1
|
Takvorian N, Zangui H, Naino Jika AK, Alouane A, Siljak-Yakovlev S. Genome Size Variation in Sesamum indicum L. Germplasm from Niger. Genes (Basel) 2024; 15:711. [PMID: 38927647 PMCID: PMC11203198 DOI: 10.3390/genes15060711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Sesamum indicum L. (Pedaliaceae) is one of the most economically important oil crops in the world, thanks to the high oil content of its seeds and its nutritional value. It is cultivated all over the world, mainly in Asia and Africa. Well adapted to arid environments, sesame offers a good opportunity as an alternative subsistence crop for farmers in Africa, particularly Niger, to cope with climate change. For the first time, the variation in genome size among 75 accessions of the Nigerien germplasm was studied. The sample was collected throughout Niger, revealing various morphological, biochemical and phenological traits. For comparison, an additional accession from Thailand was evaluated as an available Asian representative. In the Niger sample, the 2C DNA value ranged from 0.77 to 1 pg (753 to 978 Mbp), with an average of 0.85 ± 0.037 pg (831 Mbp). Statistical analysis showed a significant difference in 2C DNA values among 58 pairs of Niger accessions (p-value < 0.05). This significant variation indicates the likely genetic diversity of sesame germplasm, offering valuable insights into its possible potential for climate-resilient agriculture. Our results therefore raise a fundamental question: is intraspecific variability in the genome size of Nigerien sesame correlated with specific morphological and physiological traits?
Collapse
Affiliation(s)
- Najat Takvorian
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France;
- Sorbonne Université, UFR Sciences de la Vie, UFR927, 4 Place Jussieu, F-75005 Paris Cedex 05, France
| | - Hamissou Zangui
- Department of Plant Production, Abdou Moumouni University, BP-10960 Niamey, Niger; (H.Z.); (A.K.N.J.)
| | - Abdel Kader Naino Jika
- Department of Plant Production, Abdou Moumouni University, BP-10960 Niamey, Niger; (H.Z.); (A.K.N.J.)
| | - Aïda Alouane
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France;
- Sorbonne Université, UFR Sciences de la Vie, UFR927, 4 Place Jussieu, F-75005 Paris Cedex 05, France
| | - Sonja Siljak-Yakovlev
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
2
|
Pyšek P, Lučanová M, Dawson W, Essl F, Kreft H, Leitch IJ, Lenzner B, Meyerson LA, Pergl J, van Kleunen M, Weigelt P, Winter M, Guo WY. Small genome size and variation in ploidy levels support the naturalization of vascular plants but constrain their invasive spread. THE NEW PHYTOLOGIST 2023; 239:2389-2403. [PMID: 37438886 DOI: 10.1111/nph.19135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.
Collapse
Affiliation(s)
- Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic
| | - Magdalena Lučanová
- Department of Evolutionary Biology of Plants, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Franz Essl
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Bernd Lenzner
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Laura A Meyerson
- University of Rhode Island, Natural Resources Science, 9 East Alumni Avenue, Kingston, 02881, RI, USA
| | - Jan Pergl
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, D-78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
| | - Wen-Yong Guo
- Research Centre for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Tshilate TS, Ishengoma E, Rhode C. A first annotated genome sequence for Haliotis midae with genomic insights into abalone evolution and traits of economic importance. Mar Genomics 2023; 70:101044. [PMID: 37196472 DOI: 10.1016/j.margen.2023.101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Haliotis midae or "perlemoen" is one of five abalone species endemic to South Africa, and being palatable, the only commercially important abalone species with a high international demand. The higher demand for this abalone species has resulted in the decrease of natural stocks due to overexploitation by capture fisheries and poaching. Facilitating aquaculture production of H. midae should assist in minimising the pressure on the wild populations. Here, the draft genome of H. midae has been sequenced, assembled, and annotated. The draft assembly resulted in a total length of 1.5 Gb, contig N50 of 0.238 Mb, scaffold N50 of 0. 238 Mb and GC level of 40%. Gene annotation, combining ab initio and evidence-based pipelines identified 52,280 genes with protein coding potential. The genes identified were used to predict orthologous genes shared among the four other abalone species (H. laevigata, H. rubra, H. discus hannai and H. rufescens) and 4702 orthologous genes were shared across the five species. Among the orthologous genes in abalones, single copy genes were further analysed for signatures of selection and several molecular regulatory proteins involved in developmental functions were found to be under positive selection in specific abalone lineages. Furthermore, whole genome SNP-based phylogenomic assessment was performed to confirm the evolutionary relationship among the considered abalone species with draft genomes, reaffirming that H. midae is closely related to the Australian Greenlip (H. laevigata) and Blacklip (H. rubra). The study assists in the understanding of genes related to various biological systems underscoring the evolution and development of abalones, with potential applications for genetic improvement of commercial stocks.
