1
|
Chaudron Z, Nicolas-Francès V, Pichereaux C, Hichami S, Rosnoblet C, Besson-Bard A, Wendehenne D. Nitric oxide production and protein S-nitrosation in algae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112472. [PMID: 40107518 DOI: 10.1016/j.plantsci.2025.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Key roles for nitric oxide in signalling processes and plant physiological processes are now well established. In particular, the identification and functional characterisation of proteins regulated by S-nitrosation, a NO-dependent post-translational modification, provided remarkable insights into the subtle mechanisms by which NO mediates its effects. Nevertheless, and despite the considerable progress in understanding NO signalling, the question of how plant cells produce NO is not yet fully resolved. Interestingly, there is now compelling evidence that algae constitute promising biological models to investigate NO production and functions in plants. This article reviews recent highlights of research on NO production in algae and provides an overview of S-nitrosation in these organisms at the proteome level.
Collapse
Affiliation(s)
- Zoé Chaudron
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France
| | | | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (FRAIB), CNRS, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - Siham Hichami
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France
| | - Claire Rosnoblet
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France
| | - Angelique Besson-Bard
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France.
| | - David Wendehenne
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France
| |
Collapse
|
2
|
Demecsová L, Liptáková Ľ, Valentovičová K, Zelinová V, Tamás L. Inhibition of flavohemeproteins enhances the emission and level of nitric oxide in barley root tips. PROTOPLASMA 2025:10.1007/s00709-025-02058-w. [PMID: 40167809 DOI: 10.1007/s00709-025-02058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
In this study, using a pharmaceutical approach, we analyzed the NO accumulation and emission from the root tips of barley seedlings and the possible mechanisms of NO catabolism. Application of flavohemeprotein inhibitors, such as azide, cyanide, diphenyleneiodonium and dicumarol, an inhibitor of the plasma membrane electron transport chain, increased the NO level in root tissue and stimulated the NO emission from root tip cells. It can be concluded that barley root tips generate and, at the same time, consume a considerable amount of NO, probably by the plasma membrane flavohemeproteins. This high NO-consuming activity of barley root tips efficiently degraded even the externally applied high concentrations of NO without marked root growth inhibition. These results suggest that the root tip cells NO consumption activity plays an important role in the regulation of NO level in barley root tips.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic
| | - Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic
| | - Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Bykova NV, Igamberdiev AU. Redox Control of Seed Germination is Mediated by the Crosstalk of Nitric Oxide and Reactive Oxygen Species. Antioxid Redox Signal 2025; 42:442-461. [PMID: 39602281 DOI: 10.1089/ars.2024.0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Significance: Seed germination and seedling establishment are characterized by changes in the intracellular redox state modulated by accelerated production of nitric oxide (NO) and reactive oxygen species (ROS). Redox regulation and enhanced accumulation of NO and ROS, approaching excessively high levels during seed imbibition, are critically important for breaking endodormancy and inducing germination. Recent Advances: Upon depletion of oxygen under the seed coat, NO is produced anaerobically in the reductive pathway associated mainly with mitochondria, and it participates in the energy metabolism of the seed until radicle protrusion. NO turnover involves nitrate reduction to nitrite in the cytosol, nitrite reduction to NO in mitochondria, and NO oxygenation in the cytosol in the reaction involving the hypoxically induced class 1 phytoglobin. In postgerminative degradation of seed tissues, NO and ROS are involved in redox signaling via post-translational modification of proteins and mediation of phytohormonal responses. Critical Issues: The crosstalk between the cellular redox potential, NO, ROS, and phytohormones integrates major physiological processes related to seed germination. Intensive accumulation of NO and ROS during imbibition is critically important for breaking seed dormancy. Upon oxygen depletion, NO and other nitrous oxides (NOx) are produced anaerobically and support energy metabolism prior to radicle protrusion. Future Directions: The turnover of NOx and ROS is determined by the intracellular redox balance, and it self-controls redox and energy levels upon germination. The particular details, regulation of this process, and its physiological significance remain to be established. Antioxid. Redox Signal. 42, 442-461.
Collapse
Affiliation(s)
- Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
4
|
Berger A, Pérez-Valera E, Blouin M, Breuil MC, Butterbach-Bahl K, Dannenmann M, Besson-Bard A, Jeandroz S, Valls J, Spor A, Subramaniam L, Pétriacq P, Wendehenne D, Philippot L. Microbiota responses to mutations affecting NO homeostasis in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 244:2008-2023. [PMID: 39329426 DOI: 10.1111/nph.20159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Interactions between plants and microorganisms are pivotal for plant growth and productivity. Several plant molecular mechanisms that shape these microbial communities have been identified. However, the importance of nitric oxide (NO) produced by plants for the associated microbiota remains elusive. Using Arabidopsis thaliana isogenic mutants overproducing NO (nox1, NO overexpression) or down-producing NO (i.e. nia1nia2 impaired in the expression of both nitrate reductases NR1/NIA1 and NR2/NIA2; the 35s::GSNOR1 line overexpressing nitrosoglutathione reductase (GSNOR) and 35s::AHB1 line overexpressing haemoglobin 1 (AHB1)), we investigated how altered NO homeostasis affects microbial communities in the rhizosphere and in the roots, soil microbial activity and soil metabolites. We show that the rhizosphere microbiome was affected by the mutant genotypes, with the nox1 and nia1nia2 mutants causing opposite shifts in bacterial and fungal communities compared with the wild-type (WT) Col-0 in the rhizosphere and roots, respectively. These mutants also exhibited distinctive soil metabolite profiles than those from the other genotypes while soil microbial activity did not differ between the mutants and the WT Col-0. Our findings support our hypothesis that changes in NO production by plants can influence the plant microbiome composition with differential effects between fungal and bacterial communities.
Collapse
Affiliation(s)
- Antoine Berger
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Eduardo Pérez-Valera
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Manuel Blouin
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | | | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
- Land-CRAFT, Department of Agroecology, University of Aarhus, 8000, Aarhus, Denmark
| | - Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Angélique Besson-Bard
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Sylvain Jeandroz
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Josep Valls
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Aymé Spor
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Logapragasan Subramaniam
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - David Wendehenne
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Laurent Philippot
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| |
Collapse
|
5
|
Wei L, Zhong Y, Wu X, Wei S, Liu Y. Roles of Nitric Oxide and Brassinosteroid in Improving Fruit Quality during Postharvest: Potential Regulators? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23671-23688. [PMID: 39406695 DOI: 10.1021/acs.jafc.4c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Most postharvest fruits are highly perishable, which directly impairs fruit taste and causes an economic loss of fresh products. Thus, it is necessary to find effective techniques to alleviate this issue. Recently, nitric oxide (NO) and brassinosteroid (BR) have been developed as postharvest alternatives to improve fruit quality. This work mainly reviews the recent processes of NO and BR in improving fruit quality during postharvest. Exogenous NO or BR treatments delayed fruit senescence, enhanced disease resistance, and alleviated chilling injury in postharvest fruit, and potential physiological and biochemical mechanisms mainly include (1) enhancing antioxidant and defense ability, (2) affecting ethylene biosynthesis, (3) regulating sugar and energy metabolism, (4) mediating plant hormone signaling, and (5) regulating protein S-nitrosylation and DNA methylation. This review concludes the functions and mechanisms of NO and BR in improving postharvest fruit quality. Additionally, a specific finding is the possible crosstalk of applications of NO and BR during postharvest fruit storage, which provides new insights into the applicability of NO and BR for delaying fruit senescence, enhancing disease resistances of fruit, and alleviating chilling injury in postharvest fruit.
Collapse
Affiliation(s)
- Lijuan Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yue Zhong
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yiqing Liu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
6
|
Singh P, Jaiswal S, Tripathi DK, Singh VP. Nitric oxide acts upstream of indole-3-acetic acid in ameliorating arsenate stress in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108461. [PMID: 38461754 DOI: 10.1016/j.plaphy.2024.108461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
After their discovery, nitric oxide (NO) and indole-3-acetic acid (IAA) have been reported as game-changing cellular messengers for reducing abiotic stresses in plants. But, information regarding their shared signaling in regulating metal stress is still unclear. Herein, we have investigated about the joint role of NO and IAA in mitigation of arsenate [As(V)] toxicity in tomato seedlings. Arsenate being a toxic metalloid increases the NPQ level and cell death while decreasing the biomass accumulation, photosynthetic pigments, chlorophyll a fluorescence, endogenous NO content in tomato seedlings. However, application of IAA or SNP to the As(V) stressed seedlings improved growth together with less accumulation of arsenic and thus, preventing cell death. Interestingly, addition of c-PTIO, {2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide, a scavenger of NO} and 2, 3, 5-triidobenzoic acid (TIBA, an inhibitor of polar auxin transport) further increased cell death and inhibited activity of GST, leading to As(V) toxicity. However, addition of IAA to SNP and TIBA treated seedlings reversed the effect of TIBA resulting into decreased As(V) toxicity. These findings demonstrate that IAA plays a crucial and advantageous function in NO-mediated reduction of As(V) toxicity in seedlings of tomato. Overall, this study concluded that IAA might be acting as a downstream signal for NO-mediated reduction of As(V) toxicity in tomato seedlings.
