1
|
Zhou M, Riva A, Gauthier MPL, Kladde MP, Ferl RJ, Paul AL. Single-molecule long-read methylation profiling reveals regional DNA methylation regulated by Elongator Complex Subunit 2 in Arabidopsis roots experiencing spaceflight. Biol Direct 2024; 19:33. [PMID: 38689301 PMCID: PMC11059628 DOI: 10.1186/s13062-024-00476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The Advanced Plant Experiment-04 - Epigenetic Expression (APEX-04-EpEx) experiment onboard the International Space Station examined the spaceflight-altered cytosine methylation in two genetic lines of Arabidopsis thaliana, wild-type Col-0 and the mutant elp2-5, which is deficient in an epigenetic regulator Elongator Complex Subunit 2 (ELP2). Whole-genome bisulfite sequencing (WGBS) revealed distinct spaceflight associated methylation differences, presenting the need to explore specific space-altered methylation at single-molecule resolution to associate specific changes over large regions of spaceflight related genes. To date, tools of multiplexed targeted DNA methylation sequencing remain limited for plant genomes. RESULTS To provide methylation data at single-molecule resolution, Flap-enabled next-generation capture (FENGC), a novel targeted multiplexed DNA capture and enrichment technique allowing cleavage at any specified sites, was applied to survey spaceflight-altered DNA methylation in genic regions of interest. The FENGC capture panel contained 108 targets ranging from 509 to 704 nt within the promoter or gene body regions of gene targets derived from spaceflight whole-genome data sets. In addition to genes with significant changes in expression and average methylation levels between spaceflight and ground control, targets with space-altered distributions of the proportion of methylated cytosines per molecule were identified. Moreover, trends of co-methylation of different cytosine contexts were exhibited in the same DNA molecules. We further identified significant DNA methylation changes in three previously biological process-unknown genes, and loss-of-function mutants of two of these genes (named as EMO1 and EMO2 for ELP2-regulated Methylation in Orbit 1 and 2) showed enhanced root growth rate. CONCLUSIONS FENGC simplifies and reduces the cost of multiplexed, targeted, single-molecule profiling of methylation in plants, providing additional resolution along each DNA molecule that is not seen in population-based short-read data such as WGBS. This case study has revealed spaceflight-altered regional modification of cytosine methylation occurring within single DNA molecules of cell subpopulations, which were not identified by WGBS. The single-molecule survey by FENGC can lead to identification of novel functional genes. The newly identified EMO1 and EMO2 are root growth regulators which may be epigenetically involved in plant adaptation to spaceflight.
Collapse
Affiliation(s)
- Mingqi Zhou
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, 32611, Gainesville, FL, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, 32610, Gainesville, FL, USA
| | - Marie-Pierre L Gauthier
- Department of Biochemistry and Molecular Biology, University of Florida, 2033 Mowry Rd, 32610, Gainesville, FL, USA
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, University of Florida, 2033 Mowry Rd, 32610, Gainesville, FL, USA
| | - Robert J Ferl
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, 32611, Gainesville, FL, USA.
- UF Research, University of Florida, 1523 Union Rd, Grinter Hall, 32611, Gainesville, FL, USA.
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, 32611, Gainesville, FL, USA.
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, 32610, Gainesville, FL, USA.
| |
Collapse
|
2
|
Ormancey M, Guillotin B, Ribeyre C, Medina C, Jariais N, San Clemente H, Thuleau P, Plaza S, Beck M, Combier J. Immune-enhancing miPEPs reduce plant diseases and offer new solutions in agriculture. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:13-15. [PMID: 37864306 PMCID: PMC10753997 DOI: 10.1111/pbi.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Mélanie Ormancey
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
- Present address:
Epigenetics and Plant Development, Centre for Research in Agricultural Genomics (CRAG)UABBarcelonaSpain
| | - Bruno Guillotin
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
- Micropep TechnologiesAuzeville‐TolosaneFrance
- Present address:
The Department of Biology, The Center for Genomics and Systems BiologyNew York UniversityNew YorkUSA
| | | | | | - Nathanael Jariais
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
| | - Patrice Thuleau
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
| | - Serge Plaza
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
| | | | - Jean‐Philippe Combier
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
- Micropep TechnologiesAuzeville‐TolosaneFrance
| |
Collapse
|
3
|
Nguyen NN, Lamotte O, Alsulaiman M, Ruffel S, Krouk G, Berger N, Demolombe V, Nespoulous C, Dang TMN, Aimé S, Berthomieu P, Dubos C, Wendehenne D, Vile D, Gosti F. Reduction in PLANT DEFENSIN 1 expression in Arabidopsis thaliana results in increased resistance to pathogens and zinc toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5374-5393. [PMID: 37326591 DOI: 10.1093/jxb/erad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Ectopic expression of defensins in plants correlates with their increased capacity to withstand abiotic and biotic stresses. This applies to Arabidopsis thaliana, where some of the seven members of the PLANT DEFENSIN 1 family (AtPDF1) are recognised to improve plant responses to necrotrophic pathogens and increase seedling tolerance to excess zinc (Zn). However, few studies have explored the effects of decreased endogenous defensin expression on these stress responses. Here, we carried out an extensive physiological and biochemical comparative characterization of (i) novel artificial microRNA (amiRNA) lines silenced for the five most similar AtPDF1s, and (ii) a double null mutant for the two most distant AtPDF1s. Silencing of five AtPDF1 genes was specifically associated with increased aboveground dry mass production in mature plants under excess Zn conditions, and with increased plant tolerance to different pathogens - a fungus, an oomycete and a bacterium, while the double mutant behaved similarly to the wild type. These unexpected results challenge the current paradigm describing the role of PDFs in plant stress responses. Additional roles of endogenous plant defensins are discussed, opening new perspectives for their functions.
Collapse
Affiliation(s)
- Ngoc Nga Nguyen
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Olivier Lamotte
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne-Franche Comté, F-21 000 Dijon, France
| | - Mohanad Alsulaiman
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Sandrine Ruffel
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Gabriel Krouk
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Nathalie Berger
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Vincent Demolombe
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Claude Nespoulous
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Thi Minh Nguyet Dang
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Sébastien Aimé
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne-Franche Comté, F-21 000 Dijon, France
| | - Pierre Berthomieu
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Christian Dubos
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - David Wendehenne
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne-Franche Comté, F-21 000 Dijon, France
| | - Denis Vile
- LEPSE, INRAE, Institut Agro, Université de Montpellier, 2 Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Françoise Gosti
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| |
Collapse
|
4
|
Colzi I, Gonnelli C, Vergata C, Golia G, Coppi A, Castellani MB, Giovino A, Buti M, Sabato T, Capuana M, Aprile A, De Bellis L, Cicatelli A, Guarino F, Castiglione S, Ioannou AG, Fotopoulos V, Martinelli F. Transgenerational effects of chromium stress at the phenotypic and molecular level in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130092. [PMID: 36303345 DOI: 10.1016/j.jhazmat.2022.130092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In this study, we describe the results obtained in a study of the transgenerational phenotypic effects of chromium (Cr) stress on the model plant species Arabidopsis thaliana. The F1 generation derived from parents grown under chronic and medium chronic stress showed significantly higher levels of the maximal effective concentration (EC50) compared with F1 plants generated from unstressed parents. Moreover, F1 plants from Cr-stressed parents showed a higher germination rate when grown in the presence of Cr. F1 plants derived from parents cultivated under chronic Cr stress displayed reduced hydrogen peroxide levels under Cr stress compared to controls. At lower Cr stress levels, F1 plants were observed to activate promptly more genes involved in Cr stress responses than F0 plants, implying a memory effect linked to transgenerational priming. At higher Cr levels, and at later stages, F1 plants modulated significantly fewer genes than F0 plants, implying a memory effect leading to Cr stress adaptation. Several bHLH transcription factors were induced by Cr stress in F1 but not in F0 plants, including bHLH100, ORG2 and ORG3. F1 plants optimized gene expression towards pathways linked to iron starvation response. A model of the transcriptional regulation of transgenerational memory to Cr stress is presented here, and could be applied for other heavy metal stresses.