Collapse
Affiliation(s)
- Thendo S Tshilate
- Department of Genetics, Stellenbosch University, Private bag X1, Matieland 7602, South Africa
| | - Edson Ishengoma
- Department of Genetics, Stellenbosch University, Private bag X1, Matieland 7602, South Africa; Mkwawa University College of Education, University of Dar es Salaam, P.O. BOX 2513, Iringa, Tanzania
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Private bag X1, Matieland 7602, South Africa.
| |
Collapse
|
4
|
Wu H, Su W, Shi M, Xue X, Ren H, Wang Y, Zhao A, Li D, Liu M. Genomic C-Value Variation Analysis in Jujube ( Ziziphus jujuba Mill.) in the Middle Yellow River Basin. PLANTS (BASEL, SWITZERLAND) 2023; 12:858. [PMID: 36840207 PMCID: PMC9962250 DOI: 10.3390/plants12040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) originated in the Yellow River basin (YRB) of the Shanxi-Shaanxi region. The genomic C-value is a crucial indicator for plant breeding and germplasm evaluation. In this study, we used flow cytometry to determine the genomic C-values of jujube germplasms in the YRB of the Shanxi-Shaanxi region and evaluated their differences in different sub-regions. Of the 29 sub-regions, the highest and lowest variations were in Linxian and Xiaxian, respectively. The difference between jujube germplasms was highly significant (F = 14.89, p < 0.0001) in Linxian. Cluster analysis showed that both cluster 2 and 4 belonged to Linxian, which were clearly separated from other taxa but were cross-distributed in them. Linxian County is an important gene exchange center in the YRB of the Shanxi-Shaanxi region. Principal component analysis showed that cluster 1 had low genomic C-values and single-fruit weights and cluster 2 had high genomic C-values and vitamin C contents. The genomic C-value was correlated with single-fruit weight and vitamin C content. In addition, the genomic C-value was used to predict fruit agronomic traits, providing a reference for shortening the breeding cycle and genetic diversity-related studies of jujube germplasm.
Collapse
Affiliation(s)
- Hao Wu
- Shanxi Key Laboratory of Fruit Germplasm Creation and Utilization, Institute of Fruit Trees, Agricultural University of Shanxi, Taiyuan 030031, China
- College of Horticulture, Taigu Campus, Agricultural University of Shanxi, Jinzhong 030800, China
| | - Wanlong Su
- College of Horticulture, Taigu Campus, Agricultural University of Shanxi, Jinzhong 030800, China
| | - Meijuan Shi
- College of Horticulture, Taigu Campus, Agricultural University of Shanxi, Jinzhong 030800, China
| | - Xiaofang Xue
- College of Horticulture, Taigu Campus, Agricultural University of Shanxi, Jinzhong 030800, China
| | - Haiyan Ren
- College of Horticulture, Taigu Campus, Agricultural University of Shanxi, Jinzhong 030800, China
| | - Yongkang Wang
- College of Horticulture, Taigu Campus, Agricultural University of Shanxi, Jinzhong 030800, China
| | - Ailing Zhao
- College of Horticulture, Taigu Campus, Agricultural University of Shanxi, Jinzhong 030800, China
| | - Dengke Li
- College of Horticulture, Taigu Campus, Agricultural University of Shanxi, Jinzhong 030800, China
| | - Mengjun Liu
- College of Horticulture, Baoding Campus, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
5
|
Choi JY, Abdulkina LR, Yin J, Chastukhina IB, Lovell JT, Agabekian IA, Young PG, Razzaque S, Shippen DE, Juenger TE, Shakirov EV, Purugganan MD. Natural variation in plant telomere length is associated with flowering time. THE PLANT CELL 2021; 33:1118-1134. [PMID: 33580702 PMCID: PMC8599780 DOI: 10.1093/plcell/koab022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 05/05/2023]
Abstract
Telomeres are highly repetitive DNA sequences found at the ends of chromosomes that protect the chromosomes from deterioration duringcell division. Here, using whole-genome re-sequencing and terminal restriction fragment assays, we found substantial natural intraspecific variation in telomere length in Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays). Genome-wide association study (GWAS) mapping in A. thaliana identified 13 regions with GWAS-significant associations underlying telomere length variation, including a region that harbors the telomerase reverse transcriptase (TERT) gene. Population genomic analysis provided evidence for a selective sweep at the TERT region associated with longer telomeres. We found that telomere length is negatively correlated with flowering time variation not only in A. thaliana, but also in maize and rice, indicating a link between life-history traits and chromosome integrity. Our results point to several possible reasons for this correlation, including the possibility that longer telomeres may be more adaptive in plants that have faster developmental rates (and therefore flower earlier). Our work suggests that chromosomal structure itself might be an adaptive trait associated with plant life-history strategies.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Jun Yin
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Inna B Chastukhina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Alabama 35806, USA
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Eugene V Shakirov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
- Department of Biological Sciences, College of Science, Marshall University, West Virginia 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, West Virginia 25755, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| |
Collapse
|
6
|
Yuan Z, Zhou T, Bao L, Liu S, Shi H, Yang Y, Gao D, Dunham R, Waldbieser G, Liu Z. The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus). PLoS One 2018; 13:e0197371. [PMID: 29763462 PMCID: PMC5953449 DOI: 10.1371/journal.pone.0197371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a research model for comparative immunology, physiology, and toxicology among ectothermic vertebrates. It is also economically important for aquaculture. As such, its reference genome was generated and annotated with protein coding genes. However, the repetitive elements in the catfish genome are less well understood. In this study, over 417.8 Megabase (MB) of repetitive elements were identified and characterized in the channel catfish genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, making up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prevalence of repetitive elements, especially the mobile elements, may have provided a driving force for the evolution of the catfish genome. A number of catfish-specific repetitive elements were identified including the previously reported Xba elements whose divergence rate was relatively low, slower than that in untranslated regions of genes but faster than the protein coding sequences, suggesting its evolutionary restrictions.
