1
|
Guo N, Han S, Zong M, Wang G, Duan M, Liu F. Construction and Application of an F1-Derived Doubled-Haploid Population and High-Density Genetic Map for Ornamental Kale Breeding. Genes (Basel) 2023; 14:2104. [PMID: 38003047 PMCID: PMC10670981 DOI: 10.3390/genes14112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Ornamental kale (Brassica oleracea var. acephala) is an attractive ornamental plant with a range of leaf colors and shapes. Breeding new varieties of ornamental kale has proven challenging due to its lengthy breeding cycle and the limited availability of genetic markers. In this study, a F1DH ornamental kale population comprising 300 DH lines was constructed using microspore culture. A high-density genetic map was developed by conducting whole-genome sequencing on 150 individuals from the F1DH population. The genetic map contained 1696 bin markers with 982,642 single-nucleotide polymorphisms (SNPs) spanning a total distance of 775.81 cM on all nine chromosomes with an average distance between markers of 0.46 cM. The ornamental kale genetic map contained substantially more SNP markers compared with published genetic maps for other B. oleracea crops. Furthermore, utilizing this high-density genetic map, we identified seven quantitative trait loci (QTLs) that significantly influence the leaf shape of ornamental kale. These findings are valuable for understanding the genetic basis of key agronomic traits in ornamental kale. The F1DH progenies provide an excellent resource for germplasm innovation and breeding new varieties of ornamental kale. Additionally, the high-density genetic map provides crucial insights for gene mapping and unraveling the molecular mechanisms behind important agronomic traits in ornamental kale.
Collapse
Affiliation(s)
| | | | | | | | | | - Fan Liu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (N.G.); (S.H.); (M.Z.); (G.W.); (M.D.)
| |
Collapse
|
2
|
Effects of nanocarbon solution treatment on the nutrients and glucosinolate metabolism in broccoli. Food Chem X 2022; 15:100429. [PMID: 36211778 PMCID: PMC9532756 DOI: 10.1016/j.fochx.2022.100429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Nanocarbon application could enhance the total protein in broccoli, directly. 18.75 L·ha−1 nanocarbon solution greatly increase 22.9 % of glucoraphanin. Nanocarbon solution obviously reduces 4 indolic glucosinolate productions. Nanocarbon has great great impact on glucosinolate biosynthesis and pathway.
The effects of a nanocarbon solution on the nutrients, glucosinolate metabolism and glucoraphanin pathway in broccoli were investigated. Significant positive linear relationships were observed between the nanocarbon solution and total protein yield, although effects on the soluble sugars, vitamin C and dry matter production were not observed. All nanocarbon solutions significantly increased the glucoraphanin content (p < 0.05), and the 18.75 L·ha−1 nanocarbon solution maximally increased the glucoraphanin content by 22.9 %. However, these treatments also significantly reduced the contents of glucobrassicin, 4-methoxyglucobrassicin, 4-hydroxyglucobrassicin and neoglucobrassicin. Further research demonstrated that the 18.75 L·ha−1 nanocarbon solution significantly upregulated the MAM1, IPMI2, CYP79F1, FMOgs-ox2, AOP2, and TGG1 expression levels, which directly resulted in the accumulation of glucoraphanin and glucoerucin. This study provides insights into the prospective nanotechnological approaches for developing efficient and environmentally friendly nanocarbon solution for use on crops.
Collapse
|
3
|
Shang G, Zhao H, Tong L, Yin N, Hu R, Jiang H, Kamal F, Zhao Z, Xu L, Lu K, Li J, Qu C, Du D. Genome-Wide Association Study of Phenylalanine Derived Glucosinolates in Brassica rapa. PLANTS (BASEL, SWITZERLAND) 2022; 11:1274. [PMID: 35567275 PMCID: PMC9104335 DOI: 10.3390/plants11091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Glucosinolates (GSLs) are sulfur-containing bioactive compounds usually present in Brassicaceae plants and are usually responsible for a pungent flavor and reduction of the nutritional values of seeds. Therefore, breeding rapeseed varieties with low GSL levels is an important breeding objective. Most GSLs in Brassica rapa are derived from methionine or tryptophan, but two are derived from phenylalanine, one directly (benzylGSL) and one after a round of chain elongation (phenethylGSL). In the present study, two phenylalanine (Phe)-derived GSLs (benzylGSL and phenethylGSL) were identified and quantified in seeds by liquid chromatography and mass spectrometry (LC-MS) analysis. Levels of benzylGSL were low but differed among investigated low and high GSL genotypes. Levels of phenethylGSL (also known as 2-phenylethylGSL) were high but did not differ among GSL genotypes. Subsequently, a genome-wide association study (GWAS) was conducted using 159 B. rapa accessions to demarcate candidate regions underlying 43 and 59 QTNs associated with benzylGSL and phenethylGSL that were distributed on 10 chromosomes and 9 scaffolds, explaining 0.56% to 70.86% of phenotypic variations, respectively. Furthermore, we find that 15 and 18 known or novel candidate genes were identified for the biosynthesis of benzylGSL and phenethylGSL, including known regulators of GSL biosynthesis, such as BrMYB34, BrMYB51, BrMYB28, BrMYB29 and BrMYB122, and novel regulators or structural genes, such as BrMYB44/BrMYB77 and BrMYB60 for benzylGSL and BrCYP79B2 for phenethylGSL. Finally, we investigate the expression profiles of the biosynthetic genes for two Phe-derived GSLs by transcriptomic analysis. Our findings provide new insight into the complex machinery of Phe-derived GSLs in seeds of B. rapa and help to improve the quality of Brassicaceae plant breeding.
Collapse
Affiliation(s)
- Guoxia Shang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rape Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (G.S.); (Z.Z.); (L.X.)
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Linhui Tong
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Ran Hu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Haiyan Jiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Farah Kamal
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Zhi Zhao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rape Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (G.S.); (Z.Z.); (L.X.)
| | - Liang Xu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rape Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (G.S.); (Z.Z.); (L.X.)
