbanization has already imposed significant negative effects to the integrity of populations. The 15 local populations were differentiated into eight genetic clusters, showing a spatial distribution pattern consistent with the current urbanization gradient and island-mainland geography. Although moderate gene flow still occurred from the rural peripheral cluster to urban and suburban clusters, population fragmentation was more serious in the urban and suburban populations, where higher urbanization levels within 2-km radius areas showed significant negative relationships to the N e and genetic diversity of local populations. Therefore, to protect urban wildlife with limited dispersal ability, improving conditions in fragmented habitat remnants might be most essential for local populations living in more urbanized areas. Meanwhile, we highlight the need to preserve large unfragmented rural habitats and to construct corridor networks to connect discrete urban habitat remnants for the long-term wildlife conservation in intensively urbanizing environments.
Collapse
Affiliation(s)
- Xu Wei
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Meiling Huang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Qu Yue
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Shuo Ma
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Ben Li
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Zhiqiang Mu
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Chuan Peng
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Wenxuan Gao
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Wenli Liu
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Jiaxin Zheng
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaodong Weng
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaohui Sun
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Qingqiu Zuo
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Shunqi Bo
- Shanghai Landscaping & City Appearance Administrative BureauShanghai Forestry BureauShanghaiChina
| | - Xiao Yuan
- Shanghai Landscaping & City Appearance Administrative BureauShanghai Forestry BureauShanghaiChina
| | - Wei Zhang
- Natural History Research Centre of Shanghai Natural History MuseumShanghai Science and Technology MuseumShanghaiChina
| | - Gang Yang
- Natural History Research Centre of Shanghai Natural History MuseumShanghai Science and Technology MuseumShanghaiChina
| | - Youzhong Ding
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaoming Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
- Shanghai Science and Technology MuseumShanghaiChina
| | - Tianhou Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
- Institute of Eco‐ChongmingShanghaiChina
| | - Panyu Hua
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Zhenghuan Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
- Joint Translational Science and Technology Research InstituteEast China Normal UniversityShanghaiChina
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research StationMinistry of Education & Shanghai Science and Technology CommitteeShanghaiChina
| |
Collapse
|
14
|
Zhang D, Hui H, Yu G, Song X, Liu S, Yuan S, Xiao H, Rao D. Shared response to changes in drainage basin: Phylogeography of the Yunnan small narrow-mouthed frog, Glyphoglossus yunnanensis (Anura: Microhylidae). Ecol Evol 2020; 10:1567-1580. [PMID: 32076534 PMCID: PMC7029061 DOI: 10.1002/ece3.6011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/23/2022] Open
Abstract
AIM With the late Cenozoic uplift of the Qinghai-Tibetan Plateau (QTP), drainage of the southeastern edge of the QTP changed significantly. However, the impact of this dramatic change on the geographical distribution and genetic diversity of endemic organisms is still poorly understood. Here, we examined the geographical patterns of genetic variation in the Yunnan small narrow-mouthed frog, Glyphoglossus yunnanensis (Microhylidae), and two alternative hypotheses were tested: That is, the geographical distribution of genetic variation was determined by either the contemporary drainage basin or historical drainage basins. LOCATION The Mountains of southwest China. MATERIALS AND METHODS Analyses were based on 417 specimens collected from across the distribution of the species. We reconstructed the genealogy (Bayesian and maximum parsimony methods) and assessed demographic history based on DNA sequencing data from mitochondrial and nuclear markers. We also mapped the genetic diversity and estimated the divergence times by a relaxed clock model. RESULTS The species has maintained a relatively stable population size without recent population expansion. Four major maternal lineages were identified with good support, one representing a possible cryptic species and the other three showing further subdivision. The distribution of these deeply differentiated lineages/sublineages corresponded well to geographical regions. The secondary contact zones and phylogeographic breaks in distinct lineages of G. yunnanensis were almost concordant with those of Nanorana yunnanensis. MAIN CONCLUSIONS Lineage division conformed to the hypothesis of drainage system evolution, that is, the phylogeographic pattern of G. yunnanensis was shaped by historical drainage patterns. Concordance in phylogeographic patterns may suggest a shared response to common hydrogeological history and also might indicate that there was more contribution of the drainage history than ecological or life-history traits in structuring genetic variation between these two disparate codistributed taxa G. yunnanensis and N. yunnanensis.
