1
|
Pajar JA, Otto P, Leonar AL, Döll S, van Dam NM. Dual nematode infection in Brassica nigra affects shoot metabolome and aphid survival in distinct contrast to single-species infection. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7317-7336. [PMID: 39207246 PMCID: PMC11630020 DOI: 10.1093/jxb/erae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Previous studies showed that aphid performance was compromised on Brassica nigra infected by root-lesion nematodes (Pratylenchus penetrans, Pp), but less, or positively influenced by root-knot nematode (Meloidogyne spp.) infection. These experiments were on single-species nematode infections, but roots can be infected naturally with several nematode species simultaneously. We performed greenhouse assays to assess the effects of single [Meloidogyne incognita (Mi) or Pp] and concurrent (MP) nematode infections on aphid performance. Using targeted and untargeted profiling of leaf and phloem metabolomes, we examined how single and concurrent nematode infections affect shoot metabolomes, and elucidated the possible consequences for aphid performance. We found that the metabolic response to double-infection is different from that to single-species infections. Moreover, Mi and Pp infections triggered discrete changes in B. nigra leaf and phloem metabolic profiles. Both Pp and MP infections reduced aphid survival, suggesting that the biological effect could primarily be dominated by Pp-induced changes. This concurred with increased indole glucosinolates and hydroxycinnamic acid levels in the leaves, in particular the putative involvement of salicylic acid-2-O-β-d-glucoside. This study provides evidence that concurrent infection by different nematode species, as is common in natural environments, is associated with distinct changes in aboveground plant metabolomes, which are linked to differences in the survival of an aboveground herbivore.
Collapse
Affiliation(s)
- Jessil Ann Pajar
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Großbeeren, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Pius Otto
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
| | - April Lyn Leonar
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
| | - Stefanie Döll
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
| | - Nicole M van Dam
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Großbeeren, Germany
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
2
|
Sánchez-Pérez R, Neilson EH. The case for sporadic cyanogenic glycoside evolution in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102608. [PMID: 39089185 DOI: 10.1016/j.pbi.2024.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024]
Abstract
Cyanogenic glycosides are α-hydroxynitrile glucosides present in approximately 3000 different plant species. Upon tissue disruption, cyanogenic glycosides are hydrolyzed to release toxic hydrogen cyanide as a means of chemical defense. Over 100 different cyanogenic glycosides have been reported, with structural diversity dependent on the precursor amino acid, and subsequent modifications. Cyanogenic glycosides represent a prime example of sporadic metabolite evolution, with the metabolic trait arising multiple times throughout the plant lineage as evidenced by recruitment of different enzyme families for biosynthesis. Here, we review the latest developments within cyanogenic glycoside biosynthesis, and argue possible factors driving sporadic evolution including shared intermediates and crossovers with other metabolic pathways crossovers, and metabolite multifunctionality beyond chemical defense.
Collapse
Affiliation(s)
| | - Elizabeth Hj Neilson
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen.
| |
Collapse
|
3
|
Jia Y, Shen T, Wen Z, Chen J, Liu Q. Combining Transcriptome and Whole Genome Re-Sequencing to Screen Disease Resistance Genes for Wheat Dwarf Bunt. Int J Mol Sci 2023; 24:17356. [PMID: 38139183 PMCID: PMC10743994 DOI: 10.3390/ijms242417356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Wheat dwarf bunt is a damaging disease caused by Tilletia controversa Kühn (TCK). Once the disease infects wheat, it is difficult to control and will significantly reduce wheat output and quality. RNA sequencing and whole genome re-sequencing were used to search for potential TCK resistance genes in Yili 053 (sensitive variety) and Zhongmai 175 (moderately resistant variety) in the mid-filling, late-filling, and maturity stages. The transcriptomic analysis revealed 11 potential disease resistance genes. An association analysis of the findings from re-sequencing found nine genes with single nucleotide polymorphism mutations. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that three up-regulated genes were involved in the synthesis of benzoxazinone and tryptophan metabolism. Additionally, quantitative real-time polymerase chain reaction confirmed the RNA sequencing results. The results revealed novel TCK resistance genes and provide a theoretical basis for researching the function of resistance genes and molecular breeding.
Collapse
Affiliation(s)
- Yufeng Jia
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tong Shen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiwei Wen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jing Chen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qi Liu
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
4
|
Qin H, King GJ, Borpatragohain P, Zou J. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. PLANT COMMUNICATIONS 2023:100565. [PMID: 36823985 PMCID: PMC10363516 DOI: 10.1016/j.xplc.2023.100565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs), found mainly in species of the Brassicaceae family, are one of the most well-studied classes of secondary metabolites. Produced by the action of myrosinase on GSLs, GSL-derived hydrolysis products (GHPs) primarily defend against biotic stress in planta. They also significantly affect the quality of crop products, with a subset of GHPs contributing unique food flavors and multiple therapeutic benefits or causing disagreeable food odors and health risks. Here, we explore the potential of these bioactive functions, which could be exploited for future sustainable agriculture. We first summarize our accumulated understanding of GSL diversity and distribution across representative Brassicaceae species. We then systematically discuss and evaluate the potential of exploited and unutilized genes involved in GSL biosynthesis, transport, and hydrolysis as candidate GSL engineering targets. Benefiting from available information on GSL and GHP functions, we explore options for multifunctional Brassicaceae crop ideotypes to meet future demand for food diversification and sustainable crop production. An integrated roadmap is subsequently proposed to guide ideotype development, in which maximization of beneficial effects and minimization of detrimental effects of GHPs could be combined and associated with various end uses. Based on several use-case examples, we discuss advantages and limitations of available biotechnological approaches that may contribute to effective deployment and could provide novel insights for optimization of future GSL engineering.
Collapse
Affiliation(s)
- Han Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Czerniawski P, Piślewska-Bednarek M, Piasecka A, Kułak K, Bednarek P. Loss of MYB34 Transcription Factor Supports the Backward Evolution of Indole Glucosinolate Biosynthesis in a Subclade of the Camelineae Tribe and Releases the Feedback Loop in This Pathway in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:80-93. [PMID: 36222356 DOI: 10.1093/pcp/pcac142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Glucosinolates are specialized defensive metabolites characteristic of the Brassicales order. Among them, aliphatic and indolic glucosinolates (IGs) are usually highly abundant in species from the Brassicaceae family. The exceptions this trend are species representing a subclade of the Camelineae tribe, including Capsella and Camelina genera, which have reduced capacity to produce and metabolize IGs. Our study addresses the contribution of specific glucosinolate-related myeloblastosis (MYB) transcription factors to this unprecedented backward evolution of IG biosynthesis. To this end, we performed phylogenomic and functional studies of respective MYB proteins. The obtained results revealed weakened conservation of glucosinolate-related MYB transcription factors, including loss of functional MYB34 protein, in the investigated species. We showed that the introduction of functional MYB34 from Arabidopsis thaliana partially restores IG biosynthesis in Capsella rubella, indicating that the loss of this transcription factor contributes to the backward evolution of this metabolic pathway. Finally, we performed an analysis of the impact of particular myb mutations on the feedback loop in IG biosynthesis, which drives auxin overproduction, metabolic dysregulation and strong growth retardation caused by mutations in IG biosynthetic genes. This uncovered the unique function of MYB34 among IG-related MYBs in this feedback regulation and consequently in IG conservation in Brassicaceae plants.
Collapse
Affiliation(s)
- Paweł Czerniawski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
- Department of General Botany, Institute of Experimental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| |
Collapse
|
6
|
Singh G, Agrawal H, Bednarek P. Specialized metabolites as versatile tools in shaping plant-microbe associations. MOLECULAR PLANT 2023; 16:122-144. [PMID: 36503863 DOI: 10.1016/j.molp.2022.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plants are rich repository of a large number of chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes including responses against changing abiotic conditions and interactions with various co-existing organisms. One of the strikingly affirmed functions of these specialized metabolites is their involvement in plants' life-long interactions with complex multi-kingdom microbiomes including both beneficial and harmful microorganisms. Recent developments in genomic and molecular biology tools not only help to generate well-curated information about regulatory and structural components of biosynthetic pathways of plant specialized metabolites but also to create and screen mutant lines defective in their synthesis. In this review, we have comprehensively surveyed the function of these specialized metabolites and discussed recent research findings demonstrating the responses of various microbes on tested mutant lines having defective biosynthesis of particular metabolites. In addition, we attempt to provide key clues about the impact of these metabolites on the assembly of the plant microbiome by summarizing the major findings of recent comparative metagenomic analyses of available mutant lines under customized and natural microbial niches. Subsequently, we delineate benchmark initiatives that aim to engineer or manipulate the biosynthetic pathways to produce specialized metabolites in heterologous systems but also to diversify their immune function. While denoting the function of these metabolites, we also discuss the critical bottlenecks associated with understanding and exploiting their function in improving plant adaptation to the environment.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
7
|
Chan C. Keep calm and carry on: AIG2A/B prevent over-activation of TDSM-mediated defense response. THE PLANT CELL 2022; 34:4126-4127. [PMID: 36048118 PMCID: PMC9614447 DOI: 10.1093/plcell/koac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Ching Chan
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Department of Life Science, National Taiwan Normal University, Taiwan
| |
Collapse
|
8
|
Wu M, Li Q, Xia G, Zhang Y, Wang F. New insights into defense responses against Verticillium dahliae infection revealed by a quantitative proteomic analysis in Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:980-994. [PMID: 35908800 DOI: 10.1071/fp22006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Verticillium wilt is a highly destructive fungal disease that attacks a broad range of plants, including many major crops. However, the mechanism underlying plant immunity toward Verticillium dahliae is very complex and requires further study. By combining bioinformatics analysis and experimental validation, we investigated plant defence responses against V. dahliae infection in the model plant Arabidopsis thaliana L. A total of 301 increased and 214 decreased differentially abundant proteins (DAPs) between mock and infected wild type (WT) plants were acquired and bioinformatics analyses were then conducted and compared (increased vs decreased) in detail. In addition to the currently known mechanisms, several new clues about plant immunity against V. dahliae infection were found in this study: (1) exosome formation was dramatically induced by V. dahliae attack; (2) tryptophan-derived camalexin and cyanogenic biosynthesis were durably promoted in response to infection; and (3) various newly identified components were activated for hub immunity responses. These new clues provide valuable information that extends the current knowledge about the molecular basis of plant immunity against V. dahliae infection.