Collapse
Affiliation(s)
- Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Dongya Gao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Geoff Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, Mississippi, United States of America
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Yuan Z, Liu S, Zhou T, Tian C, Bao L, Dunham R, Liu Z. Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments. BMC Genomics 2018; 19:141. [PMID: 29439662 PMCID: PMC5811955 DOI: 10.1186/s12864-018-4516-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Repetitive elements make up significant proportions of genomes. However, their roles in evolution remain largely unknown. To provide insights into the roles of repetitive elements in fish genomes, we conducted a comparative analysis of repetitive elements of 52 fish species in 22 orders in relation to their living aquatic environments. RESULTS The proportions of repetitive elements in various genomes were found to be positively correlated with genome sizes, with a few exceptions. More importantly, there appeared to be specific enrichment between some repetitive element categories with species habitat. Specifically, class II transposons appear to be more abundant in freshwater bony fish than in marine bony fish when phylogenetic relationship is not considered. In contrast, marine bony fish harbor more tandem repeats than freshwater species. In addition, class I transposons appear to be more abundant in primitive species such as cartilaginous fish and lamprey than in bony fish. CONCLUSIONS The enriched association of specific categories of repetitive elements with fish habitats suggests the importance of repetitive elements in genome evolution and their potential roles in fish adaptation to their living environments. However, due to the restriction of the limited sequenced species, further analysis needs to be done to alleviate the phylogenetic biases.
Collapse
Affiliation(s)
- Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849 USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849 USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849 USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849 USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849 USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849 USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY 13244 USA
| |
Collapse
|
8
|
Realini MF, Poggio L, Cámara-Hernández J, González GE. Intra-specific variation in genome size in maize: cytological and phenotypic correlates. AOB PLANTS 2015; 8:plv138. [PMID: 26644343 PMCID: PMC4742330 DOI: 10.1093/aobpla/plv138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/07/2015] [Indexed: 05/15/2023]
Abstract
Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin.
Collapse
Affiliation(s)
- María Florencia Realini
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lidia Poggio
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julián Cámara-Hernández
- Cátedra de Botánica Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Esther González
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
9
|
Ågren JA, Greiner S, Johnson MTJ, Wright SI. No evidence that sex and transposable elements drive genome size variation in evening primroses. Evolution 2015; 69:1053-62. [PMID: 25690700 DOI: 10.1111/evo.12627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/13/2015] [Indexed: 01/05/2023]
Abstract
Genome size varies dramatically across species, but despite an abundance of attention there is little agreement on the relative contributions of selective and neutral processes in governing this variation. The rate of sex can potentially play an important role in genome size evolution because of its effect on the efficacy of selection and transmission of transposable elements (TEs). Here, we used a phylogenetic comparative approach and whole genome sequencing to investigate the contribution of sex and TE content to genome size variation in the evening primrose (Oenothera) genus. We determined genome size using flow cytometry for 30 species that vary in genetic system and find that variation in sexual/asexual reproduction cannot explain the almost twofold variation in genome size. Moreover, using whole genome sequences of three species of varying genome sizes and reproductive system, we found that genome size was not associated with TE abundance; instead the larger genomes had a higher abundance of simple sequence repeats. Although it has long been clear that sexual reproduction may affect various aspects of genome evolution in general and TE evolution in particular, it does not appear to have played a major role in genome size evolution in the evening primroses.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.
| | | | | | | |
Collapse
|
10
|
Piednoël M, Carrete-Vega G, Renner SS. Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:699-709. [PMID: 23663083 DOI: 10.1111/tpj.12233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Comparisons of closely related species are needed to understand the fine-scale dynamics of retrotransposon evolution in flowering plants. Towards this goal, we classified the long terminal repeat (LTR) retrotransposons from six diploid and one tetraploid species of Orobanchaceae. The study species are the autotrophic, non-parasitic Lindenbergia philippensis (as an out-group) and six closely related holoparasitic species of Orobanche [O. crenata, O. cumana, O. gracilis (tetraploid) and O. pancicii] and Phelipanche (P. lavandulacea and P. ramosa). All major plant LTR retrotransposon clades could be identified, and appear to be inherited from a common ancestor. Species of Orobanche, but not Phelipanche, are enriched in Ty3/Gypsy retrotransposons due to a diversification of elements, especially chromoviruses. This is particularly striking in O. gracilis, where tetraploidization seems to have contributed to the Ty3/Gypsy enrichment and led to the emergence of seven large species-specific families of chromoviruses. The preferential insertion of chromoviruses in heterochromatin via their chromodomains might have favored their diversification and enrichment. Our phylogenetic analyses of LTR retrotransposons from Orobanchaceae also revealed that the Bianca clade of Ty1/Copia and the SMART-related elements are much more widely distributed among angiosperms than previously known.
