1
|
Spießberger M, Burgstaller S, Mesnil M, Painter MS, Landler L. Telemetry and Accelerometer Tracking of Green Toads in an Urban Habitat: Methodological Notes and Preliminary Findings. DIVERSITY 2023; 15:328. [PMID: 36998310 PMCID: PMC7614386 DOI: 10.3390/d15030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Advancements in tracking technologies provide an increasingly important tool in animal monitoring and conservation that can describe animal spatial behavior in native habitats and uncover migratory routes that otherwise may be difficult or impossible to map. In addition, high-resolution accelerometer sensors provide powerful insights into animal activity patterns and can help to identify specific behaviors from accelerometer profiles alone. Previously, such accelerometers were restricted to larger animals due to size and mass constraints. However, recent advances make it possible to use such devices on smaller animals such as the European green toad (Bufotes viridis), the focus of our current study. We deploy custom made tracking devices, that consist of very-high-frequency transmitters and tri-axial accelerometers, to track toads in their native urban environment in Vienna (Austria). A total of nine toads were tracked, ranging from three to nine tracking days per individual during the post-breeding season period. We demonstrate that our devices could reliably monitor toad movement and activity during the observation period. Hence, we confirmed the predominantly nocturnal activity patterns and recorded low overall movement at this urban site. Accelerometer data revealed that toads exhibited brief but intense activity bursts between 10 pm and midnight, resting periods during the night and intermittent activity during the day. Positional tracking alone would have missed the major activity events as they rarely resulted in large positional displacements. This underscores the importance of and value in integrating multiple tracking sensors for studies of movement ecology. Our approach could be adapted for other amphibians or other animals with mass constraints and may become standard monitoring equipment in the near future.
Collapse
Affiliation(s)
- Magdalena Spießberger
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Stephan Burgstaller
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
| | - Marion Mesnil
- UniLaSalle, Polytechnical Institute, Campus of Beauvais, 19 Rue Pierre Waguet, 60000 Beauvais, France
| | - Michael S. Painter
- Department of Biology, Barry University, 11300 NE 2nd Ave, Miami, FL 33161, USA
| | - Lukas Landler
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
| |
Collapse
|
2
|
Landler L, Burgstaller S, Schweiger S. Land-use preferences of the European green toad (Bufotes viridis) in the city of Vienna (Austria): the importance of open land in urban environments. Front Zool 2023; 20:3. [PMID: 36647115 PMCID: PMC9843927 DOI: 10.1186/s12983-022-00480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/04/2022] [Indexed: 01/18/2023] Open
Abstract
Urban areas are increasing worldwide, which poses threats to animal wildlife. However, in certain cases cities can provide refuges for endangered animals. The European green toad (Bufotes viridis) is one of such examples, which is known from cities throughout their distribution. In contrast, considerable areas of their former (primary) habitats have been degraded. The primary habitats of this species include steppes and wild river floodplains, both characterized by dynamic changes and the presence of open areas. We used available green toad observation data (2007-2020) to model the effects of land-use types on occurrence probability in the city of Vienna. Forest and densely populated areas were highly significantly negatively associated with green toad presence, while transformation/construction site areas showed a strong positive effect. Such occurrence pattern might be characteristic for early succession species, which depend on stochastic environmental disturbances (e.g., droughts and floods) in their primary habitats. We argue that urban landscape planning should appreciate the potential ecological value of open land in cities which is either in a transition phase or a permanent 'wasteland'. Ecological managing of such landscape could vastly increase urban biodiversity.
Collapse
Affiliation(s)
- Lukas Landler
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33/I, 1180, Vienna, Austria.
| | - Stephan Burgstaller
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33/I, 1180, Vienna, Austria
| | - Silke Schweiger
- First Zoological Department, Herpetological Collection, Natural History Museum Vienna, Burgring 7, 1010, Vienna, Austria
| |
Collapse
|
3
|
Low neutral and immunogenetic diversity in northern fringe populations of the green toad Bufotes viridis: implications for conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractGenetic variation is often lower at high latitudes, which may compromise the adaptability and hence survival of organisms. Here we show that genetic variability is negatively correlated with northern latitude in European green toads (Bufotes viridis). The result holds true for both putatively neutral microsatellite variation and supposedly adaptive MHC Class IIB variation. In particular, our findings have bearing on the conservation status of this species in Sweden, on the northern limit of its distribution where local populations are small and fragmented. These genetically impoverished populations are closely related to other populations found around the Baltic Sea basin. The low neutral and adaptive variation in these fringe populations compared to population at central ranges confirms a pattern shared across all other amphibians so far studied. In Sweden, the situation of green toads is of concern as the remaining populations may not have the evolutionary potential to cope with present and future environmental challenges.
