1
|
Becker FW, Oberlander KC, Trávníček P, Dreyer LL. Inconsistent expression of the gigas effect in polyploid Oxalis. AMERICAN JOURNAL OF BOTANY 2022; 109:1607-1621. [PMID: 36193941 DOI: 10.1002/ajb2.16077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
PREMISE It is well-known that whole genome duplication (WGD) has played a significant role in the evolution of plants. The best-known phenotypic effect of WGD is the gigas effect, or the enlargement of polyploid plant traits. WGD is often linked with increased weediness, which could be a result of fitness advantages conferred by the gigas effect. As a result, the gigas effect could potentially explain polyploid persistence and abundance. We test whether a gigas effect is present in the polyploid-rich geophyte Oxalis, at both organ and cellular scales. METHODS We measured traits in conspecific diploid and polyploid accessions of 24 species across the genus. In addition, we measured the same and additional traits in 20 populations of the weedy and highly ploidy-variable species Oxalis purpurea L., including measures of clonality and selfing as a proxy for weediness. Ploidy level was determined using flow cytometry. RESULTS We found substantial variation and no consistent ploidy-related size difference, both between and within species, and across traits. Oxalis purpurea polyploids did, however, produce significantly more underground biomass and more bulbils than diploids, consistent with a potential role of WGD in the weediness of this species. CONCLUSIONS Our results suggest a more nuanced role for the gigas effect, at least in Oxalis. It may be temporary, short-lived, and inconsistently expressed and retained on evolutionary time scales, but in the short term can contribute to lineage success via increased vegetative reproduction.
Collapse
Affiliation(s)
- Frederik W Becker
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Kenneth C Oberlander
- H. G. W. J. Schweickerdt Herbarium, Department of Plant and Soil Sciences, Plant Sciences Complex, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Pavel Trávníček
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic, and Department of Botany, Charles University, Praha, Czech Republic
| | - Léanne L Dreyer
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
2
|
Chromosome numbers and meiotic behavior in some species of Asteraceae from high altitudinal regions of Kashmir Himalayas. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2021. [DOI: 10.1016/j.japb.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Mounger J, Ainouche ML, Bossdorf O, Cavé-Radet A, Li B, Parepa M, Salmon A, Yang J, Richards CL. Epigenetics and the success of invasive plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200117. [PMID: 33866809 PMCID: PMC8059582 DOI: 10.1098/rstb.2020.0117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Biological invasions impose ecological and economic problems on a global scale, but also provide extraordinary opportunities for studying contemporary evolution. It is critical to understand the evolutionary processes that underly invasion success in order to successfully manage existing invaders, and to prevent future invasions. As successful invasive species sometimes are suspected to rapidly adjust to their new environments in spite of very low genetic diversity, we are obliged to re-evaluate genomic-level processes that translate into phenotypic diversity. In this paper, we review work that supports the idea that trait variation, within and among invasive populations, can be created through epigenetic or other non-genetic processes, particularly in clonal invaders where somatic changes can persist indefinitely. We consider several processes that have been implicated as adaptive in invasion success, focusing on various forms of 'genomic shock' resulting from exposure to environmental stress, hybridization and whole-genome duplication (polyploidy), and leading to various patterns of gene expression re-programming and epigenetic changes that contribute to phenotypic variation or even novelty. These mechanisms can contribute to transgressive phenotypes, including hybrid vigour and novel traits, and may thus help to understand the huge successes of some plant invaders, especially those that are genetically impoverished. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Jeannie Mounger
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33617, USA
| | - Malika L. Ainouche
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Armand Cavé-Radet
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Bo Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Madalin Parepa
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Christina L. Richards
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33617, USA
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Cheng J, Li J, Zhang Z, Lu H, Chen G, Yao B, Dong Y, Ma L, Yuan X, Xu J, Zhang Y, Dai W, Yang X, Xue L, Zhang Y, Zhang C, Mauricio R, Peng G, Hu S, Valverde BE, Song X, Li Y, Stift M, Qiang S. Autopolyploidy‐driven range expansion of a temperate‐originated plant to pan‐tropic under global change. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiliang Cheng
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Jun Li
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Zheng Zhang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Huan Lu
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Guoqi Chen
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Beibei Yao
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Yingxue Dong
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Ling Ma
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Xiaoxiao Yuan
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Jingxuan Xu
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Ying Zhang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Weimin Dai