Collapse
Affiliation(s)
- Mathieu Piednoël
- Systematic Botany and Mycology, University of Munich (LMU), Munich, 80638, Germany.
| | | | | |
Collapse
|
11
|
Díez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Eguiarte LE, Tenaillon MI. Genome size variation in wild and cultivated maize along altitudinal gradients. THE NEW PHYTOLOGIST 2013; 199:264-276. [PMID: 23550586 PMCID: PMC4119021 DOI: 10.1111/nph.12247] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/20/2013] [Indexed: 05/18/2023]
Abstract
It is still an open question as to whether genome size (GS) variation is shaped by natural selection. One approach to address this question is a population-level survey that assesses both the variation in GS and the relationship of GS to ecological variants. We assessed GS in Zea mays, a species that includes the cultivated crop, maize, and its closest wild relatives, the teosintes. We measured GS in five plants of each of 22 maize landraces and 21 teosinte populations from Mexico sampled from parallel altitudinal gradients. GS was significantly smaller in landraces than in teosintes, but the largest component of GS variation was among landraces and among populations. In maize, GS correlated negatively with altitude; more generally, the best GS predictors were linked to geography. By contrast, GS variation in teosintes was best explained by temperature and precipitation. Overall, our results further document the size flexibility of the Zea genome, but also point to a drastic shift in patterns of GS variation since domestication. We argue that such patterns may reflect the indirect action of selection on GS, through a multiplicity of phenotypes and life-history traits.
Collapse
Affiliation(s)
- Concepción M Díez
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, 92697, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, 92697, USA
| | - Esteban Meca
- Department of Mathematics, UC Irvine, Irvine, CA, 92607, USA
| | - Enrique Scheinvar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CP 04510, Mexico City, Mexico
| | - Salvador Montes-Hernandez
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, CP 38110, Celaya, Guanajuato, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CP 04510, Mexico City, Mexico
| | - Maud I Tenaillon
- CNRS, UMR de Génétique Végétale, INRA/CNRS/Univ Paris-Sud/AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Duchoslav M, Šafářová L, Jandová M. Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum (Amaryllidaceae) on a continental scale. ANNALS OF BOTANY 2013; 111:419-31. [PMID: 23348752 PMCID: PMC3579448 DOI: 10.1093/aob/mcs297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/30/2012] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Although the large variation in genome size among different species is widely acknowledged, the occurrence and extent of variation below the species level are still controversial and have not yet been satisfactorily analysed. The aim of this study was to assess genome size variation in six ploidy levels (2n = 3x-8x) of the polyploid Allium oleraceum over a large geographical gradient and to search for potential interpretations of the size variation. METHODS The genome sizes of 407 individuals of A. oleraceum collected from 114 populations across Europe were determined by flow cytometry using propidium iodide staining. The genome size variation was correlated with spatial, climatic and habitat variables. KEY RESULTS The mean holoploid genome size (2C DNA) was 42·49, 52·14, 63·34, 71·94, 85·51 and 92·12 pg at the tri-, tetra-, penta-, hexa-, hepta- and octoploid levels, respectively. Genome size varied from a minimum of 2·3 % in the octoploids to a maximum of 18·3 % in the tetraploids. Spatial structuring of genome size was observed within the tetra- and pentaploids, where 2C DNA significantly increased with both latitude and longitude, and correlated with several climatic variables, suggesting a gradient of continentality. Genome size in hexaploids showed low variation, weak correlation with climatic variables and no spatial structuring. Downsizing in monoploid genome size was observed between all cytotypes except for heptaploids. Splitting populations into western and eastern European groups resulted in strong differences in monoploid genome size between groups in tetra- and pentaploids but not in hexaploids. The monoploid genome sizes of the cytotypes were similar in the western group but diverged in the eastern group. CONCLUSIONS Complex patterns of holoploid and monoploid genome size variation found both within and between A. oleraceum cytotypes are most likely the result of several interacting factors, including different evolutionary origins of cytotypes via hybridization of parental combinations with different genome sizes in the south-western and south-eastern part of Europe, introgression between cytotypes, and antropic dispersal. The role of broad-scale and fine-scale environmental variables in shaping genome size is probably of minor importance in A. oleraceum.
Collapse
Affiliation(s)
- Martin Duchoslav
- Plant Biosystematics and Ecology Research Group, Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | | | | |
Collapse
|
13
|
Muñoz-Diez C, Vitte C, Ross-Ibarra J, Gaut BS, Tenaillon MI. Using Nextgen Sequencing to Investigate Genome Size Variation and Transposable Element Content. PLANT TRANSPOSABLE ELEMENTS 2012. [DOI: 10.1007/978-3-642-31842-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Ceccarelli M, Sarri V, Caceres M, Cionini P. Intraspecific genotypic diversity in plants. Genome 2011; 54:701-9. [DOI: 10.1139/g11-039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Variations in the nuclear DNA, mainly as a result of quantitative modulations of DNA repeats belonging to different sequence families of satellite DNA and to the activity of transposable elements, have been assessed within several angiosperm species. These variations alter the amount and organization of the DNA and therefore the genotype, rather than the genome proper. They take place on an evolutionary time scale as the result of selection processes after the occurrence of uncontrolled events in the genome or may be due to direct responses of plant genomes to environmental stimuli that occur under plant-level control within a short developmental period of a single generation. These DNA changes are correlated to changes in the developmental dynamics and phenotypic characteristics of the plants, and the capability to carry out genotypic variation is an evolutionary trait that allows plant species to adapt to different environmental conditions, as well as to the variability of conditions in a given environment. The link between developmental and environmental stimuli and repetitive DNA that elicits the intraspecific diversity of plant genotypes may provide models of evolutionary change that extend beyond the conventional view of evolution by allelic substitution and take into account epigenetic effects of the genome structure.
