1
|
Vaishnav A, Rozmoš M, Kotianová M, Hršelová H, Bukovská P, Jansa J. Protists are key players in the utilization of protein nitrogen in the arbuscular mycorrhizal hyphosphere. THE NEW PHYTOLOGIST 2025; 246:2753-2764. [PMID: 40259857 PMCID: PMC12095988 DOI: 10.1111/nph.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
While largely depending on other microorganisms for nitrogen (N) mineralization, arbuscular mycorrhizal fungi (AMF) can transfer N from organic sources to their host plants. Here, we compared N acquisition by the AMF hyphae from chitin and protein sources and assessed the effects of microbial interactions in the hyphosphere. We employed in vitro compartmented microcosms, each containing three distinct hyphosphere compartments amended with different N sources (protein, chitin, or ammonium chloride), one of which was enriched with 15N isotope. All hyphosphere compartments were supplied with Paenibacillus bacteria, with or without the protist Polysphondylium pallidum. We measured the effect of these model microbiomes on the efficiency of 15N transfer to roots via the AMF hyphae. We found that the hyphae efficiently took up N from ammonium chloride, competing strongly with bacteria and protists. Mobilization of 15N from chitin and protein was facilitated by bacteria and protists, respectively. Notably, AMF priming significantly affected the abundance of bacteria and protists in hyphosphere compartments and promoted mineralization of protein N by protists. Subsequently, this N was transferred into roots. Our results provide the first unequivocal evidence that roots can acquire N from proteins present in the AMF hyphosphere and that protists may play a crucial role in protein N mineralization.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Martin Rozmoš
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Michala Kotianová
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Hana Hršelová
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Petra Bukovská
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| |
Collapse
|
2
|
Liu H, Gao X, Fan W, Fu X. Optimizing carbon and nitrogen metabolism in plants: From fundamental principles to practical applications. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40376749 DOI: 10.1111/jipb.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
Carbon (C) and nitrogen (N) are fundamental elements essential for plant growth and development, serving as the structural and functional backbone of organic compounds and driving essential biological processes such as photosynthesis, carbohydrate metabolism, and N assimilation. The metabolism and transport of C involve the movement of sugars between shoots and roots through xylem and phloem transport systems, regulated by a sugar-signaling hub. Nitrogen uptake, transport, and metabolism are equally critical, with plants assimilating nitrate and ammonium through specialized transporters and enzymes in response to varying N levels to optimize growth and development. The coordination of C and N metabolism is key to plant productivity and the maintaining of agroecosystem stability. However, inefficient utilization of N fertilizers results in substantial environmental and economic challenges, emphasizing the urgent need to improve N use efficiency (NUE) in crops. Integrating efficient photosynthesis with N uptake offers opportunities for sustainable agricultural practices. This review discusses recent advances in understanding C and N transport, metabolism, and signaling in plants, with a particular emphasis on NUE-related genes in rice, and explores breeding strategies to enhance crop efficiency and agricultural sustainability.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuhua Gao
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weishu Fan
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangdong Fu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, College of Life Science, Beijing, 100049, China
| |
Collapse
|
3
|
Crutchfield-Peters KL, Rempe DM, Tune AK, Dawson TE. Linked nitrogen and carbon dynamics reveal distinct pools and patterns in a deep, weathered bedrock rhizosphere. Proc Natl Acad Sci U S A 2025; 122:e2400452122. [PMID: 40343996 DOI: 10.1073/pnas.2400452122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Nitrogen is one of the most limiting nutrients to forest productivity worldwide. Recently, it has been established that diverse ecosystems source a substantial fraction of their water from weathered bedrock, leading to questions about whether root-driven nitrogen cycling extends into weathered bedrock as well. In this study, we specifically examined nitrogen dynamics using specialized instrumentation distributed across a 16 m weathered bedrock vadose zone (WBVZ) underlying an old growth forest in northern California where the rhizosphere-composed of plant roots and their associated microbiome-extends meters into rock. We documented total dissolved nitrogen (TDN), dissolved organic carbon (DOC), inorganic nitrogen (ammonium and nitrate), and CO2 and O2 gases every 1.5 m to 16 m depth for 2 y. We found that TDN concentrations increased with depth, were an order of magnitude greater at 15 m than in the upper 30 cm, and that the majority of TDN throughout the weathered bedrock vadose zone was organic. We also found that TDN concentrations are influenced by depth, season, and interannual precipitation patterns. Carbon isotope composition of the DOC suggests that dissolved organic matter in the WBVZ is primarily derived from plant sources, and not the nitrogen-rich bedrock. We conclude that nitrogen dynamics in the WBVZ may be driven, in part, by an active rhizosphere, meters below the base of soil, and we argue that weathered bedrock horizons may play a key role in C-N cycling in ecosystems with deep-rooted plants.
Collapse
Affiliation(s)
- Kelsey L Crutchfield-Peters
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Earth and Environmental Sciences Area, Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Daniella M Rempe
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, TX 78712
| | - Alison K Tune
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, TX 78712
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
4
|
Mao J, Wang J, Liao J, Xu X, Tian D, Zhang R, Peng J, Niu S. Plant nitrogen uptake preference and drivers in natural ecosystems at the global scale. THE NEW PHYTOLOGIST 2025; 246:972-983. [PMID: 40055973 DOI: 10.1111/nph.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 04/11/2025]
Abstract
Elucidating plant nitrogen (N) acquisition is crucial for understanding plant N strategies and ecosystem productivity. However, the variation in plant N uptake preference and its controlling factors on a global scale remain unclear. We conducted a global synthesis to explore plant N preference patterns and driving factors. Globally, the average contributions of ammonium (NH4 +), nitrate (NO3 -), and glycine N to the total plant N uptake were 41.6 ± 1.1%, 32.8 ± 1.2%, and 25.6 ± 0.9%, respectively. However, plant N uptake preferences differed significantly among climatic regions and vegetation types. Soil NH4 + was the most preferred N form by plants in (sub)tropical regions, whereas NO3 - preference was significantly higher in high-latitude than low-latitude regions. Plant functional type was one of the most important factors driving NO3 - preference, with significantly higher NO3 - preference of nonwoody species than broadleaf-evergreen, conifer, and shrub species. Organic N preference was lowest in (sub)tropics and significantly lower than that in temperate and alpine regions. This study shows clear climatic patterns and different influencing factors of plant NH4 + and NO3 - preference, which can contribute to the accurate prediction of N constraints on ecosystem productivity and soil carbon dynamics.
Collapse
Affiliation(s)
- Jinhua Mao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaqiang Liao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
5
|
Chang R, Xue F, Hou Z, Guo H, Cao L, Zhang S, Wang W, Qu C, Yang C, Liu G, Xu Z. Integrative analysis of transcriptome, proteome, and phosphoproteome reveals the complexity of early nitrogen responses in poplar roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109703. [PMID: 40054111 DOI: 10.1016/j.plaphy.2025.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/28/2024] [Accepted: 02/24/2025] [Indexed: 05/07/2025]
Abstract
Nitrogen (N) availability is a key factor in plant growth, but the molecular mechanisms underlying the early responses of poplar (Populus × xiaohei T. S. Hwang & Liang) roots to nitrogen are not well understood. The primary objective of this study was to elucidate these early molecular responses by integrating transcriptome, proteome, and phosphoproteome under low-nitrogen (LN, 0.2 mM NH4NO3) and high-nitrogen (HN, 2 mM NH4NO3) conditions. Specifically, the objectives of this study were: (i) to identify key metabolic pathways involved in nitrogen responses in poplar roots; (ii) to explore the relationship between differentially expressed genes (DEGs) and transcription factors (TFs) within these pathways; and (iii) to construct co-expression networks to uncover the regulatory mechanisms of nitrogen signaling. KEGG pathway enrichment analysis indicated that nitrogen metabolism and phenylpropanoid metabolism were key pathways in RNA-seq and proteome, while starch and sucrose metabolism were crucial in transcriptome and phosphoproteome. Plant hormone signal transduction was a key pathway in transcriptome, and gluconeogenesis/glycolysis was essential in proteome. WGCNA revealed three key modules (MEgreenyellow, MEblack, and MEblue) significantly associated with physiological indices, including NO3-, soluble sugar, and sucrose contents. Co-expression networks highlighted TFs as central regulators of nitrogen-responsive pathways, with distinct expression patterns between LN and HN treatments. These findings elucidate the complexity of nitrogen-regulated metabolic networks in poplar roots and reveal potential links between nitrogen signaling, carbohydrate metabolism, and secondary metabolism. This study provides a foundation for improving nitrogen-use efficiency in forest trees, with implications for sustainable forestry and ecosystem management.
