1
|
Chen X, Ren T, Mei D, Wei X, Guo Y, Li Y, Nan Z, Song Q. Infection of Various Medicago sativa Varieties by Ascochyta medicaginicola Triggers the Synthesis of Defensive Secondary Metabolites and Their Antifungal Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6711-6723. [PMID: 40035699 DOI: 10.1021/acs.jafc.4c12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Infection with Ascochyta medicaginicola triggers the production of defensive secondary metabolites in plants, with varying levels observed across two alfalfa varieties. Among the six metabolites identified, 3-indoleacrylic acid (YD) and 3-ethynylaniline (EL) exhibited antifungal activity, achieving inhibition rates of 82.21 and 66.36% at 200 μg/mL, respectively. YD and EL exerted protective and therapeutic effects, reducing alfalfa leaf lesion areas by more than 96.00% compared to the blank control. The antifungal mechanisms of YD and EL against A. medicaginicola included the destruction of cellular structure (mycelial deformity, increased membrane permeability, impaired cell integrity with leakage of cellular contents), the induction of oxidative stress (elevated levels of reactive oxygen species, hydrogen peroxide, and malondialdehyde), and the reduction of mitochondrial membrane potential in hyphae cells. These results suggest that EL and YD hold promise as chemical defensive metabolites for controlling alfalfa spring black stem disease.
Collapse
Affiliation(s)
- Xunfeng Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ting Ren
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- Sichuan University of Arts and Science, Dazhou 635000, China
| | - Dahai Mei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xuhong Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yongsha Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanzhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Qiuyan Song
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
2
|
Liao H, Fang Y, Yin J, He M, Wei Y, Zhang J, Yong S, Cha J, Song L, Zhu X, Chen X, Kováč J, Hou Q, Ma Z, Zhou X, Chen L, Yumoto E, Yang T, He Q, Li W, Deng Y, Li H, Li M, Qing H, Zou L, Bi Y, Liu J, Yang Y, Ye D, Tao Q, Wang L, Xiong Q, Lu X, Tang Y, Li T, Ma B, Qin P, Li Y, Wang W, Qian Y, Ďurkovič J, Miyamoto K, Chern M, Li S, Li W, Wang J, Chen X. Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing H 2O 2. Cell Res 2025; 35:205-219. [PMID: 39806170 PMCID: PMC11909244 DOI: 10.1038/s41422-024-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
Hydrogen peroxide (H2O2) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense H2O2 in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses H2O2 to confer resistance to multiple diseases caused by fungi or bacteria. Upon pathogen attack, rice plants increase the production of H2O2, which directly oxidizes bHLH25 at methionine 256 in the nucleus. Oxidized bHLH25 represses miR397b expression to activate lignin biosynthesis for plant cell wall reinforcement, preventing pathogens from penetrating plant cells. Lignin biosynthesis consumes H2O2 causing accumulation of non-oxidized bHLH25. Non-oxidized bHLH25 switches to promote the expression of Copalyl Diphosphate Synthase 2 (CPS2), which increases phytoalexin biosynthesis to inhibit expansion of pathogens that escape into plants. This oxidization/non-oxidation status change of bHLH25 allows plants to maintain H2O2, lignin and phytoalexin at optimized levels to effectively fight against pathogens and prevents these three molecules from over-accumulation that harms plants. Thus, our discovery reveals a novel mechanism by which a single protein promotes two independent defense pathways against pathogens. Importantly, the bHLH25 orthologues from available plant genomes all contain a conserved M256-like methionine suggesting the broad existence of this mechanism in the plant kingdom. Moreover, this Met-oxidation mechanism may also be employed by other eukaryotic transcription factors to sense H2O2 to change functions.
Collapse
Affiliation(s)
- Haicheng Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingjie Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuang Yong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiankui Cha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xixi Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ján Kováč
- Department of Phytology, Technical University in Zvolen, Zvolen, Slovakia
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhaotang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaogang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Tian Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qi He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yixin Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoxuan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hai Qing
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Daihua Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qi Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangwen Qian
- WIMI Biotechnology Company Limited, Sanya, Hainan, China
| | - Jaroslav Ďurkovič
- Department of Phytology, Technical University in Zvolen, Zvolen, Slovakia
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Molski M. Enhancing Bioactivity through the Transfer of the 2-(Hydroxymethoxy)Vinyl Moiety: Application in the Modification of Tyrosol and Hinokitiol. Molecules 2024; 29:3414. [PMID: 39064992 PMCID: PMC11280045 DOI: 10.3390/molecules29143414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Utilizing Density Functional Theory (DFT) calculations at the B3LYP/QZVP level and incorporating the Conductor-like Polarizable Continuum Model (C-PCM) for solvation, the thermodynamic and chemical activity properties of 21-(hydroxymethoxy)henicosadecaenal, identified in cultured freshwater pearls from the mollusk Hyriopsis cumingii, have been elucidated. The study demonstrates that this compound releases formaldehyde, a potent antimicrobial agent, through dehydrogenation and deprotonation processes in both hydrophilic and lipophilic environments. Moreover, this polyenal exhibits strong anti-reductant properties, effectively scavenging free radicals. These critical properties classify the pearl-derived ingredient as a natural multi-functional compound, serving as a coloring, antiradical, and antimicrobial agent. The 2-(hydroxymethoxy)vinyl (HMV) moiety responsible for the formaldehyde release can be transferred to other compounds, thereby enhancing their biological activity. For instance, tyrosol (4-(2-hydroxyethyl)phenol) can be modified by substituting the less active 2-hydroxyethyl group with the active HMV one, and hinokitiol (4-isopropylotropolone) can be functionalized by attaching this moiety to the tropolone ring. A new type of meso-carrier, structurally modeled on pearls, with active substances loaded both in the layers and the mineral part, has been proposed.
