1
|
Krishnan HB, Oehrle NW, Alaswad AA, Stevens WG, Maria John KM, Luthria DL, Natarajan SS. Biochemical and Anatomical Investigation of Sesbania herbacea (Mill.) McVaugh Nodules Grown under Flooded and Non-Flooded Conditions. Int J Mol Sci 2019; 20:E1824. [PMID: 31013805 PMCID: PMC6514687 DOI: 10.3390/ijms20081824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
Sesbania herbacea, a native North American fast-growing legume, thrives in wet and waterlogged conditions. This legume enters into symbiotic association with rhizobia, resulting in the formation of nitrogen-fixing nodules on the roots. A flooding-induced anaerobic environment imposes a challenge for the survival of rhizobia and negatively impacts nodulation. Very little information is available on how S. herbacea is able to thrive and efficiently fix N2 in flooded conditions. In this study, we found that Sesbania plants grown under flooded conditions were significantly taller, produced more biomass, and formed more nodules when compared to plants grown on dry land. Transmission electron microscopy of Sesbania nodules revealed bacteroids from flooded nodules contained prominent polyhydroxybutyrate crystals, which were absent in non-flooded nodules. Gas and ion chromatography mass spectrometry analysis of nodule metabolites revealed a marked decrease in asparagine and an increase in the levels of gamma aminobutyric acid in flooded nodules. 2-D gel electrophoresis of nodule bacteroid proteins revealed flooding-induced changes in their protein profiles. Several of the bacteroid proteins that were prominent in flooded nodules were identified by mass spectrometry to be members of the ABC transporter family. The activities of several key enzymes involved in nitrogen metabolism was altered in Sesbania flooded nodules. Aspartate aminotransferase (AspAT), an enzyme with a vital role in the assimilation of reduced nitrogen, was dramatically elevated in flooded nodules. The results of our study highlight the potential of S. herbacea as a green manure and sheds light on the morphological, structural, and biochemical adaptations that enable S. herbacea to thrive and efficiently fix N2 in flooded conditions.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO 65211, USA.
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
| | - Nathan W Oehrle
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO 65211, USA.
| | - Alaa A Alaswad
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
| | - William Gene Stevens
- Plant Science Division, University of Missouri, Delta Center, Portageville, MO 63873, USA.
| | - K M Maria John
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD 20705, USA.
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
2
|
Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Rodríguez-Carvajal MA, Gil-Serrano A, Soria-Díaz ME, Pérez-Montaño F, Fernández-Perea J, Niu Y, Alias-Villegas C, Jiménez-Guerrero I, Navarro-Gómez P, López-Baena FJ, Kelly S, Sandal N, Stougaard J, Ruiz-Sainz JE, Vinardell JM. Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environ Microbiol 2019; 21:1718-1739. [PMID: 30839140 DOI: 10.1111/1462-2920.14584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 02/01/2023]
Abstract
Sinorhizobium fredii HH103 RifR , a broad-host-range rhizobial strain, forms ineffective nodules with Lotus japonicus but induces nitrogen-fixing nodules in Lotus burttii roots that are infected by intercellular entry. Here we show that HH103 RifR nolR or nodD2 mutants gain the ability to induce infection thread formation and to form nitrogen-fixing nodules in L. japonicus Gifu. Microscopy studies showed that the mode of infection of L. burttii roots by the nodD2 and nolR mutants switched from intercellular entry to infection threads (ITs). In the presence of the isoflavone genistein, both mutants overproduced Nod-factors. Transcriptomic analyses showed that, in the presence of Lotus japonicus Gifu root exudates, genes related to Nod factors production were overexpressed in both mutants in comparison to HH103 RifR . Complementation of the nodD2 and nolR mutants provoked a decrease in Nod-factor production, the incapacity to form nitrogen-fixing nodules with L. japonicus Gifu and restored the intercellular way of infection in L. burttii. Thus, the capacity of S. fredii HH103 RifR nodD2 and nolR mutants to infect L. burttii and L. japonicus Gifu by ITs and fix nitrogen L. japonicus Gifu might be correlated with Nod-factor overproduction, although other bacterial symbiotic signals could also be involved.