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rape Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (G.S.); (Z.Z.); (L.X.)
| |
Collapse
|
4
|
Pacifico D, Lanzanova C, Pagnotta E, Bassolino L, Mastrangelo AM, Marone D, Matteo R, Lo Scalzo R, Balconi C. Sustainable Use of Bioactive Compounds from Solanum Tuberosum and Brassicaceae Wastes and by-Products for Crop Protection-A Review. Molecules 2021; 26:2174. [PMID: 33918886 PMCID: PMC8070479 DOI: 10.3390/molecules26082174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Defatted seed meals of oleaginous Brassicaceae, such as Eruca sativa, and potato peel are excellent plant matrices to recover potentially useful biomolecules from industrial processes in a circular strategy perspective aiming at crop protection. These biomolecules, mainly glycoalkaloids and phenols for potato and glucosinolates for Brassicaceae, have been proven to be effective against microbes, fungi, nematodes, insects, and even parasitic plants. Their role in plant protection is overviewed, together with the molecular basis of their synthesis in plant, and the description of their mechanisms of action. Possible genetic and biotechnological strategies are presented to increase their content in plants. Genetic mapping and identification of closely linked molecular markers are useful to identify the loci/genes responsible for their accumulation and transfer them to elite cultivars in breeding programs. Biotechnological approaches can be used to modify their allelic sequence and enhance the accumulation of the bioactive compounds. How the global challenges, such as reducing agri-food waste and increasing sustainability and food safety, could be addressed through bioprotector applications are discussed here.
Collapse
Affiliation(s)
- Daniela Pacifico
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Chiara Lanzanova
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Eleonora Pagnotta
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Laura Bassolino
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Anna Maria Mastrangelo
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Daniela Marone
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Roberto Matteo
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Roberto Lo Scalzo
- CREA Council for Agricultural Research and Economics—Research Centre for Engineering and Agro-Food Processing, 00198 Rome, Italy;
| | - Carlotta Balconi
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| |
Collapse
|
5
|
Chang J, Wang M, Jian Y, Zhang F, Zhu J, Wang Q, Sun B. Health-promoting phytochemicals and antioxidant capacity in different organs from six varieties of Chinese kale. Sci Rep 2019; 9:20344. [PMID: 31889076 PMCID: PMC6937318 DOI: 10.1038/s41598-019-56671-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Chinese kale (Brassica oleracea var. alboglabra) has high nutritional value. This study investigated the contents of glucosinolates, antioxidants (chlorophylls, carotenoids, vitamin C, and total phenolics), and antioxidant capacity in five organs from six varieties of Chinese kale. The highest concentrations of individual and total glucosinolates were in the roots and inflorescences, respectively. The highest levels of antioxidants and antioxidant capacity were in inflorescences and leaves. Plant organs played a predominant role in glucosinolate and antioxidant accumulation. Glucoiberin, glucoraphanin, and glucobrassicin, the main anticarcinogenic glucosinolates, could be enhanced simultaneously because of their high positive correlations. The relationship between glucosinolates and antioxidant capacity indicated that glucobrassicin might contribute to the total antioxidant capacity. These results provide useful information related to consumption, breeding of functional varieties, and use of the non-edible organs of Chinese kale.
Collapse
Affiliation(s)
- Jiaqi Chang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Mengyu Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yue Jian
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Zhu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Abstract
Although flavor is an essential element for consumer acceptance of food, breeding programs have focused primarily on yield, leading to significant declines in flavor for many vegetables. The deterioration of flavor quality has concerned breeders; however, the complexity of this trait has hindered efforts to improve or even maintain it. Recently, the integration of flavor-associated metabolic profiling with other omics methodologies derived from big data has become a prominent trend in this research field. Here, we provide an overview of known metabolites contributing to flavor in the major vegetables as well as genetic analyses of the relevant metabolic pathways based on different approaches, especially multi-omics. We present examples demonstrating how omics analyses can help us to understand the accomplishments of historical flavor breeding practices and implement further improvements. The integration of genetics, cultivation, and postharvest practices with genome-scale data analyses will create enormous potential for further flavor quality improvements.
Collapse
Affiliation(s)
- Guangtao Zhu
- The CAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junbo Gou
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Harry Klee
- Horticultural Sciences Department, Plant Innovation Center, University of Florida, Gainesville, Florida 32611, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
7
|
Rocket science: A review of phytochemical & health-related research in Eruca & Diplotaxis species. Food Chem X 2019; 1:100002. [PMID: 31423483 PMCID: PMC6690419 DOI: 10.1016/j.fochx.2018.100002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022] Open
Abstract
Recent phytochemical research in rocket species is critically reviewed. Glucosinolates and hydrolysis products change over growth and shelf life. Experiments should better consider and account for commercial practices. Research should be focused on providing benefits to the end consumer.
Rocket species (Eruca spp. and Diplotaxis spp.) are becoming increasingly important leafy salad crops across the world. Numerous scientific research papers have been published in recent years surrounding the potential health benefits associated with phytochemicals contained in leaves, such as flavonoids and isothiocyanates. Other research of note has also been conducted into the unique taste and flavour properties of leaves, which can be hot, peppery, bitter, and sweet depending upon the genotype and phytochemical composition. While research into these aspects is increasing, some studies lack cohesion and in-depth knowledge of commercial breeding and cultivation practices that makes interpretation and application of results difficult. This review draws together all significant research findings in these crops over the last five years, and highlights areas that require further exploration and/or resolution. We also advise on experimental considerations for these species to allow for more meaningful utilisation of findings in the commercial sector.
Collapse
|
8
|
Zhang J, Wang H, Liu Z, Liang J, Wu J, Cheng F, Mei S, Wang X. A naturally occurring variation in the BrMAM-3 gene is associated with aliphatic glucosinolate accumulation in Brassica rapa leaves. HORTICULTURE RESEARCH 2018; 5:69. [PMID: 30534387 PMCID: PMC6269504 DOI: 10.1038/s41438-018-0074-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/28/2018] [Accepted: 07/05/2018] [Indexed: 05/14/2023]
Abstract
Glucosinolate profiles significantly vary among Brassica rapa genotypes. However, the molecular basis of these variations is largely unknown. In this study, we investigated a major quantitative trait locus (QTL) controlling aliphatic glucosinolate accumulation in B. rapa leaves. The QTL, which encompasses three tandem MAM genes and two MYB genes, was detected in two BC2DH populations. Among the five-candidate genes, only the expression level of BrMAM-3 (Bra013007) was significantly correlated with the accumulation of aliphatic glucosinolates in B. rapa leaves. We identified a naturally occurring insertion within exon 1 of BrMAM-3, which is predicted to be a loss-of-function mutation, as confirmed by qRT-PCR. We determined that the loss of function was associated with the low glucosinolate content in B. rapa accessions. Furthermore, overexpressing the BrMAM-3 gene resulted in an increase in total aliphatic glucosinolates in Arabidopsis transgenic lines. Our study provides insights into the molecular mechanism underlying the accumulation of aliphatic glucosinolates in B. rapa leaves, thereby facilitating in the manipulation of total aliphatic glucosinolate content in Brassica crops.