Collapse
|
4
|
Mathwin R, Wassens S, Young J, Ye Q, Bradshaw CJA. Manipulating water for amphibian conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:24-34. [PMID: 32189374 DOI: 10.1111/cobi.13501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Amphibian populations globally are in decline. One great threat is the abstraction of water resources that alter surface-water hydrology. Conservation actions aimed at restoring or manipulating surface water are employed as a management tool, but empirical evidence on the effectiveness of these approaches is scarce. In this systematic review, we summarized the global experience of manipulating water for amphibian conservation. We explored examples of manipulating water to conserve amphibian species and communities. Approaches varied in their frequency of implementation and in their success. Extending hydroperiod to match larval requirements showed encouraging results, as did off-season drying to control predators. Spraying water into the environment showed several potential applications, but successes were limited. Despite some promising interventions, we identified few (n = 17) empirically supported examples of successful water manipulation to benefit amphibians. It is unclear whether this stems from publication bias or if it is an artifact of language selection. However, manipulating water shows some potential in amphibian conservation, particularly at sites with a proximal water source and in regions where aridity is increasing due to climate change. Regardless of the scale of the intervention or its perceived probability of success, high-quality reporting of empirical results will further understanding of how water manipulations can benefit threatened amphibian populations.
Collapse
Affiliation(s)
- Rupert Mathwin
- Global Ecology, College of Science and Engineering, Flinders University, P.O. Box 2100, Adelaide, South Australia, 5001, Australia
| | - Skye Wassens
- School of Environmental Sciences, Charles Sturt University, P.O. Box 789, Albury, New South Wales, 2640, Australia
| | - Jeanne Young
- College of Science and Engineering, Flinders University, P.O. Box 2100, Adelaide, South Australia, 5001, Australia
| | - Qifeng Ye
- College of Science and Engineering, Flinders University, P.O. Box 2100, Adelaide, South Australia, 5001, Australia
- Inland Waters, South Australian Research and Development Institute, 2 Hamra Ave, West Beach, South Australia, 5024, Australia
| | - Corey J A Bradshaw
- Global Ecology, College of Science and Engineering, Flinders University, P.O. Box 2100, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
5
|
Hopkins GR, French SS, Brodie ED. Interacting stressors and the potential for adaptation in a changing world: responses of populations and individuals. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161057. [PMID: 28680662 PMCID: PMC5493904 DOI: 10.1098/rsos.161057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/19/2017] [Indexed: 05/12/2023]
Abstract
To accurately predict the impact of environmental change, it is necessary to assay effects of key interacting stressors on vulnerable organisms, and the potential resiliency of their populations. Yet, for the most part, these critical data are missing. We examined the effects of two common abiotic stressors predicted to interact with climate change, salinity and temperature, on the embryonic survival and development of a model freshwater vertebrate, the rough-skinned newt (Taricha granulosa) from different populations. We found that salinity and temperature significantly interacted to affect newt embryonic survival and development, with the negative effects of salinity most pronounced at temperature extremes. We also found significant variation among, and especially within, populations, with different females varying in the performance of their eggs at different salinity-temperature combinations, possibly providing the raw material for future natural selection. Our results highlight the complex nature of predicting responses to climate change in space and time, and provide critical data towards that aim.
Collapse
|
6
|
Woolrich-Piña GA, Smith GR, Benítez-Tadeo RA, Lemos-Espinal JA, Morales-Garza M. Effects of Salinity and Density on Tadpoles ofIncilius occidentalisfrom Oaxaca, Mexico. COPEIA 2017. [DOI: 10.1643/ch-16-495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Coastal meadow management for threatened waders has a strong supporting impact on meadow plants and amphibians. J Nat Conserv 2017. [DOI: 10.1016/j.jnc.2016.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zhang ZY, Cashins S, Philips A, Burridge CP. Significant population genetic structuring but a lack of phylogeographic structuring in the endemic Tasmanian tree frog (Litoria burrowsae). AUST J ZOOL 2014. [DOI: 10.1071/zo14028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conservation of frogs is of global concern, owing to declines resulting from habitat destruction, global climate change, and disease. Knowledge of genetic variation in frog species is therefore desirable for the identification of management units. Here we surveyed mitochondrial DNA sequence variation in the Tasmanian endemic hylid frog Litoria burrowsae, which is infected by chytrid fungus, Batrachochytrium dendrobatidis, and may be declining. Neither phylogeographic structure nor deep phylogenetic divergence was detected in the species, although its populations were highly differentiated with respect to haplotype frequencies. The low-haplotype diversity in L. burrowsae suggests a recent bottleneck in the species, and population genetic structuring may reflect isolation by distance as well as founder effects associated with range expansion. Three putative management units were identified that require verification based on nuclear DNA variation and adaptation to local environments.