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | | | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark.,Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P, 41012, Sevilla, Spain
| | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P, 41012, Sevilla, Spain
| | - María E Soria-Díaz
- Servicio de Espectrometría de Masas, Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Sevilla, Spain
| | - Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Juan Fernández-Perea
- IFAPA, Centro Las Torres-Tomejil, Apartado Oficial 41200, Alcalá del Río, Sevilla, Spain
| | - Yanbo Niu
- Department of Resources and Environmental Microbiology, Institute of Microbiology, Heilongjiang Academy of Sciences, No. 68, Zhaolin Street, Daoli District, Harbin, Heilongjiang Province, China
| | - Cynthia Alias-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - José-María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| |
Collapse
|
3
|
Brottier L, Chaintreuil C, Simion P, Scornavacca C, Rivallan R, Mournet P, Moulin L, Lewis GP, Fardoux J, Brown SC, Gomez-Pacheco M, Bourges M, Hervouet C, Gueye M, Duponnois R, Ramanankierana H, Randriambanona H, Vandrot H, Zabaleta M, DasGupta M, D’Hont A, Giraud E, Arrighi JF. A phylogenetic framework of the legume genus Aeschynomene for comparative genetic analysis of the Nod-dependent and Nod-independent symbioses. BMC PLANT BIOLOGY 2018; 18:333. [PMID: 30518342 PMCID: PMC6282307 DOI: 10.1186/s12870-018-1567-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Among semi-aquatic species of the legume genus Aeschynomene, some have the property of being nodulated by photosynthetic Bradyrhizobium lacking the nodABC genes necessary for the synthesis of Nod factors. Knowledge of the specificities underlying this Nod-independent symbiosis has been gained from the model legume Aeschynomene evenia but our understanding remains limited due to the lack of comparative genetics with related taxa using a Nod factor-dependent process. To fill this gap, we combined different approaches to perform a thorough comparative analysis in the genus Aeschynomene. RESULTS This study significantly broadened previous taxon sampling, including in allied genera, in order to construct a comprehensive phylogeny. In the phylogenetic tree, five main lineages were delineated, including a novel lineage, the Nod-independent clade and another one containing a polytomy that comprised several Aeschynomene groups and all the allied genera. This phylogeny was matched with data on chromosome number, genome size and low-copy nuclear gene sequences to reveal the diploid species and a polytomy containing mostly polyploid taxa. For these taxa, a single allopolyploid origin was inferred and the putative parental lineages were identified. Finally, nodulation tests with different Bradyrhizobium strains revealed new nodulation behaviours and the diploid species outside of the Nod-independent clade were compared for their experimental tractability and genetic diversity. CONCLUSIONS The extended knowledge of the genetics and biology of the different lineages sheds new light of the evolutionary history of the genus Aeschynomene and they provide a solid framework to exploit efficiently the diversity encountered in Aeschynomene legumes. Notably, our backbone tree contains all the species that are diploid and it clarifies the genetic relationships between the Nod-independent clade and the Nod-dependent lineages. This study enabled the identification of A. americana and A. patula as the most suitable species to undertake a comparative genetic study of the Nod-independent and Nod-dependent symbioses.