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Xianghong Yang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Lifang Xue
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Yu Zhang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Chaobin Zhang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Rodney Mauricio
- Department of Genetics University of Georgia Athens Georgia30602USA
| | - Gary Peng
- Agriculture and Agri‐Food Canada 107 Science Place Saskatoon SaskatchewanS7N 0X2Canada
| | - Shuijin Hu
- Department of Entomology and Plant Pathology North Carolina State University Raleigh North Carolina27695USA
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing210095China
| | - Bernal E. Valverde
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
- College of Life Sciences University of Copenhagen Taastrup Denmark
| | - Xiaoling Song
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Yi Li
- Department of Plant Science and Landscape Architecture College of Agriculture and Natural Resources University of Connecticut Storrs Connecticut06269USA
| | - Marc Stift
- Ecology Department of Biology University of Konstanz Konstanz78457Germany
| | - Sheng Qiang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| |
Collapse
|
5
|
Cavé-Radet A, Rabhi M, Gouttefangeas F, El Amrani A. Do Specialized Cells Play a Major Role in Organic Xenobiotic Detoxification in Higher Plants? FRONTIERS IN PLANT SCIENCE 2020; 11:1037. [PMID: 32733524 PMCID: PMC7363956 DOI: 10.3389/fpls.2020.01037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/24/2020] [Indexed: 05/18/2023]
Abstract
In the present work, we used a double cell screening approach based on phenanthrene (phe) epifluorescence histochemical localization and oxygen radical detection to generate new data about how some specialized cells are involved in tolerance to organic xenobiotics. Thereby, we bring new insights about phe [a common Polycyclic Aromatic Hydrocarbon (PAH)] cell specific detoxification, in two contrasting plant lineages thriving in different ecosystems. Our data suggest that in higher plants, detoxification may occur in specialized cells such as trichomes and pavement cells in Arabidopsis, and in the basal cells of salt glands in Spartina species. Such features were supported by a survey from the literature, and complementary data correlating the size of basal salt gland cells and tolerance abilities to PAHs previously reported between Spartina species. Furthermore, we conducted functional validation in two independent Arabidopsis trichomeless glabrous T-DNA mutant lines (GLABRA1 mutants). These mutants showed a sensitive phenotype under phe-induced stress in comparison with their background ecotypes without the mutation, indicating that trichomes are key structures involved in the detoxification of organic xenobiotics. Interestingly, trichomes and pavement cells are known to endoreduplicate, and we discussed the putative advantages given by endopolyploidy in xenobiotic detoxification abilities. The same feature concerning basal salt gland cells in Spartina has been raised. This similarity with detoxification in the endopolyploid liver cells of the animal system is included.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- Université de Rennes 1, CNRS/OSUR-UMR 6553, Ecosystèmes-Biodiversité-Evolution, Rennes, France
- *Correspondence: Armand Cavé-Radet, ; Mokded Rabhi, ; Abdelhak El Amrani,
| | - Mokded Rabhi
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- *Correspondence: Armand Cavé-Radet, ; Mokded Rabhi, ; Abdelhak El Amrani,
| | - Francis Gouttefangeas
- Université de Rennes 1, ScanMAT - Synthèse, Caractérisation et ANalyse de la MATière, Rennes, France
| | - Abdelhak El Amrani
- Université de Rennes 1, CNRS/OSUR-UMR 6553, Ecosystèmes-Biodiversité-Evolution, Rennes, France
- *Correspondence: Armand Cavé-Radet, ; Mokded Rabhi, ; Abdelhak El Amrani,
| |
Collapse
|
6
|
Gallego-Tévar B, Grewell BJ, Drenovsky RE, Castillo JM. Transgressivity in Key Functional Traits Rather Than Phenotypic Plasticity Promotes Stress Tolerance in A Hybrid Cordgrass. PLANTS (BASEL, SWITZERLAND) 2019; 8:E594. [PMID: 31842356 PMCID: PMC6963473 DOI: 10.3390/plants8120594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
Abstract
Hybridization might promote offspring fitness via a greater tolerance to environmental stressors due to heterosis and higher levels of phenotypic plasticity. Thus, analyzing the phenotypic expression of hybrids provides an opportunity to elucidate further plant responses to environmental stress. In the case of coastal salt marshes, sea level rise subjects hybrids, and their parents, to longer tidal submergence and higher salinity. We analyzed the phenotypic expression patterns in the hybrid Spartina densiflora x foliosa relative to its parental species, native S. foliosa, and invasive S. densiflora, from the San Francisco Estuary when exposed to contrasting salinities and inundations in a mesocosm experiment. 37% of the recorded traits displayed no variability among parents and hybrids, 3% showed an additive inheritance, 37% showed mid-parent heterosis, 18% showed best-parent heterosis, and 5% presented worst-parent heterosis. Transgressivity, rather than phenotypic plasticity, in key functional traits of the hybrid, such as tiller height, conveyed greater stress tolerance to the hybrid when compared to the tolerance of its parents. As parental trait variability increased, phenotypic transgressivity of the hybrid increased and it was more important in response to inundation than salinity. Increases in salinity and inundation associated with sea level rise will amplify the superiority of the hybrid over its parental species. These results provide evidence of transgressive traits as an underlying source of adaptive variation that can facilitate plant invasions. The adaptive evolutionary process of hybridization is thought to support an increased invasiveness of plant species and their rapid evolution.