Collapse
Affiliation(s)
- Dong‐Ru Zhang
- College of Life SciencesYunnan UniversityKunmingChina
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Hong Hui
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Guo‐Hua Yu
- College of Life SciencesGuangxi Normal UniversityGuilinChina
| | - Xin‐Qiang Song
- Yingjing Administration of Daxiangling Nature ReserveYaanChina
| | - Shuo Liu
- Kunming Natural History Museum of ZoologyKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Si‐Qi Yuan
- Bioengineering CollegeSichuan University of Science and EngineeringYibinChina
| | - Heng Xiao
- College of Life SciencesYunnan UniversityKunmingChina
| | - Ding‐Qi Rao
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| |
Collapse
|
15
|
Atlas JE, Fu J. Isolation by resistance analysis reveals major barrier effect imposed by the Tsinling Mountains on the Chinese wood frog. J Zool (1987) 2019. [DOI: 10.1111/jzo.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. E. Atlas
- Department of Integrative Biology University of Guelph Guelph Ontario Canada
| | - J. Fu
- Department of Integrative Biology University of Guelph Guelph Ontario Canada
| |
Collapse
|
16
|
Licata F, Ficetola GF, Freeman K, Mahasoa RH, Ravololonarivo V, Solofo Niaina Fidy JF, Koto-Jean AB, Nahavitatsara ER, Andreone F, Crottini A. Abundance, distribution and spread of the invasive Asian toad Duttaphrynus melanostictus in eastern Madagascar. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Waraniak JM, Fisher JDL, Purcell K, Mushet DM, Stockwell CA. Landscape genetics reveal broad and fine-scale population structure due to landscape features and climate history in the northern leopard frog ( Rana pipiens) in North Dakota. Ecol Evol 2019; 9:1041-1060. [PMID: 30805139 PMCID: PMC6374656 DOI: 10.1002/ece3.4745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Prehistoric climate and landscape features play large roles structuring wildlife populations. The amphibians of the northern Great Plains of North America present an opportunity to investigate how these factors affect colonization, migration, and current population genetic structure. This study used 11 microsatellite loci to genotype 1,230 northern leopard frogs (Rana pipiens) from 41 wetlands (30 samples/wetland) across North Dakota. Genetic structure of the sampled frogs was evaluated using Bayesian and multivariate clustering methods. All analyses produced concordant results, identifying a major east-west split between two R. pipiens population clusters separated by the Missouri River. Substructuring within the two major identified population clusters was also found. Spatial principal component analysis (sPCA) and variance partitioning analysis identified distance, river basins, and the Missouri River as the most important landscape factors differentiating R. pipiens populations across the state. Bayesian reconstruction of coalescence times suggested the major east-west split occurred ~13-18 kya during a period of glacial retreat in the northern Great Plains and substructuring largely occurred ~5-11 kya during a period of extreme drought cycles. A range-wide species distribution model (SDM) for R. pipiens was developed and applied to prehistoric climate conditions during the Last Glacial Maximum (21 kya) and the mid-Holocene (6 kya) from the CCSM4 climate model to identify potential refugia. The SDM indicated potential refugia existed in South Dakota or further south in Nebraska. The ancestral populations of R. pipiens in North Dakota may have inhabited these refugia, but more sampling outside the state is needed to reconstruct the route of colonization. Using microsatellite genotype data, this study determined that colonization from glacial refugia, drought dynamics in the northern Great Plains, and major rivers acting as barriers to gene flow were the defining forces shaping the regional population structure of R. pipiens in North Dakota.
