1
|
Wang Y, Guo T, Liu Q, Hu Z, Tian C, Hu M, Mai W. The Relationship between Allometric Growth and the Stoichiometric Characteristics of Euhalophyte Suaeda salsa L. Grown in Saline-Alkali Lands: Biological Desalination Potential Prediction. PLANTS (BASEL, SWITZERLAND) 2024; 13:1954. [PMID: 39065481 PMCID: PMC11280733 DOI: 10.3390/plants13141954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The morphological adjustments of euhalophytes are well-known to be influenced by the soil-soluble salt variation; however, whether and how these changes in morphological traits alter the biomass allocation pattern remains unclear, especially under different NaCl levels. Therefore, an allometric analysis was applied to investigate the biomass allocation pattern and morphological plasticity, and the carbon (C), nitrogen (N), and phosphorus (P) stoichiometric characteristics of the euhalophyte Suaeda Salsa (S. salsa) at the four soil-soluble salt levels of no salt (NS), light salt (LS), moderate salt (MS), and heavy salt (HS). The results showed that soil-soluble salts significantly change the biomass allocation to the stems and leaves (p < 0.05). With the growth of S. salsa, the NS treatment produced a downward leaf mass ratio (LMR) and upward stem mass ratio (SMR); this finding was completely different from that for the salt treatments. When S. salsa was harvested on the 100th day, the HS treatment had the highest LMR (61%) and the lowest SMR (31%), while the NS treatment was the opposite, with an LMR of 44% and an SMR of 50%. Meanwhile, the soil-soluble salt reshaped the morphological characteristics of S. salsa (e.g., root length, plant height, basal stem diameter, and leaf succulence). Combined with the stoichiometric characteristics, N uptake restriction under salt stress is a vital reason for inhibited stem growth. Although the NS treatment had the highest biomass (48.65 g root box-1), the LS treatment had the highest salt absorption (3.73 g root box-1). In conclusion, S. salsa can change its biomass allocation pattern through morphological adjustments to adapt to different saline-alkali habitats. Moreover, it has an optimal biological desalting effect in lightly saline soil dominated by NaCl.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.W.); (Q.L.); (C.T.); (M.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongkai Guo
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China;
| | - Qun Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.W.); (Q.L.); (C.T.); (M.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonglin Hu
- Department of Production and Operation, Xinjiang Oilfield Company, Petrochina, Karamay 834000, China;
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.W.); (Q.L.); (C.T.); (M.H.)
| | - Mingfang Hu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.W.); (Q.L.); (C.T.); (M.H.)
| | - Wenxuan Mai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.W.); (Q.L.); (C.T.); (M.H.)
| |
Collapse
|
2
|
Khramov DE, Nedelyaeva OI, Konoshenkova AO, Volkov VS, Balnokin YV. Identification and selection of reference genes for analysis of gene expression by quantitative real-time PCR in the euhalophyte Suaeda altissima (L.) Pall. Commun Integr Biol 2024; 17:2372313. [PMID: 38988501 PMCID: PMC11236294 DOI: 10.1080/19420889.2024.2372313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Сoding sequences of seven housekeeping genes: actin SaACT7, ubiquitin-conjugating protein SaUBC10, glyceraldehyde-3-phosphate dehydrogenase SaGAPDH, protein of the large subunit of ribosomes SaL2, α-tubulin SaTUA, translation elongation factor SaeEF1α, and protein phosphatase SaPP2A were identified as candidate reference genes for expression analysis of target genes in the extremely salt tolerant plant Suaeda altissima (L.) Pall. The expression profiles of the genes differed. SaACT7 and SaeEF1α demonstrated the highest expression levels, while the lowest expression levels were found for SaPP2A and SaTUA. SaPP2A and SaeEF1α genes were the most stably expressed at different steady-state salinity levels and different nitrate concentrations in nutrient solutions (NSs). SaL2, SaPP2A, and SaeEF1α genes showed the greatest stability of expression when nitrate was added to nutrient solution of plants grown under conditions of nitrate deficiency. Less constant expression was demonstrated in this experiment by SaACT7 and SaTUA. SaL2, SaACT7, SaeEF1α, and SaUBC10 genes showed the smallest expression changes under salt shock. To validate the use of the most stably expressed genes for normalization of gene expression, we checked them as reference genes to study the expression of the nitrate transporter gene SaNPF6.3 in S. altissima roots under conditions of different salinity and different nitrate supply.