Collapse
Affiliation(s)
- Blanca Gallego-Tévar
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain;
| | - Brenda J. Grewell
- USDA-ARS Invasive Species and Pollinator Health Research Unit, Department. of Plant Sciences, University of California, Mail Stop 4, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Rebecca E. Drenovsky
- Department of Biology, John Carroll University, University Heights, OH 44118, USA;
| | - Jesús M. Castillo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain;
| |
Collapse
|
7
|
Luo K, Wang S, Fu Y, Zhou P, Huang X, Gu Q, Li W, Wang Y, Hu F, Liu S. Rapid genomic DNA variation in newly hybridized carp lineages derived from Cyprinus carpio (♀) × Megalobrama amblycephala (♂). BMC Genet 2019; 20:87. [PMID: 31779581 PMCID: PMC6883602 DOI: 10.1186/s12863-019-0784-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022] Open
Abstract
Background Distant hybridization can generate changes in phenotypes and genotypes that lead to the formation of new hybrid lineages with genetic variation. In this study, the establishment of two bisexual fertile carp lineages, including the improved diploid common carp (IDC) lineage and the improved diploid scattered mirror carp (IDMC) lineage, from the interspecific hybridization of common carp (Cyprinus carpio, 2n = 100) (♀) × blunt snout bream (Megalobrama amblycephala, 2n = 48) (♂), provided a good platform to investigate the genetic relationship between the parents and their hybrid progenies. Result In this study, we investigated the genetic variation of 12 Hox genes in the two types of improved carp lineages derived from common carp (♀) × blunt snout bream (♂). Hox gene clusters were abundant in the first generation of IDC, but most were not stably inherited in the second generation. In contrast, we did not find obvious mutations in Hox genes in the first generation of IDMC, and almost all the Hox gene clusters were stably inherited from the first generation to the second generation of IDMC. Interestingly, we found obvious recombinant clusters of Hox genes in both improved carp lineages, and partially recombinant clusters of Hox genes were stably inherited from the first generation to the second generation in both types of improved carp lineages. On the other hand, some Hox genes were gradually becoming pseudogenes, and some genes were completely pseudogenised in IDC or IDMC. Conclusions Our results provided important evidence that distant hybridization produces rapid genomic DNA changes that may or may not be stably inherited, providing novel insights into the function of hybridization in the establishment of improved lineages used as new fish resources for aquaculture.
Collapse
Affiliation(s)
- Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yeqing Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Pei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xuexue Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Li N, Xu C, Zhang A, Lv R, Meng X, Lin X, Gong L, Wendel JF, Liu B. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. THE NEW PHYTOLOGIST 2019; 223:979-992. [PMID: 30919978 DOI: 10.1111/nph.15820] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
Allopolyploidization, which entails interspecific hybridization and whole genome duplication (WGD), is associated with emergent genetic and epigenetic instabilities that are thought to contribute to adaptation and evolution. One frequent genomic consequence of nascent allopolyploidization is homoeologous exchange (HE), which arises from compromised meiotic fidelity and generates genetically and phenotypically variable progenies. Here, we used a genetically tractable synthetic rice segmental allotetraploid system to interrogate genome-wide DNA methylation and gene expression responses and outcomes to the separate and combined effects of hybridization, WGD and HEs. Progenies of the tetraploid rice were genomically diverse due to genome-wide HEs that affected all chromosomes, yet they exhibited overall methylome stability. Nonetheless, regional variation of cytosine methylation states was widespread in the tetraploids. Transcriptome profiling revealed genome-wide alteration of gene expression, which at least in part associates with changes in DNA methylation. Intriguingly, changes of DNA methylation and gene expression could be decoupled from hybridity and sustained and amplified by HEs. Our results suggest that HEs, a prominent genetic consequence of nascent allopolyploidy, can exacerbate, diversify and perpetuate the effects of allopolyploidization on epigenetic and gene expression variation, and hence may contribute to allopolyploid evolution.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
9
|
Gallego-Tévar B, Rubio-Casal AE, de Cires A, Figueroa E, Grewell BJ, Castillo JM. Phenotypic plasticity of polyploid plant species promotes transgressive behaviour in their hybrids. AOB PLANTS 2018; 10:ply055. [PMID: 30377487 PMCID: PMC6201833 DOI: 10.1093/aobpla/ply055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/20/2018] [Indexed: 05/13/2023]
Abstract
Hybridization is a frequent process that leads to relevant evolutionary consequences, but there is a lack of studies regarding the relationships of the variability of the response of parental plant species to environmental gradients and the responses of their hybrids at a phenotypic level. We designed an experiment in which we exposed two reciprocal cordgrass hybrids, Spartina maritima × densiflora and S. densiflora × maritima, and their parental species to four salinity concentrations for 30 days. The main objectives were to compare the performance of the hybrids with that of their parents, to distinguish the phenotypic inheritance operating in the hybrids and to analyse the relationships between the variability in the responses of the parents and the responses of their hybrids to salinity. We characterized the responses and the degree of variability for 37 foliar traits. Both hybrids presented greater salinity tolerance than their parents, showing their highest percentage of transgressive traits at both extremes of the salinity gradient. When the parental plants themselves showed a more plastic response for a given trait, there was a greater chance that their hybrid developed a transgressive behaviour for this trait. This finding supports a new focus to be applied for the artificial development of vigorous hybrid crops.