Collapse
Affiliation(s)
- M. Ceccarelli
- Dipartimento di Biologia Cellulare e Ambientale, Sezione di Biologia Cellulare e Molecolare, Università di Perugia, Via Elce di Sotto, 06123 Perugia, Italy
| | - V. Sarri
- Dipartimento di Biologia Cellulare e Ambientale, Sezione di Biologia Cellulare e Molecolare, Università di Perugia, Via Elce di Sotto, 06123 Perugia, Italy
| | - M.E. Caceres
- Dipartimento di Biologia Cellulare e Ambientale, Sezione di Biologia Cellulare e Molecolare, Università di Perugia, Via Elce di Sotto, 06123 Perugia, Italy
| | - P.G. Cionini
- Dipartimento di Biologia Cellulare e Ambientale, Sezione di Biologia Cellulare e Molecolare, Università di Perugia, Via Elce di Sotto, 06123 Perugia, Italy
| |
Collapse
|
15
|
Munwes I, Geffen E, Friedmann A, Tikochinski Y, Gafny S. Variation in repeat length and heteroplasmy of the mitochondrial DNA control region along a core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol Ecol 2011; 20:2878-87. [PMID: 21645158 DOI: 10.1111/j.1365-294x.2011.05134.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral populations are those situated at the distribution margins of a species and are often subjected to more extreme abiotic and biotic conditions than those at the core. Here, we hypothesized that shorter repeat length and fewer heteroplasmic mitochondrial DNA (mtDNA) copies, which are associated with more efficient mitochondrial function, may be related to improved survival under extreme environmental conditions. We sampled eastern spadefoot toads (mostly as tadpoles) from 43 rain pools distributed along a 300-km gradient from core to edge of the species' distribution. We show that mean pool tandem repeat length and heteroplasmy increase from edge to core, even after controlling for body size. We evaluate several alternative hypotheses and propose the Fisher hypothesis as the most likely explanation. However, additional sequential sampling and experimental studies are required to determine whether selection under extreme conditions, or alternative mechanisms, could account for the gradient in heteroplasmy and repeat length in the mtDNA control region.
Collapse
Affiliation(s)
- Inbar Munwes
- School of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | | | | | | | | |
Collapse
|
16
|
Lisch D, Bennetzen JL. Transposable element origins of epigenetic gene regulation. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:156-61. [PMID: 21444239 DOI: 10.1016/j.pbi.2011.01.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 01/22/2011] [Indexed: 05/07/2023]
Abstract
Transposable elements (TEs) are massively abundant and unstable in all plant genomes, but are mostly silent because of epigenetic suppression. Because all known epigenetic pathways act on all TEs, it is likely that the specialized epigenetic regulation of regular host genes (RHGs) was co-opted from this ubiquitous need for the silencing of TEs and viruses. With their internally repetitive and rearranging structures, and the acquisition of fragments of RHGs, the expression of TEs commonly makes antisense RNAs for both TE genes and RHGs. These antisense RNAs, particularly from heterochromatic reservoirs of 'zombie' TEs that are rearranged to form variously internally repetitive structures, may be advantageous because their induction will help rapidly suppress active TEs of the same family. RHG fragments within rapidly rearranging TEs may also provide the raw material for the ongoing generation of miRNA genes. TE gene expression is regulated by both environmental and developmental signals, and insertions can place nearby RHGs under the regulation (both standard and epigenetic) of the TE. The ubiquity of TEs, their frequent preferential association with RHGs, and their ability to be programmed by epigenetic signals all indicate that RGHs have nearly unlimited access to novel regulatory cassettes to assist plant adaptation.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
17
|
Yuan Z, Sun X, Liu H, Xie J. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One 2011; 6:e17666. [PMID: 21436881 PMCID: PMC3059204 DOI: 10.1371/journal.pone.0017666] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 02/10/2011] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene
expression by targeting mRNAs for translation repression or mRNA degradation.
Many miRNAs are being discovered and studied, but in most cases their origin,
evolution and function remain unclear. Here, we characterized miRNAs derived
from repetitive elements and miRNA families expanded by segmental duplication
events in the human, rhesus and mouse genomes. We applied a comparative genomics
approach combined with identifying miRNA paralogs in segmental duplication pair
data in a genome-wide study to identify new homologs of human miRNAs in the
rhesus and mouse genomes. Interestingly, using segmental duplication pair data,
we provided credible computational evidence that two miRNA genes are located in
the pseudoautosomal region of the human Y chromosome. We characterized all the
miRNAs whether they were derived from repetitive elements or not and identified
significant differences between the repeat-related miRNAs (RrmiRs) and
non-repeat-derived miRNAs in (1) their location in protein-coding and intergenic
regions in genomes, (2) the minimum free energy of their hairpin structures, and
(3) their conservation in vertebrate genomes. We found some lineage-specific
RrmiR families and three lineage-specific expansion families, and provided
evidence indicating that some RrmiR families formed and expanded during
evolutionary segmental duplication events. We also provided computational and
experimental evidence for the functions of the conservative RrmiR families in
the three species. Together, our results indicate that repetitive elements
contribute to the origin of miRNAs, and large segmental duplication events could
prompt the expansion of some miRNA families, including RrmiR families. Our study
is a valuable contribution to the knowledge of evolution and function of
non-coding region in genome.