Collapse
Affiliation(s)
- Jifang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
- Institute of Southern Economic Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, China
| | - Hui Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
- College of Horticulture, Qingdao Agricultural University, 266109 Qingdao, China
| | - Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Shiyong Mei
- Institute of Southern Economic Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| |
Collapse
|
9
|
|
10
|
Liu Z, Liang J, Zheng S, Zhang J, Wu J, Cheng F, Yang W, Wang X. Enriching Glucoraphanin in Brassica rapa Through Replacement of BrAOP2.2/BrAOP2.3 with Non-functional Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:1329. [PMID: 28824667 PMCID: PMC5539120 DOI: 10.3389/fpls.2017.01329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/17/2017] [Indexed: 05/13/2023]
Abstract
Sulforaphane, the hydrolytic product of glucoraphanin glucosinolate, is a potent anticarcinogen that reduces the risk of several human cancers. However, in most B. rapa vegetables, glucoraphanin is undetectable or only present in trace amounts, since the glucoraphanin that is present is converted to gluconapin by three functional BrAOP2 genes. In this study, to enrich beneficial glucoraphanin content in B. rapa, the functional BrAOP2 alleles were replaced by non-functional counterparts through marker-assisted backcrossing (MAB). We identified non-functional mutations of two BrAOP2 genes from B. rapa. The backcross progenies with introgression of both non-functional braop2.2 and braop2.3 alleles significantly increased the glucoraphanin content by 18 times relative to the recurrent parent. In contrast, replacement or introgression of single non-functional braop2.2 or braop2.3 locus did not change glucoraphanin content. Our results suggest that replacement of these two functional BrAOP2 genes with non-functional alleles has the potential for producing improved Brassica crops with enriched beneficial glucoraphanin content.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shuning Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jifang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Wencai Yang
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Xiaowu Wang
| |
Collapse
|
11
|
Borpatragohain P, Rose TJ, King GJ. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. FRONTIERS IN PLANT SCIENCE 2016; 7:1735. [PMID: 27917185 PMCID: PMC5116641 DOI: 10.3389/fpls.2016.01735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their precursors, the intracellular and inter-organ transport of inorganic and organic S forms, and the accumulation of GSLs in specific tissues. We present this in the context of overlapping sources and sinks, transport processes, signaling molecules and their associated molecular interactions. Our analysis builds on recent insights into the molecular regulation of sulfate uptake and transport by different transporters, transcription factors and miRNAs, and the role that these may play in GSL biosynthesis. We develop a provisional model describing the key processes that could be targeted in crop breeding programs focused on modifying GSL content.
Collapse
Affiliation(s)
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
- Southern Cross GeoScience, Southern Cross University, LismoreNSW, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
| |
Collapse
|
12
|
Zhang J, Liu Z, Liang J, Wu J, Cheng F, Wang X. Three genes encoding AOP2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed in Brassica rapa. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6205-18. [PMID: 26188204 PMCID: PMC4588880 DOI: 10.1093/jxb/erv331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The glucosinolate biosynthetic gene AOP2 encodes an enzyme that plays a crucial role in catalysing the conversion of beneficial glucosinolates into anti-nutritional ones. In Brassica rapa, three copies of BrAOP2 have been identified, but their function in establishing the glucosinolate content of B. rapa is poorly understood. Here, we used phylogenetic and gene structure analyses to show that BrAOP2 proteins have evolved via a duplication process retaining two highly conserved domains at the N-terminal and C-terminal regions, while the middle part has experienced structural divergence. Heterologous expression and in vitro enzyme assays and Arabidopsis mutant complementation studies showed that all three BrAOP2 genes encode functional BrAOP2 proteins that convert the precursor methylsulfinyl alkyl glucosinolate to the alkenyl form. Site-directed mutagenesis showed that His356, Asp310, and Arg376 residues are required for the catalytic activity of one of the BrAOP2 proteins (BrAOP2.1). Promoter-β-glucuronidase lines revealed that the BrAOP2.3 gene displayed an overlapping but distinct tissue- and cell-specific expression profile compared with that of the BrAOP2.1 and BrAOP2.2 genes. Quantitative real-time reverse transcription-PCR assays demonstrated that BrAOP2.1 showed a slightly different pattern of expression in below-ground tissue at the seedling stage and in the silique at the reproductive stage compared with BrAOP2.2 and BrAOP2.3 genes in B. rapa. Taken together, our results revealed that all three BrAOP2 paralogues are active in B. rapa but have functionally diverged.
Collapse
Affiliation(s)
- Jifang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No. 12, Haidian District, Beijing 100081, PR China
| |
Collapse
|
13
|
Zhang J, Wang X, Cheng F, Wu J, Liang J, Yang W, Wang X. Lineage-specific evolution of Methylthioalkylmalate synthases (MAMs) involved in glucosinolates biosynthesis. FRONTIERS IN PLANT SCIENCE 2015; 6:18. [PMID: 25691886 PMCID: PMC4315028 DOI: 10.3389/fpls.2015.00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/09/2015] [Indexed: 05/23/2023]
Abstract
Methylthioalkylmalate synthases (MAMs) encoded by MAM genes are central to the diversification of the glucosinolates, which are important secondary metabolites in Brassicaceae species. However, the evolutionary pathway of MAM genes is poorly understood. We analyzed the phylogenetic and synteny relationships of MAM genes from 13 sequenced Brassicaceae species. Based on these analyses, we propose that the syntenic loci of MAM genes, which underwent frequent tandem duplications, divided into two independent lineage-specific evolution routes and were driven by positive selection after the divergence from Aethionema arabicum. In the lineage I species Capsella rubella, Camelina sativa, Arabidopsis lyrata, and A. thaliana, the MAM loci evolved three tandem genes encoding enzymes responsible for the biosynthesis of aliphatic glucosinolates with different carbon chain-lengths. In lineage II species, the MAM loci encode enzymes responsible for the biosynthesis of short-chain aliphatic glucosinolates. Our proposed model of the evolutionary pathway of MAM genes will be useful for understanding the specific function of these genes in Brassicaceae species.