Collapse
Affiliation(s)
- Blanca Gallego-Tévar
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap, Sevilla, Spain
- Corresponding author’s e-mail address:
| | - Alfredo E Rubio-Casal
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap, Sevilla, Spain
| | - Alfonso de Cires
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap, Sevilla, Spain
| | - Enrique Figueroa
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap, Sevilla, Spain
| | - Brenda J Grewell
- USDA-ARS Invasive Species and Pollinator Health Unit, University of California, Davis, CA, USA
| | - Jesús M Castillo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap, Sevilla, Spain
| |
Collapse
|
10
|
Smukowski Heil CS, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast. Mol Biol Evol 2017; 34:1596-1612. [PMID: 28369610 PMCID: PMC5455960 DOI: 10.1093/molbev/msx098] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. The genomic changes that occur following hybridization that facilitate genome resolution and/or adaptation are not well understood. Here, we examine hybrid genome evolution using experimental evolution of de novo interspecific hybrid yeast Saccharomyces cerevisiae × Saccharomyces uvarum and their parentals. We evolved these strains in nutrient-limited conditions for hundreds of generations and sequenced the resulting cultures identifying numerous point mutations, copy number changes, and loss of heterozygosity (LOH) events, including species-biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated LOH at the high-affinity phosphate transporter gene PHO84 in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and S. cerevisiae strain backgrounds and found that the LOH is indeed the result of selection on one allele over the other in both S. cerevisiae and the hybrids. This is an example where hybrid genome resolution is driven by positive selection on existing heterozygosity and demonstrates that even infrequent outcrossing may have lasting impacts on adaptation.
Collapse
Affiliation(s)
| | - Christopher G DeSevo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Dave A Pai
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Cheryl M Tucker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Margaret L Hoang
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution, Baltimore, MD.,Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Abstract
Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity.
Collapse
|
12
|
Sora D, Kron P, Husband BC. Genetic and environmental determinants of unreduced gamete production in Brassica napus, Sinapis arvensis and their hybrids. Heredity (Edinb) 2016; 117:440-448. [PMID: 27577694 PMCID: PMC5117845 DOI: 10.1038/hdy.2016.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/08/2022] Open
Abstract
Unreduced gametes, sperm or egg cells with the somatic chromosome number, are an important mechanism of polyploid formation and gene flow between heteroploid plants. The meiotic processes leading to unreduced gamete formation are well documented, but the relative influence of environmental and genetic factors on the frequency of unreduced gametes remain largely untested. Furthermore, direct estimates of unreduced gametes based on DNA content are technically challenging and, hence, uncommon. Here, we use flow cytometry to measure the contribution of genetic (hybridization) and environmental (nutrient limitation, wounding) changes to unreduced male gamete production in Brassica napus, Sinapis arvensis and two hybrid lines. Treatments were applied to greenhouse grown plants in a random factorial design, with pollen sampled at two time intervals. Overall, the frequency of unreduced gametes averaged 0.59% (range 0.06-2.17%), plus a single outlier with 27%. Backcrossed hybrids had 39 to 75% higher unreduced gamete production than parental genotypes, averaged across all treatments, although the statistical significance of these differences depended on sampling period and wounding treatment. Unreduced gamete frequencies were higher for the second sampling period than the first. There were no direct effects of wounding or nutrient regime. Our results indicate that both genetic and environmental factors can induce increased unreduced gametes, highlighting the potential importance of environmental heterogeneity and genetic composition of populations in driving polyploid evolution.
Collapse
Affiliation(s)
- D Sora
- Department of Biology, Bioscience Complex, Queen's University, Kingston, Ontario, Canada
| | - P Kron
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - B C Husband
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Dong B, Wang H, Song A, Liu T, Chen Y, Fang W, Chen S, Chen F, Guan Z, Jiang J. miRNAs Are Involved in Determining the Improved Vigor of Autotetrapoid Chrysanthemum nankingense. FRONTIERS IN PLANT SCIENCE 2016; 7:1412. [PMID: 27733854 PMCID: PMC5039203 DOI: 10.3389/fpls.2016.01412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Many plant species are autopolyploid, a condition frequently associated with improvements in both vegetative and reproductive vigor. The possible contribution of miRNAs to this improvement was investigated by characterizing the miRNA content of a diploid and an autotetraploid form of Chrysanthemum nankingense. 162 and 161 known miRNA sequences were identified in 2x and 4x library. The length of 22 and 25 nt was predominant in diploid. However, 21 and 24 nt showed dominance in autotetraploid. It seems likely that autopolyploidization have had an immediate effect the distribution of miRNAs. In addition, the abundance of the miRNAs differed markedly between the two ploidy levels and contributed to their targets diversity. A number of target genes associated with miRNAs play important roles in growth and development. The conclusion was that some miRNAs likely make a contribution to the vigor displayed by autotetraploid C. nankingense.