Collapse
Affiliation(s)
- Zhidong Yuan
- State Key Laboratory of Bioelectronics, School
of Biological Science and Medical Engineering, Southeast University, Nanjing,
China
- School of Life Science, Hunan University of
Science and Technology, Xiangtan, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School
of Biological Science and Medical Engineering, Southeast University, Nanjing,
China
- * E-mail:
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School
of Biological Science and Medical Engineering, Southeast University, Nanjing,
China
| | - Jianming Xie
- School of Life Science, Hunan University of
Science and Technology, Xiangtan, China
| |
Collapse
|
18
|
Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 2011; 3:219-29. [PMID: 21296765 PMCID: PMC3068001 DOI: 10.1093/gbe/evr008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The genome of maize (Zea mays ssp. mays) consists mostly of transposable elements (TEs) and varies in size among lines. This variation extends to other species in the genus Zea: although maize and Zea luxurians diverged only ∼140,000 years ago, their genomes differ in size by ∼50%. We used paired-end Illumina sequencing to evaluate the potential contribution of TEs to the genome size difference between these two species. We aligned the reads both to a filtered gene set and to an exemplar database of unique repeats representing 1,514 TE families; ∼85% of reads mapped against TE repeats in both species. The relative contribution of TE families to the B73 genome was highly correlated with previous estimates, suggesting that reliable estimates of TE content can be obtained from short high-throughput sequencing reads, even at low coverage. Because we used paired-end reads, we could assess whether a TE was near a gene by determining if one paired read mapped to a TE and the second read mapped to a gene. Using this method, Class 2 DNA elements were found significantly more often in genic regions than Class 1 RNA elements, but Class 1 elements were found more often near other TEs. Overall, we found that both Class 1 and 2 TE families account for ∼70% of the genome size difference between B73 and luxurians. Interestingly, the relative abundance of TE families was conserved between species (r = 0.97), suggesting genome-wide control of TE content rather than family-specific effects.
Collapse
Affiliation(s)
- Maud I Tenaillon
- CNRS, UMR de Génétique Végétale, INRA/CNRS/Univ Paris-Sud/AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
19
|
Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, d'Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G, Galbraith DW, Bressan RA, Yun DJ, Zhu JK, Cheeseman JM, Bohnert HJ. Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1040-52. [PMID: 20833729 PMCID: PMC2971586 DOI: 10.1104/pp.110.163923] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Department of Plant Biology , University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Witzany G. Uniform categorization of biocommunication in bacteria, fungi and plants. World J Biol Chem 2010; 1:160-80. [PMID: 21541001 PMCID: PMC3083953 DOI: 10.4331/wjbc.v1.i5.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/05/2023] Open
Abstract
This article describes a coherent biocommunication categorization for the kingdoms of bacteria, fungi and plants. The investigation further shows that, besides biotic sign use in trans-, inter- and intraorganismic communication processes, a common trait is interpretation of abiotic influences as indicators to generate an appropriate adaptive behaviour. Far from being mechanistic interactions, communication processes within organisms and between organisms are sign-mediated interactions. Sign-mediated interactions are the precondition for every cooperation and coordination between at least two biological agents such as cells, tissues, organs and organisms. Signs of biocommunicative processes are chemical molecules in most cases. The signs that are used in a great variety of signaling processes follow syntactic (combinatorial), pragmatic (context-dependent) and semantic (content-specific) rules. These three levels of semiotic rules are helpful tools to investigate communication processes throughout all organismic kingdoms. It is not the aim to present the latest empirical data concerning communication in these three kingdoms but to present a unifying perspective that is able to interconnect transdisciplinary research on bacteria, fungi and plants.
Collapse
Affiliation(s)
- Günther Witzany
- Guenther Witzany, Telos-Philosophische Praxis, Vogelsangstrasse 18c, A-5111-Buermoos, Austria
| |
Collapse
|
21
|
Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. THE NEW PHYTOLOGIST 2010; 186:148-60. [PMID: 19968801 DOI: 10.1111/j.1469-8137.2009.03101.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Allopolyploids represent natural experiments in which DNA sequences from different species are combined into a single nucleus and then coevolve, enabling us to follow the parental genomes, their interactions and evolution over time. Here, we examine the fate of satellite DNA over 5 million yr of divergence in plant genus Nicotiana (family Solanaceae). We isolated subtelomeric, tandemly repeated satellite DNA from Nicotiana diploid and allopolyploid species and analysed patterns of inheritance and divergence by sequence analysis, Southern blot hybridization and fluorescent in situ hybridization (FISH). We observed that parental satellite sequences redistribute around the genome in allopolyploids of Nicotiana section Polydicliae, formed c. 1 million yr ago (Mya), and that new satellite repeats evolved and amplified in section Repandae, which was formed c. 5 Mya. In some cases that process involved the complete replacement of parental satellite sequences. The rate of satellite repeat replacement is faster than theoretical predictions assuming the mechanism involved is unequal recombination and crossing-over. Instead we propose that this mechanism occurs with the deletion of large chromatin blocks and reamplification, perhaps via rolling circle replication.