Collapse
Affiliation(s)
- Jifang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural UniversityBeijing, China
| | - Xiaobo Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural UniversityBeijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Xiaowu Wang, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No.12, Haidian District, Beijing 100081, China e-mail:
| |
Collapse
|
14
|
Impact Molecular Marker and Genomics-Led Technologies on Brassica Breeding. COMPENDIUM OF PLANT GENOMES 2015. [DOI: 10.1007/978-3-662-47901-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Li X, Wang W, Wang Z, Li K, Lim YP, Piao Z. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2015; 6:432. [PMID: 26106405 PMCID: PMC4460309 DOI: 10.3389/fpls.2015.00432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/27/2015] [Indexed: 05/04/2023]
Abstract
Chromosome segment substitution lines (CSSLs) represent a powerful method for precise quantitative trait loci (QTL) detection of complex agronomical traits in plants. In this study, we used a marker-assisted backcrossing strategy to develop a population consisting of 63 CSSLs, derived from backcrossing of the F1 generated from a cross between two Brassica rapa subspecies: "Chiifu" (ssp. pekinensis), the Brassica "A" genome-represented line used as the donor, and "49caixin" (ssp. parachinensis), a non-heading cultivar used as the recipient. The 63 CSSLs covered 87.95% of the B. rapa genome. Among them, 39 lines carried a single segment; 15 lines, two segments; and nine lines, three or more segments of the donor parent chromosomes. To verify the potential advantage of these CSSL lines, we used them to locate QTL for six morphology-related traits. A total of 58 QTL were located on eight chromosomes for all six traits: 17 for flowering time, 14 each for bolting time and plant height, six for plant diameter, two for leaf width, and five for flowering stalk diameter. Co-localized QTL were mainly distributed on eight genomic regions in A01, A02, A05, A06, A08, A09, and A10, present in the corresponding CSSLs. Moreover, new chromosomal fragments that harbored QTL were identified using the findings of previous studies. The CSSL population constructed in our study paves the way for fine mapping and cloning of candidate genes involved in late bolting, flowering, and plant architecture-related traits in B. rapa. Furthermore, it has great potential for future marker-aided gene/QTL pyramiding of other interesting traits in B. rapa breeding.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Molecular Genetics and Genomics Lab, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
| | - Wenke Wang
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Zhe Wang
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Kangning Li
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Lab, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
- *Correspondence: Yong Pyo Lim, Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Zhongyun Piao
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Zhongyun Piao, Department of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang, Liaoning 110866, China
| |
Collapse
|
16
|
Pino Del Carpio D, Basnet RK, Arends D, Lin K, De Vos RCH, Muth D, Kodde J, Boutilier K, Bucher J, Wang X, Jansen R, Bonnema G. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway. PLoS One 2014; 9:e107123. [PMID: 25222144 PMCID: PMC4164526 DOI: 10.1371/journal.pone.0107123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 08/13/2014] [Indexed: 11/18/2022] Open
Abstract
Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.
Collapse
Affiliation(s)
- Dunia Pino Del Carpio
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Wageningen, The Netherlands
| | - Ram Kumar Basnet
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Wageningen, The Netherlands
| | - Danny Arends
- Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | - Ke Lin
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Wageningen, The Netherlands
| | - Ric C. H. De Vos
- BU Bioscience, Plant Research International, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Dorota Muth
- BU Bioscience, Plant Research International, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Jan Kodde
- BU Bioscience, Plant Research International, Wageningen, The Netherlands
| | - Kim Boutilier
- BU Bioscience, Plant Research International, Wageningen, The Netherlands
| | - Johan Bucher
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Wageningen, The Netherlands
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (IVF, CAAS), Beijing, China
| | - Ritsert Jansen
- Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | - Guusje Bonnema
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (IVF, CAAS), Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Hennig K, de Vos R, Maliepaard C, Dekker M, Verkerk R, Bonnema G. A metabolomics approach to identify factors influencing glucosinolate thermal degradation rates in Brassica vegetables. Food Chem 2014; 155:287-97. [DOI: 10.1016/j.foodchem.2014.01.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/06/2013] [Accepted: 01/21/2014] [Indexed: 12/19/2022]
|
18
|
Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. BREEDING SCIENCE 2014; 64:48-59. [PMID: 24987290 PMCID: PMC4031110 DOI: 10.1270/jsbbs.64.48] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/24/2014] [Indexed: 05/18/2023]
Abstract
Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates.