Collapse
Affiliation(s)
- Ruhui Chang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fengbo Xue
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhaoyin Hou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongye Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lina Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wenjie Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Chunpu Qu
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Zhang Y, Chen Z, Zhang Z, Wang Z, Cai S, Zhou H, Peng S, Wang D, Hu C, Zhang W. Multi-omics analysis to a sludge composting system reveals thermophilic bacteria promote free amino acid production and compost quality. WATER RESEARCH 2025; 282:123738. [PMID: 40339475 DOI: 10.1016/j.watres.2025.123738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/20/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
Recycling waste nutrients from waste activated sludge (WAS) back to agricultural land through composting embodies the core principle of circular economy. However, large quantities of nitrogen are lost as nitrogenous gases during composting, reducing the fertilization performance of the final products. Here, the N cycle and amino acid (AA) biotransformation profiles in an industrial-scale sludge composting plant (130t/d) were investigated using replicated and temporally sampled multi-omics datasets. The results revealed that 44.4 % of nitrogen was lost to nitrogenous gas after composting, and the enhanced N cycle - specifically, (i) glutamate → NH3 +α-ketoglutarate, (ii) glutamate + NH3→ glutamine, and (iii) glutamine + aspartate → asparagine + glutamate, mainly mediated by thermophilic Pseudoxanthomonas. sp, are responsible for nitrogen loss. During thermophilic stage, 71.4 % of enzymes involved in AA transformation were upregulated, leading to a peak free AA content of 10.60 mg/g-TS, with glutamate comprising 51.8 % of the total. When composting reached cooling stage, free AA content dropped quickly to 5.74 mg/g-TS. Based on nitrogen monitoring and AA-centered transformation, a novel short-term composting strategy was proposed for AA-rich compost production. Then, plant experiments demonstrated that AA-rich compost outperformed conventional compost in promoting plant growth under both pot and hydroponic conditions, likely by improving root amino acid transport. Sustainability analysis revealed that the total cost and greenhouse gas emissions of AA-rich compost production were 31.9 % and 74.9 % lower than those of conventional compost, respectively. These findings provide a potential solution to make WAS more sustainable by regulating free AA production.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zexu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Ziwei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zhiyue Wang
- Department of Civil, Environmental and Construction Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA; Water Resources Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hao Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Sainan Peng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Chengzhi Hu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
7
|
Liu F, Zhang W, Li S. Effects of Freeze-Thaw Cycles on Uptake Preferences of Plants for Nutrient: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:1122. [PMID: 40219190 PMCID: PMC11991290 DOI: 10.3390/plants14071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
Freeze-thawing is an abiotic climatic force prevalent at mid-to-high latitudes or high altitudes, significantly impacting ecosystem nitrogen (N) and phosphorus (P) cycling, which is receiving increasing attention due to ongoing global warming. The N and P nutrients are essential for plant growth and development, and the uptake and utilization of these nutrients by plants are closely linked to external environmental conditions. Additionally, the availability of N and P nutrients influences the ecological adaptability of plants. Adapting plants to diverse external environments for the efficient uptake and utilization of N and P nutrients represents a main focus in contemporary ecological research on plant nutrient utilization in the ecosystems of mid-to-high latitudes or high altitudes. Through a comprehensive analysis of the experimental results regarding plant nutrient uptake and utilization in mid-to-high-latitude or high-altitude ecosystems, this paper discussed the processes of soil N and P cycling and the different utilization strategies of nutrient forms employed by plants during freezing and thawing. Freeze-thaw cycles affect the availability of N and P in the soil. Under freeze-thaw conditions, plants preferentially take up readily available N sources (e.g., nitrate (NO3--N) or ammonium (NH4+-N)) and adjust their root growth and timing of N uptake, developing specific physiological and biochemical adaptations to meet their growth needs. When nutrient conditions are poor or N sources are limited, plants may rely more on low-molecular-weight organic nitrogen (e.g., amino acids) as N sources. Plants adapt to changes in their environment by adjusting root growth, making changes in root secretions, and utilizing microbial communities associated with the P cycle to support more efficient P utilization. Future research should (i) enhance the monitoring of plant roots and nutrient dynamics in the subterranean layers of the soil; (ii) incorporate a broader range of nutrients; (iii) examine specific freeze-thaw landscape types, along with the spatial and temporal heterogeneity of climate change within seasons, which is essential for minimizing uncertainty in our understanding of plant nutrient utilization strategies.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
- Qilu Zhongke Institute of Carbon Neutrality, Jinan 250100, China
| | - Siqi Li
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
- Qilu Zhongke Institute of Carbon Neutrality, Jinan 250100, China
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| |
Collapse
|
8
|
Sun Y, Li J, Li S, Li J, Jing B, Yang T, Yang Y, Ao Z. Inorganic substrates in frozen solutions: Transformation mechanisms and interactions with organic compounds - A review. WATER RESEARCH 2025; 273:123068. [PMID: 39799752 DOI: 10.1016/j.watres.2024.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
In cold environments, such as polar regions and high latitudes, the freezing of aqueous solutions plays a crucial role in releasing and transforming nutrients, organic compounds, and trace gases. Freezing processes typically affect biogeochemical cycles and environmental processes by reducing the rate of chemical reactions. However, substantial studies have found that some chemical reactions may accelerate unexpectedly under freezing conditions. These reactions include oxidation of nitrite, dissolution of metals/metal oxides, transformation of halogen species, etc. Although freezing process significantly affects the interaction between the inorganic substrate and coexisting organic compounds, there are few review articles on the behavior of the inorganic compound. Therefore, this review examines the transformation behavior of inorganic substrates and their interactions with organic compounds during freezing. The transformation behavior of inorganic substrates during freezing was comprehensively discussed, their underlying mechanisms were elucidated, and the interactions between inorganic substrates and coexisting organic compounds were highlighted. Meanwhile, key factors influencing the freeze-induced chemical processes were articulated. Furthermore, the potential application of freezing reactions in engineering processes is explored. This article aims to improve understanding of the important role of freezing processes in the recycling of substrates in the natural environment and supplement knowledge in the field of ice chemistry.
Collapse
Affiliation(s)
- Yuqi Sun
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.
| | - Shengnan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Juntian Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Binghua Jing
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Tao Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Yi Yang
- University of Science and Technology of China, Anhui 230026, China
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
9
|
Qaderi MM, Evans CC, Spicer MD. Plant Nitrogen Assimilation: A Climate Change Perspective. PLANTS (BASEL, SWITZERLAND) 2025; 14:1025. [PMID: 40219093 PMCID: PMC11990535 DOI: 10.3390/plants14071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Of all the essential macronutrients necessary for plant growth and development, nitrogen is required in the greatest amounts. Nitrogen is a key component of important biomolecules like proteins and has high nutritive importance for humans and other animals. Climate change factors, such as increasing levels of carbon dioxide, increasing temperatures, and increasing watering regime, directly or indirectly influence plant nitrogen uptake and assimilation dynamics. The impacts of these stressors can directly threaten our primary source of nitrogen as obtained from the soil by plants. In this review, we discuss how climate change factors can influence nitrogen uptake and assimilation in cultivated plants. We examine the effects of these factors alone and in combination with species of both C3 and C4 plants. Elevated carbon dioxide, e[CO2], causes the dilution of nitrogen in tissues of non-leguminous C3 and C4 plants but can increase nitrogen in legumes. The impact of high-temperature (HT) stress varies depending on whether a species is leguminous or not. Water stress (WS) tends to result in a decrease in nitrogen assimilation. Under some, though not all, conditions, e[CO2] can have a buffering effect against the detrimental impacts of other climate change stressors, having an ameliorating effect on the adverse impacts of HT or WS. Together, HT and WS are seen to cause significant reductions in biomass production and nitrogen uptake in non-leguminous C3 and C4 crops. With a steadily rising population and rapidly changing climate, consideration must be given to the morphological and physiological effects that climate change will have on future crop health and nutritional quality of N.
Collapse
Affiliation(s)
- Mirwais M. Qaderi
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada; (C.C.E.); (M.D.S.)
| | | | | |
Collapse
|
10
|
Novak V, van Winden MCM, Harwood TV, Neurath R, Kosina SM, Louie KB, Sullivan MB, Roux S, Zengler K, Mutalik VK, Northen TR. Virocell Necromass Provides Limited Plant Nitrogen and Elicits Rhizosphere Metabolites That Affect Phage Dynamics. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40108761 DOI: 10.1111/pce.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Bacteriophages impact soil bacteria through lysis, altering the availability of organic carbon and plant nutrients. However, the magnitude of nutrient uptake by plants from lysed bacteria remains unknown, partly because this process is challenging to investigate in the field. In this study, we extend ecosystem fabrication (EcoFAB 2.0) approaches to study plant-bacteria-phage interactions by comparing the impact of virocell (phage-lysed) and uninfected 15N-labelled bacterial necromass on plant nitrogen acquisition and rhizosphere exometabolites composition. We show that grass Brachypodium distachyon derives some nitrogen from amino acids in uninfected Pseudomonas putida necromass lysed by sonication but not from virocell necromass. Additionally, the bacterial necromass elicits the formation of rhizosphere exometabolites, some of which (guanosine), alongside tested aromatic acids (p-coumaric and benzoic acid), show bacterium-specific effects on bacteriophage-induced lysis when tested in vitro. The study highlights the dynamic feedback between virocell necromass and plants and suggests that root exudate metabolites can impact bacteriophage infection dynamics.
Collapse
Affiliation(s)
- Vlastimil Novak
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michelle C M van Winden
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Thomas V Harwood
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rachel Neurath
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Katherine B Louie
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matthew B Sullivan
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, Ohio, USA
| | - Simon Roux
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Karsten Zengler
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, California, USA
| | - Vivek K Mutalik
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
11
|
Nie S, Huang W, He C, Wu B, Duan H, Ruan J, Zhao Q, Fang Z. Transcription factor OsMYB2 triggers amino acid transporter OsANT1 expression to regulate rice growth and salt tolerance. PLANT PHYSIOLOGY 2025; 197:kiae559. [PMID: 39425973 PMCID: PMC11849775 DOI: 10.1093/plphys/kiae559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
Amino acid transporters (AATs) play important roles in plant growth and stress tolerance; however, whether the abscisic acid signaling pathway regulates their transcription in rice (Oryza sativa) under salt stress remains unclear. In this study, we report that the transcription factor OsMYB2 (MYB transcription factor 2) of the abscisic acid signaling pathway mediates the expression of the gene encoding the AAT aromatic and neutral AAT 1 (OsANT1), which positively regulates growth and salt tolerance in rice. OsANT1 was mainly expressed in the leaf blade and panicle under normal conditions and transports leucine, phenylalanine, tyrosine, and proline (Pro), positively regulating tillering and yield in rice. Nevertheless, salt stress induced the accumulation of abscisic acid and strongly increased the expression level of OsANT1 in the root, resulting in enhanced salt tolerance of rice seedlings, as evidenced by higher Pro concentration and antioxidant-like enzyme activities and lower malondialdehyde and hydrogen peroxide concentrations. Moreover, we showed that OsMYB2 interacts with the promoter of OsANT1 and promotes its expression. Overexpression of OsMYB2 also improved tillering, yield, and salt tolerance in rice. In conclusion, our results suggest that the transcription factor OsMYB2 triggers OsANT1 expression and regulates growth and salt tolerance in rice, providing insights into the role of the abscisic acid signaling pathway in the regulatory mechanism of AATs in response to salt stress.
Collapse
Affiliation(s)
- Shengsong Nie
- Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Weiting Huang
- Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Chongchong He
- Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Bowen Wu
- Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jingjun Ruan
- Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Quanzhi Zhao
- Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Zhongming Fang
- Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, China
- Center of Applied Biotechnology, College of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan 430415, China
| |
Collapse
|
12
|
Mohammadi-Cheraghabadi M, Ghanati F, Karimi N, Ghorbanpour M, Hazrati S. Ornithine enantiomers modulate essential oil yield and constituents and gene expression of monoterpenes synthase in Salvia officinalis under well-watered and drought stress conditions. BMC PLANT BIOLOGY 2025; 25:148. [PMID: 39905305 PMCID: PMC11792220 DOI: 10.1186/s12870-025-06156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
The impact of drought stress on plant growth, development, and productivity presents a significant challenge in various environments worldwide. The exogenous application of polyamines as osmotically active materials plays a crucial role in enhancing plant tolerance to environmental stress. In this study, we examined the effects of L- and D-enantiomers of ornithine (0 and 1 mM) under both well-watered and drought stress conditions on the growth traits, essential oil (EO) yield, and composition, gene expression, and total phenolic and flavonoid content of Salvia officinalis. The experiment was designed as a factorial experiment using a completely randomized design with three replications. The results demonstrated that drought stress led to a decrease in plant biomass and an increase in EO content, chemical profiles of the EO, and total phenolic and flavonoid content compared to the respective control values. However, the exogenous supplementation of ornithine particularly D-ornithine resulted in enhanced stem, leaf, and total plant biomass, a 20% increase in EO content, and a 75% increase in yield. Additionally, these were increases of 11.76% in total phenol and 70%, 105.66%, and 114.28% in flavonoid content when compared to well-watered plants without ornithine supplementation. These improvements were strongly linked to growth enhancement, as evidenced by principal component analysis (PCA). The EO extracted from S. officinalis consisted of 22 compounds, primarily monoterpenes, including α-thujone (18.47-41.65%), camphor (15.05-25.17%), 1,8-cineole (10.12-21.6%), and β-thujone (6.23-21.2%). The percentage of these volatile compounds was found to be highest in D-ornithine-treated stressed plants compared to control conditions. The interaction between water availability and the application of D-ornithine and L-ornithine significantly influenced the expression of borneol diphosphate synthase (BS), sabinene synthase (SS), and cineole synthase (CS) under drought stress, with notable upregulation observed compared to normal growth conditions. Specifically, D-ornithine enhanced the expression of BS and SS by 45.29% and 113.63%, respectively, under drought stress, while both D-ornithine and DL-ornithine significantly increased CS expression. The present results suggest that D-ornithine may serve as a stress-protecting compound, increasing total phenol and flavonoids content, thereby enhancing the capacity of the antioxidant system and increasing EO compounds under drought stress.