Collapse
Affiliation(s)
- Pooja Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
7
|
Wei L, Liao W, Zhong Y, Tian Y, Wei S, Liu Y. NO-mediated protein S-nitrosylation under salt stress: Role and mechanism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111927. [PMID: 37984610 DOI: 10.1016/j.plantsci.2023.111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Salt stress is one of the major environmental stressors that remarkably hinders the processes of plant growth and development, thereby limiting crop productivity. An understanding of the molecular mechanisms underlying plant responses against salinity stimulus will help guide the rational design of crop plants to counter these challenges. Nitric oxide (NO) is a redox-related signaling molecule regulating diverse biological processes in plant. Accumulating evidences indicated NO exert its biological functions through posttranslational modification of proteins, notably via S-nitrosylation. During the past decade, the roles of S-nitrosylation as a regulator of plant and S-nitrosylated candidates have also been established and detected. Emerging evidence indicated that protein S-nitrosylation is ubiquitously involved in the regulation of plant response to salt stress. However, little is known about this pivotal molecular amendment in the regulation of salt stress response. Here, we describe current understanding on the regulatory mechanisms of protein S-nitrosylation in response to salt stress in plants and highlight key challenges in this field.
Collapse
Affiliation(s)
- Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yue Zhong
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Ye Tian
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
8
|
Napieraj N, Janicka M, Augustyniak B, Reda M. Exogenous Putrescine Modulates Nitrate Reductase-Dependent NO Production in Cucumber Seedlings Subjected to Salt Stress. Metabolites 2023; 13:1030. [PMID: 37755310 PMCID: PMC10535175 DOI: 10.3390/metabo13091030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Polyamines (PAs) are small aliphatic compounds that participate in the plant response to abiotic stresses. They also participate in nitric oxide (NO) production in plants; however, their role in this process remains unknown. Therefore, the study aimed to investigate the role of putrescine (Put) in NO production in the roots of cucumber seedlings subjected to salt stress (120 mM NaCl) for 1 and 24 h. In salinity, exogenous Put can regulate NO levels by managing NO biosynthesis pathways in a time-dependent manner. In cucumber roots exposed to 1 h of salinity, exogenous Put reduced NO level by decreasing nitrate reductase (NR)-dependent NO production and reduced nitric oxide synthase-like (NOS-like) activity. In contrast, during a 24 h salinity exposure, Put treatment boosted NO levels, counteracting the inhibitory effect of salinity on the NR and plasma membrane nitrate reductase (PM-NR) activity in cucumber roots. The role of endogenous Put in salt-induced NO generation was confirmed using Put biosynthesis inhibitors. Furthermore, the application of Put can modulate the NR activity at the genetic and post-translational levels. After 1 h of salt stress, exogenous Put upregulated CsNR1 and CsNR2 expression and downregulated CsNR3 expression. Put also decreased the NR activation state, indicating a reduction in the level of active dephosphorylated NR (dpNR) in the total enzyme pool. Conversely, in the roots of plants subjected to 24 h of salinity, exogenous Put enhanced the NR activation state, indicating an enhancement of the dpNR form in the total NR pool. These changes were accompanied by a modification of endogenous PA content. Application of exogenous Put led to an increase in the amount of Put in the roots and reduced endogenous spermine (Spm) content in cucumber roots under 24 h salinity. The regulatory role of exogenous Put on NO biosynthesis pathways may link with plant mechanisms of response to salt stress.
Collapse
Affiliation(s)
- Natalia Napieraj
- Department of Plant Molecular Physiology, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (N.N.); (M.J.)
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (N.N.); (M.J.)
| | - Beata Augustyniak
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland;
| | - Małgorzata Reda
- Department of Plant Molecular Physiology, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (N.N.); (M.J.)
| |
Collapse
|
9
|
Vlasova V, Lapina T, Statinov V, Ermilova E. N-Acetyl-L-glutamate Kinase of Chlamydomonas reinhardtii: In Vivo Regulation by PII Protein and Beyond. Int J Mol Sci 2023; 24:12873. [PMID: 37629055 PMCID: PMC10454706 DOI: 10.3390/ijms241612873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
N-Acetyl-L-glutamate kinase (NAGK) catalyzes the rate-limiting step in the ornithine/arginine biosynthesis pathway in eukaryotic and bacterial oxygenic phototrophs. NAGK is the most highly conserved target of the PII signal transduction protein in Cyanobacteria and Archaeplastida (red algae and Chlorophyta). However, there is still much to be learned about how NAGK is regulated in vivo. The use of unicellular green alga Chlamydomonas reinhardtii as a model system has already been instrumental in identifying several key regulation mechanisms that control nitrogen (N) metabolism. With a combination of molecular-genetic and biochemical approaches, we show the existence of the complex CrNAGK control at the transcriptional level, which is dependent on N source and N availability. In growing cells, CrNAGK requires CrPII to properly sense the feedback inhibitor arginine. Moreover, we provide primary evidence that CrPII is only partly responsible for regulating CrNAGK activity to adapt to changing nutritional conditions. Collectively, our results suggest that in vivo CrNAGK is tuned at the transcriptional and post-translational levels, and CrPII and additional as yet unknown factor(s) are integral parts of this regulation.
Collapse
Affiliation(s)
| | | | | | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (V.V.); (T.L.); (V.S.)
| |
Collapse
|
10
|
Abada A, Beiralas R, Narvaez D, Sperfeld M, Duchin-Rapp Y, Lipsman V, Yuda L, Cohen B, Carmieli R, Ben-Dor S, Rocha J, Huang Zhang I, Babbin AR, Segev E. Aerobic bacteria produce nitric oxide via denitrification and promote algal population collapse. THE ISME JOURNAL 2023:10.1038/s41396-023-01427-8. [PMID: 37173383 DOI: 10.1038/s41396-023-01427-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Microbial interactions govern marine biogeochemistry. These interactions are generally considered to rely on exchange of organic molecules. Here we report on a novel inorganic route of microbial communication, showing that algal-bacterial interactions between Phaeobacter inhibens bacteria and Gephyrocapsa huxleyi algae are mediated through inorganic nitrogen exchange. Under oxygen-rich conditions, aerobic bacteria reduce algal-secreted nitrite to nitric oxide (NO) through denitrification, a well-studied anaerobic respiratory mechanism. The bacterial NO is involved in triggering a cascade in algae akin to programmed cell death. During death, algae further generate NO, thereby propagating the signal in the algal population. Eventually, the algal population collapses, similar to the sudden demise of oceanic algal blooms. Our study suggests that the exchange of inorganic nitrogen species in oxygenated environments is a potentially significant route of microbial communication within and across kingdoms.
Collapse
Affiliation(s)
- Adi Abada
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Roni Beiralas
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Delia Narvaez
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Martin Sperfeld
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yemima Duchin-Rapp
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Valeria Lipsman
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Yuda
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Bar Cohen
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Raanan Carmieli
- Depertment of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Science Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Jorge Rocha
- CIDEA Consortium Conacyt-Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Irene Huang Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Einat Segev
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Lee J, Chen H, Lee G, Emonet A, Kim S, Shim D, Lee Y. MSD2-mediated ROS metabolism fine-tunes the timing of floral organ abscission in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:2466-2480. [PMID: 35689444 PMCID: PMC9543660 DOI: 10.1111/nph.18303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 06/14/2023]
Abstract
The timely removal of end-of-purpose flowering organs is as essential for reproduction and plant survival as timely flowering. Despite much progress in understanding the molecular mechanisms of floral organ abscission, little is known about how various environmental factors are integrated into developmental programmes that determine the timing of abscission. Here, we investigated whether reactive oxygen species (ROS), mediators of various stress-related signalling pathways, are involved in determining the timing of abscission and, if so, how they are integrated with the developmental pathway in Arabidopsis thaliana. MSD2, encoding a secretory manganese superoxide dismutase, was preferentially expressed in the abscission zone of flowers, and floral organ abscission was accelerated by the accumulation of ROS in msd2 mutants. The expression of the genes encoding the receptor-like kinase HAESA (HAE) and its cognate peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), the key signalling components of abscission, was accelerated in msd2 mutants, suggesting that MSD2 acts upstream of IDA-HAE. Further transcriptome and pharmacological analyses revealed that abscisic acid and nitric oxide facilitate abscission by regulating the expression of IDA and HAE during MSD2-mediated signalling. These results suggest that MSD2-dependent ROS metabolism is an important regulatory point integrating environmental stimuli into the developmental programme leading to abscission.
Collapse
Affiliation(s)
- Jinsu Lee
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
| | - Huize Chen
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response in Shanxi ProvinceShanxi Normal UniversityTaiyuan030000ShanxiChina
| | - Gisuk Lee
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Aurélia Emonet
- Department of Plant Molecular BiologyUniversity of Lausanne1015LausanneSwitzerland
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Donghwan Shim
- Department of Biological SciencesChungnam National UniversityDaejeon34134Korea
| | - Yuree Lee
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
- School of Biological SciencesSeoul National UniversitySeoul08826Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826Korea
| |
Collapse
|
12
|
The Role of Nitric Oxide in Plant Responses to Salt Stress. Int J Mol Sci 2022; 23:ijms23116167. [PMID: 35682856 PMCID: PMC9181674 DOI: 10.3390/ijms23116167] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The gas nitric oxide (NO) plays an important role in several biological processes in plants, including growth, development, and biotic/abiotic stress responses. Salinity has received increasing attention from scientists as an abiotic stressor that can seriously harm plant growth and crop yields. Under saline conditions, plants produce NO, which can alleviate salt-induced damage. Here, we summarize NO synthesis during salt stress and describe how NO is involved in alleviating salt stress effects through different strategies, including interactions with various other signaling molecules and plant hormones. Finally, future directions for research on the role of NO in plant salt tolerance are discussed. This summary will serve as a reference for researchers studying NO in plants.