Collapse
Affiliation(s)
- Min Wu
- College of Life Sciences, Hebei University, Baoding 071002, China; and Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiulin Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, China
| | - Guixian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, China
| | - Fuxin Wang
- College of Life Sciences, Hebei University, Baoding 071002, China; and Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| |
Collapse
|
9
|
Poveda J, Díaz-González S, Díaz-Urbano M, Velasco P, Sacristán S. Fungal endophytes of Brassicaceae: Molecular interactions and crop benefits. FRONTIERS IN PLANT SCIENCE 2022; 13:932288. [PMID: 35991403 PMCID: PMC9390090 DOI: 10.3389/fpls.2022.932288] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Brassicaceae family includes an important group of plants of great scientific interest, e.g., the model plant Arabidopsis thaliana, and of economic interest, such as crops of the genus Brassica (Brassica oleracea, Brassica napus, Brassica rapa, etc.). This group of plants is characterized by the synthesis and accumulation in their tissues of secondary metabolites called glucosinolates (GSLs), sulfur-containing compounds mainly involved in plant defense against pathogens and pests. Brassicaceae plants are among the 30% of plant species that cannot establish optimal associations with mycorrhizal hosts (together with other plant families such as Proteaceae, Chenopodiaceae, and Caryophyllaceae), and GSLs could be involved in this evolutionary process of non-interaction. However, this group of plants can establish beneficial interactions with endophytic fungi, which requires a reduction of defensive responses by the host plant and/or an evasion, tolerance, or suppression of plant defenses by the fungus. Although much remains to be known about the mechanisms involved in the Brassicaceae-endophyte fungal interaction, several cases have been described, in which the fungi need to interfere with the GSL synthesis and hydrolysis in the host plant, or even directly degrade GSLs before they are hydrolyzed to antifungal isothiocyanates. Once the Brassicaceae-endophyte fungus symbiosis is formed, the host plant can obtain important benefits from an agricultural point of view, such as plant growth promotion and increase in yield and quality, increased tolerance to abiotic stresses, and direct and indirect control of plant pests and diseases. This review compiles the studies on the interaction between endophytic fungi and Brassicaceae plants, discussing the mechanisms involved in the success of the symbiosis, together with the benefits obtained by these plants. Due to their unique characteristics, the family Brassicaceae can be seen as a fruitful source of novel beneficial endophytes with applications to crops, as well as to generate new models of study that allow us to better understand the interactions of these amazing fungi with plants.
Collapse
Affiliation(s)
- Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - María Díaz-Urbano
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
10
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Interactions of fungi with non-isothiocyanate products of the plant glucosinolate pathway: A review on product formation, antifungal activity, mode of action and biotransformation. PHYTOCHEMISTRY 2022; 200:113245. [PMID: 35623473 DOI: 10.1016/j.phytochem.2022.113245] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
The glucosinolate pathway, which is present in the order Brassicales, is one of the most researched defensive natural product biosynthesis pathways. Its core molecules, the glucosinolates are broken down upon pathogen challenge or tissue damage to yield an array of natural products that may help plants defend against the stressor. Though the most widely known glucosinolate decomposition products are the antimicrobial isothiocyanates, there is a wide range of other volatile and non-volatile natural products that arise from this biosynthetic pathway. This review summarizes our current knowledge on the interaction of these much less examined, non-isothiocyanate products with fungi. It deals with compounds including (1) glucosinolates and their biosynthesis precursors; (2) glucosinolate-derived nitriles (e.g. derivatives of 1H-indole-3-acetonitrile), thiocyanates, epithionitriles and oxazolidine-2-thiones; (3) putative isothiocyanate downstream products such as raphanusamic acid, 1H-indole-3-methanol (= indole-3-carbinol) and its oligomers, 1H-indol-3-ylmethanamine and ascorbigen; (4) 1H-indole-3-acetonitrile downstream products such as 1H-indole-3-carbaldehyde (indole-3-carboxaldehyde), 1H-indole-3-carboxylic acid and their derivatives; and (5) indole phytoalexins including brassinin, cyclobrassinin and brassilexin. Herein, a literature review on the following aspects is provided: their direct antifungal activity and the proposed mechanisms of antifungal action, increased biosynthesis after fungal challenge, as well as data on their biotransformation/detoxification by fungi, including but not limited to fungal myrosinase activity.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
11
|
Bréard D, Barrit T, Sochard D, Aligon S, Planchet E, Teulat B, Le Corff J, Campion C, Guilet D. Development of a quantification method for routine analysis of glucosinolates and camalexin in brassicaceous small-sized samples by simultaneous extraction prior to liquid chromatography determination. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1205:123348. [PMID: 35777257 DOI: 10.1016/j.jchromb.2022.123348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Glucosinolates and camalexin are secondary metabolites that, as phytoanticipins and phytoalexins, play a crucial role in plant defence. The present work proposes an improved analytical method for routine analysis and quantification of glucosinolates and camalexin in brassicaceous small-sized samples by using the very specific desulfation process of glucosinolates analysis and the specificity of fluorescence detection for camalexin analysis. The approach is based on a simultaneous ultrasound-assisted extraction followed by a purification on an anion-exchange column. Final analyses are conducted by HPLC-UV-MS for desulfo-glucosinolates and HPLC coupled to a fluorescence detector (HPLC-FLD) for camalexin. The method is linear for glucosinolates (50-3500 µM) and camalexin (0.025-5 µg.mL-1) with an LOD/LOQ of 3.8/12.6 µM and 0.014/0.046 µg.mL-1 respectively. The method demonstrated adequate precision, accuracy and trueness on certified reference rapeseed. A practical application of our approach was conducted on different Brassicaceae genera (Barbarea vulgaris, Brassica nigra, Capsella bursa-pastoris, Cardamine hirsuta, Coincya monensis, Sinapis arvensis, and Sisymbrium officinale) and Arabidopsis thaliana genotypes (Columbia and Wassilewskija). Futhermore, different plant organs (seeds and leaves) were analysed, previously inoculated or not with the pathogenic fungus Alternaria brassicicola.
Collapse
Affiliation(s)
| | - Thibault Barrit
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Daniel Sochard
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Sophie Aligon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Elisabeth Planchet
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Béatrice Teulat
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Josiane Le Corff
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Claire Campion
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - David Guilet
- Univ Angers, SONAS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
12
|
Tao H, Miao H, Chen L, Wang M, Xia C, Zeng W, Sun B, Zhang F, Zhang S, Li C, Wang Q. WRKY33-mediated indolic glucosinolate metabolic pathway confers resistance against Alternaria brassicicola in Arabidopsis and Brassica crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1007-1019. [PMID: 35257500 DOI: 10.1111/jipb.13245] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The tryptophan (Trp)-derived plant secondary metabolites, including camalexin, 4-hydroxy-indole-3-carbonylnitrile, and indolic glucosinolate (IGS), show broad-spectrum antifungal activity. However, the distinct regulations of these metabolic pathways among different plant species in response to fungus infection are rarely studied. In this study, our results revealed that WRKY33 directly regulates IGS biosynthesis, notably the production of 4-methoxyindole-3-ylmethyl glucosinolate (4MI3G), conferring resistance to Alternaria brassicicola, an important pathogen which causes black spot in Brassica crops. WRKY33 directly activates the expression of CYP81F2, IGMT1, and IGMT2 to drive side-chain modification of indole-3-ylmethyl glucosinolate (I3G) to 4MI3G, in both Arabidopsis and Chinese kale (Brassica oleracea var. alboglabra Bailey). However, Chinese kale showed a more severe symptom than Arabidopsis when infected by Alternaria brassicicola. Comparative analyses of the origin and evolution of Trp metabolism indicate that the loss of camalexin biosynthesis in Brassica crops during evolution might attenuate the resistance of crops to Alternaria brassicicola. As a result, the IGS metabolic pathway mediated by WRKY33 becomes essential for Chinese kale to deter Alternaria brassicicola. Our results highlight the differential regulation of Trp-derived camalexin and IGS biosynthetic pathways in plant immunity between Arabidopsis and Brassica crops.