Collapse
Affiliation(s)
- Dmitrii E. Khramov
- Laboratory of Ion Transport and Salinity Tolerance, K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga I. Nedelyaeva
- Laboratory of Ion Transport and Salinity Tolerance, K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow, Russia
| | - Alena O. Konoshenkova
- Laboratory of Ion Transport and Salinity Tolerance, K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow, Russia
| | - Vadim S. Volkov
- Laboratory of Ion Transport and Salinity Tolerance, K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow, Russia
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Yurii V. Balnokin
- Laboratory of Ion Transport and Salinity Tolerance, K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Zhao S, Liu X, Banerjee S, Hartmann M, Peng B, Elvers R, Zhao ZY, Zhou N, Liu JJ, Wang B, Tian CY, Jiang J, Lian TX. Continuous planting of euhalophyte Suaeda salsa enhances microbial diversity and multifunctionality of saline soil. Appl Environ Microbiol 2024; 90:e0235523. [PMID: 38535171 PMCID: PMC11022556 DOI: 10.1128/aem.02355-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/18/2024] Open
Abstract
Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xu Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Martin Hartmann
- Sustainable Agroecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Bin Peng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Rylie Elvers
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Zhen-Yong Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Na Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Jun-Jie Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Chang-Yan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Teng-Xiang Lian
- Sustainable Agroecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhang D, Tian C, Mai W. Exogenous Sodium and Calcium Alleviate Drought Stress by Promoting the Succulence of Suaeda salsa. PLANTS (BASEL, SWITZERLAND) 2024; 13:721. [PMID: 38475566 DOI: 10.3390/plants13050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Succulence is a key trait involved in the response of Suaeda salsa to salt stress. However, few studies have investigated the effects of the interaction between salt and drought stress on S. salsa growth and succulence. In this study, the morphology and physiology of S. salsa were examined under different salt ions (Na+, Ca2+, Mg2+, Cl-, and SO42-) and simulated drought conditions using different polyethylene glycol concentrations (PEG; 0%, 5%, 10%, and 15%). The results demonstrate that Na+ and Ca2+ significantly increased leaf succulence by increasing leaf water content and enlarging epidermal cell size compared to Mg2+, Cl-, and SO42-. Under drought (PEG) stress, with an increase in drought stress, the biomass, degree of leaf succulence, and water content of S. salsa decreased significantly in the non-salt treatment. However, with salt treatment, the results indicated that Na+ and Ca2+ could reduce water stress due to drought by stimulating the succulence of S. salsa. In addition, Na+ and Ca2+ promoted the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), which could reduce oxidative stress. In conclusion, Na+ and Ca2+ are the main factors promoting succulence and can effectively alleviate drought stress in S. salsa.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wenxuan Mai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
5
|
Li CY, He R, Tian CY, Song J. Utilization of halophytes in saline agriculture and restoration of contaminated salinized soils from genes to ecosystem: Suaeda salsa as an example. MARINE POLLUTION BULLETIN 2023; 197:115728. [PMID: 37918144 DOI: 10.1016/j.marpolbul.2023.115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Halophytes can be used to screen genes for breeding salt-tolerant crops and are of great value in the restoration of salinized or contaminated soils. However, the potential of halophytes in improving saline soils remains limited. In this paper, based on the latest research progress, we use Suaeda salsa L. as an example to evaluate the value of halophytes in developing saline agriculture including: 1) some defined salt-resistance genes and high-affinity nitrate transporter genes in the species for breeding salt-tolerance and nitrogen efficiency crops; 2) the value of S. salsa and microorganisms from S. salsa in remediation of heavy metal contaminated and organic polluted saline soils; and 3) the capacity to remove salts from soils and the application of the species. In conclusion, S. salsa has high value as a candidate to explore the theoretical base and practical application for utilizing halophytes to improve salinized soils from genes to ecosystem.
Collapse
Affiliation(s)
- Chen Yang Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Rui He
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Chang Yan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
6
|
Sun M, Liu X, Zhang B, Yu W, Xiao Y, Peng F. Lipid Metabolomic and Transcriptomic Analyses Reveal That Phosphatidylcholine Enhanced the Resistance of Peach Seedlings to Salt Stress through Phosphatidic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37262364 DOI: 10.1021/acs.jafc.3c01383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Soil salinity is a major conlinet limiting sustainable agricultural development in peach tree industry. In this study, lipid metabolomic pathway analysis indicated that phosphatidic acid is essential for root resistance to salt stress in peach seedlings. Through functional annotation analysis of differentially expressed genes in transcriptomics, we found that MAPK signaling pathway is closely related to peach tree resistance to salt stress, wherein PpMPK6 expression is significantly upregulated. Under salt conditions, the OE-PpMPK6 Arabidopsis thaliana (L.) Heynh. line showed higher resistance to salt stress than WT and KO-AtMPK6 lines. Furthermore, we found that the Na+ content in OE-PpMPK6 roots was significantly lower than that in WT and KO-AtMPK6 roots, indicating that phosphatidic acid combined with PpMPK6 activated the SOS1 (salt-overly-sensitive 1) protein to enhance Na+ efflux, thus alleviating the damage caused by NaCl in roots; these findings provide insight into the salt stress-associated transcriptional regulation.
Collapse
Affiliation(s)
- Maoxiang Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiaolong Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Binbin Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Wen Yu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, College of Seed and Facility Agricultural Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| |
Collapse
|
7
|
Nedelyaeva OI, Popova LG, Khramov DE, Volkov VS, Balnokin YV. Chloride Channel Family in the Euhalophyte Suaeda altissima (L.) Pall: Cloning of Novel Members SaCLCa2 and SaCLCc2, General Characterization of the Family. Int J Mol Sci 2023; 24:ijms24020941. [PMID: 36674457 PMCID: PMC9867446 DOI: 10.3390/ijms24020941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
CLC family genes, comprising anion channels and anion/H+ antiporters, are widely represented in nearly all prokaryotes and eukaryotes. CLC proteins carry out a plethora of functions at the cellular level. Here the coding sequences of the SaCLCa2 and SaCLCc2 genes, homologous to Arabidopsis thaliana CLCa and CLCc, were cloned from the euhalophyte Suaeda altissima (L.) Pall. Both the genes cloned belong to the CLC family as supported by the presence of the key conserved motifs and glutamates inherent for CLC proteins. SaCLCa2 and SaCLCc2 were heterologously expressed in Saccharomyces cerevisiae GEF1 disrupted strain, Δgef1, where GEF1 encodes the only CLC family protein, the Cl− transporter Gef1p, in undisrupted strains of yeast. The Δgef1 strain is characterized by inability to grow on YPD yeast medium containing Mn2+ ions. Expression of SaCLCa2 in Δgef1 cells growing on this medium did not rescue the growth defect phenotype of the mutant. However, a partial growth restoration occurred when the Δgef1 strain was transformed by SaCLCa2(C544T), the gene encoding protein in which proline, specific for nitrate, was replaced with serine, specific for chloride, in the selectivity filter. Unlike SaCLCa2, expression of SaCLCc2 in Δgef1 resulted in a partial growth restoration under these conditions. Analysis of SaCLCa2 and SaCLCc2 expression in the euhalophyte Suaeda altissima (L.) Pall by quantitative real-time PCR (qRT-PCR) under different growth conditions demonstrated stimulation of SaCLCa2 expression by nitrate and stimulation of SaCLCc2 expression by chloride. The results of yeast complementation assay, the presence of both the “gating” and “proton” glutamates in aa sequences of both the proteins, as well results of the gene expression in euhalophyte Suaeda altissima (L.) Pall suggest that SaCLCa2 and SaCLCc2 function as anion/H+ antiporters with nitrate and chloride specificities, respectively. The general bioinformatic overview of seven CLC genes cloned from euhalophyte Suaeda altissima is given, together with results on their expression in roots and leaves under different levels of salinity.
