1
|
Martínez-Navarro M, Maldonado R, Baños JE. Why mu-opioid agonists have less analgesic efficacy in neuropathic pain? Eur J Pain 2018; 23:435-454. [PMID: 30318675 DOI: 10.1002/ejp.1328] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/06/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Injury to peripheral nerves often leads to abnormal pain states (hyperalgesia, allodynia and spontaneous pain), which can remain long after the injury heals. Although opioid agonists remain the gold standard for the treatment of moderate to severe pain, they show reduced efficacy against neuropathic pain. In addition to analgesia, opioid use is also associated with hyperalgesia and analgesia tolerance, whose underlying mechanisms share some commonalities with nerve injury-induced hypersensitivity. Here, we reviewed up-to-day research exploring the contribution of mu-opioid receptor (MOR) on the pathophysiology of neuropathic pain and on analgesic opioid actions under these conditions. We focused on the specific contributions of MOR populations at peripheral, spinal and supraspinal level. Moreover, evidences of neuroplastic changes that may underlie the low efficacy of MOR agonists under neuropathic pain conditions are reviewed and discussed. Sensitization processes leading to pain hypersensitivity, molecular changes in signalling pathways triggered by MOR and glial activation are some of these mechanisms elicited by both nerve injury and opioid exposure. Nerve injury-induced pain hypersensitivity might be masking the initial analgesic effects of opioid agonists, and alternatively, sustained opioid treatment to individuals already suffering from neuropathic pain could aggravate their pathophysiological state. Finally, some combined therapies that can increase opioid analgesic effectiveness in neuropathic pain treatment are highlighted. SIGNIFICANCE: This review provides evidence of the low benefit of opioid monotherapy in neuropathic pain and analyses the reasons of this reduced effectiveness. Opioid agonists along with drugs targeted to block the sensitization processes induced by MOR stimulation might result in a better management of neuropathic pain.
Collapse
Affiliation(s)
- Miriam Martínez-Navarro
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep-E Baños
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Opioid receptor activation is involved in neuroprotection induced by TRPV1 channel activation against excitotoxicity in the rat retina. Eur J Pharmacol 2017; 812:57-63. [PMID: 28687197 DOI: 10.1016/j.ejphar.2017.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
Recently, we reported that capsaicin, a transient receptor potential vanilloid type1 (TRPV1) agonist, protected against excitotoxicity induced by intravitreal N-methyl-D-aspartic acid (NMDA) in the rats in vivo. It has been reported that morphine, an opioid receptor agonist, ameliorated excitotoxicity induced by ischemia-reperfusion in the retina, and that capsaicin-induced neuroprotection was reduced by naloxone, an opioid receptor antagonist in the brain. The aim of the present study is to clarify whether activation of opioid receptors is involved in the capsaicin-induced neuroprotection in the retina. Under ketamine/xylazine anesthesia, male Sprague-Dawley rats were subjected to intravitreal NMDA injection (200nmol/eye). Capsaicin (5.0nmol/eye), calcitonin gene-related peptide (CGRP; 0.05pmol/eye), β-endorphin (0.5 pmol/eye), substance P (5nmol/eye), and naloxone (0.5nmol/eye) were intravitreally administered simultaneously with NMDA. Morphometric evaluation 7 days after NMDA injection showed that intravitreal NMDA injection resulted in ganglion cell loss. Capsaicin, CGRP, β-endorphin, and substance P prevented this damage. Treatment with naloxone (0.5nmol/eye) almost completely negated the protective effects of capsaicin, CGRP, β-endorphin, and substance P in the NMDA-injected rats. These results suggested that activation of opioid receptors is possibly involved in the protective effect of capsaicin.