Collapse
Affiliation(s)
- Laurent Brottier
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, 34398 Montpellier, France
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, 34398 Montpellier, France
| | - Paul Simion
- Institut des Sciences de l’Evolution (ISE-M), Université de Montpellier, CNRS, IRD, EPHE, 34095 Cedex 5 Montpellier, France
| | - Céline Scornavacca
- Institut des Sciences de l’Evolution (ISE-M), Université de Montpellier, CNRS, IRD, EPHE, 34095 Cedex 5 Montpellier, France
| | - Ronan Rivallan
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398 Montpellier, France
- AGAP,Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34060 Montpellier, France
| | - Pierre Mournet
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398 Montpellier, France
- AGAP,Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34060 Montpellier, France
| | - Lionel Moulin
- IRD, Interactions Plantes Microorganismes Environnement, UMR IPME, 34394 Montpellier, France
| | - Gwilym P. Lewis
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB UK
| | - Joël Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, 34398 Montpellier, France
| | - Spencer C. Brown
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Mario Gomez-Pacheco
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Mickaël Bourges
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Catherine Hervouet
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398 Montpellier, France
- AGAP,Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34060 Montpellier, France
| | - Mathieu Gueye
- Laboratoire de Botanique, Institut Fondamental d’Afrique Noire, Ch. A. Diop, BP 206 Dakar, Sénégal
| | - Robin Duponnois
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, 34398 Montpellier, France
| | - Heriniaina Ramanankierana
- Laboratoire de Microbiologie de l’Environnement/Centre National de Recherche sur l’Environnement, 101 Antananarivo, Madagascar
| | - Herizo Randriambanona
- Laboratoire de Microbiologie de l’Environnement/Centre National de Recherche sur l’Environnement, 101 Antananarivo, Madagascar
| | - Hervé Vandrot
- IAC, Laboratoire de Botanique et d’Ecologie Végétale Appliquée, UMR AMAP, 98825 Pouembout, Nouvelle-Calédonie France
| | - Maria Zabaleta
- Department of Biochemistry and Microbial Genomics, IIBCE, 11600 Montevideo, Uruguay
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, 700019 India
| | - Angélique D’Hont
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398 Montpellier, France
- AGAP,Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34060 Montpellier, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, 34398 Montpellier, France
| | - Jean-François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
4
|
Konnerup D, Toro G, Pedersen O, Colmer TD. Waterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plants. ANNALS OF BOTANY 2018; 121:699-709. [PMID: 29351575 PMCID: PMC5853006 DOI: 10.1093/aob/mcx202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/10/2017] [Indexed: 05/09/2023]
Abstract
Background and Aims Soil waterlogging adversely impacts most plants. Melilotus siculus is a waterlogging-tolerant annual forage legume, but data were lacking for the effects of root-zone hypoxia on nodulated plants reliant on N2 fixation. The aim was to compare the waterlogging tolerance and physiology of M. siculus reliant on N2 fixation or with access to NO3-. Methods A factorial experiment imposed treatments of water level (drained or waterlogged), rhizobia (nil or inoculated) and mineral N supply (nil or 11 mm NO3-) for 21 d on plants in pots of vermiculite in a glasshouse. Nodulation, shoot and root growth and tissue N were determined. Porosity (gas volume per unit tissue volume) and respiration rates of root tissues and nodules, and O2 microelectrode profiling across nodules, were measured in a second experiment. Key Results Plants inoculated with the appropriate rhizobia, Ensifer (syn. Sinorhizobium) medicae, formed nodules. Nodulated plants grew as well as plants fed NO3-, both in drained and waterlogged conditions. The growth and total N content of nodulated plants (without any NO3- supplied) indicated N2 fixation. Respiration rates (mass basis) were highest in nodules and root tips and lowest in basal root tissues. Secondary aerenchyma (phellem) formed along basal root parts and a thin layer of this porous tissue also covered nodules, which together enhanced gas-phase diffusion of O2 to the nodules; O2 was below detection within the infected zone of the nodule interior. Conclusions Melilotus siculus reliant on N2 fixation grew well both in drained and waterlogged conditions, and had similar tissue N concentrations. In waterlogged conditions the relatively high respiration rates of nodules must rely on O2 movement via the aerenchymatous phellem in hypocotyl, roots and the outer tissue layers of nodules.