Collapse
Affiliation(s)
- Ilaria Colzi
- Department of Biology, University of Florence, Italy.
| | | | | | | | - Andrea Coppi
- Department of Biology, University of Florence, Italy.
| | | | - Antonio Giovino
- CREA Consiglio per la ricerca in Agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Difesa e Certificazione, Bagheria, Italy.
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.
| | | | - Maurizio Capuana
- Institute of Biosciences and Bioresources, National Research Council, Italy.
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology, University of Salerno, Italy.
| | | | | | - Andreas G Ioannou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | | |
Collapse
|
5
|
Biniaz Y, Tahmasebi A, Tahmasebi A, Albrectsen BR, Poczai P, Afsharifar A. Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana. BIOLOGY 2022; 11:1155. [PMID: 36009782 PMCID: PMC9404733 DOI: 10.3390/biology11081155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Following a pathogen attack, plants defend themselves using multiple defense mechanisms to prevent infections. We used a meta-analysis and systems-biology analysis to search for general molecular plant defense responses from transcriptomic data reported from different pathogen attacks in Arabidopsis thaliana. Data from seven studies were subjected to meta-analysis, which revealed a total of 3694 differentially expressed genes (DEGs), where both healthy and infected plants were considered. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis further suggested that the DEGs were involved in several biosynthetic metabolic pathways, including those responsible for the biosynthesis of secondary metabolites and pathways central to photosynthesis and plant-pathogen interactions. Using network analysis, we highlight the importance of WRKY40, WRKY46 and STZ, and suggest that they serve as major points in protein-protein interactions. This is especially true regarding networks of composite-metabolic responses by pathogens. In summary, this research provides a new approach that illuminates how different mechanisms of transcriptome responses can be activated in plants under pathogen infection and indicates that common genes vary in their ability to regulate plant responses to the pathogens studied herein.
Collapse
Affiliation(s)
- Yaser Biniaz
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas 7916193145, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Benedicte Riber Albrectsen
- Department of Plant Physiology, Faculty of Science and Technology, Umeå University, 901 87 Umeå, Sweden;
| | - Péter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00065 Helsinki, Finland
- Institute of Advanced Studies Kőszeg (iASK), P.O. Box 4, H-9731 Kőszeg, Hungary
| | - Alireza Afsharifar
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| |
Collapse
|
6
|
Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I. Host Defence Peptides: A Potent Alternative to Combat Antimicrobial Resistance in the Era of the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:475. [PMID: 35453226 PMCID: PMC9032040 DOI: 10.3390/antibiotics11040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
One of the greatest challenges facing the medical community today is the ever-increasing trajectory of antimicrobial resistance (AMR), which is being compounded by the decrease in our antimicrobial armamentarium. From their initial discovery to the current day, antibiotics have seen an exponential increase in their usage, from medical to agricultural use. Benefits aside, this has led to an exponential increase in AMR, with the fear that over 10 million lives are predicted to be lost by 2050, according to the World Health Organisation (WHO). As such, medical researchers are turning their focus to discovering novel alternatives to antimicrobials, one being Host Defence Peptides (HDPs). These small cationic peptides have shown great efficacy in being used as an antimicrobial therapy for currently resistant microbial variants. With the sudden emergence of the SARS-CoV-2 variant and the subsequent global pandemic, the great versatility and potential use of HDPs as an alternative to conventional antibiotics in treating as well as preventing the spread of COVID-19 has been reviewed. Thus, to allow the reader to have a full understanding of the multifaceted therapeutic use of HDPs, this literature review shall cover the association between COVID-19 and AMR whilst discussing and evaluating the use of HDPs as an answer to antimicrobial resistance (AMR).
Collapse
Affiliation(s)
| | | | | | | | - Imran Mohammed
- Section of Ophthalmology, Larry A. Donoso Laboratory for Eye Research, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Queens Medical Centre, Eye and ENT Building, Nottingham NG7 2UH, UK; (W.A.); (A.E.); (D.S.J.T.); (H.S.D.)
| |
Collapse
|
7
|
Hawamda AIM, Reichert S, Ali MA, Nawaz MA, Austerlitz T, Schekahn P, Abbas A, Tenhaken R, Bohlmann H. Characterization of an Arabidopsis Defensin-like Gene Conferring Resistance against Nematodes. PLANTS (BASEL, SWITZERLAND) 2022; 11:280. [PMID: 35161268 PMCID: PMC8838067 DOI: 10.3390/plants11030280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Arabidopsis contains 317 genes for defensin-like (DEFL) peptides. DEFLs have been grouped into different families based mainly on cysteine motifs. The DEFL0770 group contains seven genes, of which four are strongly expressed in roots. We found that the expression of these genes is downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii as revealed by RNAseq analysis. We have studied one gene of this group, At3g59930, in detail. A promoter::GUS line revealed that the gene is only expressed in roots but not in other plant organs. Infection of the GUS line with larvae of H. schachtii showed a strong downregulation of GUS expression in infection sites as early as 1 dpi, confirming the RNAseq data. The At3g59930 peptide had only weak antimicrobial activity against Botrytis cinerea. Overexpression lines had no enhanced resistance against this fungus but were more resistant to H. schachtii infection. Our data indicate that At3g59930 is involved in resistance to nematodes which is probably not due to direct nematicidal activity.
Collapse
Affiliation(s)
- Abdalmenem I. M. Hawamda
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Agricultural Biotechnology, Faculty of Agricultural Science and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine
| | - Susanne Reichert
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Muhammad Amjad Ali
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Amjad Nawaz
- Siberian Federal Scientific Centre of Agrobiotechnology, Russian Academy of Sciences, 630501 Krasnoobsk, Russia;
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Tina Austerlitz
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Patricia Schekahn
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Amjad Abbas
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Raimund Tenhaken
- Plant Physiology, University of Salzburg, 5020 Salzburg, Austria;
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| |
Collapse
|
8
|
Ambastha V, Matityahu I, Tidhar D, Leshem Y. RabA2b Overexpression Alters the Plasma-Membrane Proteome and Improves Drought Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:738694. [PMID: 34691115 PMCID: PMC8526897 DOI: 10.3389/fpls.2021.738694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 06/07/2023]
Abstract
Rab proteins are small GTPases that are important in the regulation of vesicle trafficking. Through data mining, we identified RabA2b to be stress responsive, though little is known about the involvement of RabA in plant responses to abiotic stresses. Analysis of the RabA2b native promoter showed strong activity during osmotic stress, which required the stress hormone Abscisic acid (ABA) and was restricted to the vasculature. Sequence analysis of the promoter region identified predicted binding motifs for several ABA-responsive transcription factors. We cloned RabA2b and overexpressed it in Arabidopsis. The resulting transgenic plants were strikingly drought resistant. The reduced water loss observed in detached leaves of the transgenic plants could not be explained by stomatal aperture or density, which was similar in all the genotypes. Subcellular localization studies detected strong colocalization between RabA2b and the plasma membrane (PM) marker PIP2. Further studies of the PM showed, for the first time, a distinguished alteration in the PM proteome as a result of RabA2b overexpression. Proteomic analysis of isolated PM fractions showed enrichment of stress-coping proteins as well as cell wall/cuticle modifiers in the transgenic lines. Finally, the cuticle permeability of transgenic leaves was significantly reduced compared to the wild type, suggesting that it plays a role in its drought resistant properties. Overall, these data provide new insights into the roles and modes of action of RabA2b during water stresses, and indicate that increased RabA2b mediated PM trafficking can affect the PM proteome and increase drought tolerance.