Collapse
|
8
|
Hu Y, Ren X, Zhang J. The complete chloroplast genome of Suaeda physophora Pall. (Chenopodiaceae). Mitochondrial DNA B Resour 2022; 7:1594-1596. [PMID: 36082045 PMCID: PMC9448367 DOI: 10.1080/23802359.2022.2115322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Suaeda physophora Pall. (Chenopodiaceae) is a leaf succulent shrub species with potential usefulness as fodder for the desert animal. However, the phylogeny of S. physophora is lacking. Here, we sequenced and assembled a complete chloroplast genome of S. physophora and further reconstructed the phylogeny of Chenopodiaceae. The chloroplast genome of S. physophora is 151,104 bp in length, consisting of an 18,597 bp small single-copy (SSC), an 82,845 bp large single-copy (LSC), and a pair of 24,831 bp inverted repeat (IR) regions. The genome encodes 131 genes, including 87 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Phylogenetic analysis revealed that the genus Suaeda forms a monophyletic taxon, and S. physophora is closely related to S. eltonica. Chloroplast genome and phylogenetic studies provided an essential foundation for the conservation of S. physophora.
Collapse
Affiliation(s)
- Yanlin Hu
- Gansu Sanrui Agritec Co., Ltd., Gansu, China
| | - Xueli Ren
- Gansu Sanrui Agritec Co., Ltd., Gansu, China
| | - Jiayin Zhang
- School of Life Sciences, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Yu W, Wu W, Zhang N, Wang L, Wang Y, Wang B, Lan Q, Wang Y. Research Advances on Molecular Mechanism of Salt Tolerance in Suaeda. BIOLOGY 2022; 11:biology11091273. [PMID: 36138752 PMCID: PMC9495733 DOI: 10.3390/biology11091273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Plant growth and development are inevitably affected by various environmental factors. High salinity is the main factor leading to the reduction of cultivated land area, which seriously affects the growth and yield of plants. The genus Suaeda is a kind of euhalophyte herb, with seedlings that grow rapidly in moderately saline environments and can even survive in conditions of extreme salinity. Its fresh branches can be used as vegetables and the seed oil is rich in unsaturated fatty acids, which has important economic value and usually grows in a saline environment. This paper reviews the progress of research in recent years into the salt tolerance of several Suaeda species (for example, S. salsa, S. japonica, S. glauca, S. corniculata), focusing on ion regulation and compartmentation, osmotic regulation of organic solutes, antioxidant regulation, plant hormones, photosynthetic systems, and omics (transcriptomics, proteomics, and metabolomics). It helps us to understand the salt tolerance mechanism of the genus Suaeda, and provides a theoretical foundation for effectively improving crop resistance to salt stress environments.
Collapse
Affiliation(s)
- Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Wenwen Wu
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Nan Zhang
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Luping Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| |
Collapse
|
10
|
Lu YT, Liu DF, Wen TT, Fang ZJ, Chen SY, Li H, Gong JM. Vacuolar nitrate efflux requires multiple functional redundant nitrate transporter in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:926809. [PMID: 35937356 PMCID: PMC9355642 DOI: 10.3389/fpls.2022.926809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Nitrate in plants is preferentially stored in vacuoles; however, how vacuolar nitrate is reallocated and to which biological process(es) it might contribute remain largely elusive. In this study, we functionally characterized three nitrate transporters NPF5.10, NPF5.14, and NPF8.5 that are tonoplast-localized. Ectopic expression in Xenopus laevis oocytes revealed that they mediate low-affinity nitrate transport. Histochemical analysis showed that these transporters were expressed preferentially in pericycle and xylem parenchyma cells. NPF5.10, NPF5.14, and NPF8.5 overexpression significantly decreased vacuolar nitrate contents and nitrate accumulation in Arabidopsis shoots. Further analysis showed that the sextuple mutant (npf5.10 npf5.14 npf8.5 npf5.11 npf5.12 npf5.16) had a higher 15NO3-uptake rate than the wild-type Col-0, but no significant difference was observed for nitrate accumulation between them. The septuple mutant (npf5.11 npf5.12 npf5.16 npf5.10 npf5.14 npf8.5 clca) generated by using CRISPR/Cas9 showed essentially decreased nitrate reallocation compared to wild type when exposed to nitrate starvation, though no further decrease was observed when compared to clca. Notably, NPF5.10, NPF5.14, and NPF8.5 as well as NPF5.11, NPF5.12, and NPF5.16 were consistently induced by mannitol, and more nitrate was detected in the sextuple mutant than in the wild type after mannitol treatment. These observations suggest that vacuolar nitrate efflux is regulated by several functional redundant nitrate transporters, and the reallocation might contribute to osmotic stress response other than mineral nutrition.