Collapse
Affiliation(s)
- Masahiko Ishida
- NARO Institute of Vegetable and Tea Science, Tsukuba Vegetable Research Station,
3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666,
Japan
- Corresponding author (e-mail: )
| | - Masakazu Hara
- Research Institute of Green Science and Technology, Shizuoka University,
836 Ohya, Shizuoka 422-8529,
Japan
| | - Nobuko Fukino
- NARO Institute of Vegetable and Tea Science,
360 Kusawa, Ano, Tsu, Mie 514-2392,
Japan
| | - Tomohiro Kakizaki
- NARO Institute of Vegetable and Tea Science,
360 Kusawa, Ano, Tsu, Mie 514-2392,
Japan
| | - Yasujiro Morimitsu
- The Department of Food and Nutritional Sciences, The Graduate School of Humanities and Sciences, Ochanomizu University,
2-1-1 Otsuka, Bunkyo, Tokyo 112-8610,
Japan
| |
Collapse
|
19
|
Sharma A, Li X, Lim YP. Comparative genomics of Brassicaceae crops. BREEDING SCIENCE 2014; 64:3-13. [PMID: 24987286 PMCID: PMC4031108 DOI: 10.1270/jsbbs.64.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/16/2014] [Indexed: 06/03/2023]
Abstract
The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Graduate School of Agricultural Science, Tohoku University,
Aoba, Sendai, Miyagi 981-8555,
Japan
- Present address: Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Xiaonan Li
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University,
Daejeon 305-764,
Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University,
Daejeon 305-764,
Republic of Korea
| |
Collapse
|
20
|
Hennig K, Verkerk R, Dekker M, Bonnema G. Quantitative trait loci analysis of non-enzymatic glucosinolate degradation rates in Brassica oleracea during food processing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2323-2334. [PMID: 23748744 DOI: 10.1007/s00122-013-2138-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Epidemiological and mechanistic studies show health-promoting effects of glucosinolates and their breakdown products. In literature, differences in non-enzymatic glucosinolate degradation rates during food processing between different vegetables are described, which provide the basis for studying the genetic effects of this trait and breeding vegetables with high glucosinolate retention during food processing. Non-enzymatic glucosinolate degradation, induced by heat, was studied in a publicly available Brassica oleracea doubled haploid population. Data were modeled to obtain degradation rate constants that were used as phenotypic traits to perform quantitative trait loci (QTL) mapping. Glucosinolate degradation rate constants were determined for five aliphatic and two indolic glucosinolates. Degradation rates were independent of the initial glucosinolate concentration. Two QTL were identified for the degradation rate of the indolic glucobrassicin and one QTL for the degradation of the aliphatic glucoraphanin, which co-localized with one of the QTL for glucobrassicin. Factors within the plant matrix might influence the degradation of different glucosinolates in different genotypes. In addition to genotypic effects, we demonstrated that growing conditions influenced glucosinolate degradation as well. The study identified QTL for glucosinolate degradation, giving the opportunity to breed vegetables with a high retention of glucosinolates during food processing, although the underlying mechanisms remain unknown.
Collapse
Affiliation(s)
- Kristin Hennig
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Genetic analysis of health-related secondary metabolites in a Brassica rapa recombinant inbred line population. Int J Mol Sci 2013; 14:15561-77. [PMID: 23892600 PMCID: PMC3759873 DOI: 10.3390/ijms140815561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/09/2013] [Accepted: 07/17/2013] [Indexed: 12/13/2022] Open
Abstract
The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL) population was profiled using High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) analysis to detect quantitative trait loci (QTLs) controlling seed tocopherol and seedling metabolite concentrations. RIL population parent L58 had a higher level of glucosinolates and phenylpropanoids, whereas levels of sucrose, glucose and glutamate were higher in the other RIL population parent, R-o-18. QTL related to seed tocopherol (α-, β-, γ-, δ-, α-/γ- and total tocopherol) concentrations were detected on chromosomes A3, A6, A9 and A10, explaining 11%–35% of the respective variation. The locus on A3 co-locates with the BrVTE1gene, encoding tocopherol cyclase. NMR spectroscopy identified the presence of organic/amino acid, sugar/glucosinolate and aromatic compounds in seedlings. QTL positions were obtained for most of the identified compounds. Compared to previous studies, novel loci were found for glucosinolate concentrations. This work can be used to design markers for marker-assisted selection of nutritional compounds in B. rapa.
Collapse
|
22
|
Lee JG, Bonnema G, Zhang N, Kwak JH, de Vos RCH, Beekwilder J. Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3984-93. [PMID: 23528157 DOI: 10.1021/jf400890p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glucosinolates (GLS) are secondary metabolites occurring in cruciferous species. These compounds are important for plant defense, human health, and the characteristic flavor of Brassica vegetables. In this study, the GLS in tubers from a collection of 48 turnip ( Brassica rapa ) accessions from different geographic origin were analyzed. Two different methods were used: desulfo GLS were analyzed by high-performance liquid chromatography with a photodiode array detector, and intact GLS were analyzed by accurate mass liquid chromatography-mass spectrometry. For most GLS, desulfo and intact signals correlated well, and the analytical reproducibility for individual GLS was similar for both methods. A total of 11 different GLS was monitored in the turnip tubers, through both intact and desulfo GLS analysis methods. Four clusters of accessions could be clearly distinguished based on GLS composition of the turnip tuber. Clustering based on tuber GLS differed markedly from a previously published clustering based on leaf GLS.
Collapse
Affiliation(s)
- Jun Gu Lee
- National Institute of Horticultural and Herbal Science, Department of Horticultural Crop Research, Rural Development Administration, Suwon 440-706, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PLoS One 2013; 8:e53541. [PMID: 23308250 PMCID: PMC3538544 DOI: 10.1371/journal.pone.0053541] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/29/2012] [Indexed: 12/30/2022] Open
Abstract
SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F(2) populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.
Collapse
Affiliation(s)
- Zhongwei Zou
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiko Ishida
- NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Feng Li
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | | | - Sho Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
24
|
Li X, Ramchiary N, Dhandapani V, Choi SR, Hur Y, Nou IS, Yoon MK, Lim YP. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species. DNA Res 2012; 20:1-16. [PMID: 23223793 PMCID: PMC3576654 DOI: 10.1093/dnares/dss029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species.
Collapse
Affiliation(s)
- Xiaonan Li
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Gung-Dong, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJB. Genetic analysis of metabolome-phenotype interactions: from model to crop species. Trends Genet 2012; 29:41-50. [PMID: 23084137 DOI: 10.1016/j.tig.2012.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
The past decade has seen increased interest from the scientific community, and particularly plant biologists, in integrating metabolic approaches into research aimed at unraveling phenotypic diversity and its underlying genetic variation. Advances in plant metabolomics have enabled large-scale analyses that have identified qualitative and quantitative variation in the metabolic content of various species, and this variation has been linked to genetic factors through genetic-mapping approaches, providing a glimpse of the genetic architecture of the plant metabolome. Parallel analyses of morphological phenotypes and physiological performance characteristics have further enhanced our understanding of the complex molecular mechanisms regulating these quantitative traits. This review aims to illustrate the advantages of including assessments of phenotypic and metabolic diversity in investigations of the genetic basis of complex traits, and the value of this approach in studying agriculturally important crops. We highlight the ground-breaking work on model species and discuss recent achievements in important crop species.