Collapse
Affiliation(s)
- Han Tao
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Huiying Miao
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lili Chen
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Mengyu Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chuchu Xia
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Zeng
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, Missouri, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
13
|
Plaszkó T, Szűcs Z, Cziáky Z, Ács-Szabó L, Csoma H, Géczi L, Vasas G, Gonda S. Correlations Between the Metabolome and the Endophytic Fungal Metagenome Suggests Importance of Various Metabolite Classes in Community Assembly in Horseradish ( Armoracia rusticana, Brassicaceae) Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:921008. [PMID: 35783967 PMCID: PMC9247618 DOI: 10.3389/fpls.2022.921008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/27/2022] [Indexed: 05/07/2023]
Abstract
The plant microbiome is an increasingly intensive research area, with significance in agriculture, general plant health, and production of bioactive natural products. Correlations between the fungal endophytic communities and plant chemistry can provide insight into these interactions, and suggest key contributors on both the chemical and fungal side. In this study, roots of various horseradish (Armoracia rusticana) accessions grown under the same conditions were sampled in two consecutive years and chemically characterized using a quality controlled, untargeted metabolomics approach by LC-ESI-MS/MS. Sinigrin, gluconasturtiin, glucoiberin, and glucobrassicin were also quantified. Thereafter, a subset of roots from eight accessions (n = 64) with considerable chemical variability was assessed for their endophytic fungal community, using an ITS2 amplicon-based metagenomic approach using a custom primer with high coverage on fungi, but no amplification of host internal transcribed spacer (ITS). A set of 335 chemical features, including putatively identified flavonoids, phospholipids, peptides, amino acid derivatives, indolic phytoalexins, a glucosinolate, and a glucosinolate downstream product was detected. Major taxa in horseradish roots belonged to Cantharellales, Glomerellales, Hypocreales, Pleosporales, Saccharomycetales, and Sordariales. Most abundant genera included typical endophytes such as Plectosphaerella, Thanatephorus, Podospora, Monosporascus, Exophiala, and Setophoma. A surprising dominance of single taxa was observed for many samples. In summary, 35.23% of reads of the plant endophytic fungal microbiome correlated with changes in the plant metabolome. While the concentration of flavonoid kaempferol glycosides positively correlated with the abundance of many fungal strains, many compounds showed negative correlations with fungi including indolic phytoalexins, a putative glucosinolate but not major glucosinolates and a glutathione isothiocyanate adduct. The latter is likely an in vivo glucosinolate decomposition product important in fungal arrest. Our results show the potency of the untargeted metabolomics approach in deciphering plant-microbe interactions and depicts a complex array of various metabolite classes in shaping the endophytic fungal community.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| | - Lajos Ács-Szabó
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Csoma
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Géczi
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- *Correspondence: Sándor Gonda, ,
| |
Collapse
|
14
|
Alfonso E, Stahl E, Glauser G, Bellani E, Raaymakers TM, Van den Ackerveken G, Zeier J, Reymond P. Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. THE NEW PHYTOLOGIST 2021; 232:2491-2505. [PMID: 34510462 PMCID: PMC9292583 DOI: 10.1111/nph.17732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/05/2021] [Indexed: 05/27/2023]
Abstract
Plants are able to detect insect eggs deposited on leaves. In Arabidopsis, eggs of the butterfly species Pieris brassicae (common name large white) induce plant defenses and activate the salicylic acid (SA) pathway. We previously discovered that oviposition triggers a systemic acquired resistance (SAR) against the bacterial hemibiotroph pathogen Pseudomonas syringae. Here, we show that insect eggs or treatment with egg extract (EE) induce SAR against the fungal necrotroph Botrytis cinerea BMM and the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. This response is abolished in ics1, ald1 and fmo1, indicating that the SA pathway and the N-hydroxypipecolic acid (NHP) pathway are involved. Establishment of EE-induced SAR in distal leaves potentially involves tryptophan-derived metabolites, including camalexin. Indeed, SAR is abolished in the biosynthesis mutants cyp79B2 cyp79B3, cyp71a12 cyp71a13 and pad3-1, and camalexin is toxic to B. cinerea in vitro. This study reveals an interesting mechanism by which lepidopteran eggs interfere with plant-pathogen interactions.
Collapse
Affiliation(s)
- Esteban Alfonso
- Department of Plant Molecular BiologyUniversity of LausanneLausanne1015Switzerland
| | - Elia Stahl
- Department of Plant Molecular BiologyUniversity of LausanneLausanne1015Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtel2000Switzerland
| | - Etienne Bellani
- Department of Plant Molecular BiologyUniversity of LausanneLausanne1015Switzerland
| | - Tom M. Raaymakers
- Plant–Microbe InteractionsDepartment of BiologyUtrecht UniversityUtrecht3584 CHthe Netherlands
| | | | - Jürgen Zeier
- Department of BiologyHeinrich Heine UniversityUniversitätsstrasse 1DüsseldorfD‐40225Germany
| | - Philippe Reymond
- Department of Plant Molecular BiologyUniversity of LausanneLausanne1015Switzerland
| |
Collapse
|
15
|
Winkelmüller TM, Entila F, Anver S, Piasecka A, Song B, Dahms E, Sakakibara H, Gan X, Kułak K, Sawikowska A, Krajewski P, Tsiantis M, Garrido-Oter R, Fukushima K, Schulze-Lefert P, Laurent S, Bednarek P, Tsuda K. Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species. THE PLANT CELL 2021; 33:1863-1887. [PMID: 33751107 PMCID: PMC8290292 DOI: 10.1093/plcell/koab073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.
Collapse
Affiliation(s)
- Thomas M Winkelmüller
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Frederickson Entila
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shajahan Anver
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Eik Dahms
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 230-0045 Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Present address: Department of Computational Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Aneta Sawikowska
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-628 Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Paul Schulze-Lefert
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, 430070 Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, China
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Author for correspondence:
| |
Collapse
|
16
|
Kidd BN, Foley R, Singh KB, Anderson JP. Foliar resistance to Rhizoctonia solani in Arabidopsis is compromised by simultaneous loss of ethylene, jasmonate and PEN2 mediated defense pathways. Sci Rep 2021; 11:2546. [PMID: 33510286 PMCID: PMC7843637 DOI: 10.1038/s41598-021-81858-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/06/2021] [Indexed: 11/09/2022] Open
Abstract
Rhizoctonia solani causes damaging yield losses on most major food crops. R. solani isolates belonging to anastomosis group 8 (AG8) are soil-borne, root-infecting pathogens with a broad host range. AG8 isolates can cause disease on wheat, canola and legumes, however Arabidopsis thaliana is heretofore thought to possess non-host resistance as A. thaliana ecotypes, including the reference strain Col-0, are resistant to AG8 infection. Using a mitochondria-targeted redox sensor (mt-roGFP2) and cell death staining, we demonstrate that both AG8 and a host isolate (AG2-1) of R. solani are able to infect A. thaliana roots. Above ground tissue of A. thaliana was found to be resistant to AG8 but not AG2. Genetic analysis revealed that ethylene, jasmonate and PENETRATION2-mediated defense pathways work together to provide resistance to AG8 in the leaves which subsequently enable tolerance of root infections. Overall, we demonstrate a significant difference in defense capabilities of above and below ground tissue in providing resistance to R. solani AG8 in Arabidopsis.
Collapse
Affiliation(s)
- Brendan N Kidd
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, Australia.,Australian Reseach Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Rhonda Foley
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, Australia
| | - Karam B Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, Australia.,Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jonathan P Anderson
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, Australia. .,The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
17
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Czerniawski P, Piasecka A, Bednarek P. Evolutionary changes in the glucosinolate biosynthetic capacity in species representing Capsella, Camelina and Neslia genera. PHYTOCHEMISTRY 2021; 181:112571. [PMID: 33130372 DOI: 10.1016/j.phytochem.2020.112571] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Glucosinolates are unique thioglucosides that evolved in the order Brassicales. These compounds function in plant adaptation to the environment, including combating plant pathogens, herbivore deterrence and abiotic stress tolerance. In line with their defensive functions glucosinolates usually accumulate constitutively in relatively high amounts in all tissues of Brassicaceae plants. Here we performed glucosinolate analysis in different organs of selected species representing Capsella, Camelina and Neslia genera, which similarly as the model plant Arabidopsis thaliana belong to the Camelineae tribe. We also identified orthologs of A. thaliana glucosinolate biosynthetic genes in the published genomes of some of the investigated species. Subsequent gene expression and phylogenetic analyses enabled us an insight into the evolutionary changes in the transcription of these genes and in the sequences of respective proteins that occurred within the Camelineae tribe. Our results indicated that glucosinolates are highly abundant in siliques and roots of the investigated species but hardly, if at all, produced in leaves. In addition to this unusual tissular distribution we revealed reduced structural diversity of methionine-derived aliphatic glucosinolates (AGs) with elevated accumulation of rare long chain AGs. This preference seems to correlate with evolutionary changes in genes encoding methylthioalkylmalate synthases that are responsible for the elongation of AG side chains. Finally, our results indicate that the biosynthetic pathway for tryptophan-derived indolic glucosinolates likely lost its main functions in immunity and resistance towards sucking insects and is on its evolutionary route to be shut off in the investigated species.
Collapse
Affiliation(s)
- Paweł Czerniawski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland; Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| |
Collapse
|
19
|
The Versatile Roles of Sulfur-Containing Biomolecules in Plant Defense-A Road to Disease Resistance. PLANTS 2020; 9:plants9121705. [PMID: 33287437 PMCID: PMC7761819 DOI: 10.3390/plants9121705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
Sulfur (S) is an essential plant macronutrient and the pivotal role of sulfur compounds in plant disease resistance has become obvious in recent decades. This review attempts to recapitulate results on the various functions of sulfur-containing defense compounds (SDCs) in plant defense responses to pathogens. These compounds include sulfur containing amino acids such as cysteine and methionine, the tripeptide glutathione, thionins and defensins, glucosinolates and phytoalexins and, last but not least, reactive sulfur species and hydrogen sulfide. SDCs play versatile roles both in pathogen perception and initiating signal transduction pathways that are interconnected with various defense processes regulated by plant hormones (salicylic acid, jasmonic acid and ethylene) and reactive oxygen species (ROS). Importantly, ROS-mediated reversible oxidation of cysteine residues on plant proteins have profound effects on protein functions like signal transduction of plant defense responses during pathogen infections. Indeed, the multifaceted plant defense responses initiated by SDCs should provide novel tools for plant breeding to endow crops with efficient defense responses to invading pathogens.