Collapse
Affiliation(s)
- Dennis Konnerup
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade, Aarhus C, Denmark
| | - Guillermo Toro
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas, Sector Los Choapinos, Rengo, Chile
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
5
|
Chaintreuil C, Gully D, Hervouet C, Tittabutr P, Randriambanona H, Brown SC, Lewis GP, Bourge M, Cartieaux F, Boursot M, Ramanankierana H, D'Hont A, Teaumroong N, Giraud E, Arrighi JF. The evolutionary dynamics of ancient and recent polyploidy in the African semiaquatic species of the legume genus Aeschynomene. THE NEW PHYTOLOGIST 2016; 211:1077-1091. [PMID: 27061605 DOI: 10.1111/nph.13956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
The legume genus Aeschynomene is notable in the ability of certain semiaquatic species to develop nitrogen-fixing stem nodules. These species are distributed in two clades. In the first clade, all the species are characterized by the use of a unique Nod-independent symbiotic process. In the second clade, the species use a Nod-dependent symbiotic process and some of them display a profuse stem nodulation as exemplified in the African Aeschynomene afraspera. To facilitate the molecular analysis of the symbiotic characteristics of such legumes, we took an integrated molecular and cytogenetic approach to track occurrences of polyploidy events and to analyze their impact on the evolution of the African species of Aeschynomene. Our results revealed two rounds of polyploidy: a paleopolyploid event predating the African group and two neopolyploid speciations, along with significant chromosomal variations. Hence, we found that A. afraspera (8x) has inherited the contrasted genomic properties and the stem-nodulation habit of its parental lineages (4x). This study reveals a comprehensive picture of African Aeschynomene diversification. It notably evidences a history that is distinct from the diploid Nod-independent clade, providing clues for the identification of the specific determinants of the Nod-dependent and Nod-independent symbiotic processes, and for comparative analysis of stem nodulation.
Collapse
Affiliation(s)
- Clémence Chaintreuil
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR LSTM, Campus International de Baillarguet, 34398, Montpellier, France
| | - Djamel Gully
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR LSTM, Campus International de Baillarguet, 34398, Montpellier, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP, Plateau de Cytogénétique Moléculaire, 34398, Montpellier, France
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Herizo Randriambanona
- Laboratoire de Microbiologie de l'Environnement/Centre National de Recherche sur l'Environnement, Antananarivo, 101, Madagascar
| | - Spencer C Brown
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91 198, Gif-sur-Yvette, France
| | - Gwilym P Lewis
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
| | - Mickaël Bourge
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91 198, Gif-sur-Yvette, France
| | - Fabienne Cartieaux
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR LSTM, Campus International de Baillarguet, 34398, Montpellier, France
| | - Marc Boursot
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR LSTM, Campus International de Baillarguet, 34398, Montpellier, France
| | - Heriniaina Ramanankierana
- Laboratoire de Microbiologie de l'Environnement/Centre National de Recherche sur l'Environnement, Antananarivo, 101, Madagascar
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Plateau de Cytogénétique Moléculaire, 34398, Montpellier, France
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR LSTM, Campus International de Baillarguet, 34398, Montpellier, France
| | - Jean-François Arrighi
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR LSTM, Campus International de Baillarguet, 34398, Montpellier, France
| |
Collapse
|
6
|
Arrighi JF, Chaintreuil C, Cartieaux F, Cardi C, Rodier-Goud M, Brown SC, Boursot M, D'Hont A, Dreyfus B, Giraud E. Radiation of the Nod-independent Aeschynomene relies on multiple allopolyploid speciation events. THE NEW PHYTOLOGIST 2014; 201:1457-1468. [PMID: 24237245 DOI: 10.1111/nph.12594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
• The semi-aquatic legumes belonging to the genus Aeschynomene constitute a premium system for investigating the origin and evolution of unusual symbiotic features such as stem nodulation and the presence of a Nod-independent infection process. This latter apparently arose in a single Aeschynomene lineage. But how this unique Nod-independent group then radiated is not yet known. • We have investigated the role of polyploidy in Aeschynomene speciation via a case study of the pantropical A. indica and then extended the analysis to the other Nod-independent species. For this, we combined SSR genotyping, genome characterization through flow cytometry, chromosome counting, FISH and GISH experiments, molecular phylogenies using ITS and single nuclear gene sequences, and artificial hybridizations. • These analyses demonstrate the existence of an A. indica polyploid species complex comprising A. evenia (C. Wright) (2n = 2x = 20), A. indica L. s.s. (2n = 4x = 40) and a new hexaploid form (2n = 6x = 60). This latter contains the two genomes present in the tetraploid (A. evenia and A. scabra) and another unidentified genome. Two other species, A. pratensis and A. virginica, are also shown to be of allopolyploid origin. • This work reveals multiple hybridization/polyploidization events, thus highlighting a prominent role of allopolyploidy in the radiation of the Nod-independent Aeschynomene.