Collapse
Affiliation(s)
- Vivek Ambastha
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Ifat Matityahu
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Dafna Tidhar
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Yehoram Leshem
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
9
|
Omidvar R, Vosseler N, Abbas A, Gutmann B, Grünwald-Gruber C, Altmann F, Siddique S, Bohlmann H. Analysis of a gene family for PDF-like peptides from Arabidopsis. Sci Rep 2021; 11:18948. [PMID: 34556705 PMCID: PMC8460643 DOI: 10.1038/s41598-021-98175-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern which is stabilized by four disulfide bridges. We show here that Arabidopsis contains in addition to the proper plant defensins a group of 9 plant defensin-like (PdfL) genes. They are all expressed at low levels while GUS fusions of the promoters showed expression in most tissues with only minor differences. We produced two of the encoded peptides in E. coli and tested the antimicrobial activity in vitro. Both were highly active against fungi but had lower activity against bacteria. At higher concentrations hyperbranching and swollen tips, which are indicative of antimicrobial activity, were induced in Fusarium graminearum by both peptides. Overexpression lines for most PdfL genes were produced using the 35S CaMV promoter to study their possible in planta function. With the exception of PdfL4.1 these lines had enhanced resistance against F. oxysporum. All PDFL peptides were also transiently expressed in Nicotiana benthamiana leaves with agroinfiltration using the pPZP3425 vector. In case of PDFL1.4 this resulted in complete death of the infiltrated tissues after 7 days. All other PDFLs resulted only in various degrees of small necrotic lesions. In conclusion, our results show that at least some of the PdfL genes could function in plant resistance.
Collapse
Affiliation(s)
- Reza Omidvar
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Nadine Vosseler
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Amjad Abbas
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Birgit Gutmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- RIVIERA Pharma and Cosmetics GmbH, Holzhackerstraße 1, Tulln, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Shahid Siddique
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
10
|
Wei H, Movahedi A, Xu C, Sun W, Wang X, Li D, Zhuge Q. Overexpression of PtDefensin enhances resistance to Septotis populiperda in transgenic poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110379. [PMID: 32005384 DOI: 10.1016/j.plantsci.2019.110379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Plant defensins have been implicated in the plant defense system, but their role in poplar immunity is still unclear. In the present study, we present evidence that PtDefensin, a putative plant defensin, participates in the defense of poplar plants against Septotis populiperda infection. After the construction of recombinant plasmid PET-32a-PtDefensin, PtDefensin protein was expressed in Escherichia coli strain BL21 (DE3) and purified through Ni-IDA resin affinity chromatography. The Trx-PtDefensin fusion protein displayed no cytotoxic activity against RAW264.7 cells but had cytotoxic activity against E. coli K12D31 cells. Analyses of PtDefensin transcript abundance showed that the expression levels of PtDefensin responded to abiotic and biotic stresses. Overexpression of PtDefensin in 'Nanlin 895' poplars (Populus × euramericana cv 'Nanlin895') increased resistance to Septotis populiperda, coupled with upregulation of MYC2 (basic helix-loop-helix (bHLH) transcription factor) related to jasmonic acid (JA) signal transduction pathways and downregulation of Jasmonate-zim domain (JAZ), an inhibitor in the JA signal transduction pathway. We speculate that systemic acquired resistance (SAR) was activated in non-transgenic poplars after S. populiperda incubation, and that induced systemic resistance (ISR) was activated more obviously in transgenic poplars after S. populiperda incubation. Hence, overexpression of PtDefensin may improve the resistance of poplar plants to pathogens.
Collapse
Affiliation(s)
- Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Chen Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China; Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Xiaoli Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China.
| |
Collapse
|
11
|
Yao J, Luo JS, Xiao Y, Zhang Z. The plant defensin gene AtPDF2.1 mediates ammonium metabolism by regulating glutamine synthetase activity in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:557. [PMID: 31842759 PMCID: PMC6916093 DOI: 10.1186/s12870-019-2183-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/03/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND In plants, ammonium metabolism is particularly important for converting absorbed nitrogen into amino acids. However, the molecular mechanism underlying this conversion remains largely unknown. RESULTS Using wild type Arabidopsis thaliana (Col-0) and AtPDF2.1 mutants (pdf2.1-1 and pdf2.1-2), we found that the small cysteine-rich peptide AtPDF2.1, a plant defensin, is involved in regulating ammonium metabolism in the shoot. Ammonium significantly induced the expression of AtPDF2.1 in the shoot and root, particularly in root xylem vascular bundles, as demonstrated by histochemical analysis. Subcellular localization analysis revealed that AtPDF2.1 was localized to the cell wall. Ammonium concentration was higher in the shoot of mutants than in the shoot of Col-0, but no differences were found for total nitrogen content, root ammonium concentration, and the expression of the ammonium transporter gene AtAMT2.1. The activity of glutamine synthetase was significantly decreased in mutants, and the glutamine synthetase family genes GLN1.3 and GLN1.5 were significantly downregulated in mutants compared to Col-0. The activity of nitrate reductase showed no difference between mutants and Col-0. CONCLUSIONS Overall, these data suggest that AtPDF2.1 affects ammonium metabolism by regulating the expression of GLN1.3 and GLN1.5 through a yet unidentified mechanism.
Collapse
Affiliation(s)
- Junyue Yao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128 China
| | - Yan Xiao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128 China
| |
Collapse
|
12
|
Characterization, expression profiling, and functional analysis of a Populus trichocarpa defensin gene and its potential as an anti-Agrobacterium rooting medium additive. Sci Rep 2019; 9:15359. [PMID: 31653915 PMCID: PMC6814764 DOI: 10.1038/s41598-019-51762-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023] Open
Abstract
The diverse antimicrobial properties of defensins have attracted wide scientific interest in recent years. Also, antimicrobial peptides (AMPs), including cecropins, histatins, defensins, and cathelicidins, have recently become an antimicrobial research hotspot for their broad-spectrum antibacterial and antifungal activities. In addition, defensins play important roles in plant growth, development, and physiological metabolism, and demonstrate tissue specificity and regulation in response to pathogen attack or abiotic stress. In this study, we performed molecular cloning, characterization, expression profiling, and functional analysis of a defensin from Populus trichocarpa. The PtDef protein was highly expressed in the prokaryotic Escherichia coli system as a fusion protein (TrxA–PtDef). The purified protein exhibited strong antibacterial and antifungal functions. We then applied PtDef to rooting culture medium as an alternative exogenous additive to cefotaxime. PtDef expression levels increased significantly following both biotic and abiotic treatment. The degree of leaf damage observed in wild-type (WT) and transgenic poplars indicates that transgenic poplars that overexpress the PtDef gene gain enhanced disease resistance to Septotis populiperda. To further study the salicylic acid (SA) and jasmonic acid (JA) signal transduction pathways, SA- and JA-related and pathogenesis-related genes were analyzed using quantitative reverse-transcription polymerase chain reaction; there were significant differences in these pathways between transgenic and WT poplars. The defensin from Populus trichocarpa showed significant activity of anti-bacteria and anti-fungi. According to the results of qRT-PCR and physiological relevant indicators, the applied PtDef to rooting culture medium was chosen as an alternative exogenous additive to cefotaxime. Overexpressing the PtDef gene in poplar improve the disease resistance to Septotis populiperda.