Collapse
|
20
|
In S, Lee HA, Woo J, Park E, Choi D. Molecular Characterization of a Pathogen-Inducible Bidirectional Promoter from Hot Pepper ( Capsicum annuum). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1330-1339. [PMID: 32781924 DOI: 10.1094/mpmi-07-20-0183-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In hot pepper, the sesquiterpene phytoalexin capsidiol is catalyzed by the two final-step enzymes, a sesquiterpene cyclase (EAS) and a hydroxylase (EAH), which are genetically linked and present as head-to-head orientation in the genome. Transcriptomic analysis revealed that a subset of EAS and EAH is highly induced following pathogen infection, suggesting the coregulation of EAS and EAH by a potential bidirectional activity of the promoter (pCaD). A series of the nested deletions of pCaD in both directions verified the bidirectional promoter activity of the pCaD. Promoter deletion analysis revealed that the 226 bp of the adjacent promoter region of EAS and GCC-box in EAH orientation were determined as critical regulatory elements for the induction of each gene. Based on promoter analyses, we generated a set of synthetic promoters to maximize reporter gene expression within the minimal length of the promoter in both directions. We found that the reporter gene expression was remarkably induced upon infection with Phytophthora capsici, Phytophthora infestans, and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 but not with necrotrophic fungi Botrytis cinerea. Our results confirmed the bidirectional activity of the pCaD located between the head-to-head oriented phytoalexin biosynthetic genes in hot pepper. Furthermore, the synthetic promoter modified in pCaD could be a potential tool for pathogen-inducible expression of target genes for developing disease-resistant crops.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Solhee In
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Ah Lee
- Division of Eco-Friendly Horticulture, Yonam College, Cheonan 31005, Republic of Korea
| | - Jongchan Woo
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, U.S.A
| | - Eunsook Park
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, U.S.A
| | - Doil Choi
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Hunziker P, Ghareeb H, Wagenknecht L, Crocoll C, Halkier BA, Lipka V, Schulz A. De novo indol-3-ylmethyl glucosinolate biosynthesis, and not long-distance transport, contributes to defence of Arabidopsis against powdery mildew. PLANT, CELL & ENVIRONMENT 2020; 43:1571-1583. [PMID: 32275065 DOI: 10.1111/pce.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Powdery mildew is a fungal disease that affects a wide range of plants and reduces crop yield worldwide. As obligate biotrophs, powdery mildew fungi manipulate living host cells to suppress defence responses and to obtain nutrients. Members of the plant order Brassicales produce indole glucosinolates that effectively protect them from attack by non-adapted fungi. Indol-3-ylmethyl glucosinolate is constitutively produced in the phloem and transported to epidermal cells for storage. Upon attack, indol-3-ylmethyl glucosinolate is activated by CYP81F2 to provide broad-spectrum defence against fungi. How de novo biosynthesis and transport contribute to defence of powdery mildew-attacked epidermal cells is unknown. Bioassays and glucosinolate analysis demonstrate that GTR glucosinolate transporters are not involved in antifungal defence. Using quantitative live-cell imaging of fluorophore-tagged markers, we show that accumulation of the glucosinolate biosynthetic enzymes CYP83B1 and SUR1 is induced in epidermal cells attacked by the non-adapted barley powdery mildew Blumeria graminis f.sp. hordei. By contrast, glucosinolate biosynthesis is attenuated during interaction with the virulent powdery mildew Golovinomyces orontii. Interestingly, SUR1 induction is delayed during the Golovinomyces orontii interaction. We conclude that epidermal de novo synthesis of indol-3-ylmethyl glucosinolate contributes to CYP81F2-mediated broad-spectrum antifungal resistance and that adapted powdery mildews may target this process.
Collapse
Affiliation(s)
- Pascal Hunziker
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hassan Ghareeb
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Goettingen, Göttingen, Germany
| | - Lena Wagenknecht
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Goettingen, Göttingen, Germany
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Goettingen, Göttingen, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Goettingen, Goettingen, Germany
- Department of Plant Cell Biology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
22
|
Kruszka D, Sawikowska A, Kamalabai Selvakesavan R, Krajewski P, Kachlicki P, Franklin G. Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135361. [PMID: 31839324 DOI: 10.1016/j.scitotenv.2019.135361] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles are widely used in industry, medicine, biotechnology and agriculture. As a consequence, these nanoparticles are reaching the environment as waste products, which might have a negative impact on the environment, especially on plants. This includes the elicitation of various biochemical processes in plants. In this article, we report on the changes in secondary metabolic profile of Arabidopsis thaliana seedlings subjected to silver nanoparticle treatment in vitro. Briefly, various sizes (10 nm, 40 nm and 100 nm in diameter) and concentrations (0.5-5.0 ppm) of silver nanoparticles were tested. Ultraperformance liquid chromatography coupled with ultraviolet and fluorescence detectors as well as hyphenated to a high-resolution mass spectrometer (UPLC-PDA-FLR, UPLC-HESI-HRMS) and HPLC - ion trap mass spectrometer (HPLC-ESI-MS/MS), were applied to identify and quantify secondary metabolites. To understand whether silver ions could induce changes in the secondary metabolite profile, seedlings treated with silver nitrate in concentrations equivalent to these of nanoparticles were also analysed. The results showed significant differences in the accumulation of phenolic and indole compounds between treatments. Silver nanoparticles and silver ions induced the biosynthesis of camalexin, hydroxycamalexin O-hexoside and hydroxycamalexin malonyl-hexoside. These compounds are important phytoalexins for Brassicaceae family (especially for Camelinae clad) and are also synthetized in response to biotic and abiotic stresses. Statistically significant changes have been also observed for five phenolic compounds and 5'Glucosyl-dihydroneoascorbigen in different treatment conditions.
Collapse
Affiliation(s)
- Dariusz Kruszka
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland.
| | - Aneta Sawikowska
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland; Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | | | - Paweł Krajewski
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland.
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland.
| |
Collapse
|
23
|
Anthony MA, Celenza JL, Armstrong A, Frey SD. Indolic glucosinolate pathway provides resistance to mycorrhizal fungal colonization in a non‐host Brassicaceae. Ecosphere 2020. [DOI: 10.1002/ecs2.3100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- M. A. Anthony
- Department of Natural Resources University of New Hampshire Durham New Hampshire 03824 USA
| | - J. L. Celenza
- Department of Biology Boston University Boston Massachusetts 02215 USA
| | - A. Armstrong
- Department of Biology Boston University Boston Massachusetts 02215 USA
| | - S. D. Frey
- Department of Natural Resources University of New Hampshire Durham New Hampshire 03824 USA
| |
Collapse
|
24
|
Barco B, Clay NK. Hierarchical and Dynamic Regulation of Defense-Responsive Specialized Metabolism by WRKY and MYB Transcription Factors. FRONTIERS IN PLANT SCIENCE 2020; 10:1775. [PMID: 32082343 PMCID: PMC7005594 DOI: 10.3389/fpls.2019.01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
The plant kingdom produces hundreds of thousands of specialized bioactive metabolites, some with pharmaceutical and biotechnological importance. Their biosynthesis and function have been studied for decades, but comparatively less is known about how transcription factors with overlapping functions and contrasting regulatory activities coordinately control the dynamics and output of plant specialized metabolism. Here, we performed temporal studies on pathogen-infected intact host plants with perturbed transcription factors. We identified WRKY33 as the condition-dependent master regulator and MYB51 as the dual functional regulator in a hierarchical gene network likely responsible for the gene expression dynamics and metabolic fluxes in the camalexin and 4-hydroxy-indole-3-carbonylnitrile (4OH-ICN) pathways. This network may have also facilitated the regulatory capture of the newly evolved 4OH-ICN pathway in Arabidopsis thaliana by the more-conserved transcription factor MYB51. It has long been held that the plasticity of plant specialized metabolism and the canalization of development should be differently regulated; our findings imply a common hierarchical regulatory architecture orchestrated by transcription factors for specialized metabolism and development, making it an attractive target for metabolic engineering.
Collapse
Affiliation(s)
| | - Nicole K. Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
25
|
Pastorczyk M, Kosaka A, Piślewska-Bednarek M, López G, Frerigmann H, Kułak K, Glawischnig E, Molina A, Takano Y, Bednarek P. The role of CYP71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity. THE NEW PHYTOLOGIST 2020; 225:400-412. [PMID: 31411742 DOI: 10.1111/nph.16118] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/07/2019] [Indexed: 05/14/2023]
Abstract
Effective defense of Arabidopsis against filamentous pathogens requires two mechanisms, both of which involve biosynthesis of tryptophan (Trp)-derived metabolites. Extracellular resistance involves products of PEN2-dependent metabolism of indole glucosinolates (IGs). Restriction of further fungal growth requires PAD3-dependent camalexin and other, as yet uncharacterized, indolics. This study focuses on the function of CYP71A12 monooxygenase in pathogen-triggered Trp metabolism, including the biosynthesis of indole-3-carboxylic acid (ICA). Moreover, to investigate the contribution of CYP71A12 and its products to Arabidopsis immunity, we analyzed infection phenotypes of multiple mutant lines combining pen2 with pad3, cyp71A12, cyp71A13 or cyp82C2. Metabolite profiling of cyp71A12 lines revealed a reduction in ICA accumulation. Additionally, analysis of mutant plants showed that low amounts of ICA can form during an immune response by CYP71B6/AAO1-dependent metabolism of indole acetonitrile, but not via IG hydrolysis. Infection assays with Plectosphaerella cucumerina and Colletotrichum tropicale, two pathogens with different lifestyles, revealed cyp71A12-, cyp71A13- and cyp82C2-associated defects associated with Arabidopsis immunity. Our results indicate that CYP71A12, but not CYP71A13, is the major enzyme responsible for the accumulation of ICA in Arabidopsis in response to pathogen ingression. We also show that both enzymes are key players in the resistance of Arabidopsis against selected filamentous pathogens after they invade.