Collapse
Affiliation(s)
- Justin M. Waraniak
- Department of Biological Sciences, Environmental and Conservation Sciences Graduate ProgramNorth Dakota State UniversityFargoNorth Dakota
| | - Justin D. L. Fisher
- Department of Biological Sciences, Environmental and Conservation Sciences Graduate ProgramNorth Dakota State UniversityFargoNorth Dakota
- Present address:
Natural Resource Conservation ServiceFergus FallsMinnesota
| | - Kevin Purcell
- Department of Biological Sciences, Environmental and Conservation Sciences Graduate ProgramNorth Dakota State UniversityFargoNorth Dakota
- Present address:
Data Science and Analytics ProgramHarrisburg UniversityHarrisburgPennsylvania
| | - David M. Mushet
- U.S. Geological SurveyNorthern Prairie Wildlife Research CenterJamestownNorth Dakota
| | - Craig A. Stockwell
- Department of Biological Sciences, Environmental and Conservation Sciences Graduate ProgramNorth Dakota State UniversityFargoNorth Dakota
| |
Collapse
|
18
|
Sun Z, Wang H, Zhou W, Shi W, Zhu W, Zhang B. How rivers and historical climate oscillations impact on genetic structure in Chinese Muntjac ( Muntiacus reevesi)? DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
- Department of Medicine; University of Utah; Salt Lake City Utah USA
| | - Hui Wang
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
| | - Wenliang Zhou
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
| | - Wenbo Shi
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
| | - Weiquan Zhu
- Department of Medicine; University of Utah; Salt Lake City Utah USA
| | - Baowei Zhang
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
| |
Collapse
|
19
|
Clemente-Carvalho RB, Vaira M, King LE, Koscinski D, Bonansea MI, Lougheed SC. Phytogeographic patterns and cryptic diversity in an aposematic toad from NW Argentina. Mol Phylogenet Evol 2017; 116:248-256. [PMID: 28750851 DOI: 10.1016/j.ympev.2017.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/15/2022]
Abstract
The Yungas Redbelly Toad, Melanophryniscus rubriventris, is patchily distributed in Argentina, confined to the upland portion (1000-2000m above sea level) of the montane forests of northern and central regions of Salta, and in central-eastern and south-eastern Jujuy. This species is known for its striking aposematic color variation across its geographic distribution, and was once treated as a complex of three subspecies based on distinctive color patterns. Here we assess the geographical genetic variation within M. rubriventris and quantify divergence in color and pattern among individuals sampled from Northwestern Argentina. We compare multi-gene phylogeography of M. rubriventris to patterns of dorsal and ventral coloration to test whether evolutionary affinities predict variation in warning color. Our results reveal two well-supported species lineages: one confined to the extreme northern portion of our sampling area, and the other extending over most of the Argentine portion of the species' range, within which there are two populations. However, these well-supported evolutionary relationships do not mirror the marked variation in warning coloration. This discordance between DNA genealogy and warning color variation may reflect selection brought about by differences in local predation pressures, potentially coupled with effects of sexual selection and thermoregulation.
Collapse
Affiliation(s)
| | - Marcos Vaira
- Centro de Investigaciones y Transferencia de Jujuy, Conicet - Universidad Nacional de Jujuy, Gorriti 237, 4600 S.S. de Jujuy, Argentina.
| | - Laura E King
- Wildlife Preservation Canada, 5420 Highway 6 North Guelph, Ontario, N1H 6J2, Canada.
| | - Daria Koscinski
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Maria I Bonansea
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600 S. S. de Jujuy, Argentina.