Collapse
Affiliation(s)
- Jean-François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398, Montpellier Cedex 5, France
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398, Montpellier Cedex 5, France
| | - Fabienne Cartieaux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398, Montpellier Cedex 5, France
| | - C Cardi
- CIRAD, UMR AGAP, Plateau de Cytogénétique Moléculaire, TA-A 108/03, 34398, Montpellier Cedex 5, France
| | - M Rodier-Goud
- CIRAD, UMR AGAP, Plateau de Cytogénétique Moléculaire, TA-A 108/03, 34398, Montpellier Cedex 5, France
| | - Spencer C Brown
- CNRS, IBiSA Imagerie Gif et Imagif BioCell, Institut des Sciences du Végétal, UPR 2355, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Marc Boursot
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398, Montpellier Cedex 5, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Plateau de Cytogénétique Moléculaire, TA-A 108/03, 34398, Montpellier Cedex 5, France
| | - Bernard Dreyfus
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398, Montpellier Cedex 5, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398, Montpellier Cedex 5, France
| |
Collapse
|
7
|
Chaintreuil C, Arrighi JF, Giraud E, Miché L, Moulin L, Dreyfus B, Munive-Hernández JA, Villegas-Hernandez MDC, Béna G. Evolution of symbiosis in the legume genus Aeschynomene. THE NEW PHYTOLOGIST 2013; 200:1247-59. [PMID: 23879229 DOI: 10.1111/nph.12424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 05/22/2023]
Abstract
Legumes in the genus Aeschynomene form nitrogen-fixing root nodules in association with Bradyrhizobium strains. Several aquatic and subaquatic species have the additional capacity to form stem nodules, and some of them can symbiotically interact with specific strains that do not produce the common Nod factors synthesized by all other rhizobia. The question of the emergence and evolution of these nodulation characters has been the subject of recent debate. We conducted a molecular phylogenetic analysis of 38 different Aeschynomene species. The phylogeny was reconstructed with both the chloroplast DNA trnL intron and the nuclear ribosomal DNA ITS/5.8S region. We also tested 28 Aeschynomene species for their capacity to form root and stem nodules by inoculating different rhizobial strains, including nodABC-containing strains (ORS285, USDA110) and a nodABC-lacking strain (ORS278). Maximum likelihood analyses resolved four distinct phylogenetic groups of Aeschynomene. We found that stem nodulation may have evolved several times in the genus, and that all Aeschynomene species using a Nod-independent symbiotic process clustered in the same clade. The phylogenetic approach suggested that Nod-independent nodulation has evolved once in this genus, and should be considered as a derived character, and this result is discussed with regard to previous experimental studies.
Collapse
Affiliation(s)
- Clémence Chaintreuil
- IRD/CIRAD/UM2/Supagro, Laboratoire des Symbioses Tropicales et Méditerranéennes, F-34398, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bomfeti CA, Ferreira PAA, Carvalho TS, De Rycke R, Moreira FMS, Goormachtig S, Holsters M. Nodule development on the tropical legume Sesbania virgata under flooded and non-flooded conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:93-8. [PMID: 22672666 DOI: 10.1111/j.1438-8677.2012.00592.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The interaction between the Brazilian pioneer legume Sesbania virgata and its microsymbiont Azorhizobium doebereinerae leads to the formation of nitrogen-fixing nodules on roots that grow either in well-aerated soils or in wetlands. We studied the initiation and development of nodules under these alternative conditions. To this end, light and fluorescence microscopy were used to follow the bacterial colonisation and invasion into the host and, by means of transmission electron microscopy, we could observe the intracellular entry. Under hydroponic conditions, intercellular invasion took place at lateral root bases and mature nodules were round and determinate. However, on roots grown in vermiculite that allows aerated growth, bacteria also entered via root hair invasion and nodules were both of the determinate and indeterminate type. Such versatility in entry and developmental plasticity, as previously described in Sesbania rostrata, enables efficient nodulation in both dry and wet environments and are an important adaptive feature of this group of semi-tropical plants that grow in temporarily flooded habitats.