Collapse
Affiliation(s)
- Marta Pastorczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Ayumi Kosaka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Henning Frerigmann
- Max Planck Institute for Plant Breeding Research and Cluster of Excellence on Plant Sciences (CEPLAS), Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Erich Glawischnig
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Microbial Biotechnology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
26
|
Hiruma K. Roles of Plant-Derived Secondary Metabolites during Interactions with Pathogenic and Beneficial Microbes under Conditions of Environmental Stress. Microorganisms 2019; 7:microorganisms7090362. [PMID: 31540419 PMCID: PMC6780457 DOI: 10.3390/microorganisms7090362] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/16/2022] Open
Abstract
Under natural conditions, plants generate a vast array of secondary metabolites. Several of these accumulate at widely varying levels in the same plant species and are reportedly critical for plant adaptation to abiotic and/or biotic stresses. Some secondary metabolite pathways are required for beneficial interactions with bacterial and fungal microbes and are also regulated by host nutrient availability so that beneficial interactions are enforced. These observations suggest an interplay between host nutrient pathways and the regulation of secondary metabolites that establish beneficial interactions with microbes. In this review, I introduce the roles of tryptophan-derived and phenylpropanoid secondary-metabolite pathways during plant interactions with pathogenic and beneficial microbes and describe how these pathways are regulated by nutrient availability.
Collapse
Affiliation(s)
- Kei Hiruma
- Department of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
27
|
Takahashi H. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4075-4087. [PMID: 30907420 DOI: 10.1093/jxb/erz132] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Sulfate transporters are integral membrane proteins controlling the flux of sulfate (SO42-) entering the cells and subcellular compartments across the membrane lipid bilayers. Sulfate uptake is a dynamic biological process that occurs in multiple cell layers and organs in plants. In vascular plants, sulfate ions are taken up from the soil environment to the outermost cell layers of roots and horizontally transferred to the vascular tissues for further distribution to distant organs. The amount of sulfate ions being metabolized in the cytosol and chloroplast/plastid or temporarily stored in the vacuole depends on expression levels and functionalities of sulfate transporters bound specifically to the plasma membrane, chloroplast/plastid envelopes, and tonoplast membrane. The entire system for sulfate homeostasis, therefore, requires different types of sulfate transporters to be expressed and coordinately regulated in specific organs, cell types, and subcellular compartments. Transcriptional and post-transcriptional regulatory mechanisms control the expression levels and functions of sulfate transporters to optimize sulfate uptake and internal distribution in response to sulfate availability and demands for synthesis of organic sulfur metabolites. This review article provides an overview of sulfate transport systems and discusses their regulatory aspects investigated in the model plant species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Barco B, Kim Y, Clay NK. Expansion of a core regulon by transposable elements promotes Arabidopsis chemical diversity and pathogen defense. Nat Commun 2019; 10:3444. [PMID: 31371717 PMCID: PMC6671987 DOI: 10.1038/s41467-019-11406-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/14/2019] [Indexed: 01/09/2023] Open
Abstract
Plants synthesize numerous ecologically specialized, lineage-specific metabolites through biosynthetic gene duplication and functional specialization. However, it remains unclear how duplicated genes are wired into existing regulatory networks. We show that the duplicated gene CYP82C2 has been recruited into the WRKY33 regulon and indole-3-carbonylnitrile (ICN) biosynthetic pathway through exaptation of a retroduplicated LINE retrotransposon (EPCOT3) into an enhancer. The stepwise development of a chromatin-accessible WRKY33-binding site on EPCOT3 has potentiated the regulatory neofunctionalization of CYP82C2 and the evolution of inducible defense metabolite 4-hydroxy-ICN in Arabidopsis thaliana. Although transposable elements (TEs) have long been recognized to have the potential to rewire regulatory networks, these results establish a more complete understanding of how duplicated genes and TEs contribute in concert to chemical diversity and pathogen defense. Arabidopsis plants can produce 4-hydroxyindole-3-carbonitrile (4OH-ICN) upon pathogen infection. Here, the authors show that EPCOT3, a retrotransposonderived enhancer, mediates WRKY33-binding, pathogen-responsive transcription of CYP82C2, and synthesis of 4OH-ICN.
Collapse
Affiliation(s)
- Brenden Barco
- Department of Molecular, Cellular and Developmental Biology, Yale University, Kline Biology Tower 734, 219 Prospect Street, New Haven, CT, 06511, USA. .,Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Durham, NC, 27703, USA.
| | - Yoseph Kim
- Hopkins School, 986 Forest Road, New Haven, CT, 06515, USA
| | - Nicole K Clay
- Department of Molecular, Cellular and Developmental Biology, Yale University, Kline Biology Tower 734, 219 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
29
|
Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc Natl Acad Sci U S A 2019; 116:15735-15744. [PMID: 31311863 PMCID: PMC6681745 DOI: 10.1073/pnas.1818604116] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants in their natural ecosystems interact with numerous microorganisms, but how they influence their microbiota is still elusive. We observed that sulfatase activity in soil, which can be used as a measure of rhizosphere microbial activity, is differently affected by Arabidopsis accessions. Following a genome-wide association analysis of the variation in sulfatase activity we identified a candidate gene encoding an uncharacterized cytochrome P450, CYP71A27 Loss of this gene resulted in 2 different and independent microbiota-specific phenotypes: A lower sulfatase activity in the rhizosphere and a loss of plant growth-promoting effect by Pseudomonas sp. CH267. On the other hand, tolerance to leaf pathogens was not affected, which agreed with prevalent expression of CYP71A27 in the root vasculature. The phenotypes of cyp71A27 mutant were similar to those of cyp71A12 and cyp71A13, known mutants in synthesis of camalexin, a sulfur-containing indolic defense compound. Indeed, the cyp71A27 mutant accumulated less camalexin in the roots upon elicitation with silver nitrate or flagellin. Importantly, addition of camalexin complemented both the sulfatase activity and the loss of plant growth promotion by Pseudomonas sp. CH267. Two alleles of CYP71A27 were identified among Arabidopsis accessions, differing by a substitution of Glu373 by Gln, which correlated with the ability to induce camalexin synthesis and to gain fresh weight in response to Pseudomonas sp. CH267. Thus, CYP71A27 is an additional component in the camalexin synthesis pathway, contributing specifically to the control of plant microbe interactions in the root.
Collapse
|
30
|
Müller TM, Böttcher C, Glawischnig E. Dissection of the network of indolic defence compounds in Arabidopsis thaliana by multiple mutant analysis. PHYTOCHEMISTRY 2019; 161:11-20. [PMID: 30798200 DOI: 10.1016/j.phytochem.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Characteristic for cruciferous plants is the synthesis of a complex array of defence-related indolic compounds. In Arabidopsis, these include indol-3-ylmethyl glucosinolates (IMGs), as well as stress-inducible indole-3-carbaldehyde (ICHO)/indole-3-carboxylic acid (ICOOH) derivatives and camalexin. Key enzymes in the biosynthesis of the inducible metabolites are the cytochrome P450 enzymes CYP71A12, CYP71A13 and CYP71B6 and Arabidopsis Aldehyde Oxidase 1 (AAO1). Multiple mutants in the corresponding genes were generated and their metabolic phenotypes were comprehensively analysed in untreated, UV exposed and silver nitrate-treated leaves. Most strikingly, ICOOH and ICHO derivatives synthesized in response to UV exposure were not metabolically related. While ICHO concentrations correlated with IMGs, ICOOH derivatives were anti-correlated with IMGs and partially dependent on CYP71B6. The AAO1 genotype was shown to not only be important for ICHO metabolism but also for the accumulation of 4-pyridoxic acid, suggesting a dual role of AAO1 in vitamin B6 metabolism and IMG degradation in Arabidopsis.
Collapse
Affiliation(s)
- Teresa M Müller
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Christoph Böttcher
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Str. 19, 14195 Berlin, Germany
| | - Erich Glawischnig
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; Microbial Biotechnology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany.
| |
Collapse
|
31
|
Barco B, Clay NK. Evolution of Glucosinolate Diversity via Whole-Genome Duplications, Gene Rearrangements, and Substrate Promiscuity. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:585-604. [PMID: 31035830 DOI: 10.1146/annurev-arplant-050718-100152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Over several decades, glucosinolates have become a model system for the study of specialized metabolic diversity in plants. The near-complete identification of biosynthetic enzymes, regulators, and transporters has provided support for the role of gene duplication and subsequent changes in gene expression, protein function, and substrate specificity as the evolutionary bases of glucosinolate diversity. Here, we provide examples of how whole-genome duplications, gene rearrangements, and substrate promiscuity potentiated the evolution of glucosinolate biosynthetic enzymes, regulators, and transporters by natural selection. This in turn may have led to the repeated evolution of glucosinolate metabolism and diversity in higher plants.