Collapse
Affiliation(s)
- Marcin Molski
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University of Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
4
|
The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. Microbiol Res 2022; 261:127056. [DOI: 10.1016/j.micres.2022.127056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
|
5
|
Kumar S, Verma R, Tyagi N, Gangenahalli G, Verma YK. Therapeutics effect of mesenchymal stromal cells in reactive oxygen species-induced damages. Hum Cell 2022; 35:37-50. [PMID: 34800267 PMCID: PMC8605474 DOI: 10.1007/s13577-021-00646-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Reactive Oxygen Species are chemically unstable molecules generated during aerobic respiration, especially in the electron transport chain. ROS are involved in various biological functions; any imbalance in their standard level results in severe damage, for instance, oxidative damage, inflammation in a cellular system, and cancer. Oxidative damage activates signaling pathways, which result in cell proliferation, oncogenesis, and metastasis. Since the last few decades, mesenchymal stromal cells have been explored as therapeutic agents against various pathologies, such as cardiovascular diseases, acute and chronic kidney disease, neurodegenerative diseases, macular degeneration, and biliary diseases. Recently, the research community has begun developing several anti-tumor drugs, but these therapeutic drugs are ineffective. In this present review, we would like to emphasize MSCs-based targeted therapy against pathologies induced by ROS as cells possess regenerative potential, immunomodulation, and migratory capacity. We have also focused on how MSCs can be used as next-generation drugs with no side effects.
Collapse
Affiliation(s)
- Subodh Kumar
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ranjan Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nishant Tyagi
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yogesh Kumar Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
6
|
Liu L, Huang L, Sun C, Wang L, Jin C, Lin X. Cross-Talk between Hydrogen Peroxide and Nitric Oxide during Plant Development and Responses to Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9485-9497. [PMID: 34428901 DOI: 10.1021/acs.jafc.1c01605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen peroxide (H2O2) are gradually becoming established as critical regulators in plants under physiological and stressful conditions. Strong spatiotemporal correlations in their production and distribution have been identified in various plant biological processes. In this context, NO and H2O2 act synergistically or antagonistically as signals or stress promoters depending on their respective concentrations, engaging in processes such as the hypersensitive response, stomatal movement, and abiotic stress responses. Moreover, proteins identified as potential targets of NO-based modifications include a number of enzymes related to H2O2 metabolism, reinforcing their cross-talk. In this review, several processes of well-characterized functional interplay between H2O2 and NO are discussed with respect to the most recent reported evidence on hypersensitive response-induced programmed cell death, stomatal movement, and plant responses to adverse conditions and, where known, the molecular mechanisms and factors underpinning their cross-talk.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lin Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luxuan Wang
- Department of Agriculture and Environment, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Santisree P, Sanivarapu H, Gundavarapu S, Sharma KK, Bhatnagar-Mathur P. Nitric Oxide as a Signal in Inducing Secondary Metabolites During Plant Stress. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-319-96397-6_61] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Li JY, Liu CP, Shiao WC, Jayakumar T, Li YS, Chang NC, Huang SY, Hsieh CY. Inhibitory effect of PDGF-BB and serum-stimulated responses in vascular smooth muscle cell proliferation by hinokitiol via up-regulation of p21 and p53. Arch Med Sci 2018; 14:579-587. [PMID: 29765446 PMCID: PMC5949921 DOI: 10.5114/aoms.2018.75085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Vascular smooth muscle cell (VSMC) proliferation plays a major role in the progression of vascular diseases. In the present study, we established the efficacy and the mechanisms of action of hinokitiol, a tropolone derivative found in Chamaecyparis taiwanensis, Cupressaceae, in relation to platelet-derived growth factor-BB (PDGF-BB) and serum-dependent VSMC proliferation. MATERIAL AND METHODS Primary cultured rat VSMCs were pre-treated with hinokitiol and then stimulated by PDGF-BB (10 ng/ml) or serum (10% fetal bovine serum). Cell proliferation and cytotoxicity were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and lactose dehydrogenase assay, respectively. The degree of DNA synthesis was evaluated by BrdU-incorporation measurements and observed using confocal microscopy. Immunoblotting was utilized to determine the protein level of p-extracellular signal-regulated kinase (ERK) 1/2, p-Akt, p-phosphoinositide 3-kinase (PI3K), p-Janus kinase 2 (JAK2), p-p53, and p21Cip1. The promoter activity of p21 and p53 activity were measured by dual luciferase