Collapse
|
13
|
Luo JS, Gu T, Yang Y, Zhang Z. A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 100:561-569. [PMID: 31053987 DOI: 10.1007/s11103-019-00878-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/25/2019] [Indexed: 05/27/2023]
Abstract
Plant defensin AtPDF2.6 is not secreted to the apoplast and localized in cytoplasm. AtPDF2.6 is mainly expressed in root vascular bundles of xylem parenchyma cell, and significantly induced by Cd stress. AtPDF2.6 detoxicate cytoplasmic Cd via chelation, thus enhanced Cd tolerance in Arabidopsis. In order to detoxify the heavy metal cadmium (Cd), plants have evolved several mechanisms, among which chelation represents the major Cd-detoxification mechanism. In this study, we aimed to identify a new defensin protein involved in cytoplasmic Cd detoxification by using plant molecular genetics and physiological methods. The results of bioinformatic analysis showed that the Arabidopsis thaliana defensin gene AtPDF2.6 has a signal peptide that may mediate its secretion to the cell wall. Subcellular localization analysis revealed that AtPDF2.6 is localized to the cytoplasm and is not secreted to the apoplast, whereas histochemical analysis indicated that AtPDF2.6 is mainly expressed in the root xylem parenchyma cells and that its expression is significantly induced by Cd. An in vitro Cd-binding assay revealed that AtPDF2.6 has Cd-chelating activity. Heterologous overexpression of AtPDF2.6 increased Cd tolerance in Escherichia coli and yeast, and AtPDF2.6 overexpression significantly enhanced Cd tolerance in Arabidopsis, whereas functional disruption of AtPDF2.6 decreased Cd tolerance. These data suggest that AtPDF2.6 detoxifies cytoplasmic Cd via chelation and thereby enhances Cd tolerance in Arabidopsis. Our findings accordingly challenge the commonly accepted view of defensins as secreted proteins.
Collapse
Affiliation(s)
- Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Tianyu Gu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Yang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China.
| |
Collapse
|
14
|
Campos ML, de Souza CM, de Oliveira KBS, Dias SC, Franco OL. The role of antimicrobial peptides in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4997-5011. [PMID: 30099553 DOI: 10.1093/jxb/ery294] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Selective pressure imposed by millions of years of relentless biological attack has led to the development of an extraordinary array of defense strategies in plants. Among these, antimicrobial peptides (AMPs) stand out as one of the most prominent components of the plant immune system. These small and usually basic peptides are deployed as a generalist defense strategy that grants direct and durable resistance against biotic stress. Even though their name implies a function against microbes, the range of plant-associated organisms affected by these peptides is much broader. In this review, we highlight the advances in our understanding on the role of AMPs in plant immunity. We demonstrate that the capacity of plant AMPs to act against a large spectrum of enemies relies on their diverse mechanism of action and remarkable structural stability. The efficacy of AMPs as a defense strategy is evidenced by their widespread occurrence in the plant kingdom, an astonishing heterogeneity in host peptide composition, and the extent to which plant enemies have evolved effective counter-measures to evade AMP action. Plant AMPs are becoming an important topic of research due to their significance in allowing plants to thrive and for their enormous potential in agronomical and pharmaceutical fields.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá/MT, Brazil
| | - Camila Maurmann de Souza
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
| | | | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Universidade de Brasilia, Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Brasilia/DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande/MS, Brazil
| |
Collapse
|
15
|
Heydarian Z, Gruber M, Glick BR, Hegedus DD. Gene Expression Patterns in Roots of Camelina sativa With Enhanced Salinity Tolerance Arising From Inoculation of Soil With Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression the Corresponding acdS Gene. Front Microbiol 2018; 9:1297. [PMID: 30013518 PMCID: PMC6036250 DOI: 10.3389/fmicb.2018.01297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
Camelina sativa treated with plant growth-promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate deaminase (acdS) or transgenic lines expressing acdS exhibit increased salinity tolerance. AcdS reduces the level of stress ethylene to below the point where it is inhibitory to plant growth. The study determined that several mechanisms appear to be responsible for the increased salinity tolerance and that the effect of acdS on gene expression patterns in C. sativa roots during salt stress is a function of how it is delivered. Growth in soil treated with the PGPB (Pseudomonas migulae 8R6) mostly affected ethylene- and abscisic acid-dependent signaling in a positive way, while expression of acdS in transgenic lines under the control of the broadly active CaMV 35S promoter or the root-specific rolD promoter affected auxin, jasmonic acid and brassinosteroid signaling and/biosynthesis. The expression of genes involved in minor carbohydrate metabolism were also up-regulated, mainly in roots of lines expressing acdS. Expression of acdS also affected the expression of genes involved in modulating the level of reactive oxygen species (ROS) to prevent cellular damage, while permitting ROS-dependent signal transduction. Though the root is not a photosynthetic tissue, acdS had a positive effect on the expression of genes involved in photosynthesis.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Finkina EI, Ovchinnikova TV. Plant Defensins: Structure, Functions, Biosynthesis, and the Role in the Immune Response. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Yin J, Gosney MJ, Dilkes BP, Mickelbart MV. Dark period transcriptomic and metabolic profiling of two diverse Eutrema salsugineum accessions. PLANT DIRECT 2018; 2:e00032. [PMID: 31245703 PMCID: PMC6508522 DOI: 10.1002/pld3.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 05/16/2023]
Abstract
Eutrema salsugineum is a model species for the study of plant adaptation to abiotic stresses. Two accessions of E. salsugineum, Shandong (SH) and Yukon (YK), exhibit contrasting morphology and biotic and abiotic stress tolerance. Transcriptome profiling and metabolic profiling from tissue samples collected during the dark period were used to investigate the molecular and metabolic bases of these contrasting phenotypes. RNA sequencing identified 17,888 expressed genes, of which 157 were not in the published reference genome, and 65 of which were detected for the first time. Differential expression was detected for only 31 genes. The RNA sequencing data contained 14,808 single nucleotide polymorphisms (SNPs) in transcripts, 3,925 of which are newly identified. Among the differentially expressed genes, there were no obvious candidates for the physiological or morphological differences between SH and YK. Metabolic profiling indicated that YK accumulates free fatty acids and long-chain fatty acid derivatives as compared to SH, whereas sugars are more abundant in SH. Metabolite levels suggest that carbohydrate and respiratory metabolism, including starch degradation, is more active during the first half of the dark period in SH. These metabolic differences may explain the greater biomass accumulation in YK over SH. The accumulation of 56% of the identified metabolites was lower in F1 hybrids than the mid-parent averages and the accumulation of 17% of the metabolites in F1 plants transgressed the level in both parents. Concentrations of several metabolites in F1 hybrids agree with previous studies and suggest a role for primary metabolism in heterosis. The improved annotation of the E. salsugineum genome and newly identified high-quality SNPs will permit accelerated studies using the standing variation in this species to elucidate the mechanisms of its diverse adaptations to the environment.
