1
|
Surso M, Khviyuzov S, Chukhchin D. Compounds composition of pollen tubes of Scots pine ( Pinus sylvestris L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1261-1268. [PMID: 38024955 PMCID: PMC10678875 DOI: 10.1007/s12298-023-01353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023]
Abstract
The aim of this research was to study the composition of pollen tubes of Scots pine (Pinus sylvestris L.). Pollen cultivation on deionized distilled water excluded the potential influence of the cultivation medium on the pollen tube growth and development. The fluorescent study indicated a gradual distribution of chemical compounds along the length of the tube. It was shown that the protoplast apical zone and the parietal layer near the tube's tip are most likely actively involved in the ion transport regulation in the growing pollen tube. The callose synthesis in the tip of matured pine tube completed the first stage of its active growth. Significant differences and pH gradients at the nucleus region and the parietal layer of the tube wall indicate that H+ gradient is the direct driving force of vesicle transport and can regulate the growth of pollen tubes. The distribution of amino acids, RNA, proteins and lipids was uniform throughout the length of the pine pollen tube. The content of amino acids, RNA, DNA and proteins slightly increased near the cell nucleus and drastically increased in the apical zone. At the very tip of the tube, a slight increase in the concentration of polysaccharides and a significant decrease in the content of amino acids, RNA, DNA, proteins and lipids were detected.
Collapse
Affiliation(s)
- Mikhail Surso
- Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Sergei Khviyuzov
- Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Dmitry Chukhchin
- Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| |
Collapse
|
2
|
Zhou Z, Zheng S, Haq SIU, Zheng D, Qiu QS. Regulation of pollen tube growth by cellular pH and ions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153792. [PMID: 35973258 DOI: 10.1016/j.jplph.2022.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.
Collapse
Affiliation(s)
- Zhenguo Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
3
|
Li K, Prada J, Damineli DSC, Liese A, Romeis T, Dandekar T, Feijó JA, Hedrich R, Konrad KR. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca 2+ and H + reveals new insights into ion signaling in plants. THE NEW PHYTOLOGIST 2021; 230:2292-2310. [PMID: 33455006 PMCID: PMC8383442 DOI: 10.1111/nph.17202] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 05/07/2023]
Abstract
Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Juan Prada
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Daniel S. C. Damineli
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Anja Liese
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - José A. Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| |
Collapse
|
4
|
Hoffmann RD, Portes MT, Olsen LI, Damineli DSC, Hayashi M, Nunes CO, Pedersen JT, Lima PT, Campos C, Feijó JA, Palmgren M. Plasma membrane H +-ATPases sustain pollen tube growth and fertilization. Nat Commun 2020; 11:2395. [PMID: 32409656 PMCID: PMC7224221 DOI: 10.1038/s41467-020-16253-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Pollen tubes are highly polarized tip-growing cells that depend on cytosolic pH gradients for signaling and growth. Autoinhibited plasma membrane proton (H+) ATPases (AHAs) have been proposed to energize pollen tube growth and underlie cell polarity, however, mechanistic evidence for this is lacking. Here we report that the combined loss of AHA6, AHA8, and AHA9 in Arabidopsis thaliana delays pollen germination and causes pollen tube growth defects, leading to drastically reduced fertility. Pollen tubes of aha mutants had reduced extracellular proton (H+) and anion fluxes, reduced cytosolic pH, reduced tip-to-shank proton gradients, and defects in actin organization. Furthermore, mutant pollen tubes had less negative membrane potentials, substantiating a mechanistic role for AHAs in pollen tube growth through plasma membrane hyperpolarization. Our findings define AHAs as energy transducers that sustain the ionic circuit defining the spatial and temporal profiles of cytosolic pH, thereby controlling downstream pH-dependent mechanisms essential for pollen tube elongation, and thus plant fertility.