Collapse
|
13
|
Lapina T, Statinov V, Puzanskiy R, Ermilova E. Arginine-Dependent Nitric Oxide Generation and S-Nitrosation in the Non-Photosynthetic Unicellular Alga Polytomella parva. Antioxidants (Basel) 2022; 11:antiox11050949. [PMID: 35624813 PMCID: PMC9138000 DOI: 10.3390/antiox11050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO) acts as a key signaling molecule in higher plants, regulating many physiological processes. Several photosynthetic algae from different lineages are also known to produce NO. However, it remains unclear whether this messenger is produced by non-photosynthetic algae. Among these organisms, the colorless alga Polytomella parva is a special case, as it has lost not only its plastid genome, but also nitrate reductase and nitrite reductase. Up to now, the question of whether NO synthesis occurs in the absence of functional nitrate reductase (NR) and the assimilation of nitrates/nitrites in P. parva has not been elucidated. Using spectrofluorometric assays and confocal microscopy with NO-sensitive fluorescence dye, we demonstrate L-arginine-dependent NO synthesis by P. parva cells. Based on a pharmacological approach, we propose the existence of arginine-dependent NO synthase-like activity in this non-photosynthetic alga. GC-MS analysis provides primary evidence that P. parva synthesizes putrescine, which is not an NO source in this alga. Moreover, the generated NO causes the S-nitrosation of protein cysteine thiol groups. Together, our data argue for NR-independent NO synthesis and its active role in S-nitrosation as an essential post-translational modification in P. parva.
Collapse
Affiliation(s)
- Tatiana Lapina
- Biological Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (T.L.); (V.S.); (R.P.)
| | - Vladislav Statinov
- Biological Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (T.L.); (V.S.); (R.P.)
| | - Roman Puzanskiy
- Biological Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (T.L.); (V.S.); (R.P.)
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (T.L.); (V.S.); (R.P.)
- Correspondence:
| |
Collapse
|
14
|
Perlikowski D, Lechowicz K, Pawłowicz I, Arasimowicz-Jelonek M, Kosmala A. Scavenging of nitric oxide up-regulates photosynthesis under drought in Festuca arundinacea and F. glaucescens but reduces their drought tolerance. Sci Rep 2022; 12:6500. [PMID: 35444199 PMCID: PMC9021232 DOI: 10.1038/s41598-022-10299-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) has been proven to be involved in the regulation of many physiological processes in plants. Though the contribution of NO in plant response to drought has been demonstrated in numerous studies, this phenomenon remains still not fully recognized. The research presented here was performed to decipher the role of NO metabolism in drought tolerance and the ability to recover after stress cessation in two closely related species of forage grasses, important for agriculture in European temperate regions: Festuca arundinacea and F. glaucescens. In both species, two genotypes with distinct levels of drought tolerance were selected to compare their physiological reactions to simulated water deficit and further re-watering, combined with a simultaneous application of NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The results clearly indicated a strong relationship between scavenging of NO in leaves and physiological response of both analyzed grass species to water deficit and re-watering. It was revealed that NO generated under drought was mainly located in mesophyll cells. In plants with reduced NO level a higher photosynthetic capacity and delay in stomatal closure under drought, were observed. Moreover, NO scavenging resulted also in the increased membrane permeability and higher accumulation of ROS in cells of analyzed plants both under drought and re-watering. This phenomena indicate that lower NO level might reduce drought tolerance and the ability of F. arundinacea and F. glaucescens to recover after stress cessation.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Plant Physiology Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland.
| | - Katarzyna Lechowicz
- Plant Physiology Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Izabela Pawłowicz
- Plant Physiology Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Arkadiusz Kosmala
- Plant Physiology Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| |
Collapse
|
15
|
Gupta KJ, Kaladhar VC, Fitzpatrick TB, Fernie AR, Møller IM, Loake GJ. Nitric oxide regulation of plant metabolism. MOLECULAR PLANT 2022; 15:228-242. [PMID: 34971792 DOI: 10.1016/j.molp.2021.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/31/2021] [Accepted: 12/23/2021] [Indexed: 05/17/2023]
Abstract
Nitric oxide (NO) has emerged as an important signal molecule in plants, having myriad roles in plant development. In addition, NO also orchestrates both biotic and abiotic stress responses, during which intensive cellular metabolic reprogramming occurs. Integral to these responses is the location of NO biosynthetic and scavenging pathways in diverse cellular compartments, enabling plants to effectively organize signal transduction pathways. NO regulates plant metabolism and, in turn, metabolic pathways reciprocally regulate NO accumulation and function. Thus, these diverse cellular processes are inextricably linked. This review addresses the numerous redox pathways, located in the various subcellular compartments that produce NO, in addition to the mechanisms underpinning NO scavenging. We focus on how this molecular dance is integrated into the metabolic state of the cell. Within this context, a reciprocal relationship between NO accumulation and metabolite production is often apparent. We also showcase cellular pathways, including those associated with nitrate reduction, that provide evidence for this integration of NO function and metabolism. Finally, we discuss the potential importance of the biochemical reactions governing NO levels in determining plant responses to a changing environment.
Collapse
Affiliation(s)
- Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067 India.
| | - Vemula Chandra Kaladhar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067 India
| | - Teresa B Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Geneva 1211 Switzerland
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476 Germany
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
16
|
Ciacka K, Tyminski M, Gniazdowska A, Krasuska U. Nitric Oxide as a Remedy against Oxidative Damages in Apple Seeds Undergoing Accelerated Ageing. Antioxidants (Basel) 2021; 11:antiox11010070. [PMID: 35052574 PMCID: PMC8772863 DOI: 10.3390/antiox11010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/02/2022] Open
Abstract
Seed ageing is associated with a high concentration of reactive oxygen species (ROS). Apple (Malus domestica Borkh.) seeds belong to the orthodox type. Due to a deep dormancy, they may be stored in dry condition at 5 °C for a long time, without viability loss. In the laboratory, artificial ageing of apple seeds is performed by imbibition in wet sand at warm temperature (33 °C). The aim of the work was to study nitric oxide (NO) as a seed vigour preservation agent. Embryos isolated from apple seeds subjected to accelerated ageing for 7, 14, 21 or 40 days were fumigated with NO. Embryo quality was estimated by TTC and MDA tests. ROS level was confirmed by NBT staining. We analysed the alteration in transcript levels of CAT, SOD and POX. NO fumigation of embryos of seeds aged for 21 days stimulated germination and increased ROS level which correlated to the elevated expression of RBOH. The increased total antioxidant capacity after NO fumigation was accompanied by the increased transcript levels of genes encoding enzymatic antioxidants, that could protect against ROS overaccumulation. Moreover, post-aged NO application diminished the nitro-oxidative modification of RNA, proving NO action as a remedy in oxidative remodelling after seeds ageing.
Collapse
|
17
|
Liu Y, Zhang H. Reactive oxygen species and nitric oxide as mediators in plant hypersensitive response and stomatal closure. PLANT SIGNALING & BEHAVIOR 2021; 16:1985860. [PMID: 34668846 PMCID: PMC9208772 DOI: 10.1080/15592324.2021.1985860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/31/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) have attracted considerable interest from plant pathologists since they regulate plant defenses via the hypersensitive response (HR) and stomatal closure. Here, we introduce the regulatory mechanisms of NO and ROS bursts and discuss the role of such bursts in HR and stomatal closure. It showed that epidermal sections of leaves respond to pathogens by the rapid and intense production of intracellular ROS and NO. Oxidative stress and H2O2 induce stomatal closure. Catalase and peroxidase-deficient plants are also hyperresponsive to pathogen invasion, suggesting a role for H2O2 in HR-mediated cell death. The analysis reveals that ROS and NO play important roles in stomatal closure and HR that involves multiple pathways. Therefore, multi-disciplinary and multi-omics combined analysis is crucial to the advancement of ROS and NO research and their role in plant defense mechanism.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| |
Collapse
|
18
|
Liu L, Huang L, Sun C, Wang L, Jin C, Lin X. Cross-Talk between Hydrogen Peroxide and Nitric Oxide during Plant Development and Responses to Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9485-9497. [PMID: 34428901 DOI: 10.1021/acs.jafc.1c01605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen peroxide (H2O2) are gradually becoming established as critical regulators in plants under physiological and stressful conditions. Strong spatiotemporal correlations in their production and distribution have been identified in various plant biological processes. In this context, NO and H2O2 act synergistically or antagonistically as signals or stress promoters depending on their respective concentrations, engaging in processes such as the hypersensitive response, stomatal movement, and abiotic stress responses. Moreover, proteins identified as potential targets of NO-based modifications include a number of enzymes related to H2O2 metabolism, reinforcing their cross-talk. In this review, several processes of well-characterized functional interplay between H2O2 and NO are discussed with respect to the most recent reported evidence on hypersensitive response-induced programmed cell death, stomatal movement, and plant responses to adverse conditions and, where known, the molecular mechanisms and factors underpinning their cross-talk.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lin Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luxuan Wang
- Department of Agriculture and Environment, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Casaretto E, Signorelli S, Gallino JP, Vidal S, Borsani O. Endogenous • NO accumulation in soybean is associated with initial stomatal response to water deficit. PHYSIOLOGIA PLANTARUM 2021; 172:564-576. [PMID: 33159328 DOI: 10.1111/ppl.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
Drought is the main cause of productivity losses in soybean plants, triggering physiological and biochemical responses, stomatal closure being essential to prevent water losses and thus mitigate the negative effects of drought. Abscisic acid (ABA) is the main molecule involved in stomatal closure under drought conditions along with nitric oxide (• NO). However, the role of • NO in this process is not yet fully understood and contrasting findings about its role have been reported. Most of the assays in the literature have been carried out under in vitro conditions using • NO donors or scavengers, but little is known about the effects of endogenously produced • NO under drought conditions. This study is aimed to determine the pattern of endogenous • NO accumulation from the establishment of water stress and how this relates to stomatal closure and other biochemical and physiological responses. The analysis of soybean plant responses to drought revealed no correlation between whole-leaf • NO accumulation and typical water-deficit stress markers. Moreover, • NO accumulation did not explain oxidative damage induced by drought. However, endogenous • NO content correlated with the early stomatal closure. Analysis of stomatal behavior and endogenous • NO content in guard cells through epidermal peel technique showed a stomatal population with high variation in stomatal opening and • NO content under the initial stages of water stress, even when ABA responses are activated. Our data suggest that upon early stress perception, soybean plants respond by accumulating • NO in the guard cells to inhibit stomatal closure, potentially through the inhibition of ABA responses.