| | - Stephen C Lougheed
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
20
|
Kelly DO, Scott RJ, Campbell CE, Warkentin IG. Initial Dispersal and Breeding Habitat Use of Newly Introduced Mink Frogs in Western Newfoundland, Canada. COPEIA 2017. [DOI: 10.1643/ch-16-485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Molecular Phylogenies indicate a Paleo-Tibetan Origin of Himalayan Lazy Toads (Scutiger). Sci Rep 2017; 7:3308. [PMID: 28607415 PMCID: PMC5468327 DOI: 10.1038/s41598-017-03395-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/27/2017] [Indexed: 01/02/2023] Open
Abstract
The Himalaya presents an outstanding geologically active orogen and biodiversity hotspot. However, our understanding of the historical biogeography of its fauna is far from comprehensive. Many taxa are commonly assumed to have originated from China-Indochina and dispersed westward along the Himalayan chain. Alternatively, the “Tibetan-origin hypothesis” suggests primary diversification of lineages in Paleo-Tibet, and secondary diversification along the slopes of the later uplifted Greater Himalaya. We test these hypotheses in high-mountain megophryid anurans (Scutiger). Extensive sampling from High Asia, and analyses of mitochondrial (2839 bp) and nuclear DNA (2208 bp), using Bayesian and Maximum likelihood phylogenetics, suggest that the Himalayan species form a distinct clade, possibly older than those from the eastern Himalaya-Tibet orogen. While immigration from China-Indochina cannot be excluded, our data may indicate that Himalayan Scutiger originated to the north of the Himalaya by colonization from Paleo-Tibet and then date back to the Oligocene. High intraspecific diversity of Scutiger implies limited migration across mountains and drainages along the Himalaya. While our study strengthens support for a “Tibetan-origin hypothesis”, current sampling (10/22 species; 1 revalidated: S. occidentalis) remains insufficient to draw final conclusions on Scutiger but urges comparative phylogeographers to test alternative, geologically supported hypotheses for a true future understanding of Himalayan biogeography.
Collapse
|
22
|
Hotaling S, Finn DS, Joseph Giersch J, Weisrock DW, Jacobsen D. Climate change and alpine stream biology: progress, challenges, and opportunities for the future. Biol Rev Camb Philos Soc 2017; 92:2024-2045. [PMID: 28105701 DOI: 10.1111/brv.12319] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward-looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems.
Collapse
Affiliation(s)
- Scott Hotaling
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
| | - Debra S Finn
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, U.S.A.,Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador
| | - J Joseph Giersch
- U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT 59936, U.S.A
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
| | - Dean Jacobsen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| |
Collapse
|
23
|
Zhou W, Jin J, Wu J, Chen H, Yang J, Murphy RW, Che J. Mountains too high and valleys too deep drive population structuring and demographics in a Qinghai-Tibetan Plateau frog Nanorana pleskei (Dicroglossidae). Ecol Evol 2016; 7:240-252. [PMID: 28070287 PMCID: PMC5214757 DOI: 10.1002/ece3.2646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 12/31/2022] Open
Abstract
Pleistocene glacial–interglacial climatic oscillations greatly shaped the current genetic structure of many species. However, geographic features may influence the impact of climatic cycling. Distinct geographic and environmental characters between northern and southern parts of the eastern Qinghai–Tibetan Plateau (EQTP) facilitate explorations into the impacts of geographic features on species. The northern parts of EQTP contain large areas of marsh, and the environment is rather homogeneous. In contrast, the southern EQTP harbors complex alpine valleys and a much more heterogeneous setting. We evaluate DNA sequence variation from both the mitochondrial and nuclear genomes in Nanorana pleskei, a species endemic to the EQTP. Hypothesis testing on the evolutionary history of N. pleskei indicates that northern populations can disperse freely, but alpine valleys isolate southern populations. Demographic histories between northern and southern populations also differ. Northern populations appear to have experienced population expansions, while southern frogs exhibit a far more stable demographic history. By combining climatic analyses and species' distribution models, our study suggests that geographic and environmental features drive the differences between the northern and southern EQTP.