Collapse
|
9
|
Bernabò I, Bonacci A, Coscarelli F, Tripepi M, Brunelli E. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: Tolerance, morphological gill alterations and Na(+)/K(+)-ATPase localization. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:119-33. [PMID: 23474321 DOI: 10.1016/j.aquatox.2013.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/11/2013] [Accepted: 01/20/2013] [Indexed: 05/26/2023]
Abstract
Freshwater habitats are globally threatened by human-induced secondary salinization. Amphibians are generally poorly adapted to survive in saline environments. We experimentally investigated the effects of chronic exposure to various salinities (5%, 10%, 15%, 20%, 25%, 30% and 35% seawater, SW) on survival, larval growth and metamorphosis of tadpoles from two amphibian populations belonging to two species: the green toad Bufo balearicus and the common toad Bufo bufo. In addition, gill morphology of tadpoles of both species after acute exposure to hypertonic conditions (20%, 25%, and 30% SW) was examined by light and electron microscopy. Tadpoles experienced 100% mortality above 20% SW in B. balearicus while above 15% SW in B. bufo. We detected also sublethal effects of salinity stress on growth and metamorphosis. B. bufo cannot withstand chronic exposure to salinity above 5% SW, tadpoles grew slower and were significantly smaller than those in control at metamorphosis. B. balearicus tolerated salinity up to 20% SW without apparent effects during larval development, but starting from 15% SW tadpoles metamorphosed later and at a smaller size compared with control. We also revealed a negative relation between increasing salt concentration and gill integrity. The main modifications were increased mucous secretion, detachment of external layer, alteration of epithelial surface, degeneration phenomena, appearance of residual bodies, and macrophage immigration. These morphological alterations of gill epithelium can interfere with respiratory function and both osmotic and acid-base regulation. Significant variations in branchial Na(+)/K(+)-ATPase activity were also observed between two species; moreover an increase in enzyme activity was evident in response to SW exposure. Epithelial responses to increasing salt concentration were different in the populations belonging to two species: the intensity of histological and ultrastructural pathology in B. bufo was greater and we noticed the appearance in exposed samples of the tubular vesicle cells (TVCs). Taken together, our results demonstrated that increased salinity of freshwater may give cause for concern and must be considered a stressor for amphibians as well as other pollutants.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Ecology, University of Calabria, Via P. Bucci, 87036 Rende (Cosenza), Italy
| | | | | | | | | |
Collapse
|
10
|
Zeisset I, Beebee TJC. Donor population size rather than local adaptation can be a key determinant of amphibian translocation success. Anim Conserv 2012. [DOI: 10.1111/acv.12003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. Zeisset
- School of Life Sciences; University of Sussex; Brighton; UK
| | | |
Collapse
|
11
|
Côte J, Roussel JM, Le Cam S, Bal G, Evanno G. Population differences in response to hypoxic stress in Atlantic salmon. J Evol Biol 2012; 25:2596-606. [PMID: 23107024 DOI: 10.1111/jeb.12007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/03/2012] [Indexed: 01/27/2023]
Abstract
Understanding whether populations can adapt to new environmental conditions is a major issue in conservation and evolutionary biology. Aquatic organisms are increasingly exposed to environmental changes linked with human activities in river catchments. For instance, the clogging of bottom substratum by fine sediments is observed in many rivers and usually leads to a decrease in dissolved oxygen concentrations in gravel beds. Such hypoxic stress can alter the development and even be lethal for Atlantic salmon (Salmo salar) embryos that spend their early life into gravel beds. In this study, we used a common garden experiment to compare the responses to hypoxic stress of four genetically differentiated and environmentally contrasted populations. We used factorial crossing designs to measure additive genetic variation of early life-history traits in each population. Embryos were reared under normoxic and hypoxic conditions, and we measured their survival, incubation time and length at the end of embryonic development. Under hypoxic conditions, embryos had a lower survival and hatched later than in normoxic conditions. We found different hypoxia reaction norms among populations, but almost no population effect in both treatments. We also detected significant sire × treatment interactions in most populations and a tendency for heritability values to be lower under stressful conditions. Overall, these results reveal a high degree of phenotypic plasticity in salmon populations that nevertheless differ in their adaptive potential to hypoxia given the distinct reaction norms observed between and within populations.
Collapse
Affiliation(s)
- J Côte
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, Rennes, France.
| | | | | | | | | |
Collapse
|