reporter assay. RESULTS Treatment with hinokitiol (1-10 μM) inhibited PDGF-BB and serum-induced VSMC proliferation and DNA synthesis in a concentration-dependent manner. Cytotoxicity was not observed in hinokitiol-treated VSMCs at the studied concentrations. Pre-incubation of VSMCs with hinokitiol did not alter PDGF-BB-induced phosphorylation of ERK1/2, Akt, PI3K or JAK2. Interestingly, hinokitiol induced promoter activity of p21 and p21 protein expression in VSMCs. Furthermore, hinokitiol augmented p53 protein phosphorylation and subsequently led to enhanced p53 activity. CONCLUSIONS These data suggest that the anti-proliferative effects of hinokitiol in VSMCs may be mediated by activation of p21 and p53 signaling pathways, and it may contribute to the prevention of vascular diseases associated with VSMC proliferation.
Collapse
Affiliation(s)
- Jiun-Yi Li
- Department of Cardiovascular Surgery, Mackay Memorial Hospital, and Mackay Medical College, Taipei, Taiwan
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ping Liu
- Department of Cardiology, Yuan’s General Hospital, Kaohsiung, Taiwan
| | - Wei-Cheng Shiao
- Department of Internal Medicine, Yuan’s General Hospital, Kaohsiung, Taiwan
| | - Thanasekaran Jayakumar
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Shin Li
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Cardiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Lee JH, Jeong JK, Park SY. AMPK Activation Mediated by Hinokitiol Inhibits Adipogenic Differentiation of Mesenchymal Stem Cells through Autophagy Flux. Int J Endocrinol 2018; 2018:2014192. [PMID: 30123258 PMCID: PMC6079415 DOI: 10.1155/2018/2014192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/27/2018] [Accepted: 06/03/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Hinokitiol, a natural monopenoid present in the essential oil of Calocedrus formosana heartwood, exerts potent anticancer, anti-inflammatory, antibacterial, and neuroprotective effects on various cells. However, the antiobesity effect of hinokitiol on adipocytes is unclear. EXPERIMENTAL APPROACH In this study, we observed that hinokitiol affected the differentiation to adipocytes in mesenchymal stem cells (MSCs). Hinokitiol was treated with 3-isobutyl-1-methylxanthine, insulin, and dexamethasone to induce differentiation and maturing adipocytes in cultured MSCs. KEY RESULTS Hinokitiol treatment of MSCs decreased their differentiation to mature adipocytes and increased AMPK phosphorylation in a concentration-dependent manner. Moreover, we confirmed that the antiadipogenic effect of hinokitiol was associated with autophagy. The levels of LC3-II decreased and those of p62 increased in hinokitiol-treated MSCs. The treatment of hinokitiol-treated MSCs with the autophagy activator, rapamycin, restored the hinokitiol-induced decrease in the adipocyte differentiation of MSCs. The inhibition of AMPK phosphorylation also suppressed hinokitiol-mediated inhibition of autophagy and antiadipogenic effects. CONCLUSIONS AND IMPLICATIONS Taken together, these results indicated that AMPK activation and autophagy flux inhibition mediated by hinokitiol inhibited lipid accumulation and differentiation of MSCs to adipocytes and also suggest that differentiation of mesenchymal stem cells may be regulated by using the modulator of autophagy flux and AMPK signals including hinokitiol.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro, Dong-gu, Daegu City 41061, Republic of Korea
| | - Jae-Kyo Jeong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
10
|
Cui JL, Wang YN, Jiao J, Gong Y, Wang JH, Wang ML. Fungal endophyte-induced salidroside and tyrosol biosynthesis combined with signal cross-talk and the mechanism of enzyme gene expression in Rhodiola crenulata. Sci Rep 2017; 7:12540. [PMID: 28970519 PMCID: PMC5624951 DOI: 10.1038/s41598-017-12895-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
Endophyte is a factor that affects the physiology and metabolism of plant. However, limited information is available on the mechanism of interaction between endophyte and plant. To investigate the effects of endophytic fungus ZPRs-R11, that is, Trimmatostroma sp., on salidroside and tyrosol accumulations in Rhodiola crenulata, signal transduction, enzyme gene expression, and metabolic pathway were investigated. Results showed that hydrogen peroxide (H2O2), nitric oxide (NO), and salicylic acid (SA) involved in fungus-induced salidroside and tyrosol accumulations. NO acted as an upstream signal of H2O2 and SA. No up- or down-stream relationship was observed, but mutual coordination existed between H2O2 and SA. Rate-limiting enzyme genes with the maximum expression activities were UDP-glucosyltransferase, tyrosine decarboxylase (TYDC), monoamine oxidase, phenylalanine ammonialyase (PAL), and cinnamic-4-hydroxylase sequentially. Nevertheless, the genes of tyrosine transaminase and pyruvate decarboxylase only indicated slightly higher activities than those in control. Thus, TYDC and PAL branches were the preferential pathways in ZPRs-R11-induced salidroside and tyrosol accumulation. Trimmatostroma sp. was a potential fungus for promoting salidroside and tyrosol accumulations. The present data also provided scientific basis for understanding complex interaction between endophytic fungus and R. crenulata.