Collapse
Affiliation(s)
- Weiwei Zhou
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| | - Jieqiong Jin
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| | - Jun Wu
- Nanjing Institute of Environmental Sciences Ministry of Environmental Protection Nanjing China
| | - Hongman Chen
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| | - Junxiao Yang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming China; Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming China; Centre for Biodiversity and Conservation Biology Royal Ontario Museum Toronto ON Canada
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| |
Collapse
|
24
|
Guo JL, Zhang XY, Zhang JW, Li ZM, Sun WG, Zhang YH. Genetic diversity of Meconopsis integrifolia (Maxim.) Franch. In the East Himalaya–Hengduan Mountains inferred from fluorescent amplified fragment length polymorphism analysis. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Sun Z, Pan T, Wang H, Pang M, Zhang B. Yangtze River, an insignificant genetic boundary in tufted deer ( Elaphodus cephalophus): the evidence from a first population genetics study. PeerJ 2016; 4:e2654. [PMID: 27843712 PMCID: PMC5103815 DOI: 10.7717/peerj.2654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 10/04/2016] [Indexed: 12/02/2022] Open
Abstract
Great rivers were generally looked at as the geographical barrier to gene flow for many taxonomic groups. The Yangtze River is the third largest river in the world, and flows across South China and into the East China Sea. Up until now, few studies have been carried out to evaluate its effect as a geographical barrier. In this study, we attempted to determine the barrier effect of the Yangtze River on the tufted deer (Elaphodus cephalophus) using the molecular ecology approach. Using mitochondrial DNA control region (CR) sequences and 13 nuclear microsatellite loci, we explored the genetic structure and gene flow in two adjacent tufted deer populations (Dabashan and Wulingshan populations), which are separated by the Yangtze River. Results indicated that there are high genetic diversity levels in the two populations, but no distinguishable haplotype group or potential genetic cluster was detected which corresponded to specific geographical population. At the same time, high gene flow was observed between Wulingshan and Dabashan populations. The tufted deer populations experienced population decrease from 0.3 to 0.09 Ma BP, then followed by a distinct population increase. A strong signal of recent population decline (T = 4,396 years) was detected in the Wulingshan population by a Markov-Switching Vector Autoregressions(MSVAR) process population demography analysis. The results indicated that the Yangtze River may not act as an effective barrier to gene flow in the tufted deer. Finally, we surmised that the population demography of the tufted deer was likely affected by Pleistocene climate fluctuations and ancient human activities.
Collapse
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Tao Pan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Hui Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Mujia Pang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
26
|
Bessa-Silva AR, Vallinoto M, Sodré D, da Cunha DB, Hadad D, Asp NE, Sampaio I, Schneider H, Sequeira F. Patterns of Genetic Variability in Island Populations of the Cane Toad (Rhinella marina) from the Mouth of the Amazon. PLoS One 2016; 11:e0152492. [PMID: 27073849 PMCID: PMC4830453 DOI: 10.1371/journal.pone.0152492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/15/2016] [Indexed: 11/19/2022] Open
Abstract
The Amazonian coast has several unique geological characteristics resulting from the interaction between drainage pattern of the Amazon River and the Atlantic Ocean. It is one of the most extensive and sedimentologically dynamic regions of the world, with a large number of continental islands mostly formed less than 10,000 years ago. The natural distribution of the cane toad (Rhinella marina), one of the world's most successful invasive species, in this complex Amazonian system provides an intriguing model for the investigation of the effects of isolation or the combined effects of isolation and habitat dynamic changes on patterns of genetic variability and population differentiation. We used nine fast-evolving microsatellite loci to contrast patterns of genetic variability in six coastal (three mainlands and three islands) populations of the cane toad near the mouth of the Amazon River. Results from Bayesian multilocus clustering approach and Discriminant Analyses of Principal Component were congruent in showing that each island population was genetically differentiated from the mainland populations. All FST values obtained from all pairwise comparisons were significant, ranging from 0.048 to 0.186. Estimates of both recent and historical gene flow were not significantly different from zero across all population pairs, except the two mainland populations inhabiting continuous habitats. Patterns of population differentiation, with a high level of population substructure and absence/restricted gene flow, suggested that island populations of R. marina are likely isolated since the Holocene sea-level rise. However, considering the similar levels of genetic variability found in both island and mainland populations, it is reliable to assume that they were also isolated for longer periods. Given the genetic uniqueness of each cane toad population, together with the high natural vulnerability of the coastal regions and intense human pressures, we suggest that these populations should be treated as discrete units for conservation management purposes.