Collapse
Affiliation(s)
- Maryam Mohammadi-Cheraghabadi
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, PO Box 14115-154, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, PO Box 14115-154, Tehran, Iran.
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Saeid Hazrati
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
13
|
Liu M, Xu X, Wanek W, Sun J, Bardgett RD, Tian Y, Cui X, Jiang L, Ma Z, Kuzyakov Y, Ouyang H, Wang Y. Nitrogen availability in soil controls uptake of different nitrogen forms by plants. THE NEW PHYTOLOGIST 2025; 245:1450-1467. [PMID: 39663421 DOI: 10.1111/nph.20335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Nitrogen (N) uptake by plant roots from soil is the largest flux within the terrestrial N cycle. Despite its significance, a comprehensive analysis of plant uptake for inorganic and organic N forms across grasslands is lacking. Here we measured in situ plant uptake of 13 inorganic and organic N forms by dominant species along a 3000 km transect spanning temperate and alpine grasslands. To generalize our experimental findings, we synthesized data on N uptake from 60 studies encompassing 148 plant species world-wide. Our analysis revealed that alpine grasslands had faster NH4 + uptake than temperate grasslands. Most plants preferred NO3 - (65%) over NH4 + (24%), followed by amino acids (11%). The uptake preferences and uptake rates were modulated by soil N availability that was defined by climate, soil properties, and intrinsic characteristics of the N form. These findings pave the way toward more fully understanding of N cycling in terrestrial ecosystems, provide novel insights into the N form-specific mechanisms of plant N uptake, and highlight ecological consequences of chemical niche differentiation to reduce competition between coexisting plant species.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, 101408, China
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, 101408, China
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Center of Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, Wien, A-1090, Austria
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard D Bardgett
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Yuqiang Tian
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, 101408, China
| | - Lili Jiang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeqing Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, 101408, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, Göttingen, 37077, Germany
- Department of Agricultural Soil Science, University of Goettingen, Göttingen, 37077, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Hua Ouyang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, 101408, China
| |
Collapse
|
14
|
Stocker BD, Dong N, Perkowski EA, Schneider PD, Xu H, de Boer HJ, Rebel KT, Smith NG, Van Sundert K, Wang H, Jones SE, Prentice IC, Harrison SP. Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions. THE NEW PHYTOLOGIST 2025; 245:49-68. [PMID: 39444238 PMCID: PMC11617667 DOI: 10.1111/nph.20178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2 and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf-level photosynthetic capacity. Whole-plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2 also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2 fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections.
Collapse
Affiliation(s)
- Benjamin D. Stocker
- Institute of GeographyUniversity of BernHallerstrasse 12CH‐3012BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernFalkenplatz 163012BernSwitzerland
| | - Ning Dong
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
| | - Evan A. Perkowski
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Pascal D. Schneider
- Institute of GeographyUniversity of BernHallerstrasse 12CH‐3012BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernFalkenplatz 163012BernSwitzerland
| | - Huiying Xu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Hugo J. de Boer
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental SciencesUtrecht UniversityVening Meinesz Building, Princetonlaan 8aUtrecht3584 CBthe Netherlands
| | - Karin T. Rebel
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental SciencesUtrecht UniversityVening Meinesz Building, Princetonlaan 8aUtrecht3584 CBthe Netherlands
| | - Nicholas G. Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Kevin Van Sundert
- Department of BiologyUniversity of AntwerpUniversiteitsplein 12610WilrijkBelgium
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 1712020AntwerpBelgium
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Sarah E. Jones
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
| | - I. Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Sandy P. Harrison
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
- Department of Geography and Environmental ScienceUniversity of ReadingReadingRG6 6ABUK
| |
Collapse
|
15
|
Tang J, Li W, Wei T, Huang R, Zeng Z. Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3244. [PMID: 39599453 PMCID: PMC11598177 DOI: 10.3390/plants13223244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N), while the most abundant element in the atmosphere, is an essential soil nutrient that limits plant growth. Leguminous plants naturally possess the ability to fix atmospheric nitrogen through symbiotic relationships with rhizobia in their root nodules. However, the widespread use of synthetic N fertilizers in modern agriculture has led to N enrichment in soils, causing complex and profound effects on legumes. Amid ongoing debates about how leguminous plants respond to N enrichment, the present study compiles 2174 data points from 162 peer-reviewed articles to analyze the impacts and underlying mechanisms of N enrichment on legumes. The findings reveal that N enrichment significantly increases total legume biomass by 30.9% and N content in plant tissues by 13.2% globally. However, N enrichment also leads to notable reductions, including a 5.8% decrease in root-to-shoot ratio, a 21.2% decline in nodule number, a 29.3% reduction in nodule weight, and a 27.1% decrease in the percentage of plant N derived from N2 fixation (%Ndfa). Legume growth traits and N2-fixing capability in response to N enrichment are primarily regulated by climatic factors, such as mean annual temperature (MAT) and mean annual precipitation (MAP), as well as the aridity index (AI) and N fertilizer application rates. Correlation analyses show that plant biomass is positively correlated with MAT, and tissue N content also exhibits a positive correlation with MAT. In contrast, nodule numbers and tissue N content are negatively correlated with N fertilizer application rates, whereas %Ndfa shows a positive correlation with AI and MAP. Under low N addition, the increase in total biomass in response to N enrichment is twice as large as that observed under high N addition. Furthermore, regions at lower elevations with abundant hydrothermal resources are especially favorable for total biomass accumulation, indicating that the responses of legumes to N enrichment are habitat-specific. These results provide scientific evidence for the mechanisms underlying legume responses to N enrichment and offer valuable insights and theoretical references for the conservation and management of legumes in the context of global climate change.
Collapse
Affiliation(s)
| | - Wei Li
- School of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China; (J.T.); (T.W.); (R.H.); (Z.Z.)
| | | | | | | |
Collapse
|
16
|
Yuan P, Chen Z, Xu M, Cai W, Liu Z, Sun D. Microbial cell factories using Paenibacillus: status and perspectives. Crit Rev Biotechnol 2024; 44:1386-1402. [PMID: 38105503 DOI: 10.1080/07388551.2023.2289342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 12/19/2023]
Abstract
Considered a "Generally Recognized As Safe" (GRAS) bacterium, the plant growth-promoting rhizobacterium Paenibacillus has been widely applied in: agriculture, medicine, industry, and environmental remediation. Paenibacillus species not only accelerate plant growth and degrade toxic substances in wastewater and soil but also produce industrially-relevant enzymes and antimicrobial peptides. Due to a lack of genetic manipulation tools and methods, exploitation of the bioresources of naturally isolated Paenibacillus species has long been limited. Genetic manipulation tools and methods continue to improve in Paenibacillus, such as shuttle plasmids, promoters, and genetic tools of CRISPR. Furthermore, genetic transformation systems develop gradually, including: penicillin-mediated transformation, electroporation, and magnesium amino acid-mediated transformation. As genetic manipulation methods of homologous recombination and CRISPR-mediated editing system have developed gradually, Paenibacillus has come to be regarded as a promising microbial chassis for biomanufacturing, expanding its application scope, such as: industrial enzymes, bioremediation and bioadsorption, surfactants, and antibacterial agents. In this review, we describe the applications of Paenibacillus bioproducts, and then discuss recent advances and future challenges in the development of genetic manipulation systems in this genus. This work highlights the potential of Paenibacillus as a new microbial chassis for mining bioresources.
Collapse
Affiliation(s)
- Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ziyan Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mengtao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenfeng Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
18
|
Blandford NC, McCorquodale-Bauer K, Grosshans R, Hardy B, Cicek N, Palace V. Removal of nutrients from aquaculture wastewater using cattail (Typha spp.) constructed wetlands. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:767-775. [PMID: 39126244 DOI: 10.1002/jeq2.20608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
The aquaculture industry is among the fastest growing food production sectors in the world. Land-based aquaculture systems continue to increase in popularity as they offer the benefits of controlling diseases, managing water quality, and minimizing threats to wild populations of fish. However, these systems discharge wastewater high in N and P. The ability of cattail (Typha spp.) constructed wetlands (CWs) to remove N and P from aquaculture wastewater (AWW) was examined here. Cattail CWs were established in mesocosms and had a gradient of AWW applied weekly for a total of 5 weeks. Total N and P loadings ranged from 13.7 to 209.2 mg m-2 and 3.01 to 45.97 mg m-2 over 28 days, respectively. Additions of AWW did not cause elevations in total dissolved N, total ammonia N, or nitrite N in CW water; however, concentrations of nitrate N and P in CW water were related to nutrient loading conditions. Elevations in P persisted for 3-4 weeks among high nutrient loading treatments, providing an opportunity for eutrophic conditions to develop in CW systems. However, after 33 days of treatment, >95% total P concentration reduction was achieved in all mesocosms with final concentrations <0.05 mg L-1, equivalent to reference conditions. High-loading treatments achieved greater P load reduction (856.8-955.0 mg m-2 year-1) than low-loading and reference treatments (591.7-792.7 mg m-2 year-1). This study demonstrates the effectiveness of cattail CWs to remove nutrients during AWW treatment and highlights the potential for end-of-season use in northern climates, providing insights regarding the operational timeline of such systems.