Collapse
Affiliation(s)
- Yu-Ting Lu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Fen Liu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting-Ting Wen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Jun Fang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Si-Ying Chen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Shao A, Wang H, Xu X, Li X, Amombo E, Fu J. Moderately Reducing Nitrogen Application Ameliorates Salt-Induced Growth and Physiological Damage on Forage Bermudagrass. FRONTIERS IN PLANT SCIENCE 2022; 13:896358. [PMID: 35574147 PMCID: PMC9100817 DOI: 10.3389/fpls.2022.896358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) application is one of the most effective methods to alleviate salt-induced damage on plants. Forage bermudagrass has higher utilization potential on saline soil, but whether its N requirement changed under high salt stress has not been studied. Through examining plant growth-related traits, salt-stress-responsive physiological traits, photosynthesis, N metabolism, and forage quality supplied with different N concentrations under high salt stress (200 mM NaCl), we noticed that the optimum N requirement of forage bermudagrass reduced. When supplied with 10 mM N under higher salt stress, plants had a similar biomass, turf color, and chlorophyll content with plants supplied with 15 mM N, accompanied by a lower firing rate and Na+ content of leaves. The N content, crude protein, crude fat content, the expression of AMTs (ammonium transporters), NR (nitrate reductase), GS (glutamine synthetase), and GOGAT (glutamate synthetase), the chlorophyll fluorescence curve, and parameters of leaves (e.g., PIABS; PICS; ABS/RC; TRo/RC; ETo/RC) all peaked under 10 mM N under high salt stress instead of 15 mM N. Through exploring the proper N application under higher salt stress and its alleviation mechanisms, our results indicated that moderate reduction in N application under high salt level had a maximum promotion effect on the salt tolerance of forage bermudagrass without growth or forage quality inhibition. These response mechanisms obtained can provide a useful reference for N application in moderation rather than in excess on forage bermudagrass, especially in higher salinity areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
12
|
Chen YN, Ho CH. Concept of Fluorescent Transport Activity Biosensor for the Characterization of the Arabidopsis NPF1.3 Activity of Nitrate. SENSORS 2022; 22:s22031198. [PMID: 35161943 PMCID: PMC8839256 DOI: 10.3390/s22031198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
The NRT1/PTR FAMILY (NPF) in Arabidopsis (Arabidopsis thaliana) plays a major role as a nitrate transporter. The first nitrate transporter activity biosensor NiTrac1 converted the dual-affinity nitrate transceptor NPF6.3 into fluorescence activity sensors. To test whether this approach is transferable to other members of this family, screening for genetically encoded fluorescence transport activity sensor was performed with the member of the NPF family in Arabidopsis. In this study, NPF1.3, an uncharacterized member of NPF in Arabidopsis, was converted into a transporter activity biosensor NiTrac-NPF1.3 that responds specifically to nitrate. The emission ratio change of NiTrac-NPF1.3 triggered by the addition of nitrate reveals the important function of NPF1.3 in nitrate transport in Arabidopsis. A functional analysis of Xenopus laevis oocytes confirmed that NPF1.3 plays a role as a nitrate transporter. This new technology is applicable in plant and medical research.
Collapse
|
13
|
Nedelyaeva OI, Popova LG, Volkov VS, Balnokin YV. Molecular Cloning and Characterization of SaCLCd, SaCLCf, and SaCLCg, Novel Proteins of the Chloride Channel Family (CLC) from the Halophyte Suaeda altissima (L.) Pall. PLANTS (BASEL, SWITZERLAND) 2022; 11:409. [PMID: 35161390 PMCID: PMC8839641 DOI: 10.3390/plants11030409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Coding sequences of the CLC family genes SaCLCd, SaCLCf, and SaCLCg, the putative orthologs of Arabidopsis thaliana AtCLCd, AtCLCf, and AtCLCg genes, were cloned from the euhalophyte Suaeda altissima (L.) Pall. The key conserved motifs and glutamates inherent in proteins of the CLC family were identified in SaCLCd, SaCLCf, and SaCLCg amino acid sequences. SaCLCd and SaCLCg were characterized by higher homology to eukaryotic (human) CLCs, while SaCLCf was closer to prokaryotic CLCs. Ion specificities of the SaCLC proteins were studied in complementation assays by heterologous expression of the SaCLC genes in the Saccharomyces cerevisiae GEF1 disrupted strain Δgef1. GEF1 encoded the only CLC family protein, the Cl- transporter Gef1p, in undisrupted strains of this organism. Expression of SaCLCd in Δgef1 cells restored their ability to grow on selective media. The complementation test and the presence of both the "gating" and "proton" conservative glutamates in SaCLCd amino acid sequence and serine specific for Cl- in its selectivity filter suggest that this protein operates as a Cl-/H+ antiporter. By contrast, expression of SaCLCf and SaCLCg did not complement the growth defect phenotype of Δgef1 cells. The selectivity filters of SaCLCf and SaCLCg also contained serine. However, SaCLCf included only the "gating" glutamate, while SaCLCg contained the "proton" glutamate, suggesting that SaCLCf and SaCLCg proteins act as Cl- channels. The SaCLCd, SaCLCf, and SaCLCg genes were shown to be expressed in the roots and leaves of S. altissima. In response to addition of NaCl to the growth medium, the relative transcript abundances of all three genes of S. altissima increased in the leaves but did not change significantly in the roots. The increase in expression of SaCLCd, SaCLCf, and SaCLCg in the leaves in response to increasing salinity was in line with Cl- accumulation in the leaf cells, indicating the possible participation of SaCLCd, SaCLCf, and SaCLCg proteins in Cl- sequestration in cell organelles. Generally, these results suggest the involvement of SaCLC proteins in the response of S. altissima plants to increasing salinity and possible participation in mechanisms underlying salt tolerance.
Collapse
|
14
|
Wang Z, Li N, Yu Q, Wang H. Genome-Wide Characterization of Salt-Responsive miRNAs, circRNAs and Associated ceRNA Networks in Tomatoes. Int J Mol Sci 2021; 22:12238. [PMID: 34830118 PMCID: PMC8625345 DOI: 10.3390/ijms222212238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Soil salinization is a major environmental stress that causes crop yield reductions worldwide. Therefore, the cultivation of salt-tolerant crops is an effective way to sustain crop yield. Tomatoes are one of the vegetable crops that are moderately sensitive to salt stress. Global market demand for tomatoes is huge and growing. In recent years, the mechanisms of salt tolerance in tomatoes have been extensively investigated; however, the molecular mechanism through which non-coding RNAs (ncRNAs) respond to salt stress is not well understood. In this study, we utilized small RNA sequencing and whole transcriptome sequencing technology to identify salt-responsive microRNAs (miRNAs), messenger RNAs (mRNAs), and circular RNAs (circRNAs) in roots of M82 cultivated tomato and Solanum pennellii (S. pennellii) wild tomato under salt stress. Based on the theory of competitive endogenous RNA (ceRNA), we also established several salt-responsive ceRNA networks. The results showed that circRNAs could act as miRNA sponges in the regulation of target mRNAs of miRNAs, thus participating in the response to salt stress. This study provides insights into the mechanisms of salt tolerance in tomatoes and serves as an effective reference for improving the salt tolerance of salt-sensitive cultivars.