Collapse
Affiliation(s)
- Esteban Casaretto
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Signorelli
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Juan P Gallino
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Omar Borsani
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
20
|
Quamruzzaman M, Manik SMN, Shabala S, Zhou M. Improving Performance of Salt-Grown Crops by Exogenous Application of Plant Growth Regulators. Biomolecules 2021; 11:788. [PMID: 34073871 PMCID: PMC8225067 DOI: 10.3390/biom11060788] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022] Open
Abstract
Soil salinity is one of the major abiotic stresses restricting plant growth and development. Application of plant growth regulators (PGRs) is a possible practical means for minimizing salinity-induced yield losses, and can be used in addition to or as an alternative to crop breeding for enhancing salinity tolerance. The PGRs auxin, cytokinin, nitric oxide, brassinosteroid, gibberellin, salicylic acid, abscisic acid, jasmonate, and ethylene have been advocated for practical use to improve crop performance and yield under saline conditions. This review summarizes the current knowledge of the effectiveness of various PGRs in ameliorating the detrimental effects of salinity on plant growth and development, and elucidates the physiological and genetic mechanisms underlying this process by linking PGRs with their downstream targets and signal transduction pathways. It is shown that, while each of these PGRs possesses an ability to alter plant ionic and redox homeostasis, the complexity of interactions between various PGRs and their involvement in numerous signaling pathways makes it difficult to establish an unequivocal causal link between PGRs and their downstream effectors mediating plants' adaptation to salinity. The beneficial effects of PGRs are also strongly dependent on genotype, the timing of application, and the concentration used. The action spectrum of PGRs is also strongly dependent on salinity levels. Taken together, this results in a rather narrow "window" in which the beneficial effects of PGR are observed, hence limiting their practical application (especially under field conditions). It is concluded that, in the light of the above complexity, and also in the context of the cost-benefit analysis, crop breeding for salinity tolerance remains a more reliable avenue for minimizing the impact of salinity on plant growth and yield. Further progress in the field requires more studies on the underlying cell-based mechanisms of interaction between PGRs and membrane transporters mediating plant ion homeostasis.
Collapse
Affiliation(s)
- Md. Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
| | - S. M. Nuruzzaman Manik
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
21
|
Singh S, Husain T, Kushwaha BK, Suhel M, Fatima A, Mishra V, Singh SK, Bhatt JA, Rai M, Prasad SM, Dubey NK, Chauhan DK, Tripathi DK, Fotopoulos V, Singh VP. Regulation of ascorbate-glutathione cycle by exogenous nitric oxide and hydrogen peroxide in soybean roots under arsenate stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:123686. [PMID: 33549357 DOI: 10.1016/j.jhazmat.2020.123686] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 05/03/2023]
Abstract
The role of nitric oxide (NO) and hydrogen peroxide (H2O2) is well known for regulating plant abiotic stress responses. However, underlying mechanisms are still poorly understood. Therefore, the present study investigated the involvement of NO and H2O2 signalling in the regulation of arsenate toxicity (AsV) in soybean roots employing a pharmacological approach. Results show that AsV toxicity declined root length and biomass due to greater As accumulation in the cell wall and cellular organelles. Arsenate induced cell death due to enhanced levels of reactive oxygen species, lipid and protein oxidation and down-regulation in ascorbate-glutathione cycle and redox states of ascorbate and glutathione. These results correlate with lower endogenous level of NO. Interestingly, addition of L-NAME increased AsV toxicity. However, addition of SNP reverses effect of L-NAME, suggesting that endogenous NO has a role in mitigating AsV toxicity. Exogenous H2O2 also demonstrated capability of alleviating AsV stress, while NAC reversed the protective effect of H2O2. Furthermore, DPI application further increased AsV toxicity, suggesting that endogenous H2O2 is also implicated in mitigating AsV stress. SNP was not able to mitigate AsV toxicity in the presence of DPI, suggesting that H2O2 might have acted downstream of NO in accomplishing amelioration of AsV toxicity.
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India; CAS in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Tajammul Husain
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Bishwajit Kumar Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Mohd Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Abreeq Fatima
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Sani Kumar Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Javaid Akhtar Bhatt
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Meena Rai
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Nawal Kishore Dubey
- CAS in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida, 201313, India.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
22
|
Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO), once regarded as a poisonous air pollutant, is now understood as a regulatory molecule essential for several biological functions in plants. In this review, we summarize NO generation in different plant organs and cellular compartments, and also discuss the role of NO in iron (Fe) homeostasis, particularly in Fe-deficient plants. Fe is one of the most limiting essential nutrient elements for plants. Plants often exhibit Fe deficiency symptoms despite sufficient tissue Fe concentrations. NO appears to not only up-regulate Fe uptake mechanisms but also makes Fe more bioavailable for metabolic functions. NO forms complexes with Fe, which can then be delivered into target cells/tissues. NO generated in plants can alleviate oxidative stress by regulating antioxidant defense processes, probably by improving functional Fe status and by inducing post-translational modifications in the enzymes/proteins involved in antioxidant defense responses. It is hypothesized that NO acts in cooperation with transcription factors such as bHLHs, FIT, and IRO to regulate the expression of enzymes and proteins essential for Fe homeostasis. However, further investigations are needed to disentangle the interaction of NO with intracellular target molecules that leads to enhanced internal Fe availability in plants.
Collapse
Affiliation(s)
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang, Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, Belgium
| | - Masami Watanabe
- Laboratory of Plant Biochemistry, Chiba University, Inage-ward, Yayoicho, Chiba, Japan
| |
Collapse
|
23
|
Popov VN, Syromyatnikov MY, Fernie AR, Chakraborty S, Gupta KJ, Igamberdiev AU. The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:793-807. [PMID: 33245770 DOI: 10.1093/jxb/eraa510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plant mitochondrial respiration involves the operation of various alternative pathways. These pathways participate, both directly and indirectly, in the maintenance of mitochondrial functions though they do not contribute to energy production, being uncoupled from the generation of an electrochemical gradient across the mitochondrial membrane and thus from ATP production. Recent findings suggest that uncoupled respiration is involved in reactive oxygen species (ROS) and nitric oxide (NO) scavenging, regulation, and homeostasis. Here we discuss specific roles and possible functions of uncoupled mitochondrial respiration in ROS and NO metabolism. The mechanisms of expression and regulation of the NDA-, NDB- and NDC-type non-coupled NADH and NADPH dehydrogenases, the alternative oxidase (AOX), and the uncoupling protein (UCP) are examined in relation to their involvement in the establishment of the stable far-from-equilibrium state of plant metabolism. The role of uncoupled respiration in controlling the levels of ROS and NO as well as inducing signaling events is considered. Secondary functions of uncoupled respiration include its role in protection from stress factors and roles in biosynthesis and catabolism. It is concluded that uncoupled mitochondrial respiration plays an important role in providing rapid adaptation of plants to changing environmental factors via regulation of ROS and NO.
Collapse
Affiliation(s)
- Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Mikhail Y Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Subhra Chakraborty
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
24
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:830-847. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two key molecules in plant cells that participate, directly or indirectly, as regulators of protein functions through derived post-translational modifications, mainly tyrosine nitration, S-nitrosation, and persulfidation. These post-translational modifications allow the participation of both NO and H2S signal molecules in a wide range of cellular processes either physiological or under stressful circumstances. NADPH participates in cellular redox status and it is a key cofactor necessary for cell growth and development. It is involved in significant biochemical routes such as fatty acid, carotenoid and proline biosynthesis, and the shikimate pathway, as well as in cellular detoxification processes including the ascorbate-glutathione cycle, the NADPH-dependent thioredoxin reductase (NTR), or the superoxide-generating NADPH oxidase. Plant cells have diverse mechanisms to generate NADPH by a group of NADP-dependent oxidoreductases including ferredoxin-NADP reductase (FNR), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), NADP-dependent malic enzyme (NADP-ME), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and both enzymes of the oxidative pentose phosphate pathway, designated as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). These enzymes consist of different isozymes located in diverse subcellular compartments (chloroplasts, cytosol, mitochondria, and peroxisomes) which contribute to the NAPDH cellular pool. We provide a comprehensive overview of how post-translational modifications promoted by NO (tyrosine nitration and S-nitrosation), H2S (persulfidation), and glutathione (glutathionylation), affect the cellular redox status through regulation of the NADP-dependent dehydrogenases.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
25
|
Astier J, Rossi J, Chatelain P, Klinguer A, Besson-Bard A, Rosnoblet C, Jeandroz S, Nicolas-Francès V, Wendehenne D. Nitric oxide production and signalling in algae. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:781-792. [PMID: 32910824 DOI: 10.1093/jxb/eraa421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) was the first identified gaseous messenger and is now well established as a major ubiquitous signalling molecule. The rapid development of our understanding of NO biology in embryophytes came with the partial characterization of the pathways underlying its production and with the decrypting of signalling networks mediating its effects. Notably, the identification of proteins regulated by NO through nitrosation greatly enhanced our perception of NO functions. In comparison, the role of NO in algae has been less investigated. Yet, studies in Chlamydomonas reinhardtii have produced key insights into NO production through the identification of NO-forming nitrite reductase and of S-nitrosated proteins. More intriguingly, in contrast to embryophytes, a few algal species possess a conserved nitric oxide synthase, the main enzyme catalysing NO synthesis in metazoans. This latter finding paves the way for a deeper characterization of novel members of the NO synthase family. Nevertheless, the typical NO-cyclic GMP signalling module transducing NO effects in metazoans is not conserved in algae, nor in embryophytes, highlighting a divergent acquisition of NO signalling between the green and the animal lineages.