Collapse
Affiliation(s)
- Robert D Hoffmann
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Maria Teresa Portes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Lene Irene Olsen
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Daniel Santa Cruz Damineli
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Custódio O Nunes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Jesper T Pedersen
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Pedro T Lima
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Cláudia Campos
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Domingos P, Dias PN, Tavares B, Portes MT, Wudick MM, Konrad KR, Gilliham M, Bicho A, Feijó JA. Molecular and electrophysiological characterization of anion transport in Arabidopsis thaliana pollen reveals regulatory roles for pH, Ca 2+ and GABA. THE NEW PHYTOLOGIST 2019; 223:1353-1371. [PMID: 31132313 DOI: 10.1111/nph.15863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth in Arabidopsis thaliana (Col-0). Patch-clamp whole-cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+ ]cyt ). We investigated the pollen-expressed proteins AtSLAH3, AtALMT12, AtTMEM16 and AtCCC as the putative anion transporters responsible for these currents. AtCCC-GFP was observed at the shank and AtSLAH3-GFP at the tip and shank of the PT plasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip of PTs with an anion vibrating probe were significantly lower in slah3-/- and ccc-/- mutants, but unaffected in almt12-/- and tmem16-/- . We further characterised the effect of pH and GABA by patch clamp. Strong regulation by extracellular pH was observed in the wild-type, but not in tmem16-/- . Our results are compatible with AtTMEM16 functioning as an anion/H+ cotransporter and therefore, as a putative pH sensor. GABA presence: (1) inhibited the overall currents, an effect that is abrogated in the almt12-/- and (2) reduced the current in AtALMT12 transfected COS-7 cells, strongly suggesting the direct interaction of GABA with AtALMT12. Our data show that AtSLAH3 and AtCCC activity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linking PT growth modulation by pH, GABA, and [Ca2+ ]cyt through anionic transporters.
Collapse
Affiliation(s)
- Patrícia Domingos
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - Pedro N Dias
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | | | - Maria Teresa Portes
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - Michael M Wudick
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Würzburg, Würzburg, 97082, Germany
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Ana Bicho
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| |
Collapse
|
6
|
Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM. Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. FRONTIERS IN PLANT SCIENCE 2019; 10:1064. [PMID: 31552068 PMCID: PMC6737080 DOI: 10.3389/fpls.2019.01064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is an important extracellular signaling agent, operating in growth regulation, stomatal conductance, and wound response. With the first receptor for extracellular ATP now identified in plants (P2K1/DORN1) and a plasma membrane NADPH oxidase revealed as its target, the search continues for the components of the signaling cascades they command. The Arabidopsis root elongation zone epidermal plasma membrane has recently been shown to contain cation transport pathways (channel conductances) that operate downstream of P2K1 and could contribute to extracellular ATP (eATP) signaling. Here, patch clamp electrophysiology has been used to delineate two further conductances from the root elongation zone epidermal plasma membrane that respond to eATP, including one that would permit chloride transport. This perspective addresses how these conductances compare to those previously characterized in roots and how they might operate together to enable early events in eATP signaling, including elevation of cytosolic-free calcium as a second messenger. The role of the reactive oxygen species (ROS) that could arise from eATP's activation of NADPH oxidases is considered in a qualitative model that also considers the regulation of plasma membrane potential by the concerted action of the various cation and anion conductances. The molecular identities of the channel conductances in eATP signaling remain enigmatic but may yet be found in the multigene families of glutamate receptor-like channels, cyclic nucleotide-gated channels, annexins, and aluminum-activated malate transporters.