Collapse
Affiliation(s)
- Nicholas C Blandford
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Richard Grosshans
- International Institute for Sustainable Development, Winnipeg, Manitoba, Canada
| | | | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vince Palace
- Myera Group, Winnipeg, Manitoba, Canada
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| |
Collapse
|
19
|
Joshi E, Schwarzbach MR, Briggs B, Coats ER, Coleman MD. Nutrient leaching potential along a time series of forest water reclamation facilities in northern Idaho. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121729. [PMID: 38976949 DOI: 10.1016/j.jenvman.2024.121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Forest water reclamation is a decades-old practice of repurposing municipal reclaimed water using land application on forests to filter nutrients and increase wood production. However, long-term application may lead to nutrient saturation, leaching, and potential impairment of ground and surface water quality. We studied long-term effects of reclaimed water application on nutrient leaching potential in a four-decade time series of forest water reclamation facilities in northern Idaho. Our approach compared reclaimed water treated plots with untreated control plots at each of the forest water reclamation facilities. We measured soil nitrifier abundance and net nitrification rates and used tension lysimeters to sample soil matrix water and drain gauges to sample from a combination of matrix and preferential flow paths. We determined nutrient leaching as the product of soil water nutrient concentrations and model-estimated drainage flux. There was more than 450-fold increase in nitrifier abundance and a 1000-fold increase in net nitrification rates in treated plots compared with control plots at long-established facilities, indicating greater nitrate production with increased cumulative inputs. There were no differences in soil water ammonium, phosphate, and dissolved organic nitrogen concentrations between control and effluent treatments in tension lysimeter samples. However, concurrent with increased nitrifier abundance and net nitrification, nitrate concentration below the rooting zone was 2 to 4-fold higher and nitrate leaching was 4 to 10-fold higher in effluent treated plots, particularly at facilities that have been in operation for over two decades. Thus, net nitrification and nitrifier abundance assays are likely indicators of nitrate leaching potential. Inorganic nutrient concentrations in drain gauge samples were 2 to 11-fold higher than lysimeter samples, suggesting nutrient losses occurred predominantly through preferential flow paths. Nitrate was vulnerable to leaching during the wet season under saturated flow conditions. Although nitrogen saturation is a concern that should be mitigated at long-established facilities, these forest water reclamation facilities were able to maintain average soil water nitrate concentrations to less than 2 mg L-1, so that nitrogen and phosphorous are effectively filtered to below safe water standards.
Collapse
Affiliation(s)
- Eureka Joshi
- Environmental Science Program, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | | | - Bailey Briggs
- Environmental Science Program, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, 83844, USA
| | - Mark D Coleman
- Department of Forest, Rangeland, and Fire Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
20
|
Hu CC, Liu XY, Driscoll AW, Kuang YW, Brookshire ENJ, Lü XT, Chen CJ, Song W, Mao R, Liu CQ, Houlton BZ. Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants. Nat Commun 2024; 15:6407. [PMID: 39079989 PMCID: PMC11289379 DOI: 10.1038/s41467-024-50674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate (fNO3-), ammonium (fNH4+), and organic N (fEON) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of fNO3-, fNH4+, and fEON. The fNO3- increases with MAT, reaching 46% at 28.5 °C. The fNH4+ also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the fEON gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems.
Collapse
Affiliation(s)
- Chao-Chen Hu
- School of Earth System Science, Tianjin University, Tianjin, China
| | - Xue-Yan Liu
- School of Earth System Science, Tianjin University, Tianjin, China.
| | - Avery W Driscoll
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Yuan-Wen Kuang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - E N Jack Brookshire
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chong-Juan Chen
- School of Earth System Science, Tianjin University, Tianjin, China
| | - Wei Song
- School of Earth System Science, Tianjin University, Tianjin, China
| | - Rong Mao
- Key Laboratory of National Forestry and Grassland Administration On Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Cong-Qiang Liu
- School of Earth System Science, Tianjin University, Tianjin, China
| | - Benjamin Z Houlton
- Department of Global Development and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Yuan X, Gu X, Liang R, Ban G, Ma L, He T, Wang Z. Comparing combined application of biochar and nitrogen fertilizer in paddy and upland soils: Processes, enhancement strategies, and agricultural implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173160. [PMID: 38735324 DOI: 10.1016/j.scitotenv.2024.173160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Recently, biochar and N fertilizers have been used to tackle low N use efficiency (NUE) in crops across diverse environmental conditions. The coupling of biochar and N fertilizer may impact crop N utilization through different pathways in various soil types. However, there is currently a lack of comprehensive assessment of how coupling effects specifically influence N utilization in paddy and upland crops. We conducted a meta-analysis of 175 peer-reviewed studies to assess the responses of soil properties and crop traits in paddy and upland fields under coupling effects. The results indicate that NUE (+26.1 %) and N uptake (+15.0 %) in paddy fields increase more than in upland fields (+23.7 % and +8.0 %, respectively), with the coupling effect providing NH4+ predominantly for rice and NO3- for upland crops. NH4+ increases in paddy fields (+6.9 %) but decreases in upland fields (-0.7 %), while microbial biomass carbon (MBC) decreases in paddy fields (-2.9 %) and increases in upland fields (+36.0 %). These findings suggest that coupling effects supply soil inorganic nutrients in paddies and affect microbes in uplands, thereby positively affecting crop N utilization. Specifically, the greatest increase in paddy crop yield and N use efficiency occurs when the ratio of N fertilizer to biochar exceeds 1.5 %, and in uplands, it manifests when applying 10-20 t·ha-1 of biochar and <150 kg·ha-1 N fertilizer. In conclusion, this meta-analysis explores the differential effects of biochar and N fertilizer coupling in different arable land types, offering novel insights into the utilization strategies of biochar in agricultural fields.
Collapse
Affiliation(s)
- Xiaomai Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning 530004, Guangxi, PR China; College of Agronomy, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, Guangxi, PR China
| | - Xiaoyan Gu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Run Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning 530004, Guangxi, PR China; College of Agronomy, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, Guangxi, PR China
| | - Guichen Ban
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning 530004, Guangxi, PR China; College of Agronomy, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, Guangxi, PR China
| | - Li Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning 530004, Guangxi, PR China; College of Agronomy, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, Guangxi, PR China
| | - Tieguang He
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, PR China
| | - Ziting Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning 530004, Guangxi, PR China; College of Agronomy, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, Guangxi, PR China.
| |
Collapse
|
22
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
23
|
Luo F, Mi W, Liu W. Legume-grass mixtures improve biological nitrogen fixation and nitrogen transfer by promoting nodulation and altering root conformation in different ecological regions of the Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1375166. [PMID: 38938644 PMCID: PMC11208716 DOI: 10.3389/fpls.2024.1375166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Introduction Biological nitrogen fixation (BNF) plays a crucial role in nitrogen utilization in agroecosystems. Functional characteristics of plants (grasses vs. legumes) affect BNF. However, little is still known about how ecological zones and cropping patterns affect legume nitrogen fixation. This study's objective was to assess the effects of different cropping systems on aboveground dry matter, interspecific relationships, nodulation characteristics, root conformation, soil physicochemistry, BNF, and nitrogen transfer in three ecological zones and determine the main factors affecting nitrogen derived from the atmosphere (Ndfa) and nitrogen transferred (Ntransfer). Methods The 15N labeling method was applied. Oats (Avena sativa L.), forage peas (Pisum sativum L.), common vetch (Vicia sativa L.), and fava beans (Vicia faba L.) were grown in monocultures and mixtures (YS: oats and forage peas; YJ: oats and common vetch; YC: oats and fava beans) in three ecological regions (HZ: Huangshui Valley; GN: Sanjiangyuan District; MY: Qilian Mountains Basin) in a split-plot design. Results The results showed that mixing significantly promoted legume nodulation, optimized the configuration of the root system, increased aboveground dry matter, and enhanced nitrogen fixation in different ecological regions. The percentage of nitrogen derived from the atmosphere (%Ndfa) and percentage of nitrogen transferred (%Ntransfer) of legumes grown with different legume types and in different ecological zones were significantly different, but mixed cropping significantly increased the %Ndfa of the legumes. Factors affecting Ndfa included the cropping pattern, the ecological zone (R), the root nodule number, pH, ammonium-nitrogen, nitrate-nitrogen, microbial nitrogen mass (MBN), plant nitrogen content (N%), and aboveground dry biomass. Factors affecting Ntransfer included R, temperature, altitude, root surface area, nitrogen-fixing enzyme activity, organic matter, total soil nitrogen, MBN, and N%. Discussion We concluded that mixed cropping is beneficial for BNF and that mixed cropping of legumes is a sustainable and effective forage management practice on the Tibetan Plateau.
Collapse
Affiliation(s)
- Feng Luo
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
- Laboratory of Tibetan Plateau Germplasm Resources Research and Utilization, College of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Wenbo Mi
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
- Laboratory of Tibetan Plateau Germplasm Resources Research and Utilization, College of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
- Laboratory of Tibetan Plateau Germplasm Resources Research and Utilization, College of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| |
Collapse
|
24
|
Zhang TT, Lin YJ, Liu HF, Liu YQ, Zeng ZF, Lu XY, Li XW, Zhang ZL, Zhang S, You CX, Guan QM, Lang ZB, Wang XF. The AP2/ERF transcription factor MdDREB2A regulates nitrogen utilisation and sucrose transport under drought stress. PLANT, CELL & ENVIRONMENT 2024; 47:1668-1684. [PMID: 38282271 DOI: 10.1111/pce.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Drought stress is one of the main environmental factors limiting plant growth and development. Plants adapt to changing soil moisture by modifying root architecture, inducing stomatal closure, and inhibiting shoot growth. The AP2/ERF transcription factor DREB2A plays a key role in maintaining plant growth in response to drought stress, but the molecular mechanism underlying this process remains to be elucidated. Here, it was found that overexpression of MdDREB2A positively regulated nitrogen utilisation by interacting with DRE cis-elements of the MdNIR1 promoter. Meanwhile, MdDREB2A could also directly bind to the promoter of MdSWEET12, which may enhance root development and nitrogen assimilation, ultimately promoting plant growth. Overall, this regulatory mechanism provides an idea for plants in coordinating with drought tolerance and nitrogen assimilation to maintain optimal plant growth and development under drought stress.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yu-Jing Lin
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao-Feng Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Ya-Qi Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhi-Feng Zeng
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xue-Wei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Shuai Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Bo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
25
|
Mohamed ZA, Elnour RO, Alamri S, Hashem M, Campos A, Vasconcelos V, Badawye H. Presence of the neurotoxin β-N-methylamino-L-alanine in irrigation water and accumulation in cereal grains with human exposure risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31479-31491. [PMID: 38635096 DOI: 10.1007/s11356-024-33188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The present study demonstrates the presence of the neurotoxin β-N-methylamino-L-alanine and its cyanobacterial producers in irrigation water and grains of some cereal plants from farmlands irrigated with Nile River water in Egypt. BMAA detected by LC-MS/MS in phytoplankton samples was found at higher concentrations of free form (0.84-11.4 μg L-1) than of protein-bound form (0.16-1.6 μg L-1), in association with the dominance of cyanobacteria in irrigation water canals. Dominant cyanobacterial species isolated from these irrigation waters including Aphanocapsa planctonica, Chroococcus minutus, Dolichospermum lemmermanni, Nostoc commune, and Oscillatoria tenuis were found to produce different concentrations of free (4.8-71.1 µg g-1 dry weight) and protein-bound (0.1-11.4 µg g-1 dry weight) BMAA. In the meantime, BMAA was also detected in a protein-bound form only in grains of corn (3.87-4.51 µg g-1 fresh weight) and sorghum (5.1-7.1 µg g-1 fresh weight) plants, but not in wheat grains. The amounts of BMAA accumulated in these grains correlated with BMAA concentrations detected in relevant irrigation water canals. The presence of BMAA in cereal grains would constitute a risk to human and animal health upon consumption of contaminated grains. The study, therefore, suggests continuous monitoring of BMAA and other cyanotoxins in irrigation waters and edible plants to protect the public against exposure to such potent toxins.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Rehab O Elnour
- Biology Department, Faculty of Sciences and Arts, Dahran Al-Janoub, King Khalid University, Abha, Saudi Arabia
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Departament of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Hanan Badawye
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
26
|
Hajibarat Z, Saidi A, Ghazvini H, Hajibarat Z. Investigation of morpho-physiolgical traits and gene expression in barley under nitrogen deficiency. Sci Rep 2024; 14:8875. [PMID: 38632431 PMCID: PMC11024206 DOI: 10.1038/s41598-024-59714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Nitrogen (N) is an essential element for plant growth, and its deficiency influences plants at several physiological and gene expression levels. Barley (Hordeum vulgare) is one of the most important food grains from the Poaceae family and one of the most important staple food crops. However, the seed yield is limited by a number of stresses, the most important of which is the insufficient use of N. Thus, there is a need to develop N-use effective cultivars. In this study, comparative physiological and molecular analyses were performed using leaf and root tissues from 10 locally grown barley cultivars. The expression levels of nitrate transporters, HvNRT2 genes, were analyzed in the leaf and root tissues of N-deficient (ND) treatments of barley cultivars after 7 and 14 days following ND treatment as compared to the normal condition. Based on the correlation between the traits, root length (RL) had a positive and highly significant correlation with fresh leaf weight (FLW) and ascorbate peroxidase (APX) concentration in roots, indicating a direct root and leaf relationship with the plant development under ND. From the physiological aspects, ND enhanced carotenoids, chlorophylls a/b (Chla/b), total chlorophyll (TCH), leaf antioxidant enzymes such as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT), and root antioxidant enzymes (APX and POD) in the Sahra cultivar. The expression levels of HvNRT2.1, HvNRT2.2, and HvNRT2.4 genes were up-regulated under ND conditions. For the morphological traits, ND maintained root dry weight among the cultivars, except for Sahra. Among the studied cultivars, Sahra responded well to ND stress, making it a suitable candidate for barely improvement programs. These findings may help to better understand the mechanism of ND tolerance and thus lead to the development of cultivars with improved nitrogen use efficiency (NUE) in barley.