Collapse
Affiliation(s)
- Bin Dong
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and EquipmentNanjing, China
| | - Haibin Wang
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and EquipmentNanjing, China
| | - Aiping Song
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and EquipmentNanjing, China
| | - Tao Liu
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yun Chen
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Weimin Fang
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Sumei Chen
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Fadi Chen
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Zhiyong Guan
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Jiafu Jiang
- Lab of Chrysanthemum Genetics, Breeding and Molecular Biology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and EquipmentNanjing, China
| |
Collapse
|
14
|
Phenotypic plasticity and population differentiation in response to salinity in the invasive cordgrass Spartina densiflora. Biol Invasions 2016. [DOI: 10.1007/s10530-015-1041-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Betto-Colliard C, Sermier R, Litvinchuk S, Perrin N, Stöck M. Origin and genome evolution of polyploid green toads in Central Asia: evidence from microsatellite markers. Heredity (Edinb) 2015; 114:300-8. [PMID: 25370211 PMCID: PMC4815583 DOI: 10.1038/hdy.2014.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 02/08/2023] Open
Abstract
Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates.
Collapse
Affiliation(s)
- C Betto-Colliard
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - R Sermier
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - S Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - N Perrin
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - M Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
16
|
Kharrat-Souissi A, Siljak-Yakovlev S, Brown SC, Baumel A, Torre F, Chaieb M. The polyploid nature of Cenchrus ciliaris L. (Poaceae) has been overlooked: new insights for the conservation and invasion biology of this species – a review. RANGELAND JOURNAL 2014. [DOI: 10.1071/rj13043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Climate change, associated with increased aridity, and high grazing pressure by livestock results in the scarcity and loss of perennial Poaceae in arid ecosystems. The species threatened by this include Cenchrus ciliaris L., a native perennial grass of the tropical and sub-tropical arid rangelands of Africa and Western Asia and now introduced in Central and South America, and Australia. This species reproduces predominantly through aposporous apomixis although sexual individuals have been occasionally identified. Cenchrus ciliaris is characterised by a significant, heritable, phenotypic polymorphism and three ploidy levels including tetraploids (2n = 4x = 36), pentaploids (2n = 5x = 45) and hexaploids (2n = 6x = 54). Under water-deficit conditions, C. ciliaris shows plasticity in growth characteristics and aboveground biomass. This phenotypic plasticity has led to the identification of genotypic-associated responses conferring more productivity. This underlines the importance of conserving the genetic diversity of C. ciliaris in order to ensure the persistence of the vegetation cover in the arid ecosystems in which it occurs. Observations from cytogenetic and molecular data converge to underline the possibility of sexual reproduction, recombination and gene flow within and between populations of C. ciliaris. Genetic mechanisms, such as polyploidy, hybridisation between ploidy levels and apomixes, are generating and then maintaining the diversity of C. ciliaris. This review emphasises the role of polyploidy in the evolutionary development of C. ciliaris and how it may be a crucial factor for its conservation in some countries and its weedy nature in others.
Collapse
|
17
|
Dufresne F, Stift M, Vergilino R, Mable BK. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 2013; 23:40-69. [DOI: 10.1111/mec.12581] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- France Dufresne
- Département de Biologie; Université du Québec à Rimouski; Québec QC Canada G5L 3A1
| | - Marc Stift
- Department of Biology; University of Konstanz; Konstanz D 78457 Germany
| | - Roland Vergilino
- Department of Integrative Biology; University of Guelph; Guelph ON Canada N1G 2W1
| | - Barbara K. Mable
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
18
|
Phillips SM, Dubery IA, van Heerden H. Molecular characterisation of two homoeologous elicitor-responsive lipin genes in cotton. Mol Genet Genomics 2013; 288:519-33. [PMID: 23897433 DOI: 10.1007/s00438-013-0770-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/04/2013] [Indexed: 11/24/2022]
Abstract
The identification and molecular characterisation of two lipin-like gene copies (GhLIPN) in cotton, Gossypium hirsutum, an allotetraploid derived from two progenitor diploid Gossypium species, is described. Sequence analyses of the GhLIPN copies, designated GhLIPN-1 and -2, revealed that they contain 11 exons, separated by ten introns. They each have a 2,643 bp open reading frame that encodes 880 aa proteins, and share a 97.7 and 95.5 % sequence similarity at the translated nucleotide and amino acid level, respectively. The GhLIPN genes have a distinct domain architecture consisting of an archetypical N-terminal lipin domain, followed by a haloacid dehalogenase (HAD) domain towards the C-terminus. A Southern blot did not distinguish between the two gene copies, which suggests that they may be homoeologs rather than paralogs. GhLIPN-2 is more similar to a homoeologous sequence from G. raimondii, representing the ancestral D-genome, compared to GhLIPN-1 that matches G. herbaceum and that represents the A-genome. Our data indicate that GhLIPN-1 and GhLIPN-2 are homoeologs that derive from the A- and the D-diploid genomes, respectively. The promoter sequences of GhLIPN-1 and -2 differ by 56 %, as a result of multiple indels. In silico analysis of the promoter regions revealed that both genes contain numerous putative defence-related and elicitor-responsive cis-elements that support a role for GhLIPN in defence responses. Relative quantification real-time PCR confirmed the up-regulation in response to a cell-wall-derived V. dahliae elicitor, which supported the association of GhLIPN with defence signalling. The results add a new dimension to the proposed roles of lipins in plants by suggesting that lipins may have a role in defence signalling.