Collapse
Affiliation(s)
- Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, United States
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Julia M. Davies,
| |
Collapse
|
7
|
Maksimov N, Evmenyeva A, Breygina M, Yermakov I. The role of reactive oxygen species in pollen germination in Picea pungens (blue spruce). PLANT REPRODUCTION 2018; 31:357-365. [PMID: 29619606 DOI: 10.1007/s00497-018-0335-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 03/29/2018] [Indexed: 05/06/2023]
Abstract
Endogenous ROS, including those produced by NADPH oxidase, are required for spruce pollen germination and regulate membrane potential in pollen tubes; [Formula: see text] and H 2 O 2 are unevenly distributed along the tube. Recently, the key role of reactive oxygen species (ROS) in plant reproduction has been decisively demonstrated for angiosperms. This paper is dedicated to the involvement of ROS in pollen germination of gymnosperms, which remained largely unknown. We found that ROS are secreted from pollen grains of blue spruce during the early stage of activation. The localization of different ROS in pollen tube initials and pollen tubes demonstrated the accumulation of H2O2 in pollen tube apex. Colocalization with mitochondria-derived [Formula: see text] showed that H2O2 is produced in mitochondria and amyloplasts in addition to its apical gradient in the cytosol. The necessity of intracellular ROS and, particularly, [Formula: see text] for pollen germination was demonstrated using different antioxidants. ·OH and extracellular ROS, on the contrary, were found to be not necessary for germination. Exogenous hydrogen peroxide did not affect the germination efficiency but accelerated pollen tube growth in a concentration-dependent manner. The optical measurements of membrane potential showed that in spruce pollen tubes there is a gradient which is controlled by H+-ATPase, potassium- and calcium-permeable channels, anion channels and ROS, as demonstrated by inhibitory analysis. An important role of NADPH oxidase in the regulation of ROS balance in particular, and in germination in general, has been demonstrated by inhibiting the enzyme, which leads to the reduction in ROS release, depolarization of pollen tube plasma membrane, and blocking of pollen germination.
Collapse
Affiliation(s)
- Nikita Maksimov
- Lomonosov Moscow State University, Leninskiye Gory 1-12, Moscow, Russia, 119991
| | - Anastasia Evmenyeva
- Lomonosov Moscow State University, Leninskiye Gory 1-12, Moscow, Russia, 119991
| | - Maria Breygina
- Lomonosov Moscow State University, Leninskiye Gory 1-12, Moscow, Russia, 119991.
- Pirogov Russian National Research Medical University, Ostrovitjanova Street 1, Moscow, Russia, 117997.
| | - Igor Yermakov
- Lomonosov Moscow State University, Leninskiye Gory 1-12, Moscow, Russia, 119991
| |
Collapse
|
8
|
Gutermuth T, Herbell S, Lassig R, Brosché M, Romeis T, Feijó JA, Hedrich R, Konrad KR. Tip-localized Ca 2+ -permeable channels control pollen tube growth via kinase-dependent R- and S-type anion channel regulation. THE NEW PHYTOLOGIST 2018; 218:1089-1105. [PMID: 29522235 DOI: 10.1111/nph.15067] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 05/26/2023]
Abstract
Pollen tubes (PTs) are characterized by having tip-focused cytosolic calcium ion (Ca2+ ) concentration ([Ca2+ ]cyt ) gradients, which are believed to control PT growth. However, the mechanisms by which the apical [Ca2+ ]cyt orchestrates PT growth are not well understood. Here, we aimed to identify these mechanisms by combining reverse genetics, cell biology, electrophysiology, and live-cell Ca2+ and anion imaging. We triggered Ca2+ -channel activation by applying hyperpolarizing voltage pulses and observed that the evoked [Ca2+ ]cyt increases were paralleled by high anion channel activity and a decrease in the cytosolic anion concentration at the PT tip. We confirmed a functional correlation between these patterns by showing that inhibition of Ca2+ -permeable channels eliminated the [Ca2+ ]cyt increase, resulting in the abrogation of anion channel activity via Ca2+ -dependent protein kinases (CPKs). Functional characterization of CPK and anion-channel mutants revealed a CPK2/20/6-dependent activation of SLAH3 and ALMT12/13/14 anion channels. The impaired growth phenotypes of anion channel and CPK mutants support the physiological significance of a kinase- and Ca2+ -dependent pathway to control PT growth via anion channel activation. Other than unveiling this functional link, our membrane hyperpolarization method allows for unprecedented manipulation of the [Ca2+ ]cyt gradient or oscillations in the PT tips and opens an array of opportunities for channel screenings.