Collapse
Affiliation(s)
- Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China.
| | - Ya-Nan Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jin Jiao
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Yi Gong
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jun-Hong Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Meng-Liang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
11
|
Chen Y, Huang J, Tang C, Chen X, Yin Z, Heng BC, Chen W, Shen W. Small molecule therapeutics for inflammation-associated chronic musculoskeletal degenerative diseases: Past, present and future. Exp Cell Res 2017; 359:1-9. [PMID: 28739444 DOI: 10.1016/j.yexcr.2017.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Inflammation-associated chronic musculoskeletal degenerative diseases (ICMDDs) like osteoarthritis and tendinopathy often results in morbidity and disability, with consequent heavy socio-economic burden. Current available therapies such as NSAIDs and glucocorticoid are palliative rather than disease-modifying. Insufficient systematic research data on disease molecular mechanism also makes it difficult to exploit valid therapeutic targets. Small molecules are designed to act on specific signaling pathways and/or mechanisms of cellular physiology and function, and have gradually shown potential for treating ICMDDs. In this review, we would examine and analyze recent developments in small molecule drugs for ICMDDs, suggest possible feasible improvements in treatment modalities, and discuss future research directions.
Collapse
Affiliation(s)
- Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Boon Chin Heng
- Faculty of Dentistry, Department of Endodontology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Orthopaedics Research Institute of Zhejiang Univerisity, China.
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
12
|
Induction of apoptosis and ganoderic acid biosynthesis by cAMP signaling in Ganoderma lucidum. Sci Rep 2017; 7:318. [PMID: 28336949 PMCID: PMC5428012 DOI: 10.1038/s41598-017-00281-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Apoptosis is an essential physiological process that controls many important biological functions. However, apoptosis signaling in relation to secondary metabolite biosynthesis in plants and fungi remains a mystery. The fungus Ganoderma lucidum is a popular herbal medicine worldwide, but the biosynthetic regulation of its active ingredients (ganoderic acids, GAs) is poorly understood. We investigated the role of 3′,5′-cyclic adenosine monophosphate (cAMP) signaling in fungal apoptosis and GA biosynthesis in G. lucidum. Two phosphodiesterase inhibitors (caffeine and 3-isobutyl-1-methylxanthine, IBMX) and an adenylate cyclase activator (sodium fluoride, NaF) were used to increase intracellular cAMP levels. Fungal apoptosis was identified by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and a condensed nuclear morphology. Our results showed that GA production and fungal apoptosis were induced when the mycelium was treated with NaF, caffeine, or cAMP/IBMX. Downregulation of squalene synthase and lanosterol synthase gene expression by cAMP was detected in the presence of these chemicals, which indicates that these two genes are not critical for GA induction. Transcriptome analysis indicated that mitochondria might play an important role in cAMP-induced apoptosis and GA biosynthesis. To the best of our knowledge, this is the first report to reveal that cAMP signaling induces apoptosis and secondary metabolite production in fungi.
Collapse
|
13
|
Zhai X, Jia M, Chen L, Zheng CJ, Rahman K, Han T, Qin LP. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol 2016; 43:238-261. [PMID: 27936989 DOI: 10.1080/1040841x.2016.1201041] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants.