Collapse
Affiliation(s)
- Jie Yin
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| | - Michael J. Gosney
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| | - Brian P. Dilkes
- Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - Michael V. Mickelbart
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
18
|
The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defence system. Sci Rep 2017; 7:9175. [PMID: 28835670 PMCID: PMC5569111 DOI: 10.1038/s41598-017-08497-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/10/2017] [Indexed: 12/05/2022] Open
Abstract
Plant defensins (PDFs) are cysteine-rich peptides that have a range of biological functions, including defence against fungal pathogens. However, little is known about their role in defence against bacteria. In this study, we showed that the protein encoded by ARABIDOPSIS THALIANA PLANT DEFENSIN TYPE 1.1 (AtPDF1.1) is a secreted protein that can chelate apoplastic iron. Transcripts of AtPDF1.1 were induced in both systemic non-infected leaves of Arabidopsis thaliana plants and those infected with the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc). The expression levels of AtPDF1.1 with correct subcellular localization in transgenic A. thaliana plants were positively correlated with tolerance to Pcc, suggesting its involvement in the defence against this bacterium. Expression analysis of genes associated with iron homeostasis/deficiency and hormone signalling indicated that the increased sequestration of iron by apoplastic AtPDF1.1 overexpression perturbs iron homeostasis in leaves and consequently activates an iron-deficiency-mediated response in roots via the ethylene signalling pathway. This in turn triggers ethylene-mediated signalling in systemic leaves, which is involved in suppressing the infection of necrotrophic pathogens. These findings provide new insight into the key functions of plant defensins in limiting the infection by the necrotrophic bacterium Pcc via an iron-deficiency-mediated defence response.
Collapse
|
19
|
Guillén-Chable F, Arenas-Sosa I, Islas-Flores I, Corzo G, Martinez-Liu C, Estrada G. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus. Protein Expr Purif 2017. [PMID: 28624494 DOI: 10.1016/j.pep.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gene of the four disulfide-bridged defensin J1-1 from Capsicum was cloned into the expression vector pQE30 containing a 6His-tag as fusion protein. This construct was transfected into Origami strain of Escherichia coli and expressed after induction with isopropyl thiogalactoside (IPTG). The level of expression was 4 mg/L of culture medium, and the His-tagged recombinant defensin (HisXarJ1-1) was expressed exclusively into inclusion bodies. After solubilization, HisXarJ1-1 was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisXarJ1-1 product obtained from the affinity chromatography step showed single main peptide fraction of molecular masses of 7050.6 Da and after treatment with DTT a single fraction of 7, 042.6 Da corresponding to the reduced peptide was observed. An in vitro folding step of the HisXarJ1-1 generated a distinct profile of oxidized forms of the peptide this oxidized peptide was capable of binding phosphatidic acid in vitro. Possible dimer and oligomer of HisXarJ1-1 were visible in gel electrophoresis and immunodetected with anti-His antibodies. Pure recombinant defensin HisXarJ1-1 exhibited antibacterial activity against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Francisco Guillén-Chable
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México
| | - Iván Arenas-Sosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Apartado Postal 510-3, Cuernavaca, Morelos, 61500, México
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Apartado Postal 510-3, Cuernavaca, Morelos, 61500, México
| | - Cynthia Martinez-Liu
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México
| | - Georgina Estrada
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México.
| |
Collapse
|
20
|
NMR structure and conformational dynamics of AtPDFL2.1, a defensin-like peptide from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1739-1747. [PMID: 27592418 DOI: 10.1016/j.bbapap.2016.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 01/27/2023]
Abstract
Plant defensins constitute the innate immune response against pathogens such as fungi and bacteria. Typical plant defensins are small, basic peptides that possess a characteristic three-dimensional fold stabilized by three or four disulfide bridges. In addition to known defensin genes, the Arabidopsis genome comprises >300 defensin-like genes coding for small cysteine-rich peptides. One of such genes encodes for AtPDFL2.1, a putative antifungal peptide of 55 amino acids, with six cysteine residues in its primary sequence. To understand the functional role of AtPDFL2.1, we carried out antifungal activity assays and determined its high-resolution three-dimensional structure using multidimensional solution NMR spectroscopy. We found that AtPDFL2.1 displays a strong inhibitory effect against Fusarium graminearum (IC50≈4μM). This peptide folds in the canonical cysteine-stabilized αβ (CSαβ) motif, consisting of one α-helix and one triple-stranded antiparallel β-sheet stabilized by three disulfide bridges and a hydrophobic cluster of residues within its core where the α-helix packs tightly against the β-sheets. Nuclear spin relaxation measurements show that the structure of AtPDFL2.1 is essentially rigid, with the L3 loop located between β-strands 2 and 3 being more flexible and displaying conformational exchange. Interestingly, the dynamic features of loop L3 are conserved among defensins and are probably correlated to the antifungal and receptor binding activities.
Collapse
|
21
|
Kaurilind E, Xu E, Brosché M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 2015; 16:837. [PMID: 26493993 PMCID: PMC4619244 DOI: 10.1186/s12864-015-1964-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death. METHODS A cat2 double mutant collection was generated through crossing and scored for cell death in different assays. Selected double mutants were further analyzed for photosynthetic performance and H2O2 accumulation. RESULTS We used a targeted mutant analysis with more than 50 cat2 double mutants to investigate the role of stress hormones and other defense regulators in H2O2-mediated cell death. Several transcription factors (AS1, MYB30, MYC2, WRKY70), cell death regulators (RCD1, DND1) and hormone regulators (AXR1, ERA1, SID2, EDS1, SGT1b) were essential for execution of cell death in cat2. Genetic loci required for cell death in cat2 was compared with regulators of cell death in spontaneous lesion mimic mutants and led to the identification of a core set of plant cell death regulators. Analysis of gene expression data from cat2 and plants undergoing cell death revealed similar gene expression profiles, further supporting the existence of a common program for regulation of plant cell death. CONCLUSIONS Our results provide a genetic framework for further study on the role of H2O2 in regulation of cell death. The hormones salicylic acid, jasmonic acid and auxin, as well as their interaction, are crucial determinants of cell death regulation.
Collapse
Affiliation(s)
- Eve Kaurilind
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Enjun Xu
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia.
| |
Collapse
|
22
|
Nafisi M, Stranne M, Fimognari L, Atwell S, Martens HJ, Pedas PR, Hansen SF, Nawrath C, Scheller HV, Kliebenstein DJ, Sakuragi Y. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses. FRONTIERS IN PLANT SCIENCE 2015; 6:550. [PMID: 26257757 PMCID: PMC4510344 DOI: 10.3389/fpls.2015.00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/06/2015] [Indexed: 05/25/2023]
Abstract
The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Majse Nafisi
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Maria Stranne
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Lorenzo Fimognari
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Susanna Atwell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Helle J. Martens
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Pai R. Pedas
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Sara F. Hansen
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of LausanneLausanne, Switzerland
| | - Henrik V. Scheller
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- Danish National Research Foundation Center DynaMOFrederiksberg, Denmark
| | - Yumiko Sakuragi
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
23
|
De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. What lies beneath: belowground defense strategies in plants. TRENDS IN PLANT SCIENCE 2015; 20:91-101. [PMID: 25307784 DOI: 10.1016/j.tplants.2014.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 05/17/2023]
Abstract
Diseases caused by soil-borne pathogens result worldwide in significant yield losses in economically important crops. In contrast to foliar diseases, relatively little is known about the nature of root defenses against these pathogens. This review summarizes the current knowledge on root infection strategies, root-specific preformed barriers, pathogen recognition, and defense signaling. Studies reviewed here suggest that many commonalities as well as differences exist in defense strategies employed by roots and foliar tissues during pathogen attack. Importantly, in addition to pathogens, plant roots interact with a plethora of non-pathogenic and symbiotic microorganisms. Therefore, a good understanding of how plant roots interact with the microbiome would be particularly important to engineer resistance to root pathogens without negatively altering root-beneficial microbe interactions.
Collapse
Affiliation(s)
- Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Christine Vos
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium.