Collapse
Affiliation(s)
- C A Bomfeti
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otani Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Monoxenic nodulation process of Acacia mangium (Mimosoideae, Phyllodineae) by Bradyrhizobium sp. Symbiosis 2012. [DOI: 10.1007/s13199-012-0163-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Bonaldi K, Gargani D, Prin Y, Fardoux J, Gully D, Nouwen N, Goormachtig S, Giraud E. Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium Sp. strain ORS285: the nod-dependent versus the nod-independent symbiotic interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1359-71. [PMID: 21995799 DOI: 10.1094/mpmi-04-11-0093] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein-labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.
Collapse
Affiliation(s)
- Katia Bonaldi
- Laboratoire des Symbioses Tropicales et Mediterraneennes, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, de Faria SM, Bouvet JM, Sylla SN, Dreyfus B, Bâ AM. Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. MYCORRHIZA 2007; 17:159-166. [PMID: 17143615 DOI: 10.1007/s00572-006-0085-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 10/16/2006] [Indexed: 05/12/2023]
Abstract
Pterocarpus officinalis (Jacq.) seedlings inoculated with the arbuscular mycorrhizal fungus, Glomus intraradices, and the strain of Bradyrhizobium sp. (UAG 11A) were grown under stem-flooded or nonflooded conditions for 13 weeks after 4 weeks of nonflooded pretreatment under greenhouse conditions. Flooding of P. officinalis seedlings induced several morphological and physiological adaptive mechanisms, including formation of hypertrophied lenticels and aerenchyma tissue and production of adventitious roots on submerged portions of the stem. Flooding also resulted in an increase in collar diameter and leaf, stem, root, and total dry weights, regardless of inoculation. Under flooding, arbuscular mycorrhizas were well developed on root systems and adventitious roots compared with inoculated root systems under nonflooding condition. Arbuscular mycorrhizas made noteworthy contributions to the flood tolerance of P. officinalis seedlings by improving plant growth and P acquisition in leaves. We report in this study the novel occurrence of nodules connected vascularly to the stem and nodule and arbuscular mycorrhizas on adventitious roots of P. officinalis seedlings. Root nodules appeared more efficient fixing N(2) than stem nodules were. Beneficial effect of nodulation in terms of total dry weight and N acquisition in leaves was particularly noted in seedlings growing under flooding conditions. There was no additive effect of arbuscular mycorrhizas and nodulation on plant growth and nutrition in either flooding treatment. The results suggest that the development of adventitious roots, aerenchyma tissue, and hypertrophied lenticels may play a major role in flooded tolerance of P. officinalis symbiosis by increasing oxygen diffusion to the submerged part of the stem and root zone, and therefore contribute to plant growth and nutrition.