Collapse
Affiliation(s)
- Blazena Koukalova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Lavergne S, Muenke NJ, Molofsky J. Genome size reduction can trigger rapid phenotypic evolution in invasive plants. ANNALS OF BOTANY 2010; 105:109-16. [PMID: 19887472 PMCID: PMC2794072 DOI: 10.1093/aob/mcp271] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/11/2009] [Accepted: 10/05/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS The study of rapid evolution in invasive species has highlighted the fundamental role played by founder events, emergence of genetic novelties through recombination and rapid response to new selective pressures. However, whether rapid adaptation of introduced species can be driven by punctual changes in genome organization has received little attention. In plants, variation in genome size, i.e. variation in the amount of DNA per monoploid set of chromosomes through loss or gain of repeated DNA sequences, is known to influence a number of physiological, phenological and life-history features. The present study investigated whether change in genome size has contributed to the evolution of greater potential of vegetative growth in invasive populations of an introduced grass. METHODS The study was based on the recent demonstration that invasive genotypes of reed canarygrass (Phalaris arundinacea) occurring in North America have emerged from recombination between introduced European strains. The genome sizes of more than 200 invasive and native genotypes were measured and their genome size was related to their phenotypic traits measured in a common glasshouse environment. Population genetics data were used to infer phylogeographical relationships between study populations, and the evolutionary history of genome size within the study species was inferred. KEY RESULTS Invasive genotypes had a smaller genome than European native genotypes from which they are derived. This smaller genome size had phenotypic effects that increased the species' invasive potential, including a higher early growth rate, due to a negative relationship between genome size and rate of stem elongation. Based on inferred phylogeographical relationships of invasive and native populations, evolutionary models were consistent with a scenario of genome reduction by natural selection during the invasion process, rather than a scenario of stochastic change. CONCLUSIONS Punctual reduction in genome size could cause rapid changes in key phenotypic traits that enhance invasive ability. Although the generality of genome size variation leading to phenotypic evolution and the specific genomic mechanisms involved are not known, change in genome size may constitute an important but previously under-appreciated mechanism of rapid evolutionary change that may promote evolutionary novelties over short time scales.
Collapse
Affiliation(s)
- Sébastien Lavergne
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
23
|
The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity (Edinb) 2009; 102:533-41. [PMID: 19277056 DOI: 10.1038/hdy.2009.17] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic genomes contain a large proportion of repetitive DNA sequences, mostly transposable elements (TEs) and tandem repeats. These repetitive sequences often colonize specific chromosomal (Y or W chromosomes, B chromosomes) or subchromosomal (telomeres, centromeres) niches. Sex chromosomes, especially non-recombining regions of the Y chromosome, are subject to different evolutionary forces compared with autosomes. In non-recombining regions of the Y chromosome repetitive DNA sequences are accumulated, representing a dominant and early process forming the Y chromosome, probably before genes start to degenerate. Here we review the occurrence and role of repetitive DNA in Y chromosome evolution in various species with a focus on dioecious plants. We also discuss the potential link between recombination and transposition in shaping genomes.
Collapse
|
24
|
Abstract
The genetic make-up of an organism, established at fertilization, is not conventionally expected to change during development unless mutation occurs. However, there is actually evidence that considerable variation can arise. Some of these changes may occur in response to the environment. This article reviews such variations in genome size or DNA content (excluding ploidy-level changes). The variation can be generated by processes, including high-frequency chromosomal recombination, transposition, cis-element-enhanced gene amplification and repetitive-sequence-based changes in nuclear DNA content. Environmentally induced and developmentally regulated genomic variation (ED-genomic variation or ED-genetic variation) can be found in both coding and non-coding sequences, and is often non-Mendelian in its inheritance pattern. Changes can depend on development (for example, propagation method, seed/fruit position on plants, embryo stage, etc.) and occur in response to the environment (for example, light, temperature, herbicide, salinity, fertilizer, land slope direction, pathogen infection, etc.). Some plants have meiotic (or rejuvenation) corrections, which restore their genome sizes to a certain degree. However, Mendelian inheritance and acquired inheritance of the variants occur, and both inheritance types may be different expressions evolved for the same adaptive responses. With this perspective, the terms 'pure-breeding line' or 'stable cultivar' may only be appropriate for a given mode of reproduction or propagation, and for a given environment. ED-genomic variation appears to be an essential component of differentiation, development and adaptation. Consequently, modern molecular biology tools, such as microarray hybridization and new sequencing technology, should be directed towards a more comprehensive evaluation of ED-genomic variation.
Collapse
|
25
|
|
26
|
Abstract
SummaryOne of the long-standing mysteries in genomic evolution is the observation that much of the genome is composed of repetitive DNA, resulting in inter- and intraspecific variation in nuclear DNA content. Our discovery of a negative correlation between nuclear DNA content and flower size inSilene latifoliahas been supported by our subsequent investigation of changes in DNA content as a correlated response to selection on flower size. Moreover, we have observed a similar trend across a range of related dioecious species inSilenesect.Elisanthe. Given the presence of sex chromosomes in dioeciousSilenespecies, and the tendency of sex chromosomes to accumulate repetitive DNA, it seems plausible that dioecious species undergo genomic evolution in ways that differ from what one might expect in hermaphroditic species. Specifically, we query whether the observed relationship between nuclear DNA content and flower size observed in dioeciousSileneis a peculiarity of sex chromosome evolution. In the present study we investigated nuclear DNA content and flower size variation in hermaphroditic species ofSilenesect.Siphonomorpha, as close relatives of the dioecious species studied previously. Although the nuclear DNA contents of these species were lower than those for species in sect.Elisanthe, there was still significant intra- as well as interspecific variation in nuclear DNA content. Flower size variation was found among species of sect.Siphonomorphafor petal claw and petal limb lengths, but not for calyx diameter. This last trait varies extensively in sect.Elisanthe, in part due to sex-specific selection. A negative correlation with nuclear DNA content was found across populations for petal limb length, but not for other floral dimensions. We conclude that impacts of nuclear DNA content on phenotypic evolution do manifest themselves in hermaphroditic species, so that the effects observed in sect.Elisanthe, and particularly inS. latifolia, while perhaps amplified by the genomic impacts of sex chromosomes, are not limited to dioecious taxa.