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, 4067, Australia; Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
24
|
Guefrachi I, Nagymihaly M, Pislariu CI, Van de Velde W, Ratet P, Mars M, Udvardi MK, Kondorosi E, Mergaert P, Alunni B. Extreme specificity of NCR gene expression in Medicago truncatula. BMC Genomics 2014; 15:712. [PMID: 25156206 PMCID: PMC4168050 DOI: 10.1186/1471-2164-15-712] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background Legumes form root nodules to house nitrogen fixing bacteria of the rhizobium family. The rhizobia are located intracellularly in the symbiotic nodule cells. In the legume Medicago truncatula these cells produce high amounts of Nodule-specific Cysteine-Rich (NCR) peptides which induce differentiation of the rhizobia into enlarged, polyploid and non-cultivable bacterial cells. NCRs are similar to innate immunity antimicrobial peptides. The NCR gene family is extremely large in Medicago with about 600 genes. Results Here we used the Medicago truncatula Gene Expression Atlas (MtGEA) and other published microarray data to analyze the expression of 334 NCR genes in 267 different experimental conditions. We find that all but five of these genes are expressed in nodules but in no other plant organ or in response to any other biotic interaction or abiotic stress tested. During symbiosis, none of the genes are induced by Nod factors. The NCR genes are activated in successive waves during nodule organogenesis, correlated with bacterial infection of the nodule cells and with a specific spatial localization of their transcripts from the apical to the proximal nodule zones. However, NCR expression is not associated with nodule senescence. According to their Shannon entropy, a measure expressing tissue specificity of gene expression, the NCR genes are among the most specifically expressed genes in M. truncatula. Moreover, when activated in nodules, their expression level is among the highest of all genes. Conclusions Together, these data show that the NCR gene expression is subject to an extreme tight regulation and is only activated during nodule organogenesis in the polyploid symbiotic cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-712) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique UPR2355, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
25
|
Nguyen NNT, Ranwez V, Vile D, Soulié MC, Dellagi A, Expert D, Gosti F. Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack. FRONTIERS IN PLANT SCIENCE 2014; 5:70. [PMID: 24653728 PMCID: PMC3949115 DOI: 10.3389/fpls.2014.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/10/2014] [Indexed: 05/25/2023]
Abstract
Multigenic families of Plant Defensin type 1 (PDF1) have been described in several species, including the model plant Arabidopsis thaliana as well as zinc tolerant and hyperaccumulator A. halleri. In A. thaliana, PDF1 transcripts (AtPDF1) accumulate in response to pathogen attack following synergic activation of ethylene/jasmonate pathways. However, in A. halleri, PDF1 transcripts (AhPDF1) are constitutively highly accumulated. Through an evolutionary approach, we investigated the possibility of A. halleri or A. thaliana species specialization in different PDF1s in conveying zinc tolerance and/or the response to pathogen attack via activation of the jasmonate (JA) signaling pathway. The accumulation of each PDF1 from both A. halleri and A. thaliana was thus compared in response to zinc excess and MeJA application. In both species, PDF1 paralogues were barely or not at all responsive to zinc. However, regarding the PDF1 response to JA signaling activation, A. thaliana had a higher number of PDF1s responding to JA signaling activation. Remarkably, in A. thaliana, a slight but significant increase in zinc tolerance was correlated with activation of the JA signaling pathway. In addition, A. halleri was found to be more tolerant to the necrotrophic pathogen Botrytis cinerea than A. thaliana. Since PDF1s are known to be promiscuous antifungal proteins able to convey zinc tolerance, we propose, on the basis of the findings of this study, that high constitutive PDF1 transcript accumulation in A. halleri is a potential way to skip the JA signaling activation step required to increase the PDF1 transcript level in the A. thaliana model species. This could ultimately represent an adaptive evolutionary process that would promote a PDF1 joint effect on both zinc tolerance and the response to pathogens in the A. halleri extremophile species.
Collapse
Affiliation(s)
- Nga N. T. Nguyen
- Unité Mixte de Recherche, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/CNRS/INRA/Université Montpellier IIMontpellier, France
| | - Vincent Ranwez
- Unité Mixte de Recherche, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Montpellier SupAgro/CIRAD/INRAMontpellier, France
| | - Denis Vile
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759 INRA/SupAgroMontpellier, France
| | - Marie-Christine Soulié
- Laboratoire des Interactions Plantes-Pathogènes, Unité Mixte de Recherche 217, Université Pierre et Marie Curie (UPMC Univ. Paris 06)Paris, France
| | - Alia Dellagi
- Laboratoire des Interactions Plantes-Pathogènes, Unité Mixte de Recherche 217 INRA/AgroParisTech/UPMCParis, France
| | - Dominique Expert
- Laboratoire des Interactions Plantes-Pathogènes, Unité Mixte de Recherche 217 INRA/AgroParisTech/UPMCParis, France
| | - Françoise Gosti
- Unité Mixte de Recherche, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/CNRS/INRA/Université Montpellier IIMontpellier, France
| |
Collapse
|
26
|
Zhu Q, Dugardeyn J, Zhang C, Mühlenbock P, Eastmond PJ, Valcke R, De Coninck B, Oden S, Karampelias M, Cammue BPA, Prinsen E, Van Der Straeten D. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses. MOLECULAR PLANT 2014; 7:290-310. [PMID: 23990142 DOI: 10.1093/mp/sst102] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.
Collapse
Affiliation(s)
- Qiang Zhu
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shahzad Z, Ranwez V, Fizames C, Marquès L, Le Martret B, Alassimone J, Godé C, Lacombe E, Castillo T, Saumitou-Laprade P, Berthomieu P, Gosti F. Plant Defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri. THE NEW PHYTOLOGIST 2013; 200:820-833. [PMID: 23865749 DOI: 10.1111/nph.12396] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/28/2013] [Indexed: 05/11/2023]
Abstract
Plant defensins are recognized for their antifungal properties. However, a few type 1 defensins (PDF1s) were identified for their cellular zinc (Zn) tolerance properties after a study of the metal extremophile Arabidopsis halleri. In order to investigate whether different paralogues would display specialized functions, the A. halleri PDF1 family was characterized at the functional and genomic levels. Eleven PDF1s were isolated from A. halleri. Their ability to provide Zn tolerance in yeast cells, their activity against Fusarium oxysporum f. sp. melonii, and their level of expression in planta were compared with those of the seven A. thaliana PDF1s. The genomic organization of the PDF1 family was comparatively analysed within the Arabidopsis genus. AhPDF1s and AtPDF1s were able to confer Zn tolerance and AhPDF1s also displayed antifungal activity. PDF1 transcripts were constitutively more abundant in A. halleri than in A. thaliana. Within the Arabidopsis genus, the PDF1 family is evolutionarily dynamic, in terms of gain and loss of gene copy. Arabidopsis halleri PDF1s display no superior abilities to provide Zn tolerance. A constitutive increase in AhPDF1 transcript accumulation is proposed to be an evolutionary innovation co-opting the promiscuous PDF1 protein for its contribution to Zn tolerance in A. halleri.