Collapse
Affiliation(s)
- Zhongyu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
15
|
Liu R, Cui B, Lu X, Song J. The positive effect of salinity on nitrate uptake in Suaeda salsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:958-963. [PMID: 34256249 DOI: 10.1016/j.plaphy.2021.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 05/11/2023]
Abstract
Nitrate plays both nutritional and osmotic roles in the salt tolerance of halophytes. However, how halophytes take up NO3- under saline conditions is still not well understood. Seedlings of Suaeda salsa L. were treated with 0, 200 and 500 mM NaCl under 0.5 mM NO3--N with or without Na3VO4 (the inhibitor of plasma membrane H+-ATPase) for 24 h. Salinity treatment of 200 mM NaCl up-regulated the gene expression of nitrate transporter 2.1 (SsNRT2.1) in the roots, increased the root net influx of H+ and NO3- and 15NO3- accumulation in the leaves and roots. The expression of SsNRT2.1 at 200 mM NaCl with Na3VO4 was much higher than that without supplying Na3VO4, and the opposite trend was found in 15NO3- accumulation in the leaves and roots. Supplying Na3VO4 had no significant effect on the net H+ flux, but induced a net NO3- efflux in the roots at 200 mM NaCl. Salinity may directly activate the expression of SsNRT2.1 and promote NO3- uptake via the increment of pumping H+ by PM H+-ATPase in S. salsa, which may explain why certain halophytes can absorb and accumulate high concentration of NO3- under low NO3- and high salinity conditions.
Collapse
Affiliation(s)
- Ranran Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Bing Cui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xiangbin Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
16
|
Abstract
Nowadays, crop insufficiency resulting from soil salinization is threatening the world. On the basis that soil salinization has become a worldwide problem, studying the mechanisms of plant salt tolerance is of great theoretical and practical significance to improve crop yield, to cultivate new salt-tolerant varieties, and to make full use of saline land. Based on previous studies, this paper reviews the damage of salt stress to plants, including suppression of photosynthesis, disturbance of ion homeostasis, and membrane peroxidation. We have also summarized the physiological mechanisms of salt tolerance, including reactive oxygen species (ROS) scavenging and osmotic adjustment. Four main stress-related signaling pathways, salt overly sensitive (SOS) pathway, calcium-dependent protein kinase (CDPK) pathway, mitogen-activated protein kinase (MAPKs) pathway, and abscisic acid (ABA) pathway, are included. We have also enumerated some salt stress-responsive genes that correspond to physiological mechanisms. In the end, we have outlined the present approaches and techniques to improve salt tolerance of plants. All in all, we reviewed those aspects above, in the hope of providing valuable background knowledge for the future cultivation of agricultural and forestry plants.
Collapse
|
17
|
Liu R, Cui B, Jia T, Song J. Role of Suaeda salsa SsNRT2.1 in nitrate uptake under low nitrate and high saline conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:171-178. [PMID: 33383384 DOI: 10.1016/j.plaphy.2020.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/21/2020] [Indexed: 05/27/2023]
Abstract
The global annual loss in agricultural production resulting from soil salinization is significant. Although nitrate (NO3-) is known to play both nutritional and osmotic roles in the salt tolerance of halophytes, it remains unclear how halophytes such as Suaeda salsa L. take up NO3- under saline conditions. In the present study, the gene of nitrate transporter 2.1 (SsNRT2.1) was cloned from S. salsa and its function was identified in both S. salsa and Arabidopsis thaliana under salinity and low NO3--N (0.5 mM NO3-) conditions. The results revealed that SsNRT2.1 expression and NO3- concentration in the roots of S. salsa were higher at 200 mM NaCl, compared with that at 0 and 500 mM NaCl after 24 h treatment. The Arabidopsis overexpression lines showed a higher NO3- content compared to the WT lines at 0 and 50 mM NaCl. A similar trend was observed in the root length. In conclusion, salinity promoted the SsNRT2.1 expression in S. salsa, suggesting that this gene may contribute to the efficient NO3- uptake in S. salsa under low NO3- and high salinity conditions. This trait may explain why S. salsa can tolerate high salinity and produce the highest biomass at about 200 mM NaCl.
Collapse
Affiliation(s)
- Ranran Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Cnan, 250014, PR China
| | - Bing Cui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Cnan, 250014, PR China
| | - Ting Jia
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Cnan, 250014, PR China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Cnan, 250014, PR China.
| |
Collapse
|
18
|
Shao A, Sun Z, Fan S, Xu X, Wang W, Amombo E, Yin Y, Li X, Wang G, Wang H, Fu J. Moderately low nitrogen application mitigate the negative effects of salt stress on annual ryegrass seedlings. PeerJ 2020; 8:e10427. [PMID: 33344081 PMCID: PMC7719293 DOI: 10.7717/peerj.10427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 01/21/2023] Open
Abstract
Appropriate application of nitrogen (N) can alleviate the salt stress-induced damage on plants. This study explores the changes of nitrogen requirement in feeding annual ryegrass seedlings under mild salt concentrations (50 mM, 100 mM) plus its underlying mitigation mechanism. Results showed that low salt concentration decreased N requirement as observed from the increment in plant height and biomass at a relative low N level (2.0 mM not 5.0 mM). Under salt treatment, especially at 50 mM NaCl, the OJIP (Chl a fluorescence induction transient) curve and a series of performance indexes (PIABS, RC/CS0, ET0/CS0, ϕE0, ϕ0) peaked whereas DI0/RC, Vj and M0 were the lowest under moderately low N level (2.0 mM). In addition, under salt stress, moderately low N application could maintain the expression of NR (nitrate reductase) and GS (glutamine synthetase) encoding genes at a relatively stable level but had no effect on the expression of detected NRT (nitrate transporter) gene. The seedlings cultured at 2.0 mM N also exhibited the highest activity of CAT and POD antioxidant enzymes and the lowest MDA content and EL under relative low level of salt treatment. These results indicated that mild salt treatment of annual ryegrass seedlings might reduce N requirement while moderately low N application could promote their growth via regulating photosynthesis, alleviating ROS-induced (reactive oxygen species) damage and maintenance of N metabolism. These results also can provide useful reference for nitrogen application in moderation rather than in excess on annual ryegrass in mild or medium salinity areas through understanding the underlying response mechanisms.