Collapse
Affiliation(s)
- Brenden Barco
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06511, USA; ,
| | - Nicole K Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06511, USA; ,
| |
Collapse
|
32
|
Sugiyama R, Hirai MY. Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1008. [PMID: 31447873 PMCID: PMC6691170 DOI: 10.3389/fpls.2019.01008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/18/2019] [Indexed: 05/04/2023]
Abstract
Glucosinolates (GLSs) are a well-known class of specialized plant metabolites, distributed mostly in the order Brassicales. A vast research field in basic and applied sciences has grown up around GLSs owing to their presence in important agricultural crops and the model plant Arabidopsis thaliana, and their broad range of bioactivities beneficial to human health. The major purpose of GLSs in plants has been considered their function as a chemical defense against predators. GLSs are physically separated from a specialized class of beta-thioglucosidases called myrosinases, at the tissue level or at the single-cell level. They are brought together as a consequence of tissue damage, primarily triggered by herbivores, and their interaction results in the release of toxic volatile chemicals including isothiocyanates. In addition, recent studies have suggested that plants may adopt other strategies independent of tissue disruption for initiating GLS breakdown to cope with certain biotic/abiotic stresses. This hypothesis has been further supported by the discovery of an atypical class of GLS-hydrolyzing enzymes possessing features that are distinct from those of the classical myrosinases. Nevertheless, there is only little information on the physiological importance of atypical myrosinases. In this review, we focus on the broad diversity of the beta-glucosidase subclasses containing known atypical myrosinases in A. thaliana to discuss the hypothesis that numerous members of these subclasses can hydrolyze GLSs to regulate their diverse functions in plants. Also, the increasingly broadening functional repertoires of known atypical/classical myrosinases are described with reference to recent findings. Assessment of independent insights gained from A. thaliana with respect to (1) the phenotype of mutants lacking genes in the GLS metabolic/breakdown pathways, (2) fluctuation in GLS contents/metabolism under specific conditions, and (3) the response of plants to exogenous GLSs or their hydrolytic products, will enable us to reconsider the physiological importance of GLS breakdown in particular situations, which is likely to be regulated by specific beta-glucosidases.
Collapse
|
33
|
Wei K, Chen H. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC PLANT BIOLOGY 2018; 18:309. [PMID: 30497403 PMCID: PMC6267037 DOI: 10.1186/s12870-018-1529-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The basic helix-loop-helix transcription factors play important roles in diverse cellular and molecular processes. Comparative functional genomics can provide powerful approaches to draw inferences about gene function and evolution among species. The comprehensive comparison of bHLH gene family in different gramineous plants has not yet been reported. RESULTS In this study, a total of 183, 231 and 571 bHLHs were identified in rice, maize and wheat genomes respectively, and 1154 bHLH genes from the three species and Arabidopsis were classified into 36 subfamilies. Of the identified genes, 110 OsbHLHs, 188 ZmbHLHs and 209 TabHLHs with relatively high mRNA abundances were detected in one or more tissues during development, and some of them exhibited tissue-specific expression such as TabHLH454-459, ZmbHLH099-101 and OsbHLH037 in root, TabHLH559-562, - 046, - 047 and ZmbHLH010, - 072, - 226 in leaf, TabHLH216-221, - 333, - 335, - 340 and OsbHLH005, - 141 in inflorescence, TabHLH081, ZmbHLH139 and OsbHLH144 in seed. Forty five, twenty nine and thirty one differentially expressed bHLHs were respectively detected in wheat, maize and rice under drought stresses using RNA-seq technology. Among them, the expressions of TabHLH046, - 047, ZmbHLH097, - 098, OsbHLH006 and - 185 were strongly induced, whereas TabHLH303, - 562, ZmbHLH155, - 154, OsbHLH152 and - 113 showed significant down-regulation. Twenty two TabHLHs were induced after stripe rust infection at 24 h and nine of them were suppressed at 72 hpi, whereas 28 and 6 TabHLHs exhibited obviously down- and up-regulation after powdery mildew attack respectively. Forty one ZmbHLHs were differentially expressed in response to F. verticillioides infection. Twenty two co-expression modules were identified by the WGCNA, some of which were associated with particular tissue types. And GO enrichment analysis for the modules showed that some TabHLHs were involved in the control of several biological processes, such as tapetal PCD, lipid metabolism, iron absorption, stress responses and signal regulation. CONCLUSION The present study identifies the bHLH family in rice, maize and wheat genomes, and detailedly discusses the evolutionary relationships, expression and function of bHLHs. This study provides some novel and detail information about bHLHs, and may facilitate understanding the molecular basis of the plant growth, development and stress physiology.
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, 363000 Fujian China
| | - Huiqin Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
34
|
Hiruma K, Kobae Y, Toju H. Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host-symbiont molecular mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:145-154. [PMID: 29738938 DOI: 10.1016/j.pbi.2018.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 05/02/2023]
Abstract
Brassicaceae plants have lost symbiotic interactions with mutualistic mycorrhizal fungi, but, nonmycorrhizal Brassicaceae associate with diverse taxonomic groups of mutualistic root-endophytic fungi. Distantly related fungal endophytes of Brassicaceae plants transfer phosphorus to the hosts and promote plant growth, thereby suggesting that the beneficial function was independently acquired via convergent evolution. These beneficial interactions appear tightly regulated by the tryptophan-derived secondary metabolite pathway, which specifically developed in Brassicaceae. Importantly, phosphate availability and types of colonizing microbes appear to influence the metabolite pathway. Thus, endophytes of Brassicaceae may have evolved to adapt to the Brassicaceae-specific traits. Future comparative functional analyses among well-defined endophytic fungi and their relatives with distinct life strategies and host plants will help understand the mechanisms that establish and maintain beneficial interactions.
Collapse
Affiliation(s)
- Kei Hiruma
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yoshihiro Kobae
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan; Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO) , 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan
| | - Hirokazu Toju
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| |
Collapse
|
35
|
Malka SK, Cheng Y. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin. FRONTIERS IN PLANT SCIENCE 2017; 8:2131. [PMID: 29312389 PMCID: PMC5735125 DOI: 10.3389/fpls.2017.02131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GLS) are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase), and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx) and indole-3-acetonitrile (IAN). IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.
Collapse
Affiliation(s)
- Siva K. Malka
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Prince DC, Rallapalli G, Xu D, Schoonbeek HJ, Çevik V, Asai S, Kemen E, Cruz-Mireles N, Kemen A, Belhaj K, Schornack S, Kamoun S, Holub EB, Halkier BA, Jones JDG. Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biol 2017; 15:20. [PMID: 28320402 PMCID: PMC5358052 DOI: 10.1186/s12915-017-0360-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/22/2017] [Indexed: 02/04/2023] Open
Abstract
Background Plants are exposed to diverse pathogens and pests, yet most plants are resistant to most plant pathogens. Non-host resistance describes the ability of all members of a plant species to successfully prevent colonization by any given member of a pathogen species. White blister rust caused by Albugo species can overcome non-host resistance and enable secondary infection and reproduction of usually non-virulent pathogens, including the potato late blight pathogen Phytophthora infestans on Arabidopsis thaliana. However, the molecular basis of host defense suppression in this complex plant–microbe interaction is unclear. Here, we investigate specific defense mechanisms in Arabidopsis that are suppressed by Albugo infection. Results Gene expression profiling revealed that two species of Albugo upregulate genes associated with tryptophan-derived antimicrobial metabolites in Arabidopsis. Albugo laibachii-infected tissue has altered levels of these metabolites, with lower indol-3-yl methylglucosinolate and higher camalexin accumulation than uninfected tissue. We investigated the contribution of these Albugo-imposed phenotypes to suppression of non-host resistance to P. infestans. Absence of tryptophan-derived antimicrobial compounds enables P. infestans colonization of Arabidopsis, although to a lesser extent than Albugo-infected tissue. A. laibachii also suppresses a subset of genes regulated by salicylic acid; however, salicylic acid plays only a minor role in non-host resistance to P. infestans. Conclusions Albugo sp. alter tryptophan-derived metabolites and suppress elements of the responses to salicylic acid in Arabidopsis. Albugo sp. imposed alterations in tryptophan-derived metabolites may play a role in Arabidopsis non-host resistance to P. infestans. Understanding the basis of non-host resistance to pathogens such as P. infestans could assist in development of strategies to elevate food security. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0360-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David C Prince
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ghanasyam Rallapalli
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Deyang Xu
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Denmark
| | - Henk-Jan Schoonbeek
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Volkan Çevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Shuta Asai
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Plant Immunity Research Group, Center for Sustainable Resource Science, RIKEN Yokohama Institute, Yokohama, Japan
| | - Eric Kemen
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Neftaly Cruz-Mireles
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Ariane Kemen
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Khaoula Belhaj
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sebastian Schornack
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, UK
| | - Barbara A Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Denmark
| | - Jonathan D G Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
37
|
Rahikainen M, Trotta A, Alegre S, Pascual J, Vuorinen K, Overmyer K, Moffatt B, Ravanel S, Glawischnig E, Kangasjärvi S. PP2A-B'γ modulates foliar trans-methylation capacity and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:112-127. [PMID: 27598402 DOI: 10.1111/tpj.13326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 05/27/2023]
Abstract
Glucosinolates (GSL) of cruciferous plants comprise a major group of structurally diverse secondary compounds which act as deterrents against aphids and microbial pathogens and have large commercial and ecological impacts. While the transcriptional regulation governing the biosynthesis and modification of GSL is now relatively well understood, post-translational regulatory components that specifically determine the structural variation of indole glucosinolates have not been reported. We show that the cytoplasmic protein phosphatase 2A regulatory subunit B'γ (PP2A-B'γ) physically interacts with indole glucosinolate methyltransferases and controls the methoxylation of indole glucosinolates and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. By taking advantage of proteomic approaches and metabolic analysis we further demonstrate that PP2A-B'γ is required to control the abundance of oligomeric protein complexes functionally linked with the activated methyl cycle and the trans-methylation capacity of leaf cells. These findings highlight the key regulatory role of PP2A-B'γ in methionine metabolism and provide a previously unrecognized perspective for metabolic engineering of glucosinolate metabolism in cruciferous plants.