Collapse
|
26
|
Sun B, Yan H, Zhang F, Wang Q. Effects of plant hormones on main health-promoting compounds and antioxidant capacity of Chinese kale. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.04.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Wang J, Gu H, Yu H, Zhao Z, Sheng X, Zhang X. Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Liu Z, Hirani AH, McVetty PBE, Daayf F, Quiros CF, Li G. Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family. PLANT MOLECULAR BIOLOGY 2012; 79:179-89. [PMID: 22477389 DOI: 10.1007/s11103-012-9905-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/14/2012] [Indexed: 05/04/2023]
Abstract
The hydrolytic products of glucosinolates in brassica crops are bioactive compounds. Some glucosinolate derivatives such as oxazolidine-2-thione from progoitrin in brassica oilseed meal are toxic and detrimental to animals, but some isothiocyanates such as sulforaphane are potent anti-carcinogens that have preventive effects on several human cancers. In most B. rapa, B. napus and B. juncea vegetables and oilseeds, there is no or only trace amount of glucoraphanin that is the precursor to sulforaphane. In this paper, RNA interference (RNAi) of the GSL-ALK gene family was used to down-regulate the expression of GSL-ALK genes in B. napus. The detrimental glucosinolate progoitrin was reduced by 65 %, and the beneficial glucosinolate glucoraphanin was increased to a relatively high concentration (42.6 μmol g(-1) seed) in seeds of B. napus transgenic plants through silencing of the GSL-ALK gene family. Therefore, there is potential application of the new germplasm with reduced detrimental glucosinolates and increased beneficial glucosinolates for producing improved brassica vegetables.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Plant Science, University of Manitoba, Winnipeg R3T2N2, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Feng J, Long Y, Shi L, Shi J, Barker G, Meng J. Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. THE NEW PHYTOLOGIST 2012; 193:96-108. [PMID: 21973035 DOI: 10.1111/j.1469-8137.2011.03890.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Glucosinolates are a major class of secondary metabolites found in the Brassicaceae, whose degradation products are proving to be increasingly important for human health and in crop protection. • The genetic and metabolic basis of glucosinolate accumulation was dissected through analysis of total glucosinolate concentration and its individual components in both leaves and seeds of a doubled-haploid (DH) mapping population of oilseed rape/canola (Brassica napus). • The quantitative trait loci (QTL) that had an effect on glucosinolate concentration in either or both of the organs were integrated, resulting in 105 metabolite QTL (mQTL). Pairwise correlations between individual glucosinolates and prior knowledge of the metabolic pathways involved in the biosynthesis of different glucosinolates allowed us to predict the function of genes underlying the mQTL. Moreover, this information allowed us to construct an advanced metabolic network and associated epistatic interactions responsible for the glucosinolate composition in both leaves and seeds of B. napus. • A number of previously unknown potential regulatory relationships involved in glucosinolate synthesis were identified and this study illustrates how genetic variation can affect a biochemical pathway.
Collapse
Affiliation(s)
- Ji Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqin Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guy Barker
- Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa. Gene 2011; 487:135-42. [PMID: 21835231 DOI: 10.1016/j.gene.2011.07.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 01/01/2023]
Abstract
Glucosinolates (GS) are a group of amino acid-derived secondary metabolites found throughout the Cruciferae family. Glucosinolates and their degradation products play important roles in pathogen and insect interactions, as well as in human health. In order to elucidate the glucosinolate biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses of Arabidopsis thaliana and B. rapa on a genome-wide level. We identified 102 putative genes in B. rapa as the orthologs of 52 GS genes in A. thaliana. All but one gene was successfully mapped on 10 chromosomes. Most GS genes exist in more than one copy in B. rapa. A high co-linearity in the glucosinolate biosynthetic pathway between A. thaliana and B. rapa was also established. The homologous GS genes in B. rapa and A. thaliana share 59-91% nucleotide sequence identity and 93% of the GS genes exhibit synteny between B. rapa and A. thaliana. Moreover, the structure and arrangement of the B. rapa GS (BrGS) genes correspond with the known evolutionary divergence of B. rapa, and may help explain the profiles and accumulation of GS in B. rapa.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Horticultural Crop Genetic Improvement, MOA, PR China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ramchiary N, Nguyen VD, Li X, Hong CP, Dhandapani V, Choi SR, Yu G, Piao ZY, Lim YP. Genic microsatellite markers in Brassica rapa: development, characterization, mapping, and their utility in other cultivated and wild Brassica relatives. DNA Res 2011; 18:305-20. [PMID: 21768136 PMCID: PMC3190952 DOI: 10.1093/dnares/dsr017] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species.
Collapse
Affiliation(s)
- Nirala Ramchiary
- Molecular Genetics and Genomics Lab, Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhao J, Artemyeva A, Del Carpio DP, Basnet RK, Zhang N, Gao J, Li F, Bucher J, Wang X, Visser RGF, Bonnema G. Design of a Brassica rapa core collection for association mapping studies. Genome 2011; 53:884-98. [PMID: 21076504 DOI: 10.1139/g10-082] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A Brassica rapa collection of 239 accessions, based on two core collections representing different morphotypes from different geographical origins, is presented and its use for association mapping is illustrated for flowering time. We analyzed phenotypic variation of leaf and seed pod traits, plant architecture, and flowering time using data collected from three field experiments and evaluated the genetic diversity with a set of SSR markers. The Wageningen University and Research Centre (WUR) and the Vavilov Research Institute of Plant Industry (VIR) core collections had similar representations of most morphotypes, as illustrated by the phenotypic and genetic variation within these groups. The analysis of population structure revealed five subgroups in the collection, whereas previous studies of the WUR core collection indicated four subgroups; the fifth group identified consisted mainly of oil accessions from the VIR core collection, winter oils from Pakistan, and a number of other types. A very small group of summer oils is described, that is not related to other oil accessions. A candidate gene approach was chosen for association mapping of flowering time with a BrFLC1 biallelic CAPS marker and a BrFLC2 multiallelic SSR marker. The two markers were significantly associated with flowering time, but their effects were confined to certain morphotypes and (or) alleles. Based on these results, we discuss the optimal design for an association mapping population and the need to fix the heterogeneous accessions to facilitate phenotyping and genotyping.