Collapse
Affiliation(s)
- An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Zhichao Sun
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Hongli Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
19
|
Alishahi F, Alikhani HA, Khoshkholgh-Sima NA, Etesami H. Mining the roots of various species of the halophyte Suaeda for halotolerant nitrogen-fixing endophytic bacteria with the potential for promoting plant growth. Int Microbiol 2020; 23:415-427. [PMID: 31898032 DOI: 10.1007/s10123-019-00115-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
Abstract
Saline area may tend to be a productive land; however, many of salt-affected soils have nitrogen limitation and depend on plant-associated diazotrophs as their source of 'new' nitrogen. Herein, a total of 316 salinity tolerant nitrogen-fixing endophytic bacteria were isolated from roots of the halophyte Suaeda sp. sampled from 22 different areas of Iran to prepare the collection of nitrogen-fixing bacterial endophytes and evaluate the plant growth-promoting effect of effective isolates on growth of the halophyte Suaeda maritima. All of the identified nitrogen-fixing endophytes were classified to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes phylum while we did not detect common nitrogen-fixing endophyte of glycophytes like Azospirillum. The genera Pseudomonas and Microbacterium were both encountered in high abundance in all samples, indicating that they might play an advanced role in the micro-ecosystem of the halophyte Suaeda. In addition, the results also showed that not only soil salinity can affect halophyte endophytic composition but also other factors such as geographical location, plant species, and other soil properties may be involved. Interestingly, only Zhihengliuella halotolerans and Brachybacterium sp. belonging to Actinobacteria could grow in semi-solid N-free (NFb) medium supplemented with 6% NaCl and highly enhanced growth of S. maritima in vitro. Overall, this study offers useful new resources for nitrogen-fixing endophytic bacteria which may be utilized to improve approaches for providing bio-fertilizer useful in saline-based agriculture.
Collapse
Affiliation(s)
- Frashad Alishahi
- Department of Soil Science, Agriculture & Natural Resources Campus, Faculty of Agricultural Engineering & Technology, University of Tehran, Daneshkadeh Ave., Karaj, Tehran, 31587-77871, Iran
| | - Hossein Ali Alikhani
- Department of Soil Science, Agriculture & Natural Resources Campus, Faculty of Agricultural Engineering & Technology, University of Tehran, Daneshkadeh Ave., Karaj, Tehran, 31587-77871, Iran.
| | - Nayer Azam Khoshkholgh-Sima
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hassan Etesami
- Department of Soil Science, Agriculture & Natural Resources Campus, Faculty of Agricultural Engineering & Technology, University of Tehran, Daneshkadeh Ave., Karaj, Tehran, 31587-77871, Iran.
| |
Collapse
|
20
|
Bazihizina N, Colmer TD, Cuin TA, Mancuso S, Shabala S. Friend or Foe? Chloride Patterning in Halophytes. TRENDS IN PLANT SCIENCE 2019; 24:142-151. [PMID: 30558965 DOI: 10.1016/j.tplants.2018.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
In this opinion article, we challenge the traditional view that breeding for reduced Cl- uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl- concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl- uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl--transporting proteins may explain the reported negative correlation between Cl- accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3->Cl-), alongside tight control of Cl- uptake, rather than targeting traits mediating its efflux from the root.
Collapse
Affiliation(s)
- Nadia Bazihizina
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia.
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Tracey Ann Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia.
| |
Collapse
|
21
|
Fan L, Wang G, Hu W, Pantha P, Tran KN, Zhang H, An L, Dassanayake M, Qiu QS. Transcriptomic view of survival during early seedling growth of the extremophyte Haloxylon ammodendron. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:475-489. [PMID: 30292980 DOI: 10.1016/j.plaphy.2018.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/08/2018] [Accepted: 09/18/2018] [Indexed: 05/27/2023]
Abstract
Seedling establishment in an extreme environment requires an integrated genomic and physiological response to survive multiple abiotic stresses. The extremophyte, Haloxylon ammodendron is a pioneer species capable of colonizing temperate desert sand dunes. We investigated the induced and basal transcriptomes in H. ammodendron under water-deficit stress during early seedling establishment. We find that not only drought-responsive genes, but multiple genes in pathways associated with salt, osmotic, cold, UV, and high-light stresses were induced, suggesting an altered regulatory stress response system. Additionally, H. ammodendron exhibited enhanced biotic stress tolerance by down-regulation of genes that were generally up-regulated during pathogen entry in susceptible plants. By comparing the H. ammodendron basal transcriptome to six closely related transcriptomes in Amaranthaceae, we detected enriched basal level transcripts in H. ammodendron that shows preadaptation to abiotic stress and pathogens. We found transcripts that were generally maintained at low levels and some induced only under abiotic stress in the stress-sensitive model, Arabidopsis thaliana to be highly expressed under basal conditions in the Amaranthaceae transcriptomes including H. ammodendron. H. ammodendron shows coordinated expression of genes that regulate stress tolerance and seedling development resource allocation to support survival against multiple stresses in a sand dune dominated temperate desert environment.
Collapse
Affiliation(s)
- Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Wei Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Kieu-Nga Tran
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Hua Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
22
|
Zhou N, Zhao S, Tian CY. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 2018; 364:3786352. [PMID: 28460054 DOI: 10.1093/femsle/fnx091] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/27/2017] [Indexed: 11/12/2022] Open
Abstract
Utilization of rhizobacteria that have associated with plant roots in harsh environments could be a feasible strategy to deal with limits to agricultural production caused by soil salinity. Halophytes occur naturally in high-salt environments, and their roots may be associated with promising microbial candidates for promoting growth and salt tolerance in crops. This study aimed to isolate efficient halotolerant plant-growth-promoting rhizobacterial strains from halophytes and evaluate their activity and effects on sugar beet (Beta vulgaris L.) growth under salinity stress. A total of 23 isolates were initially screened for their ability to secrete 1-aminocyclopropane-1-carboxylate deaminase (ACD) as well as other plant-growth-promoting characteristics and subsequently identified by sequencing the 16S rRNA gene. Three isolates, identified as Micrococcus yunnanensis, Planococcus rifietoensis and Variovorax paradoxus, enhanced salt stress tolerance remarkably in sugar beet, resulting in greater seed germination and plant biomass, higher photosynthetic capacity and lower stress-induced ethylene production at different NaCl concentrations (50-125 mM). These results demonstrate that salinity-adapted, ACD-producing bacteria isolated from halophytes could promote sugar beet growth under saline stress conditions.