Collapse
Affiliation(s)
- Xin Zhai
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Min Jia
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Ling Chen
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Cheng-Jian Zheng
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Khalid Rahman
- b Department of Physiological Biochemistry, Faculty of Science, School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Ting Han
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Lu-Ping Qin
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| |
Collapse
|
14
|
Huang CH, Jayakumar T, Chang CC, Fong TH, Lu SH, Thomas PA, Choy CS, Sheu JR. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture. Molecules 2015; 20:17720-34. [PMID: 26404213 PMCID: PMC6332280 DOI: 10.3390/molecules201017720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022] Open
Abstract
Melanoma is extremely resistant to chemotherapy and the death rate is increasing hastily worldwide. Extracellular matrix promotes the migration and invasion of tumor cells through the production of matrix metalloproteinase (MMP)-2 and -9. Evidence has shown that natural dietary antioxidants are capable of inhibiting cancer cell growth. Our recent studies showed that hinokitiol, a natural bioactive compound, inhibited vascular smooth muscle cell proliferation and platelets aggregation. The present study is to investigate the anticancer efficacy of hinokitiol against B16-F10 melanoma cells via modulating tumor invasion factors MMPs, antioxidant enzymes in vitro. An in vivo mice model of histological investigation was performed to study the patterns of elastic and collagen fibers. Hinokitiol inhibited the expression and activity of MMPs-2 and -9 in B16-F10 melanoma cells, as measured by western blotting and gelatin zymography, respectively. An observed increase in protein expression of MMPs 2/9 in melanoma cells was significantly inhibited by hinokitiol. Notably, hinokitiol (1–5 μM) increased the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in melanoma cells. Also, hinokitiol (2–10 µM) concentration dependently reduced in vitro Fenton reaction induced hydroxyl radical (OH·) formation. An in vivo study showed that hinokitiol treatment increased elastic fibers (EF), collagens dispersion, and improved alveolar alterations in the lungs of B16/F10 injected mice. Overall, our findings propose that hinokitiol may be a potent anticancer candidate through down regulation of MMPs 9/2, reduction of OH· production and enhancement of antioxidant enzymes SOD and CAT.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Division of Urology, Department of Surgery, Taipei City Hospital, Zhongxiao Branch, Taipei 115, Taiwan.
| | - Thanasekaran Jayakumar
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chao-Chien Chang
- Department of Cardiology, Cathay General Hospital, Taipei 106, Taiwan.
| | - Tsorng-Harn Fong
- Department of Anatomy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Shing-Hwa Lu
- Division of Urology, Department of Surgery, Taipei City Hospital, Zhongxiao Branch, Taipei 115, Taiwan.
| | - Philip Aloysius Thomas
- Department of Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli 620001, Tamil Nadu, India.
| | - Cheuk-Sing Choy
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Emergency, Min-Sheng General Hospital, Taoyuan 330, Taiwan.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
15
|
Glyan’ko AK. Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815050063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide 2014; 43:89-96. [DOI: 10.1016/j.niox.2014.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 11/20/2022]
|
17
|
Li J, Zhou XD, Yang KH, Fan TD, Chen WP, Jiang LF, Bao JP, Wu LD, Xiong Y. Hinokitiol reduces matrix metalloproteinase expression by inhibiting Wnt/β-Catenin signaling in vitro and in vivo. Int Immunopharmacol 2014; 23:85-91. [DOI: 10.1016/j.intimp.2014.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/07/2014] [Accepted: 08/13/2014] [Indexed: 01/03/2023]
|
18
|
Blondel C, Melesan M, San Miguel A, Veyrenc S, Meresse P, Pezet M, Reynaud S, Raveton M. Cell cycle disruption and apoptosis as mechanisms of toxicity of organochlorines in Zea mays roots. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:312-322. [PMID: 24892778 DOI: 10.1016/j.jhazmat.2014.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Organochlorine pesticides (OCPs) are widespread environmental pollutants; two of them are highly persistent: lindane (γHCH) and chlordecone (CLD). Maize plants cope with high levels of OCP-environmental pollution, however little is known about cellular mechanisms involved in plant response to such OCP-exposures. This research was aimed at understanding the physiological pathways involved in the plant response to OCPs in function of a gradient of exposure. Here we provide the evidences that OCPs might disrupt root cell cycle leading to a rise in the level of polyploidy possibly through mechanisms of endoreduplication. In addition, low-to-high doses of γHCH were able to induce an accumulation of H2O2 without modifying NO contents, while CLD modulated neither H2O2 nor NO production. [Ca(2+)]cytosolic, the caspase-3-like activity as well as TUNEL-positive nuclei and IP-positive cells increased after exposure to low-to-high doses of OCPs. These data strongly suggest a cascade mechanism of the OCP-induced toxic effect, notably with an increase in [Ca(2+)]cytosolic and caspase-3-like activity, suggesting the activation of programmed cell death pathway.