Collapse
Affiliation(s)
- Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Vincent Ranwez
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France
| | - Cécile Fizames
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Laurence Marquès
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Bénédicte Le Martret
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Julien Alassimone
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Cécile Godé
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille, Lille1, F-59655, Villeneuve d'Ascq Cedex, France
| | - Eric Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Teddy Castillo
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Pierre Saumitou-Laprade
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille, Lille1, F-59655, Villeneuve d'Ascq Cedex, France
| | - Pierre Berthomieu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Françoise Gosti
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| |
Collapse
|
28
|
Santos CS, Silva AI, Serrão I, Carvalho AL, Vasconcelos MW. Transcriptomic analysis of iron deficiency related genes in the legumes. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. THE PLANT CELL 2013; 25:1126-42. [PMID: 23524660 PMCID: PMC3634681 DOI: 10.1105/tpc.112.109074] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/26/2013] [Accepted: 03/07/2013] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs or MPKs), play critical roles in plant disease resistance by regulating multiple defense responses. Previously, we characterized the regulation of phytoalexin biosynthesis by Arabidopsis MPK3/MPK6 cascade and its downstream WRKY33 transcription factor. Here, we report another substrate of MPK3/MPK6, ETHYLENE RESPONSE FACTOR6 (ERF6), in regulating Arabidopsis defense gene expression and resistance to the necrotrophic fungal pathogen Botrytis cinerea. Phosphorylation of ERF6 by MPK3/MPK6 in either the gain-of-function transgenic plants or in response to B. cinerea infection increases ERF6 protein stability in vivo. Phospho-mimicking ERF6 is able to constitutively activate defense-related genes, especially those related to fungal resistance, including PDF1.1 and PDF1.2, and confers enhanced resistance to B. cinerea. By contrast, expression of ERF6-EAR, in which ERF6 was fused to the ERF-associated amphiphilic repression (EAR) motif, strongly suppresses B. cinerea-induced defense gene expression, leading to hypersusceptibility of the ERF6-EAR transgenic plants to B. cinerea. Different from ERF1, the regulation and function of ERF6 in defensin gene activation is independent of ethylene. Based on these data, we conclude that ERF6, another substrate of MPK3 and MPK6, plays important roles downstream of the MPK3/MPK6 cascade in regulating plant defense against fungal pathogens.
Collapse
Affiliation(s)
- Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Juan Xu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia He
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Kwang-Yeol Yang
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, South Korea
| | - Breanne Mordorski
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Address correspondence to
| |
Collapse
|
30
|
De Coninck B, Cammue BP, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
A non-cyclic baboon θ-defensin derivative exhibiting antimicrobial activity against the phytopathogen Verticillium dahliae. Appl Microbiol Biotechnol 2012; 97:2043-52. [PMID: 22903319 DOI: 10.1007/s00253-012-4309-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 01/19/2023]
Abstract
θ-Defensins are the only natural cyclic proteins found in primates. They have strong antimicrobial activity related to their trisulfide ladders and macrocyclic conformation. A non-cyclic baboon θ-defensin (BTD) was synthesized by substituting valine with phenylalanine at position 17, at the C-terminal end of the BTD; this was termed "BTD-S." The antimicrobial activities of this synthetic peptide were investigated against Escherichia coli and two cotton phytopathogens: Verticillium dahliae and Fusarium oxysporum. The minimum inhibitory concentration (MIC) of BTD-S for E. coli was 10 μg/mL and for V. dahliae was 5 μg/mL, significantly lower than that for F. oxysporum (40.0 μg/mL). A time course analysis of fungal cultures indicated that the growth of V. dahliae was completely inhibited after 96 h of BTD-S treatment. Furthermore, hemolysis assays revealed that BTD-S was not toxic to mammalian cells as it could not induce lysis of sheep red blood cells even at ten times the MIC (50 μg/mL). Scanning electron microscopy and double-stained (calcofluor white and propidium iodide binding) fluorescence microscopy showed that exposure of spores of V. dahliae to BTD-S either disabled normal germination or disintegrated the spores. The size of cells exposed to BTD-S was significantly reduced compared with controls, and their number increased in a dose-dependent curve when measured by flow cytometry. These findings suggest that BTD-S has great potential to inhibit the growth of V. dahliae and can be utilized as an effective remedy to control economic losses caused by Verticillium wilt in the development of wilt-resistant cotton.
Collapse
|
32
|
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2012; 3:108. [PMID: 22661981 PMCID: PMC3362084 DOI: 10.3389/fpls.2012.00108] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/07/2012] [Indexed: 05/04/2023]
Abstract
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
Collapse
Affiliation(s)
- Janick Mathys
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | | | - Bart Lievens
- Scientia Terrae Research InstituteSint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven AssociationSint-Katelijne-Waver, Belgium
| | - Mieke Vanhaecke
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| |
Collapse
|
33
|
Sagaram US, Kaur J, Shah D. Antifungal Plant Defensins: Structure-Activity Relationships, Modes of Action, and Biotech Applications. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1095.ch015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jagdeep Kaur
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, U.S.A
| | - Dilip Shah
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, U.S.A
| |
Collapse
|
34
|
López-García B, San Segundo B, Coca M. Antimicrobial Peptides as a Promising Alternative for Plant Disease Protection. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1095.ch013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- B. López-García
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - B. San Segundo
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - M. Coca
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
35
|
Abstract
Almost 90 years have passed since Alexander Fleming discovered the antimicrobial activity of lysozyme, the first natural antibiotic isolated from our body. Since then, various types of molecules with antibiotic activity have been isolated from animals, insects, plants, and bacteria, and their use has revolutionized clinical medicine. So far, more than 1,200 types of peptides with antimicrobial activity have been isolated from various cells and tissues, and it appears that all living organisms use these antimicrobial peptides (AMPs) in their host defense. In the past decade, innate AMPs produced by mammals have been shown to be essential for the protection of skin and other organs. Their importance is because of their pleiotrophic functions to not only kill microbes but also control host physiological functions such as inflammation, angiogenesis, and wound healing. Recent advances in our understanding of the function of AMPs have associated their altered production with various human diseases such as psoriasis, atopic dermatitis, and rosacea. In this review, we summarize the history of AMP biology and provide an overview of recent research progress in this field.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Division of Dermatology, Department of Medicine, University of California, San Diego, San Diego, California 92121, USA
| | | |
Collapse
|
36
|
Siddique S, Wieczorek K, Szakasits D, Kreil DP, Bohlmann H. The promoter of a plant defensin gene directs specific expression in nematode-induced syncytia in Arabidopsis roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1100-7. [PMID: 21813283 PMCID: PMC3185291 DOI: 10.1016/j.plaphy.2011.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/11/2011] [Indexed: 05/04/2023]
Abstract
The beet cyst nematode Heterodera schachtii induces a feeding site, called syncytium, in roots of host plants. In Arabidopsis, one of the genes whose expression is strongly induced in these structures is Pdf2.1 which codes for an antimicrobial plant defensin. Arabidopsis has 13 plant defensin genes. Besides Pdf2.1, the Pdf2.2 and Pdf2.3 genes were strongly expressed in syncytia and therefore the expression of all three Pdf genes was studied in detail. The promoter of the Pdf2.1 gene turned out to be an interesting candidate to drive a syncytium-specific expression of foreign genes as RT-PCR showed that apart from the feeding site it was only expressed in siliques (seeds). The Pdf2.2 and Pdf2.3 genes were in addition expressed in seedlings, roots, leaves, stems, and flowers. These results were supported by the analysis of promoter::GUS lines. After infection with H. schachtii all GUS lines showed a strong staining in syncytia at 5 and 15 dpi. This expression pattern was confirmed by in situ RT-PCR.