Collapse
Affiliation(s)
- Jianjun Zhao
- Laboratory of plant breeding, Wageningen University, 6700 AJ, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pino Del Carpio D, Basnet RK, De Vos RCH, Maliepaard C, Paulo MJ, Bonnema G. Comparative methods for association studies: a case study on metabolite variation in a Brassica rapa core collection. PLoS One 2011; 6:e19624. [PMID: 21602927 PMCID: PMC3094343 DOI: 10.1371/journal.pone.0019624] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 04/13/2011] [Indexed: 11/20/2022] Open
Abstract
Background Association mapping is a statistical approach combining phenotypic traits and
genetic diversity in natural populations with the goal of correlating the
variation present at phenotypic and allelic levels. It is essential to
separate the true effect of genetic variation from other confounding
factors, such as adaptation to different uses and geographical locations.
The rapid availability of large datasets makes it necessary to explore
statistical methods that can be computationally less intensive and more
flexible for data exploration. Methodology/Principal Findings A core collection of 168 Brassica rapa accessions of
different morphotypes and origins was explored to find genetic association
between markers and metabolites: tocopherols, carotenoids, chlorophylls and
folate. A widely used linear model with modifications to account for
population structure and kinship was followed for association mapping. In
addition, a machine learning algorithm called Random Forest (RF) was used as
a comparison. Comparison of results across methods resulted in the selection
of a set of significant markers as promising candidates for further work.
This set of markers associated to the metabolites can potentially be applied
for the selection of genotypes with elevated levels of these
metabolites. Conclusions/Significance The incorporation of the kinship correction into the association model did
not reduce the number of significantly associated markers. However
incorporation of the STRUCTURE correction (Q matrix) in the linear
regression model greatly reduced the number of significantly associated
markers. Additionally, our results demonstrate that RF is an interesting
complementary method with added value in association studies in plants,
which is illustrated by the overlap in markers identified using RF and a
linear mixed model with correction for kinship and population structure.
Several markers that were selected in RF and in the models with correction
for kinship, but not for population structure, were also identified as QTLs
in two bi-parental DH populations.
Collapse
Affiliation(s)
| | - Ram Kumar Basnet
- Laboratory of Plant Breeding, Wageningen
University, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen,
The Netherlands
| | - Ric C. H. De Vos
- Plant Research International, Wageningen
University and Research Centre (Wageningen-UR), Wageningen, The
Netherlands
- Centre for BioSystems Genomics, Wageningen,
The Netherlands
| | - Chris Maliepaard
- Laboratory of Plant Breeding, Wageningen
University, Wageningen, The Netherlands
| | - Maria João Paulo
- Biometris-Applied Statistics, Wageningen
University and Research Center, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen
University, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen,
The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Björkman M, Klingen I, Birch ANE, Bones AM, Bruce TJA, Johansen TJ, Meadow R, Mølmann J, Seljåsen R, Smart LE, Stewart D. Phytochemicals of Brassicaceae in plant protection and human health--influences of climate, environment and agronomic practice. PHYTOCHEMISTRY 2011; 72:538-56. [PMID: 21315385 DOI: 10.1016/j.phytochem.2011.01.014] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/13/2010] [Accepted: 01/11/2011] [Indexed: 05/18/2023]
Abstract
In this review, we provide an overview of the role of glucosinolates and other phytochemical compounds present in the Brassicaceae in relation to plant protection and human health. Current knowledge of the factors that influence phytochemical content and profile in the Brassicaceae is also summarized and multi-factorial approaches are briefly discussed. Variation in agronomic conditions (plant species, cultivar, developmental stage, plant organ, plant competition, fertilization, pH), season, climatic factors, water availability, light (intensity, quality, duration) and CO(2) are known to significantly affect content and profile of phytochemicals. Phytochemicals such as the glucosinolates and leaf surface waxes play an important role in interactions with pests and pathogens. Factors that affect production of phytochemicals are important when designing plant protection strategies that exploit these compounds to minimize crop damage caused by plant pests and pathogens. Brassicaceous plants are consumed increasingly for possible health benefits, for example, glucosinolate-derived effects on degenerative diseases such as cancer, cardiovascular and neurodegenerative diseases. Thus, factors influencing phytochemical content and profile in the production of brassicaceous plants are worth considering both for plant and human health. Even though it is known that factors that influence phytochemical content and profile may interact, studies of plant compounds were, until recently, restricted by methods allowing only a reductionistic approach. It is now possible to design multi-factorial experiments that simulate their combined effects. This will provide important information to ecologists, plant breeders and agronomists.
Collapse
Affiliation(s)
- Maria Björkman
- Norwegian Institute for Agricultural and Environmental Research (Bioforsk), Plant Health and Plant Protection Division, Høgskoleveien 7, N-1432 Ås, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Anderson JT, Mitchell-Olds T. Ecological genetics and genomics of plant defenses: Evidence and approaches. Funct Ecol 2010; 25:312-324. [PMID: 21532968 DOI: 10.1111/j.1365-2435.2010.01785.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herbivores exert significant selection on plants, and plants have evolved a variety of constitutive and inducible defenses to resist and tolerate herbivory. Assessing the genetic mechanisms that influence defenses against herbivores will deepen our understanding of the evolution of essential phenotypic traits.Ecogenomics is a powerful interdisciplinary approach that can address fundamental questions about the ecology and evolutionary biology of species, such as: which evolutionary forces maintain variation within a population? and What is the genetic architecture of adaptation? This field seeks to identify gene regions that influence ecologically-important traits, assess the fitness consequences under natural conditions of alleles at key quantitative trait loci (QTLs), and test how the abiotic and biotic environment affects gene expression.Here, we review ecogenomics techniques and emphasize how this framework can address long-standing and emerging questions relating to anti-herbivore defenses in plants. For example, ecogenomics tools can be used to investigate: inducible vs. constitutive defenses; tradeoffs between resistance and tolerance; adaptation to the local herbivore community; selection on alleles that confer resistance and tolerance in natural populations; and whether different genes are activated in response to specialist vs. generalist herbivores and to different types of damage.Ecogenomic studies can be conducted with model species, such as Arabidopsis, or their relatives, in which case myriad molecular tools are already available. Burgeoning sequence data will also facilitate ecogenomic studies of non-model species. Throughout this paper, we highlight approaches that are particularly suitable for ecological studies of non-model organisms, discuss the benefits and disadvantages of specific techniques, and review bioinformatic tools for analyzing data.We focus on established and promising techniques, such as QTL mapping with pedigreed populations, genome wide association studies, transcription profiling strategies, population genomics, and transgenic methodologies. Many of these techniques are complementary and can be used jointly to investigate the genetic architecture of defense traits and selection on alleles in nature.