Collapse
Affiliation(s)
- Adam Rick Bessa-Silva
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Marcelo Vallinoto
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
- * E-mail:
| | - Davidson Sodré
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| | - Divino Bruno da Cunha
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| | - Dante Hadad
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Nils Edvin Asp
- Laboratório de Geologia Costeira (LAGECO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Iracilda Sampaio
- Laboratório de Filogenômica e Bioinformática, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Horacio Schneider
- Laboratório de Filogenômica e Bioinformática, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Fernando Sequeira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
27
|
Meng S, Pan T, Sun Z, Bei Y, Meng T, Li G, Wu D, Zhang B. Extremely low genetic diversity of mtDNA control region and remarkable population differentiation of Ichthyophis bannanicus (Amphibia: Gymnophiona). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 28:98-103. [PMID: 26678840 DOI: 10.3109/19401736.2015.1110816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is widely accepted that the mitochondrial DNA (mtDNA) control region (CR) gene evolves more quickly than protein-encoding genes, such as ND2 and Cyt b, with few exceptions. However, some species have a different evolution pattern. In the present study, we sequenced the mtDNA CR partial sequences (454 base pairs) of 142 individuals from five sampling sites of Ichthyophis bannanicus and compared the genetic diversity and structure with the information from the NADH dehydrogenase subunit 2 (ND2) and Cytochrome b (Cyt b) genes within this species. Extremely low genetic diversity was found in the mtDNA CR compared with those of the ND2 and Cyt b genes. These results showed that the relatively mean clock rate of the CR was broadly lower than those of the ND2 (about 2.55 times) and Cyt b (about 3.14 times) genes. Despite the extremely low genetic diversity of CR, the population structure analysis identified two groups, Xishuangbanna and Northern Vietnam-Yulin-Yangchun-Deqing, which indicated that the Red River systems may have acted as gene-flow barriers for I. bannanicus.
Collapse
Affiliation(s)
- Shaoquan Meng
- a College of Life Sciences, Fujian Agriculture and Forest University , Fuzhou , Fujian , China.,b College of Life Science & Technology, Yulin Normal University , Yulin , Guangxi , China
| | - Tao Pan
- c School of Life Science, Anhui University , Hefei , Anhui , China , and
| | - Zhonglou Sun
- c School of Life Science, Anhui University , Hefei , Anhui , China , and
| | - Yongjian Bei
- b College of Life Science & Technology, Yulin Normal University , Yulin , Guangxi , China
| | - Tao Meng
- d Guangxi Forest Inventory and Planning Institute , Nanning , Guangxi , China
| | - Guifen Li
- b College of Life Science & Technology, Yulin Normal University , Yulin , Guangxi , China
| | - Defeng Wu
- a College of Life Sciences, Fujian Agriculture and Forest University , Fuzhou , Fujian , China
| | - Baowei Zhang
- c School of Life Science, Anhui University , Hefei , Anhui , China , and
| |
Collapse
|
28
|
Wang H, Luo X, Meng S, Bei Y, Song T, Meng T, Li G, Zhang B. The Phylogeography and Population Demography of the Yunnan Caecilian (Ichthyophis bannanicus): Massive Rivers as Barriers to Gene Flow. PLoS One 2015; 10:e0125770. [PMID: 25915933 PMCID: PMC4411157 DOI: 10.1371/journal.pone.0125770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/26/2015] [Indexed: 11/23/2022] Open
Abstract
Ichthyophis bannanicus is the only caecilian species in China. In this study, the phylogeography and population demography of I. bannanicus were explored, based on the mitochondrial DNA genes (cyt b and ND2) and 15 polymorphic microsatellite loci. Altogether 158 individuals were collected from five populations in Yunnan province, Guangxi province, Guangdong province, and Northern Vietnam. Phylogeographical and population structure analysis identified either two groups (Xishuangbanna, Northern Vietnam-Yulin-Yangchun-Deqing) or three groups (Xishuangbanna, Northern Vietnam-Yulin-Yangchun, and Deqing), indicating that the Red River and Pearl River systems may have acted as gene-flow barriers for I. bannanicus. Historical population expansion that happened 15–17 Ka ago was detected for mtDNA data and was possibly triggered by warmer weather after the Last Glacial Maximum. However, the Bayesian simulations of population history based on microsatellite data pinpointed population decline in all populations since 19,123 to 1,029 years ago, demonstrating a significant influence of anthropogenic habitat alteration on I. bannanicus.