Collapse
Affiliation(s)
- Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Jesús Pascual
- Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Katariina Vuorinen
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kirk Overmyer
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Barbara Moffatt
- Department of Biology, University of Waterloo, 200 University Avenue, Ontario, N2L 3G1, Canada
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS UMR5168, INRA UMR1417, CEA, Université Grenoble Alpes, 38054, Grenoble, France
| | - Erich Glawischnig
- Department of Plant Sciences, Technische Universität München, Emil-Ramann-Str.4, 85354, Freising, Germany
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
38
|
Nakano RT, Piślewska-Bednarek M, Yamada K, Edger PP, Miyahara M, Kondo M, Böttcher C, Mori M, Nishimura M, Schulze-Lefert P, Hara-Nishimura I, Bednarek P. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:204-220. [PMID: 27612205 DOI: 10.1111/tpj.13377] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum body (ER body) is an organelle derived from the ER that occurs in only three families of the order Brassicales and is suggested to be involved in plant defense. ER bodies in Arabidopsis thaliana contain large amounts of β-glucosidases, but the physiological functions of ER bodies and these enzymes remain largely unclear. Here we show that PYK10, the most abundant β-glucosidase in A. thaliana root ER bodies, hydrolyzes indole glucosinolates (IGs) in addition to the previously reported in vitro substrate scopolin. We found a striking co-expression between ER body-related genes (including PYK10), glucosinolate biosynthetic genes and the genes for so-called specifier proteins affecting the terminal products of myrosinase-mediated glucosinolate metabolism, indicating that these systems have been integrated into a common transcriptional network. Consistent with this, comparative metabolite profiling utilizing a number of A. thaliana relatives within Brassicaceae identified a clear phylogenetic co-occurrence between ER bodies and IGs, but not between ER bodies and scopolin. Collectively, our findings suggest a functional link between ER bodies and glucosinolate metabolism in planta. In addition, in silico three-dimensional modeling, combined with phylogenomic analysis, suggests that PYK10 represents a clade of 16 myrosinases that arose independently from the other well-documented class of six thioglucoside glucohydrolases. These findings provide deeper insights into how glucosinolates are metabolized in cruciferous plants and reveal variation of the myrosinase-glucosinolate system within individual plants.
Collapse
Affiliation(s)
- Ryohei T Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Kenji Yamada
- Department of Cell Biology, National Institute of Basic Biology, Okazaki, 444-8585, Japan
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Mado Miyahara
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute of Basic Biology, Okazaki, 444-8585, Japan
| | - Christoph Böttcher
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Masashi Mori
- Ishikawa Prefectural University, Nonoichi, Ishikawa, 834-1213, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute of Basic Biology, Okazaki, 444-8585, Japan
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
39
|
Olsen CE, Huang XC, Hansen CIC, Cipollini D, Ørgaard M, Matthes A, Geu-Flores F, Koch MA, Agerbirk N. Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates. PHYTOCHEMISTRY 2016; 132:33-56. [PMID: 27743600 DOI: 10.1016/j.phytochem.2016.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 05/22/2023]
Abstract
As a basis for future investigations of evolutionary trajectories and biosynthetic mechanisms underlying variations in glucosinolate structures, we screened members of the crucifer tribe Cardamineae by HPLC-MS/MS, isolated and identified glucosinolates by NMR, searched the literature for previous data for the tribe, and collected HPLC-MS/MS data for nearly all glucosinolates known from the tribe as well as some related structures (70 in total). This is a considerable proportion of the approximately 142 currently documented natural glucosinolates. Calibration with authentic references allowed distinction (or elucidation) of isomers in many cases, such as distinction of β-hydroxyls, methylthios, methylsulfinyls and methylsulfonyls. A mechanism for fragmentation of secondary β-hydroxyls in MS was elucidated, and two novel glucosinolates were discovered: 2-hydroxy-3-methylpentylglucosinolate in roots of Cardamine pratensis and 2-hydroxy-8-(methylsulfinyl)octylglucosinolate in seeds of Rorippa amphibia. A large number of glucosinolates (ca. 54 with high structural certainty and a further 28 or more suggested from tandem MS), representing a wide structural variation, is documented from the tribe. This included glucosinolates apparently derived from Met, Phe, Trp, Val/Leu, Ile and higher homologues. Normal side chain elongation and side chain decoration by oxidation or methylation was observed, as well as rare abnormal side chain decoration (hydroxylation of aliphatics at the δ rather than β-position). Some species had diverse profiles, e.g. R. amphibia and C. pratensis (19 and 16 individual glucosinolates, respectively), comparable to total diversity in literature reports of Armoracia rusticana (17?), Barbarea vulgaris (20-24), and Rorippa indica (>20?). The ancestor or the tribe would appear to have used Trp, Met, and homoPhe as glucosinolate precursor amino acids, and to exhibit oxidation of thio to sulfinyl, formation of alkenyls, β-hydroxylation of aliphatic chains and hydroxylation and methylation of indole glucosinolates. Two hotspots of apparent biochemical innovation and loss were identified: C. pratensis and the genus Barbarea. Diversity in other species mainly included structures also known from other crucifers. In addition to a role of gene duplication, two contrasting genetic/biochemical mechanisms for evolution of such combined diversity and redundancy are discussed: (i) involvement of widespread genes with expression varying during evolution, and (ii) mutational changes in substrate specificities of CYP79F and GS-OH enzymes.
Collapse
Affiliation(s)
- Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Xiao-Chen Huang
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Cecilie I C Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annemarie Matthes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Fernando Geu-Flores
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
40
|
Finnegan T, Steenkamp PA, Piater LA, Dubery IA. The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways. PLoS One 2016; 11:e0163572. [PMID: 27656890 PMCID: PMC5033345 DOI: 10.1371/journal.pone.0163572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/11/2016] [Indexed: 11/19/2022] Open
Abstract
Lipopolysaccharides (LPSs), as MAMP molecules, trigger the activation of signal transduction pathways involved in defence. Currently, plant metabolomics is providing new dimensions into understanding the intracellular adaptive responses to external stimuli. The effect of LPS on the metabolomes of Arabidopsis thaliana cells and leaf tissue was investigated over a 24 h period. Cellular metabolites and those secreted into the medium were extracted with methanol and liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. Multivariate statistical data analyses were used to extract interpretable information from the generated multidimensional LC-MS data. The results show that LPS perception triggered differential changes in the metabolomes of cells and leaves, leading to variation in the biosynthesis of specialised secondary metabolites. Time-dependent changes in metabolite profiles were observed and biomarkers associated with the LPS-induced response were tentatively identified. These include the phytohormones salicylic acid and jasmonic acid, and also the associated methyl esters and sugar conjugates. The induced defensive state resulted in increases in indole-and other glucosinolates, indole derivatives, camalexin as well as cinnamic acid derivatives and other phenylpropanoids. These annotated metabolites indicate dynamic reprogramming of metabolic pathways that are functionally related towards creating an enhanced defensive capacity. The results reveal new insights into the mode of action of LPS as an activator of plant innate immunity, broadens knowledge about the defence metabolite pathways involved in Arabidopsis responses to LPS, and identifies specialised metabolites of functional importance that can be employed to enhance immunity against pathogen infection.
Collapse
Affiliation(s)
- Tarryn Finnegan
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Paul A. Steenkamp
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
- CSIR- Biosciences, Natural Products and Agroprocessing Group, Pretoria, 0001, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| |
Collapse
|
41
|
Becker TM, Juvik JA. The Role of Glucosinolate Hydrolysis Products from Brassica Vegetable Consumption in Inducing Antioxidant Activity and Reducing Cancer Incidence. Diseases 2016; 4:E22. [PMID: 28933402 PMCID: PMC5456278 DOI: 10.3390/diseases4020022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
The bioactivity of glucosinolates (GSs), and more specifically their hydrolysis products (GSHPs), has been well documented. These secondary metabolites evolved in the order Brassicales as plant defense compounds with proven ability to deter or impede the growth of several biotic challenges including insect infestation, fungal and bacterial infection, and competition from other plants. However, the bioactivity of GSHPs is not limited to activity that inhibits these kingdoms of life. Many of these compounds have been shown to have bioactivity in mammalian systems as well, with epidemiological links to cancer chemoprevention in humans supported by in vitro, in vivo, and small clinical studies. Although other chemopreventive mechanisms have been identified, the primary mechanism believed to be responsible for the observed chemoprevention from GSHPs is the induction of antioxidant enzymes, such as NAD(P)H quinone reductase (NQO1), heme oxygenase 1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutathione S transferases (GSTs), through the Keap1-Nrf2-ARE signaling pathway. Induction of this pathway is generally associated with aliphatic isothiocyanate GSHPs, although some indole-derived GSHPs have also been associated with induction of one or more of these enzymes.