Collapse
Affiliation(s)
- Claire Blondel
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Marc Melesan
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Angélique San Miguel
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Sylvie Veyrenc
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Patrick Meresse
- Université de Grenoble - Alpes, France; Centre Universitaire de Biologie Expérimentale, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France
| | - Mylène Pezet
- Centre de Recherche Inserm/UJF U823, Institut Albert Bonniot, BP 170, 38042 Grenoble Cedex 09, France
| | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Muriel Raveton
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France.
| |
Collapse
|
19
|
Janus Ł, Milczarek G, Arasimowicz-Jelonek M, Abramowski D, Billert H, Floryszak-Wieczorek J. Normoergic NO-dependent changes, triggered by a SAR inducer in potato, create more potent defense responses to Phytophthora infestans. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:23-34. [PMID: 23987808 DOI: 10.1016/j.plantsci.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 05/03/2023]
Abstract
In our experimental approach we examined how potato leaves exposed to a chemical agent might induce nitric oxide (NO) dependent biochemical modifications for future mobilization of an effective resistance to Phytophthora infestans. After potato leaf treatment with one of the following SAR inducers, i.e. β-aminobutyric acid (BABA), 2,6-dichloroisonicotinic acid (INA) or Laminarin, we observed enhanced NO generation concomitant with biochemical changes related to a slight superoxide anion (O2(-)) and hydrogen peroxide (H2O2) accumulation dependent on minimal NADPH oxidase and peroxidase activities, respectively. These rather normoergic changes, linked to the NO message, were mediated by the temporary down-regulation of S-nitrosoglutathione reductase (GSNOR). In turn, after challenge inoculation signal amplification promoted potato resistance manifested in the up-regulation of GSNOR activity tuned with the depletion of the SNO pool, which was observed by our team earlier (Floryszak-Wieczorek et al., 2012). Moreover, hyperergic defense responses related to an early and rapid O2(-)and H2O2 overproduction together with a temporary increase in NADPH oxidase and peroxidase activities were noted. BABA treatment was the most effective against P. infestans resulting in the enhanced activity of β-1,3-glucanase and callose deposition. Our results indicate that NO-mediated biochemical modifications might play an important role in creating more potent defense responses of potato to a subsequent P. infestans attack.
Collapse
Affiliation(s)
- Łukasz Janus
- Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Corpas FJ, Barroso JB. Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. THE NEW PHYTOLOGIST 2013; 199:633-5. [PMID: 23763656 DOI: 10.1111/nph.12380] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
21
|
A novel approach to enhancing ganoderic acid production by Ganoderma lucidum using apoptosis induction. PLoS One 2013; 8:e53616. [PMID: 23326470 PMCID: PMC3542374 DOI: 10.1371/journal.pone.0053616] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Ganoderma lucidum is one of most widely used herbal medicine and functional food in Asia, and ganoderic acids (GAs) are its active ingredients. Regulation of GA biosynthesis and enhancing GA production are critical to using G. lucidum as a medicine. However, regulation of GA biosynthesis by various signaling remains poorly understood. This study investigated the role of apoptosis signaling on GA biosynthesis and presented a novel approach, namely apoptosis induction, to increasing GA production. Aspirin was able to induce cell apoptosis in G. lucidum, which was identified by terminal deoxynucleotidyl transferase mediated dUPT nick end labeling assay positive staining and a condensed nuclear morphology. The maximum induction of lanosta-7,9(11), 24-trien-3α-01-26-oic acid (ganoderic acid 24, GA24) production and total GA production by aspirin were 2.7-fold and 2.8-fold, respectively, after 1 day. Significantly lower levels of GA 24 and total GAs were obtained after regular fungal culture for 1.5 months. ROS accumulation and phosphorylation of Hog-1 kinase, a putative homolog of MAPK p38 in mammals, occurred after aspirin treatment indicating that both factors may be involved in GA biosynthetic regulation. However, aspirin also reduced expression of the squalene synthase and lanosterol synthase coding genes, suggesting that these genes are not critical for GA induction. To the best of our knowledge, this is the first report showing that GA biosynthesis is linked to fungal apoptosis and provides a new approach to enhancing secondary metabolite production in fungi.