Collapse
Affiliation(s)
- Timo Gutermuth
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Sarah Herbell
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Roman Lassig
- Plant Biochemistry, Dahlem Centre of Plant Sciences, FU Berlin, Königin-Luise-Straße 12/16, 14195, Berlin, Germany
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Tina Romeis
- Plant Biochemistry, Dahlem Centre of Plant Sciences, FU Berlin, Königin-Luise-Straße 12/16, 14195, Berlin, Germany
| | - José Alberto Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Building, College Park, MD, 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
9
|
Hamilton ES, Haswell ES. The Tension-sensitive Ion Transport Activity of MSL8 is Critical for its Function in Pollen Hydration and Germination. PLANT & CELL PHYSIOLOGY 2017; 58:1222-1237. [PMID: 28339550 DOI: 10.1093/pcp/pcw230] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/07/2016] [Indexed: 05/02/2023]
Abstract
All cells respond to osmotic challenges, including those imposed during normal growth and development. Mechanosensitive (MS) ion channels provide a conserved mechanism for regulating osmotic forces by conducting ions in response to increased membrane tension. We previously demonstrated that the MS ion channel MscS-Like 8 (MSL8) is required for pollen to survive multiple osmotic challenges that occur during the normal process of fertilization, and that it can inhibit pollen germination. However, it remained unclear whether these physiological functions required ion flux through a mechanically gated channel provided by MSL8. We introduced two point mutations into the predicted pore-lining domain of MSL8 that disrupted normal channel function in different ways. The Ile711Ser mutation increased the tension threshold of the MSL8 channel while leaving conductance unchanged, and the Phe720Leu mutation severely disrupted the MSL8 channel. Both of these mutations impaired the ability of MSL8 to preserve pollen viability during hydration and to maintain the integrity of the pollen tube when expressed at endogenous levels. When overexpressed in an msl8-4 null background, MSL8I711S could partially rescue loss-of-function phenotypes, while MSL8F720L could not. When overexpressed in the wild-type Ler background, MSL8I711S suppressed pollen germination, similar to wild-type MSL8. In contrast, MSL8F720L failed to suppress pollen germination and increased pollen bursting, thereby phenocopying the msl8-4 mutant. Thus, an intact MSL8 channel is required for normal pollen function during hydration and germination. These data establish MSL8 as the first plant MS channel to fulfill previously established criteria for assignment as a mechanotransducer.
Collapse
Affiliation(s)
- Eric S Hamilton
- Department of Biology, Box 1137, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Box 1137, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA
| |
Collapse
|
10
|
Wege S, Gilliham M, Henderson SW. Chloride: not simply a 'cheap osmoticum', but a beneficial plant macronutrient. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3057-3069. [PMID: 28379459 DOI: 10.1093/jxb/erx050] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
At macronutrient levels, chloride has positive effects on plant growth, which are distinct from its function in photosynthesis..
Collapse
Affiliation(s)
- Stefanie Wege
- Australian Research Council Centre of Excellence in Plant Energy Biology & The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Precinct, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology & The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Precinct, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Sam W Henderson
- Australian Research Council Centre of Excellence in Plant Energy Biology & The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Precinct, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
11
|
Wang SS, Diao WZ, Yang X, Qiao Z, Wang M, Acharya BR, Zhang W. Arabidopsis thaliana CML25 mediates the Ca(2+) regulation of K(+) transmembrane trafficking during pollen germination and tube elongation. PLANT, CELL & ENVIRONMENT 2015; 38:2372-86. [PMID: 25923414 DOI: 10.1111/pce.12559] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/09/2015] [Indexed: 05/10/2023]
Abstract
The concentration alteration of cytosolic-free calcium ([Ca(2+) ]cyt ) is a well-known secondary messenger in plants and plays important roles during pollen grain germination and tube elongation. Here we demonstrate that CML25, a member of calmodulin-like proteins, has Ca(2+) -binding activity and plays a role in pollen grain germination, tube elongation and seed setting. CML25 transcript was abundant in mature pollen grains and pollen tubes, and its product CML25 protein was primarily directed to the cytoplasm. Two independent CML25 loss-of-function T-DNA insertion mutants suffered a major reduction in both the rate of pollen germination and the elongation of the pollen tube. Also, pollen grains of cml25 mutants were less sensitive to the external K(+) and Ca(2+) concentration than wild-type pollen. The disruption of CML25 increased the [Ca(2+) ]cyt in both the pollen grain and the pollen tube, which in turn impaired the Ca(2+) -dependent inhibition of whole-cell inward K(+) currents in protoplasts prepared from these materials (pollen grain and pollen tube). Complementation of cml25-1 mutant resulted in the recovery of wild-type phenotype. Our findings indicate that CML25 is an important transducer in the Ca(2+) -mediated regulation of K(+) influx during pollen germination and tube elongation.