Collapse
Affiliation(s)
- Talon M Becker
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3838, USA.
| | - John A Juvik
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3838, USA.
| |
Collapse
|
42
|
Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. MOLECULAR PLANT 2016; 9:662-681. [PMID: 26802249 DOI: 10.1016/j.molp.2016.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/08/2015] [Accepted: 01/01/2016] [Indexed: 05/27/2023]
Abstract
Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Patricia Bellwon
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Stefan Huber
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Klaus Schlaeppi
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Friederike Bernsdorff
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Armelle Vallat-Michel
- Institut de Chimie, Université de Neuchâtel, Avenue Bellevaux 51, 2007 Neuchâtel, Switzerland
| | - Felix Mauch
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
43
|
Frerigmann H, Piślewska-Bednarek M, Sánchez-Vallet A, Molina A, Glawischnig E, Gigolashvili T, Bednarek P. Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. MOLECULAR PLANT 2016; 9:682-695. [PMID: 26802248 DOI: 10.1016/j.molp.2016.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 05/20/2023]
Abstract
MYB34, MYB51, and MYB122 transcription factors are known as decisive regulators of indolic glucosinolate (IG) biosynthesis with a strong impact on expression of genes encoding CYP79B2 and CYP79B3 enzymes that redundantly convert tryptophan to indole-3-acetaldoxime (IAOx). This intermediate represents a branching point for IG biosynthesis, and pathways leading to camalexin and indole-carboxylic acids (ICA). Here we investigate how these MYBs affect the pathogen-triggered Trp metabolism. Our experiments indicated that these three MYBs affect not only IG production but also constitutive biosynthesis of other IAOx-derived metabolites. Strikingly, the PENETRATION 2 (PEN2)-dependent IG-metabolism products, which are absent in myb34/51/122 and pen2 mutants, were indispensable for full flg22-mediated induction of other IAOx-derived compounds. However, gene induction and accumulation of ICAs and camalexin upon pathogen infection was not compromised in myb34/51/122 plants, despite strongly reduced IG levels. Hence, in comparison with cyp79B2/B3, which lacks all IAOx-derived metabolites, we found myb34/51/122 an ideal tool to analyze IG contribution to resistance against the necrotrophic fungal pathogen Plectosphaerella cucumerina. The susceptibility of myb34/51/122 was similar to that of pen2, but much lower than susceptibility of cyp79B2/B3, indicating that MYB34/51/122 contribute to resistance toward P. cucumerina exclusively through IG biosynthesis, and that PEN2 is the main leaf myrosinase activating IGs in response to microbial pathogens.
Collapse
Affiliation(s)
- Henning Frerigmann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | | | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Erich Glawischnig
- Lehrstuhl für Genetik, Technische Universität München, Emil-Ramann-Str. 8, 85354 Freising, Germany
| | - Tamara Gigolashvili
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego12/14, 61-704 Poznań, Poland.
| |
Collapse
|
44
|
Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O'Connell RJ, Schulze-Lefert P. Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell 2016; 165:464-74. [PMID: 26997485 PMCID: PMC4826447 DOI: 10.1016/j.cell.2016.02.028] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/15/2015] [Accepted: 02/10/2016] [Indexed: 01/06/2023]
Abstract
A staggering diversity of endophytic fungi associate with healthy plants in nature, but it is usually unclear whether these represent stochastic encounters or provide host fitness benefits. Although most characterized species of the fungal genus Colletotrichum are destructive pathogens, we show here that C. tofieldiae (Ct) is an endemic endophyte in natural Arabidopsis thaliana populations in central Spain. Colonization by Ct initiates in roots but can also spread systemically into shoots. Ct transfers the macronutrient phosphorus to shoots, promotes plant growth, and increases fertility only under phosphorus-deficient conditions, a nutrient status that might have facilitated the transition from pathogenic to beneficial lifestyles. The host's phosphate starvation response (PSR) system controls Ct root colonization and is needed for plant growth promotion (PGP). PGP also requires PEN2-dependent indole glucosinolate metabolism, a component of innate immune responses, indicating a functional link between innate immunity and the PSR system during beneficial interactions with Ct.
Collapse
Affiliation(s)
- Kei Hiruma
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Department of Biological Sciences, Nara Institute of Science and Technology, 630-0192 Nara, Japan
| | - Nina Gerlach
- Botanical Institute, Cologne Biocenter, University of Cologne, 50931 Cologne, Germany
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Ryohei Thomas Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50931 Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ulla Neumann
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Diana Ramírez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50931 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50931 Cologne, Germany
| | - Richard J O'Connell
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France.
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
45
|
Zhang X, Wang G, Gao J, Nie M, Liu W, Xia Q. Functional analysis of NtMPK2 uncovers its positive role in response to Pseudomonas syringae pv. tomato DC3000 in tobacco. PLANT MOLECULAR BIOLOGY 2016; 90:19-31. [PMID: 26482478 DOI: 10.1007/s11103-015-0391-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Mitogen-activated protein kinase cascades are highly conserved signaling modules downstream of receptors/sensors and play pivotal roles in signaling plant defense against pathogen attack. Extensive studies on Arabidopsis MPK4 have implicated that the MAP kinase is involved in multilayered plant defense pathways. In this study, we identified tobacco NtMPK2 as an ortholog of AtMPK4. Transgenic tobacco overexpressing NtMPK2 markedly enhances resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) virulent and avirulent strains. Transcriptome analysis of NtMPK2-dependent genes shows that possibly the basal resistance system is activated by NtMPK2 overexpression. In addition to NtMPK2-mediated resistance, multiple pathways are involved in response to the avirulent bacteria based on analysis of Pst-responding genes, including SA and ET pathways. Notably, it is possible that biosynthesis of antibacterial compounds is responsible for inhibition of Pst DC3000 avirulent strain when programmed cell death processes in the host. Our results uncover that NtMPK2 positively regulate tobacco defense response to Pst DC3000 and improve our understanding of plant molecular defense mechanism.
Collapse
Affiliation(s)
- Xingtan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Junping Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Mengyun Nie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Wenshan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
46
|
Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One 2015; 10:e0140491. [PMID: 26465156 PMCID: PMC4605783 DOI: 10.1371/journal.pone.0140491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/25/2015] [Indexed: 01/27/2023] Open
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.
Collapse
|
47
|
Two cytochromes P450 catalyze S-heterocyclizations in cabbage phytoalexin biosynthesis. Nat Chem Biol 2015; 11:837-9. [PMID: 26389737 PMCID: PMC4731101 DOI: 10.1038/nchembio.1914] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022]
Abstract
Phytoalexins are abundant in edible crucifers and have important biological activities, yet no dedicated gene for their biosynthesis is known. Here, we report two new cytochromes P450 from Brassica rapa (Chinese cabbage) that catalyze unprecedented S-heterocyclizations in cyclobrassinin and spirobrassinin biosynthesis. Our results reveal the first genetic and biochemical insights into the biosynthesis of a prominent pair of dietary metabolites, and have implications for pathway discovery across >20 recently sequenced crucifers.
Collapse
|
48
|
Piasecka A, Jedrzejczak-Rey N, Bednarek P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. THE NEW PHYTOLOGIST 2015; 206:948-964. [PMID: 25659829 DOI: 10.1111/nph.13325] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/09/2015] [Indexed: 05/02/2023]
Abstract
Plant secondary metabolites carry out numerous functions in interactions between plants and a broad range of other organisms. Experimental evidence strongly supports the indispensable contribution of many constitutive and pathogen-inducible phytochemicals to plant innate immunity. Extensive studies on model plant species, particularly Arabidopsis thaliana, have brought significant advances in our understanding of the molecular mechanisms underpinning pathogen-triggered biosynthesis and activation of defensive secondary metabolites. However, despite the proven significance of secondary metabolites in plant response to pathogenic microorganisms, little is known about the precise mechanisms underlying their contribution to plant immunity. This insufficiency concerns information on the dynamics of cellular and subcellular localization of defensive phytochemicals during the encounters with microbial pathogens and precise knowledge on their mode of action. As many secondary metabolites are characterized by their in vitro antimicrobial activity, these compounds were commonly considered to function in plant defense as in planta antibiotics. Strikingly, recent experimental evidence suggests that at least some of these compounds alternatively may be involved in controlling several immune responses that are evolutionarily conserved in the plant kingdom, including callose deposition and programmed cell death.
Collapse
Affiliation(s)
- Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznan, Poland
| | - Nicolas Jedrzejczak-Rey
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
49
|
Ahuja I, van Dam NM, Winge P, Trælnes M, Heydarova A, Rohloff J, Langaas M, Bones AM. Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:579-92. [PMID: 25563968 PMCID: PMC4286410 DOI: 10.1093/jxb/eru490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Brassicaceae family is characterized by a unique defence mechanism known as the 'glucosinolate-myrosinase' system. When insect herbivores attack plant tissues, glucosinolates are hydrolysed by the enzyme myrosinase (EC 3.2.1.147) into a variety of degradation products, which can deter further herbivory. This process has been described as 'the mustard oil bomb'. Additionally, insect damage induces the production of glucosinolates, myrosinase, and other defences. Brassica napus seeds have been genetically modified to remove myrosinase-containing myrosin cells. These plants are termed MINELESS because they lack myrosin cells, the so-called toxic mustard oil mines. Here, we examined the interaction between B. napus wild-type and MINELESS plants and the larvae of the cabbage moth Mamestra brassicae. No-choice feeding experiments showed that M. brassicae larvae gained less weight and showed stunted growth when feeding on MINELESS plants compared to feeding on wild-type plants. M. brassicae feeding didn't affect myrosinase activity in MINELESS plants, but did reduce it in wild-type seedlings. M. brassicae feeding increased the levels of indol-3-yl-methyl, 1-methoxy-indol-3-yl-methyl, and total glucosinolates in both wild-type and MINELESS seedlings. M. brassicae feeding affected the levels of glucosinolate hydrolysis products in both wild-type and MINELESS plants. Transcriptional analysis showed that 494 and 159 genes were differentially regulated after M. brassicae feeding on wild-type and MINELESS seedlings, respectively. Taken together, the outcomes are very interesting in terms of analysing the role of myrosin cells and the glucosinolate-myrosinase defence system in response to a generalist cabbage moth, suggesting that similar studies with other generalist or specialist insect herbivores, including above- and below-ground herbivores, would be useful.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Nicole Marie van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany; Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany; Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Marianne Trælnes
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Aysel Heydarova
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Jens Rohloff
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Mette Langaas
- Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
50
|
Quaternized chitosan oligomers as novel elicitors inducing protection against B. cinerea in Arabidopsis. Int J Biol Macromol 2015; 72:364-9. [DOI: 10.1016/j.ijbiomac.2014.06.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022]
|