Collapse
Affiliation(s)
- Sonia M Phillips
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, P.O. Box 524, Auckland Park, 2006, South Africa
| | | | | |
Collapse
|
19
|
Duchene D, Bromham L. Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae. BMC Evol Biol 2013; 13:65. [PMID: 23497266 PMCID: PMC3600047 DOI: 10.1186/1471-2148-13-65] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. RESULTS Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. CONCLUSIONS We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation. We find no significant differences in the ratio of non-synonymous to synonymous substitutions between lineages differing in net diversification rate, therefore we detect no signal of population size changes or alteration in selection pressures that might be causing this relationship.
Collapse
Affiliation(s)
- David Duchene
- Centre for Macroevolution and Macroecology, Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia.
| | | |
Collapse
|
20
|
Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D. Hybridization and speciation. J Evol Biol 2013; 26:229-46. [DOI: 10.1111/j.1420-9101.2012.02599.x] [Citation(s) in RCA: 1370] [Impact Index Per Article: 114.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/25/2012] [Accepted: 07/16/2012] [Indexed: 12/17/2022]
|
21
|
Stöck M, Lamatsch D. Why Comparing Polyploidy Research in Animals and Plants? Cytogenet Genome Res 2013; 140:75-8. [DOI: 10.1159/000353304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Three genome-based phylogeny of Cupressaceae s.l.: Further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Mol Phylogenet Evol 2012; 64:452-70. [DOI: 10.1016/j.ympev.2012.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 12/17/2022]
|
23
|
Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:539-49. [PMID: 22449082 DOI: 10.1111/j.1365-313x.2012.05006.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Whole genome duplication leads to autopolyploidy and brings about an increase in cell size, concentration of secondary metabolites and enhanced cytosine methylation. The increased cell size offers a positive advantage to polyploids for cell-surface-related activities, but there is a differential response to change in body size across species and taxonomic groups. Although polyploidy has been very extensively studied, having genetic, ecological and evolutionary implications, there is no report that underscores the significance of native secondary metabolites vis-à-vis body size with ploidy change. To address this problem we targeted unique diploid-autotetraploid paired sets of eight diverse clones of six species of Cymbopogon- a species complex of aromatic grasses that accumulate qualitatively different monoterpene essential oils (secondary metabolite) in their vegetative biomass. Based on the qualitative composition of essential oils and the plant body size relationship between the diploid versus autotetraploid paired sets, we show that polyploidy brings about enhanced accumulation of secondary metabolites in all cases, but exerts differential effects on body size in various species. It is observed that the accumulation of alcohol-type metabolites (e.g. geraniol) does not inhibit increase in body size with ploidy change from 2× to 4× (r = 0.854, P < 0.01), but aldehyde-type metabolites (e.g. citral) appear to drastically impede body development (r = -0.895). Such a differential response may be correlated to the metabolic steps involved in the synthesis of essential oil components. When changed to tetraploidy, the progenitor diploids requiring longer metabolic steps in production of their secondary metabolites are stressed, and those having shorter metabolite routes better utilize their resources for growth and vigour. In situ immunodetection of 5-methylcytosine sites reveals enhanced DNA methylation in autopolyploids. It is underpinned that the qualitative composition of secondary metabolites found in the vegetative biomass of the progenitor diploid has a decisive bearing on the body size of the derived autotetraploids and brings about an enhancement in genome-wide cytosine methylation.