Collapse
Affiliation(s)
- Jeremy Astier
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jordan Rossi
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pauline Chatelain
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
26
|
Tan Y, Li Q, Zhao Y, Wei H, Wang J, Baker CJ, Liu Q, Wei W. Integration of metabolomics and existing omics data reveals new insights into phytoplasma-induced metabolic reprogramming in host plants. PLoS One 2021; 16:e0246203. [PMID: 33539421 PMCID: PMC7861385 DOI: 10.1371/journal.pone.0246203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoplasmas are cell wall-less bacteria that induce abnormal plant growth and various diseases, causing severe economic loss. Phytoplasmas are highly dependent on nutrients imported from host cells because they have lost many genes involved in essential metabolic pathways during reductive evolution. However, metabolic crosstalk between phytoplasmas and host plants and the mechanisms of phytoplasma nutrient acquisition remain poorly understood. In this study, using metabolomics approach, sweet cherry virescence (SCV) phytoplasma-induced metabolite alterations in sweet cherry trees were investigated. A total of 676 metabolites were identified in SCV phytoplasma-infected and mock inoculated leaves, of which 187 metabolites were differentially expressed, with an overwhelming majority belonging to carbohydrates, fatty acids/lipids, amino acids, and flavonoids. Available omics data of interactions between plant and phytoplasma were also deciphered and integrated into the present study. The results demonstrated that phytoplasma infection promoted glycolysis and pentose phosphate pathway activities, which provide energy and nutrients, and facilitate biosynthesis of necessary low-molecular metabolites. Our findings indicated that phytoplasma can induce reprograming of plant metabolism to obtain nutrients for its own replication and infection. The findings from this study provide new insight into interactions of host plants and phytoplasmas from a nutrient acquisition perspective.
Collapse
Affiliation(s)
- Yue Tan
- Shandong Institute of Pomology, Taian, China
| | - Qingliang Li
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yan Zhao
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | - Hairong Wei
- Shandong Institute of Pomology, Taian, China
| | - Jiawei Wang
- Shandong Institute of Pomology, Taian, China
| | - Con Jacyn Baker
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | | | - Wei Wei
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| |
Collapse
|
27
|
Ma Y, Chen R. Nitrogen and Phosphorus Signaling and Transport During Legume-Rhizobium Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:683601. [PMID: 34239527 PMCID: PMC8258413 DOI: 10.3389/fpls.2021.683601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the two predominant mineral elements, which are not only essential for plant growth and development in general but also play a key role in symbiotic N fixation in legumes. Legume plants have evolved complex signaling networks to respond to both external and internal levels of these macronutrients to optimize symbiotic N fixation in nodules. Inorganic phosphate (Pi) and nitrate (NO3 -) are the two major forms of P and N elements utilized by plants, respectively. Pi starvation and NO3 - application both reduce symbiotic N fixation via similar changes in the nodule gene expression and invoke local and long-distance, systemic responses, of which N-compound feedback regulation of rhizobial nitrogenase activity appears to operate under both conditions. Most of the N and P signaling and transport processes have been investigated in model organisms, such as Medicago truncatula, Lotus japonicus, Glycine max, Phaseolus vulgaris, Arabidopsis thaliana, Oryza sativa, etc. We attempted to discuss some of these processes wherever appropriate, to serve as references for a better understanding of the N and P signaling and transport during symbiosis.
Collapse
Affiliation(s)
- Yanlin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Rujin Chen,
| |
Collapse
|
28
|
The Physiological Implications of S-Nitrosoglutathione Reductase (GSNOR) Activity Mediating NO Signalling in Plant Root Structures. Antioxidants (Basel) 2020; 9:antiox9121206. [PMID: 33266126 PMCID: PMC7760381 DOI: 10.3390/antiox9121206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Nitrogen remains an important macronutrient in plant root growth due to its application in amino acid production, in addition to its more elusive role in cellular signalling through nitric oxide (NO). NO is widely accepted as an important signalling oxidative radical across all organisms, leading to its study in a wide range of biological pathways. Along with its more stable NO donor, S-nitrosoglutathione (GSNO), formed by NO non-enzymatically in the presence of glutathione (GSH), NO is a redox-active molecule capable of mediating target protein cysteine thiols through the post translational modification, S-nitrosation. S-nitrosoglutathione reductase (GSNOR) thereby acts as a mediator to pathways regulated by NO due to its activity in the irreversible reduction of GSNO to oxidized glutathione (GSSG) and ammonia. GSNOR is thought to be pleiotropic and often acts by mediating the cellular environment in response to stress conditions. Under optimal conditions its activity leads to growth by transcriptional upregulation of the nitrate transporter, NRT2.1, and through its interaction with phytohormones like auxin and strigolactones associated with root development. However, in response to highly nitrosative and oxidative conditions its activity is often downregulated, possibly through an S-nitrosation site on GSNOR at cys271, Though GSNOR knockout mutated plants often display a stunted growth phenotype in all structures, they also tend to exhibit a pre-induced protective effect against oxidative stressors, as well as an improved immune response associated with NO accumulation in roots.
Collapse
|
29
|
Khan MN, Siddiqui MH, AlSolami MA, Alamri S, Hu Y, Ali HM, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Al-Ghamdi A. Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:278-290. [PMID: 32987258 DOI: 10.1016/j.plaphy.2020.09.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) have been known to affect vast number of processes in plants under abiotic stresses. Also, calcium (Ca) works as a second messenger in plants, which underpins the abiotic stress-induced damage. However, the sequence of action of these signaling molecules against cadmium (Cd)-induced cellular oxidative damage remains unidentified. Therefore, we studied the synergistic actions and/or relationship of signaling molecules and Ca-dependent activation of tolerance mechanisms in Vigna radiata seedlings under Cd stress. The present study shows that exogenous Ca supplemented to Cd-stressed V. radiata seedlings reduced Cd accumulation and improved the activity of nitrate reductase, and L/D-cysteine desulfhydrase (LCD/DCD) that resulted in improved synthesis of NO and H2S content. Application of Ca also elevated the level of cysteine (Cys) by upregulating the activity of Cys-synthesizing enzymes serine acetyltransferase and O-acetylserine(thiol)lyase in Cd-stressed seedlings. Maintenance of Cys pool under Cd stress contributed to improved H2S content which together with Ca and NO improved antioxidant enzymes and components of ascorbate-glutathione (AsA-GSH) cycle. All these collectively regulated the activity of NADPH oxidase and glycolate oxidase, resulting in the inhibition of Cd-induced generation of reactive oxygen species. The elevated level of Cys also assisted the Cd-stressed seedlings in maintaining GSH pool which retained normal functioning of AsA-GSH cycle and led to enhanced content of phytochelatins coupled with reduced Cd content. The positive effect of these events manifested in an enhanced rate of photosynthesis, carbohydrate accumulation, and growth attributes of the plants. On the contrary, addition of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], H2S scavenger HT (Hypotaurine) and Ca-chelator EGTA (Ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) again developed a condition similar to stress and positive effect of the signaling molecules was abolished. The findings of the study postulate that Ca in association with NO and H2S mitigates Cd-induced impairment and enhances the tolerance of the V. radiata plants against Cd stress. The results of the study also substantiate that Ca acts both upstream as well as downstream of NO signals whereas, H2S acts downstream of Ca and NO during Cd-stress responses of the plants.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, Environmental Research Unit, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - Mazen A AlSolami
- Department of Biology, Environmental Research Unit, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Yanbo Hu
- Northeast Forestry University, 26# Hexing Road, Xiangfang District, Harbin City, 150040, PR China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Abdullah Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| |
Collapse
|
30
|
Jedelská T, Luhová L, Petřivalský M. Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1426. [PMID: 33114295 PMCID: PMC7690881 DOI: 10.3390/plants9111426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023]
Abstract
S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
Affiliation(s)
| | | | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (T.J.); (L.L.)
| |
Collapse
|
31
|
Identification of nitric oxide (NO)-responsive genes under hypoxia in tomato (Solanum lycopersicum L.) root. Sci Rep 2020; 10:16509. [PMID: 33020554 PMCID: PMC7536229 DOI: 10.1038/s41598-020-73613-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/14/2020] [Indexed: 12/04/2022] Open
Abstract
Flooding periods, as one probable consequence of climate change, will lead more frequently to plant hypoxic stress. Hypoxia sensing and signaling in the root, as the first organ encountering low oxygen, is therefore crucial for plant survival under flooding. Nitric oxide has been shown to be one of the main players involved in hypoxia signaling through the regulation of ERFVII transcription factors stability. Using SNP as NO donor, we investigated the NO-responsive genes, which showed a significant response to hypoxia. We identified 395 genes being differentially regulated under both hypoxia and SNP-treatment. Among them, 251 genes showed up- or down-regulation under both conditions which were used for further biological analysis. Functional classification of these genes showed that they belong to different biological categories such as primary carbon and nitrogen metabolism (e.g. glycolysis, fermentation, protein and amino acid metabolism), nutrient and metabolites transport, redox homeostasis, hormone metabolism, regulation of transcription as well as response to biotic and abiotic stresses. Our data shed light on the NO-mediated gene expression modulation under hypoxia and provides potential targets playing a role in hypoxia tolerance. These genes are interesting candidates for further investigating their role in hypoxia signaling and survival.