Collapse
Affiliation(s)
- Zohreh Hajibarat
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Habibollah Ghazvini
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31587-77871, Karaj, Iran
| | - Zahra Hajibarat
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
27
|
Adamczyk B. Tannins and Climate Change: Are Tannins Able To Stabilize Carbon in the Soil? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600619 DOI: 10.1021/acs.jafc.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The interaction between tannins and proteins has been studied intensively for more than half a century as a result of its significance for various applications. In chemical ecology, tannins are involved in response to environmental stress, including biotic (pathogens and herbivores) and abiotic (e.g., drought) stress, and in carbon (C) and nutrient cycling. This perspective summarizes the newest insights into the role of tannins in soil processes, including the interaction with fungi leading to C stabilization. Recent knowledge presented here may help to optimize land management to increase or preserve soil C to mitigate climate change.
Collapse
Affiliation(s)
- Bartosz Adamczyk
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
28
|
Duan Y, Wang T, Zhang P, Zhao X, Jiang J, Ma Y, Zhu X, Fang W. The effect of intercropping leguminous green manure on theanine accumulation in the tea plant: A metagenomic analysis. PLANT, CELL & ENVIRONMENT 2024; 47:1141-1159. [PMID: 38098148 DOI: 10.1111/pce.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 03/05/2024]
Abstract
Intercropping is a widely recognised technique that contributes to agricultural sustainability. While intercropping leguminous green manure offers advantages for soil health and tea plants growth, the impact on the accumulation of theanine and soil nitrogen cycle are largely unknown. The levels of theanine, epigallocatechin gallate and soluble sugar in tea leaves increased by 52.87% and 40.98%, 22.80% and 6.17%, 22.22% and 29.04% in intercropping with soybean-Chinese milk vetch rotation and soybean alone, respectively. Additionally, intercropping significantly increased soil amino acidnitrogen content, enhanced extracellular enzyme activities, particularly β-glucosidase and N-acetyl-glucosaminidase, as well as soil multifunctionality. Metagenomics analysis revealed that intercropping positively influenced the relative abundances of several potentially beneficial microorganisms, including Burkholderia, Mycolicibacterium and Paraburkholderia. Intercropping resulted in lower expression levels of nitrification genes, reducing soil mineral nitrogen loss and N2 O emissions. The expression of nrfA/H significantly increased in intercropping with soybean-Chinese milk vetch rotation. Structural equation model analysis demonstrated that the accumulation of theanine in tea leaves was directly influenced by the number of intercropping leguminous green manure species, soil ammonium nitrogen and amino acid nitrogen. In summary, the intercropping strategy, particularly intercropping with soybean-Chinese milk vetch rotation, could be a novel way for theanine accumulation.
Collapse
Affiliation(s)
- Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ting Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peixi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xinjie Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Svietlova N, Zhyr L, Reichelt M, Grabe V, Mithöfer A. Glutamine as sole nitrogen source prevents induction of nitrate transporter gene NRT2.4 and affects amino acid metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1369543. [PMID: 38633457 PMCID: PMC11022244 DOI: 10.3389/fpls.2024.1369543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.
Collapse
Affiliation(s)
- Nataliia Svietlova
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Liza Zhyr
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
30
|
Beig B, Niazi MBK, Sher F, Jahan Z, Zia M, Shah GA, Ghfar AA, Iqbal Z. Development and testing of environment friendly nanohybrid coatings for sustainable agriculture technologies. ENVIRONMENTAL RESEARCH 2024; 240:117546. [PMID: 37914011 DOI: 10.1016/j.envres.2023.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/02/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Less than 50% of the applied urea fertilizer is taken up by plants due to poor nitrogen (N) use efficiency which affects overall agricultural productivity and leads to serious environmental and economic problems. Additionally, soils with high salinity might limit zinc (Zn) availability. Low Zn use efficiency (<30%) when applied as synthetic salts, e.g., zinc sulfate has therefore minimized their applicability. Within the past two decades, nanotechnology has gained a lot of interest in the development of effective nano fertilizers with high nutrient use efficiency (NUE). In this perspective, the approach of coating conventional fertilizers with nano materials especially, the ones which are essential nutrients has researched because of their high use efficiency and reduced losses. In this work, a novel and innovative formulation of hybrid nano fertilizer has been prepared for the sustainable release of nutrients. Zinc oxide nanoparticles (ZnO-NPs <50 nm) were incorporated into the biodegradable polymer (gelatin) and coated on urea using a fluidized bed coater. Among all the formulations, GZnSNPs (1.5% gelatin+0.5% elemental Zn as ZnO-NPs) showed a significant delay in urea release (<80 %) after 120 min). The sand column experiment showed sustainable Zn release for GZnSNPs i.e., 2.7 ppm vs. 3.5 ppm (GZnS) after the 6th day. Moreover, a substantial increase in wheat grain yield (6500 kg/ha), N uptake (46.5 kg/ha) and Zn uptake (21.64 g/ha) were observed for fields amended with GZnSNPs. The composition of GZnSNPs was valuable since this attracted the highest return relative to the other treatments. Gelatin supplied small N-containing molecules, resulting in extra value addition with ZnO-NPs thus increasing yield and fertilizer properties more relative to the same amount of elemental Zn given via bulk salt. Therefore, the findings of the current study recommend the use of ZnO-NPs in the agricultural sector without any negative effects on yield and NUE.
Collapse
Affiliation(s)
- Bilal Beig
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Munir Zia
- Research and Development Department, Fauji Fertilizer Company Limited, Head Office 156-The Mall, Rawalpindi, Pakistan
| | - Ghulam Abbas Shah
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 10370, Pakistan
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Zahid Iqbal
- Institute of Soil and Environmental Sciences, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
31
|
Renström A, Choudhary S, Gandla ML, Jönsson LJ, Hedenström M, Jämtgård S, Tuominen H. The effect of nitrogen source and levels on hybrid aspen tree physiology and wood formation. PHYSIOLOGIA PLANTARUM 2024; 176:e14219. [PMID: 38380723 DOI: 10.1111/ppl.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Nitrogen can be taken up by trees in the form of nitrate, ammonium and amino acids, but the influence of the different forms on tree growth and development is poorly understood in angiosperm species like Populus. We studied the effects of both organic and inorganic forms of nitrogen on growth and wood formation of hybrid aspen trees in experimental conditions that allowed growth under four distinct steady-state nitrogen levels. Increased nitrogen availability had a positive influence on biomass accumulation and the radial dimensions of both xylem vessels and fibers, and a negative influence on wood density. An optimal level of nitrogen availability was identified where increases in biomass accumulation outweighed decreases in wood density. None of these responses depended on the source of nitrogen except for shoot biomass accumulation, which was stimulated more by treatments complemented with nitrate than by ammonium alone or the organic source arginine. The most striking difference between the nitrogen sources was the effect on lignin composition, whereby the abundance of H-type lignin increased only in the presence of nitrate. The differential effect of nitrate is possibly related to the well-known role of nitrate as a signaling compound. RNA-sequencing revealed that while the lignin-biosynthetic genes did not significantly (FDR <0.01) respond to added NO3 - , the expression of several laccases, catalysing lignin polymerization, was dependent on N-availability. These results reveal a unique role of nitrate in wood formation and contribute to the knowledge basis for decision-making in utilizing hybrid aspen as a bioresource.
Collapse
Affiliation(s)
- Anna Renström
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Shruti Choudhary
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | | | | - Sandra Jämtgård
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
32
|
Du C, Xu R, Zhao X, Liu Y, Zhou X, Zhang W, Zhou X, Hu N, Zhang Y, Sun Z, Wang Z. Association between host nitrogen absorption and root-associated microbial community in field-grown wheat. Appl Microbiol Biotechnol 2023; 107:7347-7364. [PMID: 37747613 DOI: 10.1007/s00253-023-12787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.
Collapse
Affiliation(s)
- Chenghang Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runlai Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaohan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanqing Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Abrantes GH, Gücker B, Chaves RC, Boëchat IG, Figueredo CC. Epilithic biofilms provide large amounts of nitrogen to tropical mountain landscapes. Environ Microbiol 2023; 25:3592-3603. [PMID: 37816630 DOI: 10.1111/1462-2920.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023]
Abstract
We show that epilithic biofilms are a relevant nitrogen (N) source in a rocky mountain range in Brazil. During different seasons, we quantified nitrate, ammonium, dissolved organic N (DON) and total dissolved N (TDN) leached by a simulated short rain event. We quantified the epilithic autotrophic biomass by taxonomic groups and its correlation with leached N. We hypothesized that leached N would be correlated to heterocystous cyanobacteria biomass since they are more efficient N2 fixers. We estimated a landscape N supply of 8.5 kg.ha-1 .year-1 considering the mean precipitation in the region. TDN in leachate was mainly composed of DON (83.8% ± 22%), followed by nitrate (12.1% ± 3%) and ammonium (5% ± 5%). The autotrophic epilithic community was mainly composed of non-heterocystous (Gloeocapsopsis) and heterocystous cyanobacteria (Scytonema and Stigonema), except for a site more commonly affected by fire events that showed a dominance of Chlorophyta. Biogeochemical upscaling was facilitated by the fact that N leaching was not different among sites or related to autotrophic epilithic biomass or assemblage composition. In conclusion, the capacity of epilithic biofilms to provide N to surrounding systems is an ecosystem service that underscores the necessity to conserve them and their habitats.