Collapse
Affiliation(s)
- Na Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chang-Yan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
23
|
Mansour MMF, Ali EF. Evaluation of proline functions in saline conditions. PHYTOCHEMISTRY 2017; 140:52-68. [PMID: 28458142 DOI: 10.1016/j.phytochem.2017.04.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/10/2017] [Accepted: 04/20/2017] [Indexed: 05/20/2023]
Abstract
More than one third of the world's irrigated lands are affected by salinity, which has great impact on plant growth and yield worldwide. Proline accumulation under salt stress has been indicated to correlate with salt tolerance. Exogenous application as well as genetic engineering of metabolic pathways involved in the metabolism of proline has been successful in improving tolerance to salinity. Correlation between proline accumulation as well as its proposed roles and salt adaptation, however, has not been clearly confirmed in several plant species. In addition, the studies relating proline functions and plant salt tolerance are always carried out in growth chambers, and are not successfully verified in field conditions. Further, plant salt tolerance is a complex trait, and studies based solely on proline accumulation do not adequately explain its functions in salinity tolerance, and thus it is difficult to interpret the discrepancies among different data. Moreover, several reports indicate that Pro role in salt tolerance is a matter of debates, as whether Pro accumulation has adaptive significance or is a consequence of alterations in cellular metabolism induced by salinity. As no consensus is obtained on the exact roles of proline production, proline exact roles in the adaptation to saline environments is therefore still lacking and is even a matter of debates. It is obvious that comprehensive future research is needed to establish the proline exact mechanism by which it enhances plant salt tolerance. We propose, however, that proline might be essential for improving salinity tolerance in some species/cultivars, but may not be relevant in others. Evidence supporting both arguments has been presented in order to reassess the feasibility of the proposed roles of Pro in plant salt tolerance mechanism.
Collapse
Affiliation(s)
- Mohamed Magdy F Mansour
- Dept. of Botany, Fac. of Science, Ain Shams Univ., Cairo 11566, Egypt; Dept. of Biology, Fac. of Science, Taif Univ., Taif, Saudi Arabia.
| | - Esmat Farouk Ali
- Dept. of Horticulture (Floriculture), Fac. of Agriculture, Assuit Univ., Assuit, Egypt; Dept. of Biology, Fac. of Science, Taif Univ., Taif, Saudi Arabia
| |
Collapse
|
24
|
Yassen A, Abdallah E, Gaballah M, Zaghloul S. Role of Silicon Dioxide Nano Fertilizer in Mitigating Salt Stress on Growth, Yield and Chemical Composition of Cucumber (Cucumis sativus L.). ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ijar.2017.130.135] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Succinic Semialdehyde Promotes Prosurvival Capability of Agrobacterium tumefaciens. J Bacteriol 2016; 198:930-40. [PMID: 26755630 DOI: 10.1128/jb.00373-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/10/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Succinic semialdehyde (SSA), an important metabolite of γ-aminobutyric acid (GABA), is a ligand of the repressor AttJ regulating the expression of the attJ-attKLM gene cluster in the plant pathogen Agrobacterium tumefaciens. While the response of A. tumefaciens to GABA and the function of attKLM have been extensively studied, genetic and physiological responses of A. tumefaciens to SSA remain unknown. In combination with microarray and genetic approaches, this study sets out to explore new roles of the SSA-AttJKLM regulatory mechanism during bacterial infection. The results showed that SSA plays a key role in regulation of several bacterial activities, including C4-dicarboxylate utilization, nitrate assimilation, and resistance to oxidative stress. Interestingly, while the SSA relies heavily on the functional AttKLM in mediating nitrate assimilation and oxidative stress resistance, the compound could regulate utilization of C4-dicarboxylates independent of AttJKLM. We further provide evidence that SSA controls C4-dicarboxylate utilization through induction of an SSA importer and that disruption of attKLM attenuates the tumorigenicity of A. tumefaciens. Taken together, these findings indicate that SSA could be a potent plant signal which, together with AttKLM, plays a vital role in promoting the bacterial prosurvival abilities during infection. IMPORTANCE Agrobacterium tumefaciens is a plant pathogen causing crown gall diseases and has been well known as a powerful tool for plant genetic engineering. During the long history of microbe-host interaction, A. tumefaciens has evolved the capabilities of recognition and response to plant-derived chemical metabolites. Succinic semialdehyde (SSA) is one such metabolite. Previous results have demonstrated that SSA functions to activate a quorum-quenching mechanism and thus to decrease the level of quorum-sensing signals, thereby avoiding the elicitation of a plant defense. Here, we studied the effect of SSA on gene expression at a genome-wide level and reported that SSA also promotes bacterial survival during infection. These findings provide a new insight on the biological significance of chemical signaling between agrobacteria and plant hosts.