Collapse
Affiliation(s)
- L Fougnies
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université Antilles-Guyane, BP. 592, Pointe-à-Pitre, Guadeloupe, 97159, France
| | - S Renciot
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université Antilles-Guyane, BP. 592, Pointe-à-Pitre, Guadeloupe, 97159, France
| | - F Muller
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université Antilles-Guyane, BP. 592, Pointe-à-Pitre, Guadeloupe, 97159, France
- Laboratoire des symbioses tropicales et méditerranéennes, UMR 113 IRD/INRA/AGRO-M/CIRAD/UM2, TA10/J, Campus international de Baillarguet, 34398, Montpellier Cedex, France
- Laboratoire de génétique forestière, CIRAD-Forêt, TA 10/C, Campus international de Baillarguet, 34398, Montpellier Cedex, France
| | - C Plenchette
- INRA, UMR BGA, 17 rue Sully, 21065, Dijon Cedex, France
| | - Y Prin
- Laboratoire des symbioses tropicales et méditerranéennes, UMR 113 IRD/INRA/AGRO-M/CIRAD/UM2, TA10/J, Campus international de Baillarguet, 34398, Montpellier Cedex, France
| | - S M de Faria
- CNPAD/EMBRAPA, Seropédica, Itaguai, Rio de Janeiro, 23851-970, Brazil
| | - J M Bouvet
- Laboratoire de génétique forestière, CIRAD-Forêt, TA 10/C, Campus international de Baillarguet, 34398, Montpellier Cedex, France
| | - S Nd Sylla
- Laboratoire commun de microbiologie ISRA/IRD/UCAD, centre de Bel-Air, BP. 1786, Dakar, Sénégal
| | - B Dreyfus
- Laboratoire des symbioses tropicales et méditerranéennes, UMR 113 IRD/INRA/AGRO-M/CIRAD/UM2, TA10/J, Campus international de Baillarguet, 34398, Montpellier Cedex, France
| | - A M Bâ
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université Antilles-Guyane, BP. 592, Pointe-à-Pitre, Guadeloupe, 97159, France.
- Laboratoire des symbioses tropicales et méditerranéennes, UMR 113 IRD/INRA/AGRO-M/CIRAD/UM2, TA10/J, Campus international de Baillarguet, 34398, Montpellier Cedex, France.
| |
Collapse
|
12
|
THOMAS AL, GUERREIRO SMC, SODEK L. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. ANNALS OF BOTANY 2005; 96:1191-8. [PMID: 16199486 PMCID: PMC4247071 DOI: 10.1093/aob/mci272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/15/2005] [Accepted: 08/15/2005] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Flooding results in hypoxia of the root system to which N2 fixation of nodulated roots can be especially sensitive. Morphological adaptions, such as aerenchyma formation, can facilitate the diffusion of oxygen to the hypoxic tissues. Using soybean, the aim of the study was to characterize the morphological response of the nodulated root system to flooding and obtain evidence for the recovery of N metabolism. METHODS Sections from submerged tissues were observed by light microscopy, while sap bleeding from the xylem was analysed for nitrogenous components. KEY RESULTS Flooding resulted in the rapid formation of adventitious roots and aerenchyma between the stem (immediately above the water line), roots and nodules. In the submerged stem, taproot, lateral roots and adventitious roots, lysigenous aerenchyma arose initially in the cortex and was gradually substituted by secondary aerenchyma arising from cells derived from the pericycle. Nodules developed aerenchyma from cells originating in the phellogen but nodules situated at depths greater than 7-8 cm showed little or no aerenchyma formation. As a result of aerenchyma formation, porosity of the taproot increased substantially between the 4th and 7th days of flooding, coinciding with the recovery of certain nitrogenous products of N metabolism of roots and nodules transported in the xylem. Thus, on the first day of flooding there was a sharp decline in xylem ureides and glutamine (products of N2 fixation), together with a sharp rise in alanine (product of anaerobic metabolism). Between days 7 and 10, recovery of ureides and glutamine to near initial levels was recorded while recovery of alanine was partial. CONCLUSIONS N metabolism of the nodulated soybean root system can recover at least partially during a prolonged period of flooding, a process associated with aerenchyma formation.