Collapse
Affiliation(s)
| | - Björn Gücker
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Ronaldo César Chaves
- Department of Botany, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Iola Gonçalves Boëchat
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil
| | | |
Collapse
|
34
|
Yuan Z, Ye J, Lin F, Wang X, Yang T, Bi B, Mao Z, Fang S, Wang X, Hao Z, Ali A. Relationships between Phyllosphere Bacterial Communities and Leaf Functional Traits in a Temperate Forest. PLANTS (BASEL, SWITZERLAND) 2023; 12:3854. [PMID: 38005751 PMCID: PMC10674237 DOI: 10.3390/plants12223854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
As a vital component of biodiversity, phyllosphere bacteria in forest canopy play a critical role in maintaining plant health and influencing the global biogeochemical cycle. There is limited research on the community structure of phyllosphere bacteria in natural forests, which creates a gap in our understanding of whether and/or how phyllosphere bacteria are connected to leaf traits of their host. In this study, we investigated the bacterial diversity and composition of the canopy leaves of six dominant tree species in deciduous broad-leaved forests in northeastern China, using high-throughput sequencing. We then compare the differences in phyllosphere bacterial community structure and functional genes of dominant tree species. Fourteen key leaf functional traits of their host trees were also measured according to standard protocols to investigate the relationships between bacterial community composition and leaf functional traits. Our result suggested that tree species with closer evolutionary distances had similar phyllosphere microbial alpha diversity. The dominant phyla of phyllosphere bacteria were Proteobacteria, Actinobacteria, and Firmicutes. For these six tree species, the functional genes of phyllosphere bacteria were mainly involved in amino acid metabolism and carbohydrate metabolism processes. The redundancy and envfit analysis results showed that the functional traits relating to plant nutrient acquisition and resistance to diseases and pests (such as leaf area, isotope carbon content, and copper content) were the main factors influencing the community structure of phyllosphere bacteria. This study highlights the key role of plant interspecific genetic relationships and plant attributes in shaping phyllosphere bacterial diversity.
Collapse
Affiliation(s)
- Zuoqiang Yuan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Xing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Plant Ecology and Nature Conservation, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China;
| | - Boyuan Bi
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhanqing Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
| | - Arshad Ali
- Forest Ecology Research Group, College of Life Sciences, Hebei University, Baoding 071002, China;
| |
Collapse
|
35
|
Xi Y, Wang Q, Zhu J, Yang M, Hao T, Chen Y, Zhang Q, He N, Yu G. Atmospheric wet organic nitrogen deposition in China: Insights from the national observation network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165629. [PMID: 37467980 DOI: 10.1016/j.scitotenv.2023.165629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Organic nitrogen (N) is an important component of atmospheric reactive N deposition, and its bioavailability is almost as important as that of inorganic N. Currently, there are limited reports of national observations of organic N deposition; most stations are concentrated in rural and urban areas, with even fewer long-term observations of natural ecosystems in remote areas. Based on the China Wet Deposition Observation Network, this study regularly collected monthly wet deposition samples from 43 typical ecosystems from 2013 to 2021 and measured related N concentrations. The aim was to provide a more comprehensive assessment of the multi-component characteristics of atmospheric wet N deposition and reveal the influencing factors and potential sources of wet dissolved organic N (DON) deposition. The results showed that atmospheric wet deposition fluxes of NO3-, NH4+, DON and dissolved total N (DTN) were 4.68, 5.25, 4.32, and 13.05 kg N ha-1 yr-1, respectively, and that DON accounted for 30 % of DTN deposition (potentially up to 50 % in remote areas). Wet DON deposition was related to anthropogenic emissions (agriculture, biomass burning, and traffic), natural emissions (volatile organic compound emissions from vegetation), and precipitation processes. The wet DON deposition flux was higher in South, Central, and Southwest China, with more precipitation and intensive agricultural activities or more vegetation cover, and lower in Northwest China and Inner Mongolia, with less precipitation and human activities or vegetation cover. DON was the main contributor to DTN deposition in remote areas and was possibly related to natural emissions. In rural and urban areas, DON may have been more influenced by agricultural activities and anthropogenic emissions. This study quantified the long-term spatiotemporal patterns of wet N deposition and provides a reference for future N addition experiments and N cycle studies. Further consideration of DON deposition is required, especially in the context of anthropogenic control of NO2 and NH3.
Collapse
Affiliation(s)
- Yue Xi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qiufeng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxing Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
| | - Meng Yang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Tianxiang Hao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yanran Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qiongyu Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Nedelyaeva OI, Khramov DE, Khalilova LA, Konoshenkova AO, Ryabova AV, Popova LG, Volkov VS, Balnokin YV. Molecular Cloning, Expression and Transport Activity of SaNPF6.3/SaNRT1.1, a Novel Protein of the Low-Affinity Nitrate Transporter Family from the Euhalophyte Suaeda altissima (L.) Pall. MEMBRANES 2023; 13:845. [PMID: 37888016 PMCID: PMC10608580 DOI: 10.3390/membranes13100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The SaNPF6.3 gene, a putative ortholog of the dual-affinity nitrate (NO3-) transporter gene AtNPF6.3/AtNRT1.1 from Arabidopsis thaliana, was cloned from the euhalophyte Suaeda altissima. The nitrate transporting activity of SaNPF6.3 was studied by heterologous expression of the gene in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the original nitrate transporter. Expression of SaNPF6.3 in Δynt1 cells rescued their ability to grow on the selective medium in the presence of nitrate and absorb nitrate from this medium. Confocal laser microscopy of the yeast cells expressing the fused protein GFP-SaNPF6.3 revealed GFP (green fluorescent protein) fluorescence localized predominantly in the cytoplasm and/or vacuoles. Apparently, in the heterologous expression system used, only a relatively small fraction of the GFP-SaNPF6.3 reached the plasma membrane of yeast cells. In S. altissima plants grown in media with either low (0.5 mM) or high (15 mM) NO3-; concentrations, SaNPF6.3 was expressed at various ontogenetic stages in different organs, with the highest expression levels in roots, pointing to an important role of SaNPF6.3 in nitrate uptake. SaNPF6.3 expression was induced in roots of nitrate-deprived plants in response to raising the nitrate concentration in the medium and was suppressed when the plants were transferred from sufficient nitrate to the lower concentration. When NaCl concentration in the nutrient solution was elevated, the SaNPF6.3 transcript abundance in the roots increased at the low nitrate concentration and decreased at the high one. We also determined nitrate and chloride concentrations in the xylem sap excreted by detached S. altissima roots as a function of their concentrations in the root medium. Based on a linear increase in Cl- concentrations in the xylem exudate as the external Cl- concentration increased and the results of SaNPF6.3 expression experiments, we hypothesize that SaNPF6.3 is involved in chloride transport along with nitrate transport in S. altissima plants.
Collapse
Affiliation(s)
- Olga I. Nedelyaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Dmitrii E. Khramov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Lyudmila A. Khalilova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Alena O. Konoshenkova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Anastasia V. Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia;
| | - Larissa G. Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Vadim S. Volkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Yurii V. Balnokin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| |
Collapse
|
37
|
Shi H, Ernst E, Heinzel N, McCorkle S, Rolletschek H, Borisjuk L, Ortleb S, Martienssen R, Shanklin J, Schwender J. Mechanisms of metabolic adaptation in the duckweed Lemna gibba: an integrated metabolic, transcriptomic and flux analysis. BMC PLANT BIOLOGY 2023; 23:458. [PMID: 37789269 PMCID: PMC10546790 DOI: 10.1186/s12870-023-04480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Duckweeds are small, rapidly growing aquatic flowering plants. Due to their ability for biomass production at high rates they represent promising candidates for biofuel feedstocks. Duckweeds are also excellent model organisms because they can be maintained in well-defined liquid media, usually reproduce asexually, and because genomic resources are becoming increasingly available. To demonstrate the utility of duckweed for integrated metabolic studies, we examined the metabolic adaptation of growing Lemna gibba cultures to different nutritional conditions. RESULTS To establish a framework for quantitative metabolic research in duckweeds we derived a central carbon metabolism network model of Lemna gibba based on its draft genome. Lemna gibba fronds were grown with nitrate or glutamine as nitrogen source. The two conditions were compared by quantification of growth kinetics, metabolite levels, transcript abundance, as well as by 13C-metabolic flux analysis. While growing with glutamine, the fronds grew 1.4 times faster and accumulated more protein and less cell wall components compared to plants grown on nitrate. Characterization of photomixotrophic growth by 13C-metabolic flux analysis showed that, under both metabolic growth conditions, the Calvin-Benson-Bassham cycle and the oxidative pentose-phosphate pathway are highly active, creating a futile cycle with net ATP consumption. Depending on the nitrogen source, substantial reorganization of fluxes around the tricarboxylic acid cycle took place, leading to differential formation of the biosynthetic precursors of the Asp and Gln families of proteinogenic amino acids. Despite the substantial reorganization of fluxes around the tricarboxylic acid cycle, flux changes could largely not be associated with changes in transcripts. CONCLUSIONS Through integrated analysis of growth rate, biomass composition, metabolite levels, and metabolic flux, we show that Lemna gibba is an excellent system for quantitative metabolic studies in plants. Our study showed that Lemna gibba adjusts to different nitrogen sources by reorganizing central metabolism. The observed disconnect between gene expression regulation and metabolism underscores the importance of metabolic flux analysis as a tool in such studies.