Collapse
Affiliation(s)
- Shuang-Shuang Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Wen-Zhu Diao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xue Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
- College of Technological Gardening, Shandong Yingcai University, Jinan, 250104, China
| | - Zhu Qiao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Biswa R Acharya
- Department of Biology, Pennsylvania State University University Park, State College, PA, 16802, USA
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
12
|
Safiarian MJ, Pertl-Obermeyer H, Lughofer P, Hude R, Bertl A, Obermeyer G. Lost in traffic? The K(+) channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. FRONTIERS IN PLANT SCIENCE 2015; 6:47. [PMID: 25713578 PMCID: PMC4322604 DOI: 10.3389/fpls.2015.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 05/26/2023]
Abstract
Fertilization in plants relies on fast growth of pollen tubes through the style tissue toward the ovules. This polarized growth depends on influx of ions and water to increase the tube's volume. K(+) inward rectifying channels were detected in many pollen species, with one identified in Arabidopsis. Here, an Arabidopsis AKT1-like channel (LilKT1) was identified from Lilium longiflorum pollen. Complementation of K(+) uptake deficient yeast mutants was only successful when the entire LilKT1 C-terminus was replaced by the AKT1 C-terminus. No signals were observed in the plasma membrane (PM) of pollen tubes after expression of fluorescence-tagged LilKT1 nor were any LilKT1-derived peptides detectable in the pollen PM by mass spectrometry analysis. In contrast, fluorescent LilKT1 partly co-localized with the lily PM H(+) ATPase LilHA2 in the PM of tobacco leaf cells, but exhibited a punctual fluorescence pattern and also sub-plasma membrane localization. Thus, incorporation of LilKT1 into the pollen PM seems tighter controlled than in other cells with still unknown trafficking signals in LilKT1's C-terminus, resulting in channel densities below detection limits. This highly controlled incorporation might have physiological reasons: an uncontrolled number of K(+) inward channels in the pollen PM will give an increased water influx due to the raising cytosolic K(+) concentration, and finally, causing the tube to burst.
Collapse
Affiliation(s)
- Minou J. Safiarian
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
- Plant Systems Biology, University of HohenheimStuttgart, Germany
| | - Peter Lughofer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Rene Hude
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Adam Bertl
- Yeast Membrane Biology, Department of Biology, Darmstadt University of TechnologyDarmstadt, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| |
Collapse
|
13
|
Wu J, Qin X, Tao S, Jiang X, Liang YK, Zhang S. Long-chain base phosphates modulate pollen tube growth via channel-mediated influx of calcium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:507-516. [PMID: 24905418 DOI: 10.1111/tpj.12576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Long-chain base phosphates (LCBPs) have been correlated with amounts of crucial biological processes ranging from cell proliferation to apoptosis in animals. However, their functions in plants remain largely unknown. Here, we report that LCBPs, sphingosine-1-phosphate (S1P) and phytosphingosine-1-phosphate (Phyto-S1P), modulate pollen tube growth in a concentration-dependent bi-phasic manner. The pollen tube growth in the stylar transmitting tissue was promoted by SPHK1 overexpression (SPHK1-OE) but dampened by SPHK1 knockdown (SPHK1-KD) compared with wild-type of Arabidopsis; however, there was no detectable effect on in vitro pollen tube growth caused by misexpression of SPHK1. Interestingly, exogenous S1P or Phyto-S1P applications could increase the pollen tube growth rate in SPHK1-OE, SPHK1-KD and wild-type of Arabidopsis. Calcium ion (Ca(2+) )-imaging analysis showed that S1P triggered a remarkable increase in cytosolic Ca(2+) concentration in pollen. Extracellular S1P induced hyperpolarization-activated Ca(2+) currents in the pollen plasma membrane, and the Ca(2+) current activation was mediated by heterotrimeric G proteins. Moreover, the S1P-induced increase of cytosolic free Ca(2+) inhibited the influx of potassium ions in pollen tubes. Our findings suggest that LCBPs functions in a signaling cascade that facilitates Ca(2+) influx and modulates pollen tube growth.