Collapse
|
22
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J, Rucińska-Sobkowiak R, Gzyl J, Pawlak-Sprada S, Abramowski D, Jelonek T, Gwóźdź EA. Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:124-34. [PMID: 22819859 DOI: 10.1016/j.plaphy.2012.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/20/2012] [Indexed: 05/20/2023]
Abstract
The sequence of events leading to the programmed cell death (PCD) induced by heavy metals in plants is still the object of extensive investigation. In this study we showed that roots of 3-day old yellow lupine (Lupinus luteus L.) seedlings exposed to cadmium (Cd, 89μM CdCl(2)) resulted in PCD starting from 24h of stress duration, which was evidenced by TUNEL-positive reaction. Cd-induced PCD was preceded by a relatively early burst of nitric oxide (NO) localized mainly in the root tips. Above changes were accompanied by the NADPH-oxidase-dependent superoxide anion (O(2)(·-)) production. However, the concomitant high level of both NO and O(2)(·-) at the 24th h of Cd exposure did not provoke an enhanced peroxynitrite formation. The treatment with the NADPH-oxidase inhibitor and NO-scavenger significantly reduced O(2)(·-) and NO production, respectively, as well as diminished the pool of cells undergoing PCD. The obtained data indicate that boosted NO and O(2)(·-) production is required for Cd-induced PCD in lupine roots. Moreover, we found that in roots of 14-day old lupine plants the NO-dependent Cd-induced PCD was correlated with the enhanced level of the post-stress signals in leaves, including distal NO cross-talk with hydrogen peroxide.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lombardi L, Mariotti L, Picciarelli P, Ceccarelli N, Lorenzi R. Ethylene produced by the endosperm is involved in the regulation of nucellus programmed cell death in Sechium edule Sw. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 187:31-8. [PMID: 22404830 DOI: 10.1016/j.plantsci.2012.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 05/09/2023]
Abstract
The nucellus is a maternal tissue that feeds the developing embryo and the secondary endosperm. During seed development the cells of the nucellus suffer a degenerative process early after fertilization as the cellular endosperm expands and accumulates reserves. Nucellar cell degeneration has been characterized as a form of developmentally programmed cell death (PCD). In this work we analysed the role of the endosperm as main regulator of nucellus PCD. We demonstrated that endosperm produces high amount of ethylene, nitric oxide and indoleacetic acid. We examined the role of these small and diffusible signalling molecules in the regulation of nucellus PCD and we tried to elucidate how they can cooperate and regulate each other into the endosperm. We showed that ethylene acts a positive regulator of nucellus PCD and its synthesis can be in part induced by nitric oxide. High levels of IAA were detected both in the endosperm and in dying nucellus but this hormone is not directly involved in the execution of PCD.
Collapse
Affiliation(s)
- Lara Lombardi
- Department of Biology, University of Pisa, Via Ghini 5, 56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
24
|
Zhang H, Wang W, Yin H, Zhao X, Du Y. Oligochitosan induces programmed cell death in tobacco suspension cells. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.10.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Zhang B, Zheng LP, Wang JW. Nitric oxide elicitation for secondary metabolite production in cultured plant cells. Appl Microbiol Biotechnol 2011; 93:455-66. [PMID: 22089384 DOI: 10.1007/s00253-011-3658-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/08/2011] [Accepted: 10/24/2011] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) is an important signal molecule in stress responses. Accumulation of secondary metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. NO has been reported to play important roles in elicitor-induced secondary metabolite production in tissue and cell cultures of medicinal plants. Better understanding of NO role in the biosynthesis of such metabolites is very important for optimizing the commercial production of those pharmaceutically significant secondary metabolites. This paper summarizes progress made on several aspects of NO signal leading to the production of plant secondary metabolites, including various abiotic and biotic elicitors that induce NO production, elicitor-triggered NO generation cascades, the impact of NO on growth development and programmed cell death in medicinal plants, and NO-mediated regulation of the biosynthetic pathways of such metabolites. Cross-talks among NO signaling and reactive oxygen species, salicylic acid, and jasmonic acid are discussed. Some perspectives on the application of NO donors for induction of the secondary metabolite accumulation in plant cultures are also presented.
Collapse
Affiliation(s)
- Ben Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | | | | |
Collapse
|
26
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J. Understanding the fate of peroxynitrite in plant cells--from physiology to pathophysiology. PHYTOCHEMISTRY 2011; 72:681-8. [PMID: 21429536 DOI: 10.1016/j.phytochem.2011.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 05/23/2023]
Abstract
Peroxynitrite (ONOO(-)) is a potent oxidant and nitrating species, generated by the reaction of nitric oxide and superoxide in one of the most rapid reactions known in biology. It is widely accepted that an enhanced ONOO(-) formation contributes to oxidative and nitrosative stress in various biological systems. However, an increasing number of studies have reported that ONOO(-) cannot only be considered as a mediator of cellular dysfunction, but also behaves as a potent modulator of the redox regulation in various cell signal transduction pathways. Although the formation of ONOO(-) has been demonstrated in vivo in plant cells, the relevance of this molecule during plant physiological responses is still far from being clarified. Admittedly, the detection of protein tyrosine nitration phenomena provides some justification to the speculations that ONOO() is generated during various plant stress responses associated with pathophysiological mechanisms. On the other hand, it was found that ONOO(-) itself is not as toxic for plant cells as it is for animal ones. Based on the concepts of the role played by ONOO(-) in biological systems, this review is focused mainly on the search for potential functions of ONOO(-) in plants. Moreover, it is also an attempt to stimulate a discussion on the significance of protein nitration as a paradigm in signal modulation, since the newest reports identified proteins associated with signal transduction cascades within the plant nitroproteome.