Collapse
Affiliation(s)
- Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Evan Ernst
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Sean McCorkle
- Brookhaven National Laboratory, Computational Science Initiative, Upton, NY, 11973, USA
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Stefan Ortleb
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Robert Martienssen
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
38
|
Varela Z, Martínez-Abaigar J, Tomás-Las-Heras R, Fernández JÁ, Del-Castillo-Alonso MÁ, Núñez-Olivera E. Tree Physiological Variables as a Proxy of Heavy Metal and Platinum Group Elements Pollution in Urban Areas. BIOLOGY 2023; 12:1180. [PMID: 37759580 PMCID: PMC10526008 DOI: 10.3390/biology12091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Physiological variables (the content of chlorophyll, flavonoids and nitrogen, together with Fv/Fm) and the content of ten heavy metals (As, Cd, Cu, Hg, Mn, Ni, Pb, Sb, V and Zn) and two platinum group elements (PGEs: Pd and Rh) were measured in the leaves of 50 individuals of Ligustrum lucidum trees regularly distributed in the city of Logroño (Northern Spain). Three of these variables increased with increasing physiological vitality (chlorophyll, nitrogen and Fv/Fm), whereas flavonoids increased in response to different abiotic stresses, including pollution. Our aim was to test their adequacy as proxies for the pollution due to heavy metals and PGEs. The three vitality indicators generally showed high values typical of healthy plants, and they did not seem to be consistently affected by the different pollutants. In fact, the three vitality variables were positively correlated with the first factor of a PCA that was dominated by heavy metals (mainly Pb, but also Sb, V and Ni). In addition, Fv/Fm was negatively correlated with the second factor of the PCA, which was dominated by PGEs, but the trees showing Fv/Fm values below the damage threshold did not coincide with those showing high PGE content. Regarding flavonoid content, it was negatively correlated with PCA factors dominated by heavy metals, which did not confirm its role as a protectant against metal stress. The relatively low levels of pollution usually found in the city of Logroño, together with the influence of other environmental factors and the relative tolerance of Ligustrum lucidum to modest atmospheric pollution, probably determined the only slight response of the physiological variables to heavy metals and PGEs.
Collapse
Affiliation(s)
- Zulema Varela
- CRETUS, Ecology Unit, Department Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Javier Martínez-Abaigar
- Faculty of Science and Technology, University of La Rioja, 26006 Logroño, Spain; (J.M.-A.); (R.T.-L.-H.); (M.-Á.D.-C.-A.); (E.N.-O.)
| | - Rafael Tomás-Las-Heras
- Faculty of Science and Technology, University of La Rioja, 26006 Logroño, Spain; (J.M.-A.); (R.T.-L.-H.); (M.-Á.D.-C.-A.); (E.N.-O.)
| | - José Ángel Fernández
- CRETUS, Ecology Unit, Department Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - María-Ángeles Del-Castillo-Alonso
- Faculty of Science and Technology, University of La Rioja, 26006 Logroño, Spain; (J.M.-A.); (R.T.-L.-H.); (M.-Á.D.-C.-A.); (E.N.-O.)
| | - Encarnación Núñez-Olivera
- Faculty of Science and Technology, University of La Rioja, 26006 Logroño, Spain; (J.M.-A.); (R.T.-L.-H.); (M.-Á.D.-C.-A.); (E.N.-O.)
| |
Collapse
|
39
|
Bělonožníková K, Černý M, Hýsková V, Synková H, Valcke R, Hodek O, Křížek T, Kavan D, Vaňková R, Dobrev P, Haisel D, Ryšlavá H. Casein as protein and hydrolysate: Biostimulant or nitrogen source for Nicotiana tabacum plants grown in vitro? PHYSIOLOGIA PLANTARUM 2023; 175:e13973. [PMID: 37402155 DOI: 10.1111/ppl.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
In contrast to inorganic nitrogen (N) assimilation, the role of organic N forms, such as proteins and peptides, as sources of N and their impact on plant metabolism remains unclear. Simultaneously, organic biostimulants are used as priming agents to improve plant defense response. Here, we analysed the metabolic response of tobacco plants grown in vitro with casein hydrolysate or protein. As the sole source of N, casein hydrolysate enabled tobacco growth, while protein casein was used only to a limited extent. Free amino acids were detected in the roots of tobacco plants grown with protein casein but not in the plants grown with no source of N. Combining hydrolysate with inorganic N had beneficial effects on growth, root N uptake and protein content. The metabolism of casein-supplemented plants shifted to aromatic (Trp), branched-chain (Ile, Leu, Val) and basic (Arg, His, Lys) amino acids, suggesting their preferential uptake and/or alterations in their metabolic pathways. Complementarily, proteomic analysis of tobacco roots identified peptidase C1A and peptidase S10 families as potential key players in casein degradation and response to N starvation. Moreover, amidases were significantly upregulated, most likely for their role in ammonia release and impact on auxin synthesis. In phytohormonal analysis, both forms of casein influenced phenylacetic acid and cytokinin contents, suggesting a root system response to scarce N availability. In turn, metabolomics highlighted the stimulation of some plant defense mechanisms under such growth conditions, that is, the high concentrations of secondary metabolites (e.g., ferulic acid) and heat shock proteins.
Collapse
Affiliation(s)
- Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Helena Synková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Roland Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ondřej Hodek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Radomíra Vaňková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Petre Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Daniel Haisel
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| |
Collapse
|
40
|
Zhong Y, Lin D, Li S, Wang Q, Liu H, Ma L, Liu H. Enhanced nitrogen removal via Yarrowia lipolytica-mediated nitrogen and related metabolism of Chlorella pyrenoidosa from wastewater. Front Bioeng Biotechnol 2023; 11:1159297. [PMID: 37425353 PMCID: PMC10325826 DOI: 10.3389/fbioe.2023.1159297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
We investigated the optimum co-culture ratio with the highest biological nitrogen removal rate, revealing that chemical oxygen demand, total nitrogen (TN), and ammoniacal nitrogen (NH3-N) removal was increased in the Chlorella pyrenoidosa and Yarrowia lipolytica co-culture system at a 3:1 ratio. Compared with the control, TN and NH3-N content in the co-incubated system was decreased within 2-6 days. We investigated mRNA/microRNA (miRNA) expression in the C. pyrenoidosa and Y. lipolytica co-culture after 3 and 5 days, identifying 9885 and 3976 differentially expressed genes (DEGs), respectively. Sixty-five DEGs were associated with Y. lipolytica nitrogen, amino acid, photosynthetic, and carbon metabolism after 3 days. Eleven differentially expressed miRNAs were discovered after 3 days, of which two were differentially expressed and their target mRNA expressions negatively correlated with each other. One of these miRNAs regulates gene expression of cysteine dioxygenase, hypothetical protein, and histone-lysine N-methyltransferase SETD1, thereby reducing amino acid metabolic capacity; the other miRNA may promote upregulation of genes encoding the ATP-binding cassette, subfamily C (CFTR/MRP), member 10 (ABCC10), thereby promoting nitrogen and carbon transport in C. pyrenoidosa. These miRNAs may further contribute to the activation of target mRNAs. miRNA/mRNA expression profiles confirmed the synergistic effects of a co-culture system on pollutant disposal.
Collapse
Affiliation(s)
- Yuming Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Danni Lin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Sufen Li
- Institute of Water Environment Engineering, Xinhua College of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Gao J, Ge S, Wang H, Fang Y, Sun L, He T, Cheng X, Wang D, Zhou X, Cai H, Li C, Liu Y, E Y, Meng J, Chen W. Biochar-extracted liquor stimulates nitrogen related gene expression on improving nitrogen utilization in rice seedling. FRONTIERS IN PLANT SCIENCE 2023; 14:1131937. [PMID: 37404536 PMCID: PMC10317180 DOI: 10.3389/fpls.2023.1131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/04/2023] [Indexed: 07/06/2023]
Abstract
Introduction Biochar has been shown to be an effective soil amendment for promoting plant growth and improving nitrogen (N) utilization. However, the physiological and molecular mechanisms behind such stimulation remain unclear. Methods In this study, we investigated whether biochar-extracted liquor including 21 organic molecules enhance the nitrogen use efficiency (NUE) of rice plants using two N forms (NH4 +-N and NO3 --N). A hydroponic experiment was conducted, and biochar-extracted liquor (between 1 and 3% by weight) was applied to rice seedlings. Results The results showed that biochar-extracted liquor significantly improved phenotypic and physiological traits of rice seedlings. Biochar-extracted liquor dramatically upregulated the expression of rice N metabolism-related genes such as OsAMT1.1, OsGS1.1, and OsGS2. Rice seedlings preferentially absorbed NH4 +-N than NO3 --N (p < 0.05), and the uptake of NH4 +-N by rice seedlings was significantly increased by 33.60% under the treatment of biochar-extracted liquor. The results from molecular docking showed that OsAMT1.1protein can theoretically interact with 2-Acetyl-5-methylfuran, trans-2,4-Dimethylthiane, S, S-dioxide, 2,2-Diethylacetamide, and 1,2-Dimethylaziridine in the biochar-extracted liquor. These four organic compounds have similar biological function as the OsAMT1.1 protein ligand in driving NH4 +-N uptakes by rice plants. Discussion This study highlights the importance of biochar-extracted liquor in promoting plant growth and NUE. The use of low doses of biochar-extracted liquor could be an important way to reduce N input in order to achieve the purpose of reducing fertilizer use and increasing efficiency in agricultural production.
Collapse
Affiliation(s)
- Jian Gao
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Shaohua Ge
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Yunying Fang
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Luming Sun
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Tianyi He
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Xiaoyi Cheng
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Di Wang
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Xuanwei Zhou
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Heqing Cai
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Caibin Li
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Yanxiang Liu
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Yang E
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Wenfu Chen
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| |
Collapse
|
42
|
Tian B, Qu Z, Mehmood MA, Xie J, Cheng J, Fu Y, Jiang D. Schizotrophic Sclerotinia sclerotiorum-Mediated Root and Rhizosphere Microbiome Alterations Activate Growth and Disease Resistance in Wheat. Microbiol Spectr 2023; 11:e0098123. [PMID: 37212718 PMCID: PMC10269679 DOI: 10.1128/spectrum.00981-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Sclerotinia sclerotiorum, a widespread pathogen of dicotyledons, can grow endophytically in wheat, providing protection against Fusarium head blight and stripe rust and enhancing wheat yield. In this study, we found that wheat seed treatment with strain DT-8, infected with S. sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) and used as a "plant vaccine" for brassica protection, could significantly increase the diversity of the fungal and bacterial community in rhizosphere soil, while the diversity of the fungal community was obviously decreased in the wheat root. Interestingly, the relative abundance of potential plant growth-promoting rhizobacteria (PGPR) and biocontrol agents increased significantly in the DT-8-treated wheat rhizosphere soil. These data might be responsible for wheat growth promotion and disease resistance. These results may provide novel insights for understanding the interaction between the schizotrophic microorganism and the microbiota of plant roots and rhizosphere, screening and utilizing beneficial microorganisms, and further reducing chemical pesticide utilization and increasing crop productivity. IMPORTANCE Fungal pathogens are seriously threatening food security and natural ecosystems; efficient and environmentally friendly control methods are essential to increase world crop production. S. sclerotiorum, a widespread pathogen of dicotyledons, can grow endophytically in wheat, providing protection against Fusarium head blight and stripe rust and enhancing wheat yield. In this study, we discovered that S. sclerotiorum treatment increased the diversity of the soil fungal and bacterial community in rhizosphere soil, while the diversity of the fungal community was obviously decreased in the wheat root. More importantly, the relative abundance of potential PGPR and bio-control agents increased significantly in the S. sclerotiorum-treated wheat rhizosphere soil. The importance of this work is that schizotrophic S. sclerotiorum promotes wheat growth and enhances resistance against fungal diseases via changes in the structure of the root and rhizosphere microbiome.