Collapse
Affiliation(s)
- Hui Wang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Xia Luo
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Shaoquan Meng
- College of Life Science & Technology, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Yongjian Bei
- College of Life Science & Technology, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Tao Song
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Tao Meng
- Guangxi Forestry Inventory and Planning Institute, Nanning, 530011, Guangxi, China
| | - Guifen Li
- College of Life Science & Technology, Yulin Normal University, Yulin, 537000, Guangxi, China
- * E-mail: (GL); (BZ)
| | - Baowei Zhang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- * E-mail: (GL); (BZ)
| |
Collapse
|
29
|
|
30
|
The Sepik River (Papua New Guinea) is not a dispersal barrier for lowland rain-forest frogs. JOURNAL OF TROPICAL ECOLOGY 2013. [DOI: 10.1017/s0266467413000527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract:Major tropical rivers have been suggested to be important dispersal barriers that increase the beta diversity of animal communities in lowland rain forests. We tested this hypothesis using assemblages of frogs in the floodplains of the Sepik River, a major river system in Papua New Guinea. We surveyed frogs at five sites within a continuous 150 × 500-km area of lowland rain forest bisected by the Sepik, using standardized visual and auditory survey techniques. We documented 769 frogs from 44 species. The similarity in species composition decreased with logarithm of geographical distance between the sites, which ranged from 82 to 465 km. The similarity decay did not depend on whether or not the compared sites were separated by the Sepik River or whether the species were aquatic or terrestrial breeders. Likewise, a DCA ordination of frog assemblages did not show separation of sites by the river as a significant factor explaining their composition. Our results suggest that even major rivers, such as the Sepik, may not act as dispersal barriers. Rivers may not limit the distribution of frogs and therefore have a limited effect on determining frog species abundance and assemblage structure in rain forests.
Collapse
|
31
|
Gehring PS, Pabijan M, Randrianirina JE, Glaw F, Vences M. The influence of riverine barriers on phylogeographic patterns of Malagasy reed frogs (Heterixalus). Mol Phylogenet Evol 2012; 64:618-32. [DOI: 10.1016/j.ympev.2012.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 01/13/2023]
|
32
|
Díaz-Muñoz SL. Role of recent and old riverine barriers in fine-scale population genetic structure of Geoffroy's tamarin (Saguinus geoffroyi) in the Panama Canal watershed. Ecol Evol 2012; 2:298-309. [PMID: 22423325 PMCID: PMC3298944 DOI: 10.1002/ece3.79] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/17/2011] [Accepted: 10/21/2011] [Indexed: 11/12/2022] Open
Abstract
The role of physical barriers in promoting population divergence and genetic structuring is well known. While it is well established that animals can show genetic structuring at small spatial scales, less well-resolved is how the timing of the appearance of barriers affects population structure. This study uses the Panama Canal watershed as a test of the effects of old and recent riverine barriers in creating population structure in Saguinus geoffroyi, a small cooperatively breeding Neotropical primate. Mitochondrial sequences and microsatellite genotypes from three sampling localities revealed genetic structure across the Chagres River and the Panama Canal, suggesting that both waterways act as barriers to gene flow. F-statistics and exact tests of population differentiation suggest population structure on either side of both riverine barriers. Genetic differentiation across the Canal, however, was less than observed across the Chagres. Accordingly, Bayesian clustering algorithms detected between two and three populations, with localities across the older Chagres River always assigned as distinct populations. While conclusions represent a preliminary assessment of genetic structure of S. geoffroyi, this study adds to the evidence indicating that riverine barriers create genetic structure across a wide variety of taxa in the Panama Canal watershed and highlights the potential of this study area for discerning modern from historical influences on observed patterns of population genetic structure.