Collapse
Affiliation(s)
- Jill T Anderson
- Institute for Genome Sciences and Policy, Department of Biology, Duke University, P.O. Box 90338, Durham, North Carolina 27708, USA
| | | |
Collapse
|
36
|
Zhao J, Kulkarni V, Liu N, Pino Del Carpio D, Bucher J, Bonnema G. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1817-25. [PMID: 20231331 PMCID: PMC2852669 DOI: 10.1093/jxb/erq048] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 02/14/2010] [Accepted: 02/16/2010] [Indexed: 05/18/2023]
Abstract
Flowering time is an important agronomic trait, and wide variation exists among Brassica rapa. In Arabidopsis, FLOWERING LOCUS C (FLC) plays an important role in modulating flowering time and the response to vernalization. Brassica rapa contains several paralogues of FLC at syntenic regions. BrFLC2 maps under a major flowering time and vernalization response quantitative trait locus (QTL) at the top of A02. Here the effects of vernalization on flowering time in a double haploid (DH) population and on BrFLC2 expression in selected lines of a DH population in B. rapa are descibed. The effect of the major flowering time QTL on the top of A02 where BrFLC2 maps clearly decreases upon vernalization, which points to a role for BrFLC2 underlying the QTL. In all developmental stages and tissues (seedlings, cotyledons, and leaves), BrFLC2 transcript levels are higher in late flowering pools of DH lines than in pools of early flowering DH lines. BrFLC2 expression diminished after different durations of seedling vernalization in both early and late DH lines. The reduction of BrFLC2 expression upon seedling vernalization of both early and late flowering DH lines was strongest at the seedling stage and diminished in subsequent growth stages, which suggests that the commitment to flowering is already set at very early developmental stages. Taken together, these data support the hypothesis that BrFLC2 is a candidate gene for the flowering time and vernalization response QTL in B. rapa.
Collapse
Affiliation(s)
- Jianjun Zhao
- Laboratory of Plant Breeding, Wageningen University, 6700AJ, Wageningen, The Netherlands
- Horticultural College, Hebei Agricultural University, 071001, Baoding, China
| | - Vani Kulkarni
- Laboratory of Plant Breeding, Wageningen University, 6700AJ, Wageningen, The Netherlands
| | - Nini Liu
- Laboratory of Plant Breeding, Wageningen University, 6700AJ, Wageningen, The Netherlands
| | - Dunia Pino Del Carpio
- Laboratory of Plant Breeding, Wageningen University, 6700AJ, Wageningen, The Netherlands
| | - Johan Bucher
- Laboratory of Plant Breeding, Wageningen University, 6700AJ, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University, 6700AJ, Wageningen, The Netherlands
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Joosen RVL, Kodde J, Willems LAJ, Ligterink W, van der Plas LHW, Hilhorst HWM. GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:148-59. [PMID: 20042024 DOI: 10.1111/j.1365-313x.2009.04116.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the accurate quantification of germination; however gathering cumulative germination data is a very laborious task that is often prohibitive to the execution of large experiments. In this paper we present the germinator package: a simple, highly cost-efficient and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The germinator package contains three modules: (i) design of experimental setup with various options to replicate and randomize samples; (ii) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (iii) curve fitting of cumulative germination data and the extraction, recap and visualization of the various germination parameters. The curve-fitting module enables analysis of general cumulative germination data and can be used for all plant species. We show that the automatic scoring system works for Arabidopsis thaliana and Brassica spp. seeds, but is likely to be applicable to other species, as well. In this paper we show the accuracy, reproducibility and flexibility of the germinator package. We have successfully applied it to evaluate natural variation for salt tolerance in a large population of recombinant inbred lines and were able to identify several quantitative trait loci for salt tolerance. Germinator is a low-cost package that allows the monitoring of several thousands of germination tests, several times a day by a single person.
Collapse
Affiliation(s)
- Ronny V L Joosen
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Li F, Kitashiba H, Inaba K, Nishio T. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 2009; 16:311-23. [PMID: 19884167 PMCID: PMC2780953 DOI: 10.1093/dnares/dsp020] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits.
Collapse
Affiliation(s)
- Feng Li
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba, Sendai, Miyagi 981-8555, Japan
| | | | | | | |
Collapse
|
39
|
Zang YX, Kim HU, Kim JA, Lim MH, Jin M, Lee SC, Kwon SJ, Lee SI, Hong JK, Park TH, Mun JH, Seol YJ, Hong SB, Park BS. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J 2009; 276:3559-74. [PMID: 19456863 DOI: 10.1111/j.1742-4658.2009.07076.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucosinolates play important roles in plant defense against herbivores and microbes, as well as in human nutrition. Some glucosinolate-derived isothiocyanate and nitrile compounds have been clinically proven for their anticarcinogenic activity. To better understand glucosinolate biosynthesis in Brassica rapa, we conducted a comparative genomics study with Arabidopsis thaliana and identified total 56 putative biosynthetic and regulator genes. This established a high colinearity in the glucosinolate biosynthesis pathway between Arabidopsis and B. rapa. Glucosinolate genes in B. rapa share 72-94% nucleotide sequence identity with the Arabidopsis orthologs and exist in different copy numbers. The exon/intron split pattern of B. rapa is almost identical to that of Arabidopsis, although inversion, insertion, deletion and intron size variations commonly occur. Four genes appear to be nonfunctional as a result of the presence of a frame shift mutation and retrotransposon insertion. At least 12 paralogs of desulfoglucosinolate sulfotransferase were found in B. rapa, whereas only three were found in Arabidopsis. The expression of those paralogs was not tissue-specific but varied greatly depending on B. rapa tissue types. Expression was also developmentally regulated in some paralogs but not in other paralogs. Most of the regulator genes are present as triple copies. Accordingly, glucosinolate synthesis and regulation in B. rapa appears to be more complex than that of Arabidopsis. With the isolation and further characterization of the endogenous genes, health-beneficial vegetables or desirable animal feed crops could be developed by metabolically engineering the glucosinolate pathway.
Collapse
Affiliation(s)
- Yun-Xiang Zang
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|