Collapse
|
32
|
Jahnová J, Činčalová L, Sedlářová M, Jedelská T, Sekaninová J, Mieslerová B, Luhová L, Barroso JB, Petřivalský M. Differential modulation of S-nitrosoglutathione reductase and reactive nitrogen species in wild and cultivated tomato genotypes during development and powdery mildew infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:297-310. [PMID: 32795911 DOI: 10.1016/j.plaphy.2020.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 05/03/2023]
Abstract
Nitric oxide plays an important role in the pathogenesis of Pseudoidium neolycopersici, the causative agent of tomato powdery mildew. S-nitrosoglutathione reductase, the key enzyme of S-nitrosothiol homeostasis, was investigated during plant development and following infection in three genotypes of Solanum spp. differing in their resistance to P. neolycopersici. Levels and localization of reactive nitrogen species (RNS) including NO, S-nitrosoglutathione (GSNO) and peroxynitrite were studied together with protein nitration and the activity of nitrate reductase (NR). GSNOR expression profiles and enzyme activities were modulated during plant development and important differences among Solanum spp. genotypes were observed, accompanied by modulation of NO, GSNO, peroxynitrite and nitrated proteins levels. GSNOR was down-regulated in infected plants, with exception of resistant S. habrochaites early after inoculation. Modulations of GSNOR activities in response to pathogen infection were found also on the systemic level in leaves above and below the inoculation site. Infection strongly increased NR activity and gene expression in resistant S. habrochaites in contrast to susceptible S. lycopersicum. Obtained data confirm the key role of GSNOR and modulations of RNS during plant development under normal conditions and point to their involvement in molecular mechanisms of tomato responses to biotrophic pathogens on local and systemic levels.
Collapse
Affiliation(s)
- Jana Jahnová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Sekaninová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Barbora Mieslerová
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
33
|
Enzymes Involved in the Biosynthesis of Arginine from Ornithine in Maritime Pine ( Pinus pinaster Ait.). PLANTS 2020; 9:plants9101271. [PMID: 32992504 PMCID: PMC7601404 DOI: 10.3390/plants9101271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The amino acids arginine and ornithine are the precursors of a wide range of nitrogenous compounds in all living organisms. The metabolic conversion of ornithine into arginine is catalyzed by the sequential activities of the enzymes ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASSY) and argininosuccinate lyase (ASL). Because of their roles in the urea cycle, these enzymes have been purified and extensively studied in a variety of animal models. However, the available information about their molecular characteristics, kinetic and regulatory properties is relatively limited in plants. In conifers, arginine plays a crucial role as a main constituent of N-rich storage proteins in seeds and serves as the main source of nitrogen for the germinating embryo. In this work, recombinant PpOTC, PpASSY and PpASL enzymes from maritime pine (Pinus pinaster Ait.) were produced in Escherichia coli to enable study of their molecular and kinetics properties. The results reported here provide a molecular basis for the regulation of arginine and ornithine metabolism at the enzymatic level, suggesting that the reaction catalyzed by OTC is a regulatory target in the homeostasis of ornithine pools that can be either used for the biosynthesis of arginine in plastids or other nitrogenous compounds in the cytosol.
Collapse
|
34
|
Signorelli S, Sainz M, Tabares-da Rosa S, Monza J. The Role of Nitric Oxide in Nitrogen Fixation by Legumes. FRONTIERS IN PLANT SCIENCE 2020; 11:521. [PMID: 32582223 PMCID: PMC7286274 DOI: 10.3389/fpls.2020.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/06/2020] [Indexed: 05/26/2023]
Abstract
The legume-rhizobia symbiosis is an important process in agriculture because it allows the biological nitrogen fixation (BNF) which contributes to increasing the levels of nitrogen in the soil. Nitric oxide (⋅NO) is a small free radical molecule having diverse signaling roles in plants. Here we present and discuss evidence showing the role of ⋅NO during different stages of the legume-rhizobia interaction such as recognition, infection, nodule development, and nodule senescence. Although the mechanisms by which ⋅NO modulates this interaction are not fully understood, we discuss potential mechanisms including its interaction with cytokinin, auxin, and abscisic acid signaling pathways. In matures nodules, a more active metabolism of ⋅NO has been reported and both the plant and rhizobia participate in ⋅NO production and scavenging. Although ⋅NO has been shown to induce the expression of genes coding for NITROGENASE, controlling the levels of ⋅NO in mature nodules seems to be crucial as ⋅NO was shown to be a potent inhibitor of NITROGENASE activity, to induce nodule senescence, and reduce nitrogen assimilation. In this sense, LEGHEMOGLOBINS (Lbs) were shown to play an important role in the scavenging of ⋅NO and reactive nitrogen species (RNS), potentially more relevant in senescent nodules. Even though ⋅NO can reduce NITROGENASE activity, most reports have linked ⋅NO to positive effects on BNF. This can relate mainly to the regulation of the spatiotemporal distribution of ⋅NO which favors some effects over others. Another plausible explanation for this observation is that the negative effect of ⋅NO requires its direct interaction with NITROGENASE, whereas the positive effect of ⋅NO is related to its signaling function, which results in an amplifier effect. In the near future, it would be interesting to explore the role of environmental stress-induced ⋅NO in BNF.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sofía Tabares-da Rosa
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Jorge Monza
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
35
|
Kaya C, Ashraf M, Alyemeni MN, Ahmad P. Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria × annassa) by up-regulating the ascorbate-glutathione cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:486-499. [PMID: 32302942 DOI: 10.1016/j.plaphy.2020.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 05/26/2023]
Abstract
Involvement of nitrate reductase (NR) and nitric oxide synthase (NOS)-like enzyme in 24-epibrassinolide (EB)-triggered nitric oxide (NO) synthesis to improve iron deficiency (ID) tolerance in strawberry plants was studied. EB was sprayed to strawberry plants every two days for two weeks. Then, the EB-treated plants were pre-treated with inhibitors of NR, tungstate, or NOS, L-NAME for 3 h. During the first three weeks, Fe was supplied as 100 μM EDTA-Fe or FeSO4 to Fe-sufficient or Fe-deficient plants, respectively. Thereafter, plants were subjected for further three weeks to control (100 μM EDTA-Fe) and Fe deficiency (ID; without Fe). ID reduced biomass, chlorophyll, and chlorophyll fluorescence, while increased oxidative stress parameters, ascorbate (AsA), glutathione (GSH), endogenous NO, and the activities of NR, NOS, and antioxidant enzymes. Pre-treatments with EB and EB + SNP improved ID tolerance of strawberry by improving leaf Fe2+, plant growth, and antioxidant enzyme activities, and causing a further elevation in AsA, GSH, NO, NR and NOS. L-NAME application reversed NOS activity, but it did not eliminate NO, however, tungstate application reversed both NR activity and NO synthesis in plants exposed to ID + EB, suggesting that NR is the main contributor of EB-induced NO synthesis to improve ID tolerance in strawberry plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| |
Collapse
|
36
|
Khan MN, AlSolami MA, Basahi RA, Siddiqui MH, Al-Huqail AA, Abbas ZK, Siddiqui ZH, Ali HM, Khan F. Nitric oxide is involved in nano-titanium dioxide-induced activation of antioxidant defense system and accumulation of osmolytes under water-deficit stress in Vicia faba L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110152. [PMID: 31927357 DOI: 10.1016/j.ecoenv.2019.110152] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 05/22/2023]
Abstract
Nano-titanium dioxide (nTiO2) has been reported to improve tolerance of plants against different environmental stresses by modulating various physiological and biochemical processes. Nitric oxide (NO) has been shown to act as an important stress signaling molecule during plant responses to abiotic stresses. The present work was planned to investigate the involvement of endogenous NO in nTiO2-induced activation of defense system of fava bean (Vicia faba L.) plants under water-deficit stress (WDS) conditions. Water-suffered plants showed increased concentration of hydrogen peroxide (H2O2) and superoxide (O2-) content coupled with increased electrolyte leakage and lipid peroxidation which adversely affected nitrate reductase (NR) activity, chlorophyll content and growth of the plants. However, application of 15 mg L-1 nTiO2 to stressed plants significantly induced NR activity and synthesis of NO which elevated enzymatic and non-enzymatic defense system of the stressed plants and suppressed the generation of H2O2 and O2- content, leakage of electrolytes, and lipid peroxidation. Application of nTiO2, in association with NO, also enhanced the accumulation of osmolytes (proline and glycine betaine) that assisted the stressed plants in osmotic adjustment as witnessed by improved hydration level of the plants. Involvement of NO in nTiO2-induced activation of defense system was confirmed with NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] which caused recurrence of WDS.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Mazen A AlSolami
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Riyadh A Basahi
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Manzer H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Asma A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Zahid H Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hayssam M Ali
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faheema Khan
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
37
|
Gupta KJ, Hancock JT, Petrivalsky M, Kolbert Z, Lindermayr C, Durner J, Barroso JB, Palma JM, Brouquisse R, Wendehenne D, Corpas FJ, Loake GJ. Recommendations on terminology and experimental best practice associated with plant nitric oxide research. THE NEW PHYTOLOGIST 2020; 225:1828-1834. [PMID: 31479520 DOI: 10.1111/nph.16157] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) emerged as a key signal molecule in plants. During the last two decades impressive progress has been made in plant NO research. This small, redox-active molecule is now known to play an important role in plant immunity, stress responses, environmental interactions, plant growth and development. To more accurately and robustly establish the full spectrum of NO bioactivity in plants, it will be essential to apply methodological best practice. In addition, there are some instances of conflicting nomenclature within the field, which would benefit from standardization. In this context, we attempt to provide some helpful guidance for best practice associated with NO research and also suggestions for the cognate terminology.