Collapse
Affiliation(s)
- Shahid Siddique
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Konrad Lorenz Str. 24, 3430 Tulln, Austria
| | - Krzysztof Wieczorek
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Konrad Lorenz Str. 24, 3430 Tulln, Austria
| | - Dagmar Szakasits
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Konrad Lorenz Str. 24, 3430 Tulln, Austria
| | - David P. Kreil
- Chair of Bioinformatics, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Konrad Lorenz Str. 24, 3430 Tulln, Austria
- Corresponding author. Tel.: +43 1 47654 3360; fax: +43 1 47654 3359.
| |
Collapse
|
37
|
Kaur J, Sagaram US, Shah D. Can plant defensins be used to engineer durable commercially useful fungal resistance in crop plants? FUNGAL BIOL REV 2011. [DOI: 10.1016/j.fbr.2011.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Oomen RJFJ, Séveno-Carpentier E, Ricodeau N, Bournaud C, Conéjéro G, Paris N, Berthomieu P, Marquès L. Plant defensin AhPDF1.1 is not secreted in leaves but it accumulates in intracellular compartments. THE NEW PHYTOLOGIST 2011; 192:140-150. [PMID: 21679189 DOI: 10.1111/j.1469-8137.2011.03792.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Apart from their antifungal role, plant defensins have recently been shown to be involved in abiotic stress tolerance or in inhibition of root growth when added in plant culture medium. We studied the subcellular localization of these proteins, which may account for these different roles. • Stable and transient expression of AhPDF1.1::GFP (green fluorescent protein) fusion proteins were analysed in yeast and plants. Functional tests established that the GFP tag did not alter the action of the defensin. Subcellular localization of AhPDF1.1 was characterized: by imaging AhPDF1.1::GFP together with organelle markers; and by immunolabelling AhPDF1.1 in Arabidopsis halleri and Arabidopsis thaliana leaves using a polyclonal serum. • All our independent approaches demonstrated that AhPDF1.1 is retained in intracellular compartments on the way to the lytic vacuole, instead of being addressed to the apoplasm. • These findings challenge the commonly accepted idea of secretion of defensins. The subcellular localization highlighted in this study could partly explain the dual role of plant defensins on plant cells and is of major importance to unravel the mechanisms of action of these proteins at the cellular level.
Collapse
Affiliation(s)
- Ronald J F J Oomen
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Emilie Séveno-Carpentier
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Nicolas Ricodeau
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Caroline Bournaud
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Geneviève Conéjéro
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Nadine Paris
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Pierre Berthomieu
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Laurence Marquès
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| |
Collapse
|
39
|
Böhmdorfer G, Schleiffer A, Brunmeir R, Ferscha S, Nizhynska V, Kozák J, Angelis KJ, Kreil DP, Schweizer D. GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:420-33. [PMID: 21481027 DOI: 10.1111/j.1365-313x.2011.04604.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA double-strand breaks (DSBs) pose one of the most severe threats to genome integrity, potentially leading to cell death. After detection of a DSB, the DNA damage and repair response is initiated and the DSB is repaired by non-homologous end joining and/or homologous recombination. Many components of these processes are still unknown in Arabidopsis thaliana. In this work, we characterized γ-irradiation and mitomycin C induced 1 (GMI1), a member of the SMC-hinge domain-containing protein family. RT-PCR analysis and promoter-GUS fusion studies showed that γ-irradiation, the radio-mimetic drug bleocin, and the DNA cross-linking agent mitomycin C strongly enhance GMI1 expression particularly in meristematic tissues. The induction of GMI1 by γ-irradiation depends on the signalling kinase Ataxia telangiectasia-mutated (ATM) but not on ATM and Rad3-related (ATR). Epistasis analysis of single and double mutants demonstrated that ATM acts upstream of GMI1 while the atr gmi1-2 double mutant was more sensitive than the respective single mutants. Comet assay revealed a reduced rate of DNA double-strand break repair in gmi1 mutants during the early recovery phase after exposure to bleocin. Moreover, the rate of homologous recombination of a reporter construct was strongly reduced in gmi1 mutant plants upon exposure to bleocin or mitomycin C. GMI1 is the first member of its protein family known to be involved in DNA repair.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Comet Assay
- DNA Breaks, Double-Stranded
- DNA Repair
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Flowers/drug effects
- Flowers/metabolism
- Flowers/radiation effects
- Gene Expression Regulation, Plant
- Gene Fusion
- Meristem/drug effects
- Meristem/metabolism
- Meristem/radiation effects
- Microarray Analysis
- Mitomycin/pharmacology
- Mutagenesis, Insertional
- Recombination, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Seedlings/drug effects
- Seedlings/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maróti G, Kereszt A, Kondorosi E, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 2011; 162:363-74. [PMID: 21320593 DOI: 10.1016/j.resmic.2011.02.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/20/2011] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptides (AMPs) are ribosomally synthesized natural antibiotics that are crucial effectors of innate immune systems in all living organisms. AMPs are diverse peptides, differing in their amino acid composition and structure, that generally display rapid killing and broad-spectrum antimicrobial activities. Therefore, AMPs have high potential for therapeutic use in healthcare and agriculture. This review focuses on in vivo studies relating how organisms - bacteria, plants, insects and mammals - employ AMPs in their interactions with microbial competitors, pathogens and symbionts.
Collapse
Affiliation(s)
- Gergely Maróti
- Institute for Plant Genomics, Human Biotechnology and Bioenergy, Bay Zoltán Foundation for Applied Research, Derkovits fasor 2, Szeged 6726, Hungary.
| | | | | | | |
Collapse
|
41
|
Copolovici L, Kännaste A, Remmel T, Vislap V, Niinemets U. Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. J Chem Ecol 2010; 37:18-28. [PMID: 21181243 DOI: 10.1007/s10886-010-9897-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/25/2010] [Accepted: 12/03/2010] [Indexed: 01/17/2023]
Abstract
Plant volatile organic compounds (VOCs) elicited in response to herbivory serve as cues for parasitic and predatory insects. Knowledge about quantitative relationships between the extent of herbivore-induced damage and the quantities of VOCs released is scarce. We studied the kinetics of VOC-emissions from foliage of the deciduous tree Alnus glutinosa induced by feeding activity of larvae of the geometrid moth Cabera pusaria. Quantitative relationships between the intensity of stress and strength of plant response were determined. Intensity of biotic stress was characterized by herbivore numbers (0-8 larvae) and by the amount of leaf area eaten. The strength of plant response was characterized by monitoring (i) changes in photosynthesis, (ii) leaf ultrastructure, and (iii) plant volatiles. Net assimilation rate displayed compensatory responses in herbivore-damaged leaves compared with control leaves. This compensatory response was associated with an overall increase in chloroplast size. Feeding-induced emissions of products of the lipoxygenase pathway (LOX products; (E)-2-hexenal, (Z)-3-hexenol, 1-hexanol, and (Z)-3-hexenyl acetate) peaked at day 1 after larval feeding started, followed by an increase of emissions of ubiquitous monoterpenes peaking on days 2 and 3. The emission of the monoterpene (E)-β-ocimene and of the nerolidol-derived homoterpene 4,8-dimethyl-nona-1,3,7-triene (DMNT) peaked on day 3. Furthermore, the emission kinetics of the sesquiterpene (E,E)-α-farnesene tended to be biphasic with peaks on days 2 and 4 after start of larval feeding. Emission rates of the induced LOX products, of (E)-β-ocimene and (E,E)-α-farnesene were positively correlated with the number of larvae feeding. In contrast, the emission of DMNT was independent of the number of feeders. These data show quantitative relationships between the strength of herbivory and the emissions of LOX products and most of the terpenoids elicited in response to feeding. Thus, herbivory-elicited LOX products and terpenoid emissions may convey both quantitative and qualitative signals to antagonists of the herbivores. In contrast, our data suggest that the feeding-induced homoterpene DMNT conveys the information "presence of herbivores" rather than information about the quantities of herbivores to predators and parasitoids.
Collapse
Affiliation(s)
- Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia.
| | | | | | | | | |
Collapse
|
42
|
Panstruga R. Introduction to a Virtual Special Issue on pathogenic plant-fungus interactions. THE NEW PHYTOLOGIST 2010; 188:907-910. [PMID: 21058947 DOI: 10.1111/j.1469-8137.2010.03530.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|