Collapse
Affiliation(s)
- Umesh C Lavania
- CSIR-Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow 226 015, India.
| | | | | | | | | | | |
Collapse
|
24
|
Caruso I, Lepore L, De Tommasi N, Dal Piaz F, Frusciante L, Aversano R, Garramone R, Carputo D. Secondary metabolite profile in induced tetraploids of wild Solanum commersonii Dun. Chem Biodivers 2012; 8:2226-37. [PMID: 22162160 DOI: 10.1002/cbdv.201100038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The main aim of this work was to study the leaf secondary metabolite profiles of artificially induced tetraploids (2n=4x=48) of Solanum commersonii, a diploid (2n=2x=24) wild potato species. The tetraploid genotypes of S. commersonii were produced by oryzalin treatment. Both HPLC-UV and LC/MS analyses revealed that there were no qualitative differences in the metabolite profiles between the diploid S. commersonii and its tetraploids. By contrast, the results showed that the phenylpropanoid content was generally significantly higher in the tetraploids than in the diploid S. commersonii. Concerning the glycoalkaloids (GAs), the results provided evidence that the content of minor GAs (solanidenediol triose, solanidadienol lycotetraose, and solanidenol lycotetraose) was higher in tetraploids than in the diploid progenitor, while the content of major GAs (dehydrodemissine and dehydrocommersonine) was significantly higher in diploid S. commersonii than in its tetraploid genotypes. The results are discussed from the practical perspective of potato biodiversity enhancement.
Collapse
Affiliation(s)
- Immacolata Caruso
- Department of Soil, Plant, Environmental, and Animal Production Sciences (DISSPAPA), University of Naples Federico II, Portici (Na), Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Domingues DS, Cruz GMQ, Metcalfe CJ, Nogueira FTS, Vicentini R, de S Alves C, Van Sluys MA. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. BMC Genomics 2012; 13:137. [PMID: 22507400 PMCID: PMC3352295 DOI: 10.1186/1471-2164-13-137] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/16/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. RESULTS Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. CONCLUSIONS Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.
Collapse
Affiliation(s)
- Douglas S Domingues
- GaTE Lab, Depto. de Botânica, Inst. de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090 São Paulo, Brazil
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Rod. Celso Garcia Cid (PR-445), km375, 86047-902 Londrina, Brazil
| | - Guilherme MQ Cruz
- GaTE Lab, Depto. de Botânica, Inst. de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090 São Paulo, Brazil
| | - Cushla J Metcalfe
- GaTE Lab, Depto. de Botânica, Inst. de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090 São Paulo, Brazil
| | - Fabio TS Nogueira
- Depto. de Genética, Inst. de Biociências, Universidade Estadual Paulista, campus de Botucatu, Distrito de Rubião Jr., s/n, 18618-000 Botucatu, Brazil
| | - Renato Vicentini
- Systems Biology Laboratory, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Cândido Rondon, 400, 13083-875 Campinas, Brazil
| | - Cristiane de S Alves
- Depto. de Genética, Inst. de Biociências, Universidade Estadual Paulista, campus de Botucatu, Distrito de Rubião Jr., s/n, 18618-000 Botucatu, Brazil
| | - Marie-Anne Van Sluys
- GaTE Lab, Depto. de Botânica, Inst. de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090 São Paulo, Brazil
| |
Collapse
|
26
|
Parisod C. Polyploids integrate genomic changes and ecological shifts. 13th Congress of the European Society for Evolutionary Biology, Tuebingen, Germany, August 2011. THE NEW PHYTOLOGIST 2012; 193:297-300. [PMID: 22221149 DOI: 10.1111/j.1469-8137.2011.04008.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Christian Parisod
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
27
|
te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesová M, Pysek P. The more the better? The role of polyploidy in facilitating plant invasions. ANNALS OF BOTANY 2012; 109:19-45. [PMID: 22040744 PMCID: PMC3241594 DOI: 10.1093/aob/mcr277] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/29/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Biological invasions are a major ecological and socio-economic problem in many parts of the world. Despite an explosion of research in recent decades, much remains to be understood about why some species become invasive whereas others do not. Recently, polyploidy (whole genome duplication) has been proposed as an important determinant of invasiveness in plants. Genome duplication has played a major role in plant evolution and can drastically alter a plant's genetic make-up, morphology, physiology and ecology within only one or a few generations. This may allow some polyploids to succeed in strongly fluctuating environments and/or effectively colonize new habitats and, thus, increase their potential to be invasive. SCOPE We synthesize current knowledge on the importance of polyploidy for the invasion (i.e. spread) of introduced plants. We first aim to elucidate general mechanisms that are involved in the success of polyploid plants and translate this to that of plant invaders. Secondly, we provide an overview of ploidal levels in selected invasive alien plants and explain how ploidy might have contributed to their success. CONCLUSIONS Polyploidy can be an important factor in species invasion success through a combination of (1) 'pre-adaptation', whereby polyploid lineages are predisposed to conditions in the new range and, therefore, have higher survival rates and fitness in the earliest establishment phase; and (2) the possibility for subsequent adaptation due to a larger genetic diversity that may assist the 'evolution of invasiveness'. Alternatively, polyploidization may play an important role by (3) restoring sexual reproduction following hybridization or, conversely, (4) asexual reproduction in the absence of suitable mates. We, therefore, encourage invasion biologists to incorporate assessments of ploidy in their studies of invasive alien species.