Collapse
Affiliation(s)
| | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY,, UK
| | - Marek Petrivalsky
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Szeged, 6726,, Hungary
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Centre for Environmental Health, München/Neuherberg, 85764,, Germany
| | - Jorg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Centre for Environmental Health, München/Neuherberg, 85764,, Germany
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus Universitario 'Las Lagunillas' s/n, 23071, Jaén, Spain
| | - José M Palma
- Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Renaud Brouquisse
- INRA, CNRS, Institut Sophia Agrobiotech, Université Côte d'Azur, 06903, Sophia Antipolis Cedex, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Francisco J Corpas
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| |
Collapse
|
38
|
Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Corpas FJ, Barroso JB. Short-Term Low Temperature Induces Nitro-Oxidative Stress that Deregulates the NADP-Malic Enzyme Function by Tyrosine Nitration in Arabidopsis thaliana. Antioxidants (Basel) 2019; 8:antiox8100448. [PMID: 31581524 PMCID: PMC6827146 DOI: 10.3390/antiox8100448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Low temperature (LT) negatively affects plant growth and development via the alteration of the metabolism of reactive oxygen and nitrogen species (ROS and RNS). Among RNS, tyrosine nitration, the addition of an NO2 group to a tyrosine residue, can modulate reduced nicotinamide-dinucleotide phosphate (NADPH)-generating systems and, therefore, can alter the levels of NADPH, a key cofactor in cellular redox homeostasis. NADPH also acts as an indispensable electron donor within a wide range of enzymatic reactions, biosynthetic pathways, and detoxification processes, which could affect plant viability. To extend our knowledge about the regulation of this key cofactor by this nitric oxide (NO)-related post-translational modification, we analyzed the effect of tyrosine nitration on another NADPH-generating enzyme, the NADP-malic enzyme (NADP-ME), under LT stress. In Arabidopsis thaliana seedlings exposed to short-term LT (4 °C for 48 h), a 50% growth reduction accompanied by an increase in the content of superoxide, nitric oxide, and peroxynitrite, in addition to diminished cytosolic NADP-ME activity, were found. In vitro assays confirmed that peroxynitrite inhibits cytosolic NADP-ME2 activity due to tyrosine nitration. The mass spectrometric analysis of nitrated NADP-ME2 enabled us to determine that Tyr-73 was exclusively nitrated to 3-nitrotyrosine by peroxynitrite. The in silico analysis of the Arabidopsis NADP-ME2 protein sequence suggests that Tyr73 nitration could disrupt the interactions between the specific amino acids responsible for protein structure stability. In conclusion, the present data show that short-term LT stress affects the metabolism of ROS and RNS, which appears to negatively modulate the activity of cytosolic NADP-ME through the tyrosine nitration process.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - María V Gómez-Rodríguez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Javier López-Jaramillo
- Institute of Biotechnology, Department of Organic Chemistry, Faculty of Sciences, University of Granada, E-18071 Granada, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18080 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| |
Collapse
|
39
|
Berger A, Boscari A, Frendo P, Brouquisse R. Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4505-4520. [PMID: 30968126 DOI: 10.1093/jxb/erz159] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/28/2019] [Indexed: 05/13/2023]
Abstract
Interactions between legumes and rhizobia lead to the establishment of a symbiotic relationship characterized by the formation of a new organ, the nodule, which facilitates the fixation of atmospheric nitrogen (N2) by nitrogenase through the creation of a hypoxic environment. Significant amounts of nitric oxide (NO) accumulate at different stages of nodule development, suggesting that NO performs specific signaling and/or metabolic functions during symbiosis. NO, which regulates nodule gene expression, accumulates to high levels in hypoxic nodules. NO accumulation is considered to assist energy metabolism within the hypoxic environment of the nodule via a phytoglobin-NO-mediated respiration process. NO is a potent inhibitor of the activity of nitrogenase and other plant and bacterial enzymes, acting as a developmental signal in the induction of nodule senescence. Hence, key questions concern the relative importance of the signaling and metabolic functions of NO versus its toxic action and how NO levels are regulated to be compatible with nitrogen fixation functions. This review analyses these paradoxical roles of NO at various stages of symbiosis, and highlights the role of plant phytoglobins and bacterial hemoproteins in the control of NO accumulation.
Collapse
|
40
|
Vishwakarma A, Wany A, Pandey S, Bulle M, Kumari A, Kishorekumar R, Igamberdiev AU, Mur LAJ, Gupta KJ. Current approaches to measure nitric oxide in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4333-4343. [PMID: 31106826 PMCID: PMC6736158 DOI: 10.1093/jxb/erz242] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is now established as an important signalling molecule in plants where it influences growth, development, and responses to stress. Despite extensive research, the most appropriate methods to measure and localize these signalling radicals are debated and still need investigation. Many confounding factors such as the presence of other reactive intermediates, scavenging enzymes, and compartmentation influence how accurately each can be measured. Further, these signalling radicals have short half-lives ranging from seconds to minutes based on the cellular redox condition. Hence, it is necessary to use sensitive and specific methods in order to understand the contribution of each signalling molecule to various biological processes. In this review, we summarize the current knowledge on NO measurement in plant samples, via various methods. We also discuss advantages, limitations, and wider applications of each method.
Collapse
Affiliation(s)
| | - Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sonika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mallesham Bulle
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Reddy Kishorekumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Luis A J Mur
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth, UK
| | - Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
41
|
Hancock JT. Considerations of the importance of redox state for reactive nitrogen species action. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4323-4331. [PMID: 30793204 DOI: 10.1093/jxb/erz067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/08/2019] [Indexed: 05/13/2023]
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are immensely important signalling molecules in plants, being involved in a range of physiological responses. However, the exact way in which NO fits into signal transduction pathways is not always easy to understand. Here, some of the issues that should be considered are discussed. This includes how NO may interact directly with other reactive signals, such as reactive oxygen and sulfur species, how NO metabolism is almost certainly compartmentalized, that threshold levels of RNS may need to be reached to have effects, and how the intracellular redox environment may impact on NO signalling. Until better tools are available to understand how NO is generated in cells, where it accumulates, and to what levels it reaches, it will be hard to get a full understanding of NO signalling. The interaction of RNS metabolism with the intracellular redox environment needs further investigation. A changing redox poise will impact on whether RNS species can thrive in or around cells. Such mechanisms will determine whether specific RNS can indeed control the responses needed by a cell.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
42
|
Astier J, Mounier A, Santolini J, Jeandroz S, Wendehenne D. The evolution of nitric oxide signalling diverges between animal and green lineages. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4355-4364. [PMID: 30820534 DOI: 10.1093/jxb/erz088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/07/2019] [Indexed: 05/17/2023]
Abstract
Nitric oxide (NO) is a ubiquitous signalling molecule with widespread distribution in prokaryotes and eukaryotes where it is involved in countless physiological processes. While the mechanisms governing nitric oxide (NO) synthesis and signalling are well established in animals, the situation is less clear in the green lineage. Recent investigations have shown that NO synthase, the major enzymatic source for NO in animals, is absent in land plants but present in a limited number of algae. The first detailed analysis highlighted that these new NO synthases are functional but display specific structural features and probably original catalytic activities. Completing this picture, analyses were undertaken in order to investigate whether major components of the prototypic NO/cyclic GMP signalling cascades mediating many physiological effects of NO in animals were also present in plants. Only a few homologues of soluble guanylate cyclases, cGMP-dependent protein kinases, cyclic nucleotide-gated channels, and cGMP-regulated phosphodiesterases were identified in some algal species and their presence did not correlate with that of NO synthases. In contrast, S-nitrosoglutathione reductase, a critical regulator of S-nitrosothiols, was recurrently found. Overall, these findings highlight that plants do not mediate NO signalling through the classical NO/cGMP signalling module and support the concept that S-nitrosation is a ubiquitous NO-dependent signalling mechanism.