Collapse
|
33
|
Penner J, Wegmann M, Hillers A, Schmidt M, Rödel MO. A hotspot revisited - a biogeographical analysis of West African amphibians. DIVERS DISTRIB 2011. [DOI: 10.1111/j.1472-4642.2011.00801.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Sandberger L, Feldhaar H, Lampert KP, Lamatsch DK, Rödel MO. Small, specialised and highly mobile? The tree-hole breeding frog,Phrynobatrachus guineensis, lacks fine-scale population structure. AFR J HERPETOL 2010. [DOI: 10.1080/04416651003788619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Laura Sandberger
- a Museum für Naturkunde , Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin , Berlin, Germany
| | - Heike Feldhaar
- b Behavioral Biology , University of Osnabrück , Osnabrück, Germany
| | - Kathrin P. Lampert
- c Evolutionary Ecology and Biodiversity of Animals , University of Bochum , Bochum, Germany
| | - Dunja K. Lamatsch
- d Austrian Academy of Sciences and Institute for Limnology , Mondsee, Austria
| | - Mark-Oliver Rödel
- a Museum für Naturkunde , Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin , Berlin, Germany
| |
Collapse
|
35
|
Chen W, Bi K, Fu J. Frequent mitochondrial gene introgression among high elevation Tibetan megophryid frogs revealed by conflicting gene genealogies. Mol Ecol 2009; 18:2856-76. [PMID: 19500253 DOI: 10.1111/j.1365-294x.2009.04258.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Historical mitochondrial introgression causes differences between a species' mitochondrial gene genealogy and its nuclear gene genealogy, making tree-based species delineation ambiguous. Using sequence data from one mitochondrial gene (cytochrome b) and three nuclear genes (introns), we examined the evolutionary history of four high elevation Tibetan megophryid frog species, Scutiger boulengeri, Scutiger glandulatus, Scutiger mammatus and Scutiger tuberculatus. The three nuclear genes shared a similar history but the mitochondrial gene tree suggested a drastically different evolutionary scenario. The conflicts between them were explained by multiple episodes of mitochondrial introgression events via historical interspecific hybridization. 'Foreign' mitochondrial genomes might have been fixed in populations and extended through a large portion of the species' distribution. Some hybridization events were probably as old as 10 Myr, while others were recent. An F(1) hybrid was also identified. Historical hybridization events among the four species appeared to be persistent and were not restricted to the period of Pleistocene glaciation, as in several other well-studied cases. Furthermore, hybridization involved several species and occurred in multiple directions, and there was no indication of one mitochondrial genome being superior to others. In addition, incomplete lineage sorting resulting from budding speciation may have also explained some discrepancies between the mitochondrial DNA and nuclear gene trees. Combining all evidences, the former 'Scutiger mammatus' appeared to be two species, including a new species. With the availability of a wide range of highly variable nuclear gene markers, we recommend using a combination of mitochondrial gene and multiple nuclear genes to reveal a complete species history.
Collapse
Affiliation(s)
- Wei Chen
- College of Life Sciences, Capital Normal University, Beijing 100037, China
| | | | | |
Collapse
|