Collapse
|
27
|
Pelkonen VP, Niittyvuopio A, Pirttilä AM, Laine K, Hohtola A. Phylogenetic background of Orange lily (Lilium bulbiferum s.l.) cultivars from a genetically isolated environment. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:534-40. [PMID: 17538862 DOI: 10.1055/s-2007-965042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Domesticated Orange lily ( LILIUM BULBIFERUM s.l.) cultivars do not typically produce seeds, and Orange lily is not native to Finland. Therefore, back crossing of the cultivars with wild species has not been possible. Genetic variability and genuineness of eight Finnish traditionally-grown Orange lily cultivars was studied. RAPD patterns were compared between the cultivars and genuine Orange lily ( LILIUM BULBIFERUM L.), and a related Dauricum group. The results showed partition of tested genotypes into four groups, L. CANADENSE as the outgroup. The cultivars were divided into two subgroups where the trait to form bulbils was characteristic to subgroup I. The cultivated strains differed from each other as much as from the seedling strains, but were genetically closer to genuine Orange lily than the Dauricum group. This indicates that the cultivars are genuine forms of Orange lily species. The special morphological features of the cultivars have likely been formed during centuries-long genetic isolation from natural populations.
Collapse
Affiliation(s)
- V-P Pelkonen
- Department of Biology, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
28
|
Korpelainen H, Kostamo K, Virtanen V. Microsatellite marker identification using genome screening and restriction-ligation. Biotechniques 2007; 42:479-80, 482, 484-6. [PMID: 17489235 DOI: 10.2144/000112415] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have identified a fast and easy method for finding microsatellite markers that utilizes genome screening with inter-simple sequence repeat (ISSR) primers to detect microsatellite regions and to obtain sequence information flanking one side of the microsatellites and a restriction-ligation technique with a specific adaptor to allow sequence walking to obtain sequence information flanking the other side of the microsatellites. Two main alternatives of the method (with or without cloning) are presented. We successfully utilized the method when identifying microsatellite markers for 21 bryophyte species, three algal species, and for the raccoon dog. The proportion of polymorphic markers equaled 95%. We observed that microsatellites are commonly found within the sequenced ISSR amplification products (54% in the present study), in which case specific primers can be identified for the microsatellite without a further restriction-ligation step. It is evident that the DNA regions amplified by ISSR markers commonly represent microsatellite hotspots. We propose that the identified method and the knowledge of the common presence of additional microsatellite repeats within ISSR amplification products are especially attractive to researchers who conduct small-scale microsatellite identification, such as researchers in population genetics and conservation biology.
Collapse
|
29
|
|
30
|
Witzany G. Plant communication from biosemiotic perspective: differences in abiotic and biotic signal perception determine content arrangement of response behavior. Context determines meaning of meta-, inter- and intraorganismic plant signaling. PLANT SIGNALING & BEHAVIOR 2006; 1:169-78. [PMID: 19521482 PMCID: PMC2634023 DOI: 10.4161/psb.1.4.3163] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 06/19/2006] [Indexed: 05/23/2023]
Abstract
As in all organisms, the evolution, development and growth of plants depends on the success of complex communication processes. These communication processes are primarily sign mediated interactions and not simply an exchange of information. They involve active coordination and active organization-conveyed by signs. A wide range of chemical substances and physical influences serve as signs.Different abiotic or biotic influences require different behaviors. Depending on the behavior, the core set of signs common to species, families, genera and organismic kingdoms is variously produced, combined and transported. This allows entirely different communication processes to be carried out with the same types of chemical molecules.Almost without exception, plant communication are parallel processes on multiple levels, (A) between plants and microorganisms, fungi, insects and other animals, (B) between different plant species as well as between members of the same plant species; (C), between cells and in cells of the plant organism.
Collapse
|
31
|
Clark RM, Wagler TN, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 2006; 38:594-7. [PMID: 16642024 DOI: 10.1038/ng1784] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/16/2006] [Indexed: 11/10/2022]
Abstract
Although quantitative trait locus (QTL) mapping has been successful in describing the genetic architecture of complex traits, the molecular basis of quantitative variation is less well understood, especially in plants such as maize that have large genome sizes. Regulatory changes at the teosinte branched1 (tb1) gene have been proposed to underlie QTLs of large effect for morphological differences that distinguish maize (Zea mays ssp. mays) from its wild ancestors, the teosintes (Z. mays ssp. parviglumis and mexicana). We used a fine mapping approach to show that intergenic sequences approximately 58-69 kb 5' to the tb1 cDNA confer pleiotropic effects on Z. mays morphology. Moreover, using an allele-specific expression assay, we found that sequences >41 kb upstream of tb1 act in cis to alter tb1 transcription. Our findings show that the large stretches of noncoding DNA that comprise the majority of many plant genomes can be a source of variation affecting gene expression and quantitative phenotypes.
Collapse
Affiliation(s)
- Richard M Clark
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
32
|
Mauricio R. The 'bricolage' of the genome elucidated through evolutionary genomics. THE NEW PHYTOLOGIST 2005; 168:1-4. [PMID: 16159315 DOI: 10.1111/j.1469-8137.2005.01554.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|