Collapse
Affiliation(s)
- Jeremy Astier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
43
|
Lv SF, Jia MZ, Zhang SS, Han S, Jiang J. The dependence of leaf senescence on the balance between 1-aminocyclopropane-1-carboxylate acid synthase 1 (ACS1)-catalysed ACC generation and nitric oxide-associated 1 (NOS1)-dependent NO accumulation in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:595-603. [PMID: 30734982 DOI: 10.1111/plb.12970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/04/2019] [Indexed: 05/29/2023]
Abstract
Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1-aminocyclopropane-1-carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO-associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence. Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography-tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms. Our observations showed that the loss-of-function acs1-1 mutant ameliorated age- or dark-induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1-1 reduced ACC accumulation mainly in mature leaves and that acs1-1-promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO-deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence. These findings suggest that NOA1-dependent NO accumulation blocked the ACS1-induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- S-F Lv
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - M-Z Jia
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
| | - S-S Zhang
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
| | - S Han
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
| | - J Jiang
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
44
|
Tewari RK, Horemans N, Nauts R, Wannijn J, Van Hees M, Vandenhove H. The nitric oxide suppressed Arabidopsis mutants- Atnoa1 and Atnia1nia2noa1-2 produce nitric oxide in MS growth medium and on uranium exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:9-17. [PMID: 31078053 DOI: 10.1016/j.plaphy.2019.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 05/26/2023]
Abstract
The mutants Atnoa1 and Atnia1nia2noa1-2 having a defective chloroplast developmental process, showed enhanced chlorophyll levels when they were grown on Murashige and Skoog (MS) medium and on exposure with uranium (U) on Hoagland medium. Thus we hypothesized that these mutants probably produced NO in MS medium and on exposure with U. Wild-type Col-0, Atnoa1, Atnia1nia2noa1-2 plants were cultured on modified Hoagland and 1/10 MS media and NO generation in the roots of these mutants was monitored using NO selective fluorescent dyes, DAF-2DA and Fl2E. Both Atnoa1 and Atnia1nia2noa1-2 triple mutants produced NO as observed by increases in DAF-2T and Fl2E fluorescence when these mutants were grown on MS medium but not on Hoagland medium. In presence of NO scavenger, methylene blue (MB, 200 μM), DAF-2T and Fl2E fluorescence was completely abolished. On the other hand treatment of the plants with 25 μM U triggered NO generation. U-treated Atnoa1 and Atnia1nia2noa1-2 plants upregulated genes (POR B, POR D, CHL D) involved in the chlorophyll biosynthesis. From these results it was concluded that Atnoa1 and Atnia1nia2noa1-2 are conditional NO producers and it appears that NO generation in plants substantially depends on growth medium and NIA1, NIA2 or NOA1 does not appear to be really involved in NO generation in MS medium or after U exposure.
Collapse
Affiliation(s)
- Rajesh Kumar Tewari
- Department of Botany, University of Lucknow, Lucknow, 226007, India; Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Robin Nauts
- Department of Botany, University of Lucknow, Lucknow, 226007, India.
| | - Jean Wannijn
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| | - Hildegarde Vandenhove
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| |
Collapse
|
45
|
Sadhu A, Moriyasu Y, Acharya K, Bandyopadhyay M. Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells. Sci Rep 2019; 9:8973. [PMID: 31222105 PMCID: PMC6586778 DOI: 10.1038/s41598-019-45470-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Synergistic interaction of nitric oxide (NO) and reactive oxygen species (ROS) is essential to initiate cell death mechanisms in plants. Though autophagy is salient in either restricting or promoting hypersensitivity response (HR)-related cell death, the crosstalk between the reactive intermediates and autophagy during hypersensitivity response is paradoxical. In this investigation, the consequences of Alternaria alternata toxin (AaT) in tobacco BY-2 cells were examined. At 3 h, AaT perturbed intracellular ROS homeostasis, altered antioxidant enzyme activities, triggered mitochondrial depolarization and induced autophagy. Suppression of autophagy by 3-Methyladenine caused a decline in cell viability in AaT treated cells, which indicated the vital role of autophagy in cell survival. After 24 h, AaT facilitated Ca2+ influx with an accumulation of reactive oxidant intermediates and NO, to manifest necrotic cell death. Inhibition of NO accumulation by 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) decreased the level of necrotic cell death, and induced autophagy, which suggests NO accumulation represses autophagy and facilitates necrotic cell death at 24 h. Application of N-acetyl-L-cysteine at 3 h, confirmed ROS to be the key initiator of autophagy, and together with cPTIO for 24 h, revealed the combined effects of NO and ROS is required for necrotic HR cell death.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Saitama, 338-8570, Japan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
46
|
Kolbert Z, Feigl G, Freschi L, Poór P. Gasotransmitters in Action: Nitric Oxide-Ethylene Crosstalk during Plant Growth and Abiotic Stress Responses. Antioxidants (Basel) 2019; 8:E167. [PMID: 31181724 PMCID: PMC6616412 DOI: 10.3390/antiox8060167] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023] Open
Abstract
Since their first description as atmospheric gases, it turned out that both nitric oxide (NO) and ethylene (ET) are multifunctional plant signals. ET and polyamines (PAs) use the same precursor for their synthesis, and NO can be produced from PA oxidation. Therefore, an indirect metabolic link between NO and ET synthesis can be considered. NO signal is perceived primarily through S-nitrosation without the involvement of a specific receptor, while ET signal is sensed by a well-characterized receptor complex. Both NO and ET are synthetized by plants at various developmental stages (e.g., seeds, fruits) and as a response to numerous environmental factors (e.g., heat, heavy metals) and they mutually regulate each other's levels. Most of the growth and developmental processes (e.g., fruit ripening, de-etiolation) are regulated by NO-ET antagonism, while in abiotic stress responses, both antagonistic (e.g., dark-induced stomatal opening, cadmium-induced cell death) and synergistic (e.g., UV-B-induced stomatal closure, iron deficiency-induced expression of iron acquisition genes) NO-ET interplays have been revealed. Despite the numerous pieces of experimental evidence revealing NO-ET relationships in plants, the picture is far from complete. Understanding the mechanisms of NO-ET interactions may contribute to the increment of yield and intensification of stress tolerance of crop plants in changing environments.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Sao Paulo 05422-970, Brazil.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| |
Collapse
|
47
|
Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants (Basel) 2019; 8:E94. [PMID: 30965652 PMCID: PMC6523806 DOI: 10.3390/antiox8040094] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
Water deficiency compromises plant performance and yield in many habitats and in agriculture. In addition to survival of the acute drought stress period which depends on plant-genotype-specific characteristics, stress intensity and duration, also the speed and efficiency of recovery determine plant performance. Drought-induced deregulation of metabolism enhances generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which in turn affect the redox regulatory state of the cell. Strong correlative and analytical evidence assigns a major role in drought tolerance to the redox regulatory and antioxidant system. This review compiles current knowledge on the response and function of superoxide, hydrogen peroxide and nitric oxide under drought stress in various species and drought stress regimes. The meta-analysis of reported changes in transcript and protein amounts, and activities of components of the antioxidant and redox network support the tentative conclusion that drought tolerance is more tightly linked to up-regulated ascorbate-dependent antioxidant activity than to the response of the thiol-redox regulatory network. The significance of the antioxidant system in surviving severe phases of dehydration is further supported by the strong antioxidant system usually encountered in resurrection plants.
Collapse
Affiliation(s)
- Miriam Laxa
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| | - Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| | - Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| | - Kamel Chibani
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| |
Collapse
|
48
|
Cao X, Zhu C, Zhong C, Zhang J, Wu L, Jin Q, Ma Q. Nitric oxide synthase-mediated early nitric oxide burst alleviates water stress-induced oxidative damage in ammonium-supplied rice roots. BMC PLANT BIOLOGY 2019; 19:108. [PMID: 30894123 PMCID: PMC6425712 DOI: 10.1186/s12870-019-1721-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/14/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Nutrition with ammonium (NH4+) can enhance the drought tolerance of rice seedlings in comparison to nutrition with nitrate (NO3-). However, there are still no detailed studies investigating the response of nitric oxide (NO) to the different nitrogen nutrition and water regimes. To study the intrinsic mechanism underpinning this relationship, the time-dependent production of NO and its protective role in the antioxidant defense system of NH4+- or NO3--supplied rice seedlings were studied under water stress. RESULTS An early NO burst was induced by 3 h of water stress in the roots of seedlings subjected to NH4+ treatment, but this phenomenon was not observed under NO3- treatment. Root oxidative damage induced by water stress was significantly higher for treatment with NO3- than with NH4+ due to reactive oxygen species (ROS) accumulation in the former. Inducing NO production by applying the NO donor 3 h after NO3- treatment alleviated the oxidative damage, while inhibiting the early NO burst by applying the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) increased root oxidative damage in NH4+ treatment. Application of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester(L-NAME) completely suppressed NO synthesis in roots 3 h after NH4+ treatment and aggravated water stress-induced oxidative damage. Therefore, the aggravation of oxidative damage by L-NAME might have resulted from changes in the NOS-mediated early NO burst. Water stress also increased the activity of root antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase). These were further induced by the NO donor but repressed by the NO scavenger and NOS inhibitor in NH4+-treated roots. CONCLUSION These findings demonstrate that the NOS-mediated early NO burst plays an important role in alleviating oxidative damage induced by water stress by enhancing the antioxidant defenses in roots supplemented with NH4+.
Collapse
Affiliation(s)
- Xiaochuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou Zhejiang, 310006 People’s Republic of China
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou Zhejiang, 310006 People’s Republic of China
| | - Chu Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou Zhejiang, 310006 People’s Republic of China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou Zhejiang, 310006 People’s Republic of China
| | - Lianghuan Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou Zhejiang, 310006 People’s Republic of China
| | - Qingxu Ma
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
49
|
Jahnová J, Luhová L, Petřivalský M. S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. PLANTS (BASEL, SWITZERLAND) 2019. [PMID: 30795534 DOI: 10.3390/plants80200482019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
Affiliation(s)
- Jana Jahnová
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
| |
Collapse
|
50
|
S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. PLANTS 2019; 8:plants8020048. [PMID: 30795534 PMCID: PMC6409631 DOI: 10.3390/plants8020048] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022]
Abstract
S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
|