Collapse
Affiliation(s)
| | - S. M. C. GUERREIRO
- Departamento de Botânica, Instituto de Biologia, Universidade Estadual de Campinas, C.P. 6109, 13083-970 Campinas – SP, Brazil
| | - L. SODEK
- Departamento de Fisiologia Vegetal
| |
Collapse
|
13
|
Goormachtig S, Capoen W, James EK, Holsters M. Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc Natl Acad Sci U S A 2004; 101:6303-8. [PMID: 15079070 PMCID: PMC395964 DOI: 10.1073/pnas.0401540101] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Indexed: 11/18/2022] Open
Abstract
Rhizobia colonize their legume hosts by different modes of entry while initiating symbiotic nitrogen fixation. Most legumes are invaded via growing root hairs by the root hair-curl mechanism, which involves epidermal cell responses. However, invasion of a number of tropical legumes happens through fissures at lateral root bases by cortical, intercellular crack entry. In the semiaquatic Sesbania rostrata, the bacteria entered via root hair curls under nonflooding conditions. Upon flooding, root hair growth was prevented, invasion on accessible root hairs was inhibited, and intercellular invasion was recruited. The plant hormone ethylene was involved in these processes. The occurrence of both invasion pathways on the same host plant enabled a comparison to be made of the structural requirements for the perception of nodulation factors, which were more stringent for the epidermal root hair invasion than for the cortical intercellular invasion at lateral root bases.
Collapse
Affiliation(s)
- Sofie Goormachtig
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | |
Collapse
|
14
|
Batzli JM, Dawson JO. Development of flood-induced lenticels in red alder nodules prior to the restoration of nitrogenase activity. ACTA ACUST UNITED AC 1999. [DOI: 10.1139/b99-082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Red alder (Alnus rubra Bong.) is a nitrogen-fixing woody plant that is common on wetland sites and tolerates flooding through a variety of induced morphological and physiological changes. Among these changes are the formation of hypertrophied nodule lenticels and the subsequent full restoration of nitrogenase activity after 50 days of flooding. The objective of this study was to examine fine structural changes within red alder nodules during lenticel development that correspond to changes in nitrogenase activity during a 50-day experimental flood. Nodulated seedlings of red alder were grown under greenhouse conditions and then exposed to root flooding for 1, 20, 35, or 50 days. At each harvest, estimates of nitrogenase activity were made via acetylene reduction, and nodule samples were taken for light-microscope examination. Only after 50 days of flooding did red alder show restoration of nitrogenase to pretreatment levels. At this time, Frankia vesicles were found to be directly adjacent to developing lenticel tissue and large intercellular spaces. Intercellular space within the nodule increased from 0.6% in nonflooded tissue to 5.7% after 50 days of flooding. Our results demonstrate the sensitivity of the nitrogenase enzyme to low oxygen soil conditions and indicate that substantial morphological change within the nodule must occur before red alder can regain the capacity to fix nitrogen under flooded conditions.Key words: Alnus rubra, Frankia, waterlogged, biological nitrogen fixation, hypertrophied lenticels, intercellular space.
Collapse
|
15
|
|
16
|
Kramer DM, Kanazawa A, Fleischman D. Oxygen dependence of photosynthetic electron transport in a bacteriochlorophyll-containing rhizobium. FEBS Lett 1997; 417:275-8. [PMID: 9409732 DOI: 10.1016/s0014-5793(97)01300-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteriochlorophyll-containing rhizobia, which form nitrogen-fixing nodules on the stems and roots of the legume Aeschynomene, grow photosynthetically only in the presence of oxygen or auxiliary electron acceptors. We show that, in whole cells of the Rhizobium strain BTAi 1, a single-turnover excitation flash photooxidized c-type cytochrome under aerobic but not anaerobic conditions. Light-induced fluorescence yield changes show that under anaerobic conditions, the primary acceptor quinone, Q(A), is predominantly in the reduced state and so unable to accept electrons. Thus, as is the case for the aerobic photosynthetic bacterium Roseobacter denitrificans, over-reduction of Q(A) likely prohibits photosynthesis under anaerobic conditions.
Collapse
Affiliation(s)
- D M Kramer
- Institute of Biological Chemistry, Washington State University, Pullman 99164-6340, USA.
| | | | | |
Collapse
|
17
|
Boogerd FC, van Rossum D. Nodulation of groundnut byBradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev 1997. [DOI: 10.1111/j.1574-6976.1997.tb00342.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|