Collapse
|
27
|
Lombardi L, Ceccarelli N, Picciarelli P, Sorce C, Lorenzi R. Nitric oxide and hydrogen peroxide involvement during programmed cell death of Sechium edule nucellus. PHYSIOLOGIA PLANTARUM 2010; 140:89-102. [PMID: 20487376 DOI: 10.1111/j.1399-3054.2010.01381.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The nucellus is a maternal tissue that feeds the developing embryo and the secondary endosperm. During seed development the cells of the nucellus suffer a degenerative process early after fertilization as the cellular endosperm expands and accumulates reserves. Nucellar cell degeneration has been characterized as a form of developmentally programmed cell death (PCD). In this work we show that nucellus PCD is accompanied by a considerable production of both nitric oxide and hydrogen peroxide (NO and H(2)O(2)). Interestingly, each of the two molecules is able to induce the production of the other and to cause cell death when applied to a living nucellus. We show that the induced cell death has features of a PCD, accompanied by profound changes in the morphology of the nuclei and by a massive degradation of nuclear DNA. Moreover, we report that NO and H(2)O(2) cause an induction of caspase-like proteases previously characterized in physiological nucellar PCD.
Collapse
Affiliation(s)
- Lara Lombardi
- Department of Biology, University of Pisa, 56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
28
|
Glyan’ko AK, Vasil’eva GG. Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: A review. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
|
30
|
Izumi Y, Kajiyama S, Nakamura R, Ishihara A, Okazawa A, Fukusaki E, Kanematsu Y, Kobayashi A. High-resolution spatial and temporal analysis of phytoalexin production in oats. PLANTA 2009; 229:931-943. [PMID: 19148672 DOI: 10.1007/s00425-008-0887-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 12/23/2008] [Indexed: 05/27/2023]
Abstract
The production of oat (Avena sativa L.) phytoalexins, avenanthramides, occurs in response to elicitor treatment with oligo-N-acetylchitooligosaccharides. In this study, avenanthramides production was investigated by techniques that provide high spatial and temporal resolution in order to clarify the process of phytoalexin production at the cellular level. The amount of avenanthramides accumulation in a single mesophyll cell was quantified by a combination of laser micro-sampling and low-diffuse nanoflow liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) techniques. Avenanthramides, NAD(P)H and chlorophyll were also visualized in elicitor-treated mesophyll cells using line-scanning fluorescence microscopy. We found that elicitor-treated mesophyll cells could be categorized into three characteristic cell phases, which occurred serially over time. Phase 0 indicated the normal cell state before metabolic or morphological change in response to elicitor, in which the cells contained abundant NAD(P)H. In phase 1, rapid NAD(P)H oxidation and marked movement of chloroplasts occurred, and this phase was the early stage of avenanthramides biosynthesis. In phase 2, avenanthramides accumulation was maximized, and chloroplasts were degraded. Avenanthramides appear to be synthesized in the chloroplast, because a fluorescence signal originating from avenanthramides was localized to the chloroplasts. Moreover, our results indicated that avenanthramides biosynthesis and the hypersensitive response (HR) occurred in identical cells. Thus, the avenanthramides production may be one of sequential events programmed in HR leading to cell death. Furthermore, the phase of the defense response was different among mesophyll cells simultaneously treated with elicitor. These results suggest that individual cells may have different susceptibility to the elicitor.
Collapse
Affiliation(s)
- Yoshihiro Izumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gaupels F, Furch ACU, Will T, Mur LAJ, Kogel KH, van Bel AJE. Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. THE NEW PHYTOLOGIST 2008; 178:634-46. [PMID: 18312539 DOI: 10.1111/j.1469-8137.2008.02388.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vascular tissue was recently shown to be capable of producing nitric oxide (NO), but the production sites and sources were not precisely determined. Here, NO synthesis was analysed in the phloem of Vicia faba in response to stress- and pathogen defence-related compounds. The chemical stimuli were added to shallow paradermal cortical cuts in the main veins of leaves attached to intact plants. NO production in the bare-lying phloem area was visualized by real-time confocal laser scanning microscopy using the NO-specific fluorochrome 4,5-diaminofluorescein diacetate (DAF-2 DA). Abundant NO generation in companion cells was induced by 500 microm salicylic acid (SA) and 10 microm hydrogen peroxide (H(2)O(2)), but the fungal elicitor chitooctaose was much less effective. Phloem NO production was found to be dependent on Ca(2+) and mitochondrial electron transport and pharmacological approaches found evidence for activity of a plant NO synthase but not a nitrate reductase. DAF fluorescence increased most strongly in companion cells and was occasionally observed in phloem parenchyma cells. Significantly, accumulation of NO in sieve elements could be demonstrated. These findings suggest that the phloem perceives and produces stress-related signals and that one mechanism of distal signalling involves the production and transport of NO in the phloem.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Phytopathology and Applied Zoology, IFZ, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
|