Collapse
|
26
|
Song J, Wang B. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. ANNALS OF BOTANY 2015; 115:541-53. [PMID: 25288631 PMCID: PMC4332605 DOI: 10.1093/aob/mcu194] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/14/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. SCOPE Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Baoshan Wang
- Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
27
|
Han Y, Wang W, Sun J, Ding M, Zhao R, Deng S, Wang F, Hu Y, Wang Y, Lu Y, Du L, Hu Z, Diekmann H, Shen X, Polle A, Chen S. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4225-38. [PMID: 24085577 PMCID: PMC3808310 DOI: 10.1093/jxb/ert229] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Populus euphratica is a salt-tolerant tree species that develops leaf succulence after a prolonged period of salinity stress. In the present study, a putative xyloglucan endotransglucosylase/hydrolase gene (PeXTH) from P. euphratica was isolated and transferred to tobacco plants. PeXTH localized exclusively to the endoplasmic reticulum and cell wall. Plants overexpressing PeXTH were more salt tolerant than wild-type tobacco with respect to root and leaf growth, and survival. The increased capacity for salt tolerance was due mainly to the anatomical and physiological alterations caused by PeXTH overexpression. Compared with the wild type, PeXTH-transgenic plants contained 36% higher water content per unit area and 39% higher ratio of fresh weight to dry weight, a hallmark of leaf succulence. However, the increased water storage in the leaves in PeXTH-transgenic plants was not accompanied by greater leaf thickness but was due to highly packed palisade parenchyma cells and fewer intercellular air spaces between mesophyll cells. In addition to the salt dilution effect in response to NaCl, these anatomical changes increased leaf water-retaining capacity, which lowered the increase of salt concentration in the succulent tissues and mesophyll cells. Moreover, the increased number of mesophyll cells reduced the intercellular air space, which improved carbon economy and resulted in a 47-78% greater net photosynthesis under control and salt treatments (100-150 mM NaCl). Taken together, the results indicate that PeXTH overexpression enhanced salt tolerance by the development of succulent leaves in tobacco plants without swelling.
Collapse
Affiliation(s)
- Yansha Han
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Wei Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jian Sun
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Mingquan Ding
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Shurong Deng
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Feifei Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yue Hu
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yang Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yanjun Lu
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Liping Du
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heike Diekmann
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Xin Shen
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Andrea Polle
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
28
|
Elevated N Supply Reduces the Inhibition of Growth and Photosynthesis Caused by Salinity in the Bioenergy Plant Hybrid Pennisetum. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.724-725.443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid Pennisetum (Pennisetum americanum×P. purpureum) is a popular bioenergy grass that could also serve as forage for livestock production. In a pot experiment, salinity inhibited hybrid Pennisetum growth, photosynthesis, soluble sugar content, and NR activity; decreased K+content; and increased Na+content. These adverse effects of soil salinity were reduced, however, by applications of NO3--N up to 5 mmol·L-1; higher applications of NO3--N increased soil salinity problems. These findings will be useful for the production of hybrid Pennisetum as a biofuel on saline land.
Collapse
|
29
|
Ranjan A, Pandey N, Lakhwani D, Dubey NK, Pathre UV, Sawant SV. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genomics 2012. [PMID: 23194183 PMCID: PMC3558330 DOI: 10.1186/1471-2164-13-680] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Root length and its architecture govern the adaptability of plants to various stress conditions, including drought stress. Genetic variations in root growth, length, and architecture are genotypes dependent. In this study, we compared the drought-induced transcriptome of four genotypes of Gossypium herbaceum that differed in their drought tolerance adaptability. Three different methodologies, namely, microarray, pyrosequencing, and qRT–PCR, were used for transcriptome analysis and validation. Results The variations in root length and growth were found among four genotypes of G.herbaceum when exposed to mannitol-induced osmotic stress. Under osmotic stress, the drought tolerant genotypes Vagad and GujCot-21 showed a longer root length than did by drought sensitive RAHS-14 and RAHS-IPS-187. Further, the gene expression patterns in the root tissue of all genotypes were analyzed. We obtained a total of 794 differentially expressed genes by microarray and 104928 high-quality reads representing 53195 unigenes from the root transcriptome. The Vagad and GujCot-21 respond to water stress by inducing various genes and pathways such as response to stresses, response to water deprivation, and flavonoid pathways. Some key regulatory genes involved in abiotic stress such as AP2 EREBP, MYB, WRKY, ERF, ERD9, and LEA were highly expressed in Vagad and GujCot-21. The genes RHD3, NAP1, LBD, and transcription factor WRKY75, known for root development under various stress conditions, were expressed specifically in Vagad and GujCot-21. The genes related to peroxidases, transporters, cell wall-modifying enzymes, and compatible solutes (amino acids, amino sugars, betaine, sugars, or sugar alcohols) were also highly expressed in Vagad and Gujcot-21. Conclusion Our analysis highlights changes in the expression pattern of genes and depicts a small but highly specific set of drought responsive genes induced in response to drought stress. Some of these genes were very likely to be involved in drought stress signaling and adaptation, such as transmembrane nitrate transporter, alcohol dehydrogenase, pyruvate decarboxylase, sucrose synthase, and LEA. These results might serve as the basis for an in-depth genomics study of Gossypium herbaceum, including a comparative transcriptome analysis and the selection of genes for root traits and drought tolerance.
Collapse
Affiliation(s)
- Alok Ranjan
- CSIR-, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | | | | | | | | | | |
Collapse
|
30
|
Wang YY, Tsay YF. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. THE PLANT CELL 2011; 23:1945-57. [PMID: 21571952 PMCID: PMC3123939 DOI: 10.1105/tpc.111.083618] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/08/2011] [Accepted: 04/22/2011] [Indexed: 05/18/2023]
Abstract
This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Fang Tsay
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
31
|
Song J, Shi G, Gao B, Fan H, Wang B. Waterlogging and salinity effects on two Suaeda salsa populations. PHYSIOLOGIA PLANTARUM 2011; 141:343-51. [PMID: 21214881 DOI: 10.1111/j.1399-3054.2011.01445.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adaptations to combined salinity and waterlogging stress were evaluated in two Suaeda salsa populations from different saline environments. Seedlings were exposed to 1, 200 and 600 mM NaCl in drained or waterlogged sand for 22 days in a glasshouse. Waterlogging did not significantly affect the K(+) /Na(+) ratio or Cl(-) concentration in leaves of either population. Adventitious roots were produced only by the inland population and under the waterlogged condition. X-ray microanalysis showed that S. salsa roots of the intertidal population accumulated more [Na(+) ] and [Cl(-) ] in both the cortex and stele than the roots of the inland population. The ability of roots to exclude Na(+) and Cl(-) was greater in the intertidal population than in the inland population, which may explain why leaves of the intertidal population accumulated less Na(+) and Cl(-) than the leaves of the inland population. The lower level of Cl(-) than Na(+) in leaves of both populations may result from the greater ability of roots to exclude Cl(-) than Na(+) . These traits may help the two S. salsa populations adapt to their different saline environments.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | |
Collapse
|