Collapse
Affiliation(s)
- Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, China
| | - Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Mirza Abid Mehmood
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Abualia R, Riegler S, Benkova E. Nitrate, Auxin and Cytokinin-A Trio to Tango. Cells 2023; 12:1613. [PMID: 37371083 DOI: 10.3390/cells12121613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrogen is an important macronutrient required for plant growth and development, thus directly impacting agricultural productivity. In recent years, numerous studies have shown that nitrogen-driven growth depends on pathways that control nitrate/nitrogen homeostasis and hormonal networks that act both locally and systemically to coordinate growth and development of plant organs. In this review, we will focus on recent advances in understanding the role of the plant hormones auxin and cytokinin and their crosstalk in nitrate-regulated growth and discuss the significance of novel findings and possible missing links.
Collapse
Affiliation(s)
- Rashed Abualia
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Stefan Riegler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
44
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
45
|
Henriksson N, Marshall J, Högberg MN, Högberg P, Polle A, Franklin O, Näsholm T. Re-examining the evidence for the mother tree hypothesis - resource sharing among trees via ectomycorrhizal networks. THE NEW PHYTOLOGIST 2023. [PMID: 37149889 DOI: 10.1111/nph.18935] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/19/2023] [Indexed: 05/09/2023]
Abstract
Seminal scientific papers positing that mycorrhizal fungal networks can distribute carbon (C) among plants have stimulated a popular narrative that overstory trees, or 'mother trees', support the growth of seedlings in this way. This narrative has far-reaching implications for our understanding of forest ecology and has been controversial in the scientific community. We review the current understanding of ectomycorrhizal C metabolism and observations on forest regeneration that make the mother tree narrative debatable. We then re-examine data and conclusions from publications that underlie the mother tree hypothesis. Isotopic labeling methods are uniquely suited for studying element fluxes through ecosystems, but the complexity of mycorrhizal symbiosis, low detection limits, and small carbon discrimination in biological processes can cause researchers to make important inferences based on miniscule shifts in isotopic abundance, which can be misleading. We conclude that evidence of a significant net C transfer via common mycorrhizal networks that benefits the recipients is still lacking. Furthermore, a role for fungi as a C pipeline between trees is difficult to reconcile with any adaptive advantages for the fungi. Finally, the hypothesis is neither supported by boreal forest regeneration patterns nor consistent with the understanding of physiological mechanisms controlling mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Nils Henriksson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - John Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Mona N Högberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Peter Högberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Oskar Franklin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, A-2361, Austria
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| |
Collapse
|
46
|
Goel K, Kundu P, Sharma P, Zinta G. Thermosensitivity of pollen: a molecular perspective. PLANT CELL REPORTS 2023; 42:843-857. [PMID: 37029819 DOI: 10.1007/s00299-023-03003-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
A current trend in climate comprises adverse weather anomalies with more frequent and intense temperature events. Heatwaves are a serious threat to global food security because of the susceptibility of crop plants to high temperatures. Among various developmental stages of plants, even a slight rise in temperature during reproductive development proves detrimental, thus making sexual reproduction heat vulnerable. In this context, male gametophyte or pollen development stages are the most sensitive ones. High-temperature exposure induces pollen abortion, reducing pollen viability and germination rate with a concomitant effect on seed yield. This review summarizes the ultrastructural, morphological, biochemical, and molecular changes underpinning high temperature-induced aberrations in male gametophytes. Specifically, we highlight the temperature sensing cascade operating in pollen, involving reactive oxygen species (ROS), heat shock factors (HSFs), a hormones and transcriptional regulatory network. We also emphasize integrating various omics approaches to decipher the molecular events triggered by heat stress in pollen. The knowledge of genes, proteins, and metabolites conferring thermotolerance in reproductive tissues can be utilized to breed/engineer thermotolerant crops to ensure food security.
Collapse
Affiliation(s)
- Komal Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pravesh Kundu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Paras Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
47
|
Wang J, Guo X, Brahney J, Xu Z, Hu Y, Sheng W, Chen Y, Li M, Guo W. Growth of grasses and forbs, nutrient concentration, and microbial activity in soil treated with microbeads. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121326. [PMID: 36813096 DOI: 10.1016/j.envpol.2023.121326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics have emerged as an important threat to terrestrial ecosystems. To date, little research has been conducted on investigating the effects of microplastics on ecosystem functions and multifunctionality. In this study, we conducted the pot experiments containing five plant communities consisting of Phragmites australis, Cynanchum chinense, Setaria viridis, Glycine soja, Artemisia capillaris, Suaeda glauca, and Limonium sinense and added polyethylene (PE) and polystyrene (PS) microbeads to the soil (contained a mixture of 1.5 kg loam and 3 kg sand) at two concentrations of 0.15 g/kg (lower concentration, hereinafter referred to as PE-L and PS-L) and 0.5 g/kg (higher concentration, hereinafter referred to as PE-H and PS-H) to explore the effects of microplastics on total plant biomass, microbial activity, nutrient supply, and multifunctionality. The results showed that PS-L significantly decreased the total plant biomass (p = 0.034), primarily by inhibiting the growth of the roots. β-glucosaminidase decreased with PS-L, PS-H, and PE-L (p < 0.001) while the phosphatase was noticeably augmented (p < 0.001). The observation suggests that the microplastics diminished the nitrogen requirements and increased the phosphorus requirements of the microbes. The decrease in β-glucosaminidase diminished ammonium content (p < 0.001). Moreover, PS-L, PS-H, and PE-H reduced the soil total nitrogen content (p < 0.001), and only PS-H considerably reduced the soil total phosphorus content (p < 0.001), affecting the ratio of N/P markedly (p = 0.024). Of interest, the impacts of microplastics on total plant biomass, β-glucosaminidase, phosphatase, and ammonium content did not become larger at the higher concentration, and it is observable that microplastics conspicuously depressed the ecosystem multifunctionality, as microplastics depreciated single functions such as total plant biomass, β-glucosaminidase, and nutrient supply. In perspective, measures to counteract this new pollutant and eliminate its impact on ecosystem functions and multifunctionality are necessary.
Collapse
Affiliation(s)
- Jingfeng Wang
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Janice Brahney
- Watershed Sciences and Ecology Center, Utah State University, 5210 Old Main Hill, Logan, UT, 84322, USA
| | - Zhenwei Xu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Yi Hu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Wenyi Sheng
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Yanni Chen
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mingyan Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
48
|
Maillard F, Kohler A, Morin E, Hossann C, Miyauchi S, Ziegler-Devin I, Gérant D, Angeli N, Lipzen A, Keymanesh K, Johnson J, Barry K, Grigoriev IV, Martin FM, Buée M. Functional genomics gives new insights into the ectomycorrhizal degradation of chitin. THE NEW PHYTOLOGIST 2023; 238:845-858. [PMID: 36702619 DOI: 10.1111/nph.18773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Ectomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire 15 N from 15 N-chitin. In addition, we combined genomics and transcriptomics to identify pathways involved in exogenous chitin degradation between these fungal strains. Boletus edulis, Imleria badia, Suillus luteus, and Hebeloma cylindrosporum efficiently mobilized N from exogenous chitin. EcM genomes primarily contained genes encoding for the direct hydrolysis of chitin. Further, we found a significant relationship between the capacity of EcM fungi to assimilate organic N from chitin and their genomic and transcriptomic potentials for chitin degradation. These findings demonstrate that certain EcM fungal species depolymerize chitin using hydrolytic mechanisms and that endochitinases, but not exochitinases, represent the enzymatic bottleneck of chitin degradation. Finally, this study shows that the degradation of exogenous chitin by EcM fungi might be a key functional trait of nutrient cycling in forests dominated by EcM fungi.
Collapse
Affiliation(s)
- François Maillard
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Christian Hossann
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Silvatech, F-54000, Nancy, France
| | - Shingo Miyauchi
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | | | - Dominique Gérant
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Nicolas Angeli
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Silvatech, F-54000, Nancy, France
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| |
Collapse
|
49
|
Zhang D, Li J, Li X, Wang M, Zhong Y, Chen G, Xiao H, Zhang Y. Phytoremediation of fluoroalkylethers (ether-PFASs): A review on bioaccumulation and ecotoxilogical effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161260. [PMID: 36587702 DOI: 10.1016/j.scitotenv.2022.161260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Fluoroalkylethers (ether-PFASs), as alternatives to phased-out per- and perfluoroalkyl substances (PFASs), have attracted mounting attention due to their ubiquitous detection in aquatic environment and their similarity to legacy PFASs in terms of persistence and toxicity. In this review, the sources and distribution of ether-PFASs in soil ecosystem as well as their toxic impacts on soil microbial community are summarized. The plant uptake and bioaccumulation potential of ether-PFASs are presented, and a wide range of the influencing factors for their uptake and translocation is discussed. In response to ether-PFASs, the corresponding phytotoxic effects, such as seed germination, plant growth, photosynthesis, oxidative damage, antioxidant enzymes activities, and genotoxicity, are systematically elucidated. Finally, the current knowledge gaps and future research prospective are highlighted. The findings of this review will advance our understanding for the environmental behavior and implications ether-PFASs in soil-plant systems and help explore the strategies for ether-PFASs remediation to minimize their adverse toxicity.
Collapse
Affiliation(s)
- Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xia Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Mo Wang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China.
| | - Yongming Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Gaolin Chen
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hongyu Xiao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yu Zhang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
50
|
Cascone P, Vuts J, Birkett MA, Dewhirst S, Rasmann S, Pickett JA, Guerrieri E. L-DOPA functions as a plant pheromone for belowground anti-herbivory communication. Ecol Lett 2023; 26:460-469. [PMID: 36708055 DOI: 10.1111/ele.14164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/29/2023]
Abstract
While mechanisms of plant-plant communication for alerting neighbouring plants of an imminent insect herbivore attack have been described aboveground via the production of volatile organic compounds (VOCs), we are yet to decipher the specific components of plant-plant signalling belowground. Using bioassay-guided fractionation, we isolated and identified the non-protein amino acid l-DOPA, released from roots of Acyrtosiphon pisum aphid-infested Vicia faba plants, as an active compound in triggering the production of VOCs released aboveground in uninfested plants. In behavioural assays, we show that after contact with l-DOPA, healthy plants become highly attractive to the aphid parasitoid (Aphidius ervi), as if they were infested by aphids. We conclude that l-DOPA, originally described as a brain neurotransmitter precursor, can also enhance immunity in plants.
Collapse
Affiliation(s)
- Pasquale Cascone
- Institute for Sustainable Plant Protection, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Jozsef Vuts
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, UK
| | - Michael A Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, UK
| | | | - Sergio Rasmann
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | | | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, Consiglio Nazionale delle Ricerche, Naples, Italy
- Institute for Sustainable Plant Protection, Consiglio Nazionale delle Ricerche, Torino, Italy
| |
Collapse
|