Collapse
Affiliation(s)
- Mariska te Beest
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | | | | | | | |
Collapse
|
28
|
Xu SX, Cai XD, Tan B, Li DL, Guo WW. Effect of ploidy increase on transgene expression: example from Citrus diploid cybrid and allotetraploid somatic hybrid expressing the EGFP gene. PROTOPLASMA 2011; 248:531-540. [PMID: 20734092 DOI: 10.1007/s00709-010-0200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/11/2010] [Indexed: 05/29/2023]
Abstract
Polyploidization is an important speciation mechanism for all eukaryotes, and it has profound impacts on biodiversity dynamics and ecosystem functioning. Green fluorescent protein (GFP) has been used as an effective marker to visually screen somatic hybrids at an early stage in protoplast fusion. We have previously reported that the intensity of GFP fluorescence of regenerated embryoids was also an early indicator of ploidy level. However, little is known concerning the effects of ploidy increase on the GFP expression in citrus somatic hybrids at the plant level. Herein, allotetraploid and diploid cybrid plants with enhanced GFP (EGFP) expression were regenerated from the fusion of embryogenic callus protoplasts from 'Murcott' tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osbeck) and mesophyll protoplasts from transgenic 'Valencia' orange (C. sinensis (L.) Osbeck) expressing the EGFP gene, via electrofusion. Subsequent simple sequence repeat (SSR), chloroplast simple sequence repeat and cleaved amplified polymorphic sequence analysis revealed that the two regenerated tetraploid plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from the callus parent, while the five regenerated diploid plants were cybrids containing nuclear DNA of the leaf parent and with complex segregation of cytoplasmic DNA. Furthermore, EGFP expression was compared in cells and protoplasts from mature leaves of these diploid cybrids and allotetraploid somatic hybrids. Results showed that the intensity of GFP fluorescence per cell or protoplast in diploid was generally brighter than in allotetraploid. Moreover, same hybridization signal was detected on allotetraploid and diploid plants by Southern blot analysis. By real-time RT-PCR and Western blot analysis, GFP expression level of the diploid cybrid was revealed significantly higher than that of the allotetraploid somatic hybrid. These results suggest that ploidy level conversion can affect transgene expression and citrus diploid cybrid and allotetraploid somatic hybrid represents another example of gene regulation coupled to ploidy.
Collapse
Affiliation(s)
- Shi-Xiao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|
29
|
Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00829.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Xing SH, Guo XB, Wang Q, Pan QF, Tian YS, Liu P, Zhao JY, Wang GF, Sun XF, Tang KX. Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. J Biomed Biotechnol 2011; 2011:793198. [PMID: 21660143 PMCID: PMC3110335 DOI: 10.1155/2011/793198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 12/12/2022] Open
Abstract
The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine.
Collapse
Affiliation(s)
- Shi-Hai Xing
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Bo Guo
- State Key Laboratory of Genetic Engineering, Morgan-Tan International Center for Life Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Quan Wang
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi-Fang Pan
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue-Sheng Tian
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pin Liu
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Ya Zhao
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guo-Feng Wang
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Fen Sun
- State Key Laboratory of Genetic Engineering, Morgan-Tan International Center for Life Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ke-Xuan Tang
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Genetic Engineering, Morgan-Tan International Center for Life Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
31
|
On the nature of species: insights from Paramecium and other ciliates. Genetica 2011; 139:677-84. [PMID: 21505762 DOI: 10.1007/s10709-011-9571-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
The multiple species concepts currently in use by the scientific community (e.g. Morphological, Biological, Phylogenetic) are united in that they all aim to capture the process of divergence between populations. For example, the Biological Species Concept defines a species as a natural group of organisms that is reproductively isolated from other such groups. Here we synthesize nearly a century of research on the ciliate genus Paramecium that highlights the shortcomings of our prevailing notions on the nature of species. In this lineage, there is discordance between morphology, mating behavior, and genetics, features assumed to be correlated, at least after sufficient time has passed, under all species concepts. Intriguingly, epigenetic phenomena are well documented in ciliates where they influence features such as germline/soma differentiation and mating type determination. Consequently, we hypothesize that divergence within ciliate populations is due to a dynamic interaction between genetic and epigenetic factors. The growing list of examples of epigenetic phenomena that potentially impact speciation (i.e. by influencing the dynamics of sex chromosomes, fate of hybrids, zygotic drive and genomic conflicts) suggests that interactions between genetics and epigenetics may also drive divergence in other eukaryotic lineages.
Collapse
|
32
|
Genetic diversity and structure of a Mediterranean endemic plant in Corsica (Mercurialis corsica, Euphorbiaceae). POPUL ECOL 2011. [DOI: 10.1007/s10144-011-0266-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|