Collapse
Affiliation(s)
- Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
14
|
Zhao LN, Shen LK, Zhang WZ, Zhang W, Wang Y, Wu WH. Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. THE PLANT CELL 2013; 25:649-61. [PMID: 23449501 PMCID: PMC3608784 DOI: 10.1105/tpc.112.103184] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/03/2013] [Accepted: 02/07/2013] [Indexed: 05/18/2023]
Abstract
Potassium (K(+)) influx into pollen tubes via K(+) transporters is essential for pollen tube growth; however, the mechanism by which K(+) transporters are regulated in pollen tubes remains unknown. Here, we report that Arabidopsis thaliana Ca(2+)-dependent protein kinase11 (CPK11) and CPK24 are involved in Ca(2+)-dependent regulation of the inward K(+) (K(+)in) channels in pollen tubes. Using patch-clamp analysis, we demonstrated that K(+)in currents of pollen tube protoplasts were inhibited by elevated [Ca(2+)]cyt. However, disruption of CPK11 or CPK24 completely impaired the Ca(2+)-dependent inhibition of K(+)in currents and enhanced pollen tube growth. Moreover, the cpk11 cpk24 double mutant exhibited similar phenotypes as the corresponding single mutants, suggesting that these two CDPKs function in the same signaling pathway. Bimolecular fluorescence complementation and coimmunoprecipitation experiments showed that CPK11 could interact with CPK24 in vivo. Furthermore, CPK11 phosphorylated the N terminus of CPK24 in vitro, suggesting that these two CDPKs work together as part of a kinase cascade. Electrophysiological assays demonstrated that the Shaker pollen K(+)in channel is the main contributor to pollen tube K(+)in currents and acts as the downstream target of the CPK11-CPK24 pathway. We conclude that CPK11 and CPK24 together mediate the Ca(2+)-dependent inhibition of K(+)in channels and participate in the regulation of pollen tube growth in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre, China Agricultural University, Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Steinhorst L, Kudla J. Calcium - a central regulator of pollen germination and tube growth. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1573-81. [PMID: 23072967 DOI: 10.1016/j.bbamcr.2012.10.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 12/30/2022]
Abstract
Pollen tubes grow rapidly by very fast rates and reach extended lengths to bring about fertilization during plant reproduction. The pollen tube grows exclusively at its tip. Fundamental for such local, tip-focused growth are the presence of internal gradients and transmembrane fluxes of ions. Consequently, vegetative pollen tube cells are an excellent single cell model system to investigate cell biological processes of vesicle transport, cytoskeleton reorganization and regulation of ion transport. The second messenger Ca(2+) has emerged as a central and crucial modulator that not only regulates but also integrates the coordination each of these processes. In this review we reflect on recent advances in our understanding of the mechanisms of Ca(2+) function in pollen tube growth, focusing on its role in basic cellular processes such as control of cell growth, vesicular transport and intracellular signaling by localized gradients of second messengers. In particular we discuss new insights into the identity and role of Ca(2+) conductive ion channels and present experimental addressable hypotheses about their regulation. This article is part of a Special Issue entitled:12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | | |
Collapse
|