Collapse
|
3
|
μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain. Neuroscience 2014; 267:67-82. [PMID: 24583035 DOI: 10.1016/j.neuroscience.2014.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/27/2022]
Abstract
Opiate analgesia in the spinal cord is impaired during neuropathic pain. We hypothesized that this is caused by a decrease in μ-opioid receptor inhibition of neurotransmitter release from primary afferents. To investigate this possibility, we measured substance P release in the spinal dorsal horn as neurokinin 1 receptor (NK1R) internalization in rats with chronic constriction injury (CCI) of the sciatic nerve. Noxious stimulation of the paw with CCI produced inconsistent NK1R internalization, suggesting that transmission of nociceptive signals by the injured nerve was variably impaired after CCI. This idea was supported by the fact that CCI produced only small changes in the ability of exogenous substance P to induce NK1R internalization or in the release of substance P evoked centrally from site of nerve injury. In subsequent experiments, NK1R internalization was induced in spinal cord slices by stimulating the dorsal root ipsilateral to CCI. We observed a complete loss of the inhibition of substance P release by the μ-opioid receptor agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO) in CCI rats but not in sham-operated rats. In contrast, DAMGO still inhibited substance P release after inflammation of the hind paw with complete Freund's adjuvant and in naïve rats. This loss of inhibition was not due to μ-opioid receptor downregulation in primary afferents, because their colocalization with substance P was unchanged, both in dorsal root ganglion neurons and primary afferent fibers in the dorsal horn. In conclusion, nerve injury eliminates the inhibition of substance P release by μ-opioid receptors, probably by hindering their signaling mechanisms.
Collapse
|
4
|
CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J Neurosci 2011; 31:5865-75. [PMID: 21490228 DOI: 10.1523/jneurosci.5986-10.2011] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CCL2 chemokine and its receptor CCR2 may contribute to neuropathic pain development. We tested the hypothesis that injury to peripheral nerves triggers CCL2 release from afferents in the dorsal horn spinal cord (DHSC), leading to pronociceptive effects, involving the production of proinflammatory factors, in particular. Consistent with the release of CCL2 from primary afferents, electron microscopy showed the CCL2 immunoreactivity in glomerular boutons and secretory vesicles in the DHSC of naive rats. Through the ex vivo superfusion of DHSC slices, we demonstrated that the rate of CCL2 secretion was much lower in neonatal capsaicin-treated rats than in controls. Thus, much of the CCL2 released in the DHSC originates from nociceptive fibers bearing TRPV1 (transient receptor potential vanilloid 1). In contrast, high levels of CCL2 released from the DHSC were observed in neuropathic pain animal model induced by chronic constriction of the sciatic nerve (SN-CCI). The upregulated expression of proinflammatory markers and extracellular signal-regulated kinase (ERK) 1/2 pathway activation (ERK1/2 phosphorylation) in the DHSC of SN-CCI animals were reversed by intrathecal administration of the CCR2 antagonist INCB3344 (N-[2-[[(3S,4S)-1-E4-(1,3-benzodioxol-5-yl)-4-hydroxycyclohexyl]-4-ethoxy-3-pyrrolidinyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide). These pathological pain-associated changes in the DHSC were mimicked by the intrathecal injection of exogenous CCL2 in naive rats and were prevented by the administration of INCB3344 or ERK inhibitor (PD98059). Finally, mechanical allodynia, which was fully developed 2 weeks after SN-CCI in rats, was attenuated by the intrathecal injection of INCB3344. Our data demonstrate that CCL2 has the typical characteristics of a neuronal mediator involved in nociceptive signal processing and that antagonists of its receptor are promising agents from treating neuropathic pain.
Collapse
|
5
|
Steffens H, Schomburg ED. Spinal motor actions of the μ-opioid receptor agonist DAMGO in the cat. Neurosci Res 2011; 70:44-54. [DOI: 10.1016/j.neures.2011.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/06/2011] [Accepted: 01/15/2011] [Indexed: 10/18/2022]
|
6
|
Niu L, Chen T, Wang YY, Li YQ. Neurochemical phenotypes of endomorphin-2-containing neurons in vagal nodose neurons of the adult rat. Neurochem Int 2009; 55:542-51. [PMID: 19463881 DOI: 10.1016/j.neuint.2009.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/23/2009] [Accepted: 05/11/2009] [Indexed: 12/12/2022]
Abstract
It has been shown that endomorphin-2-like immunoreactive (EM2-LI) neurons in dorsal root ganglion play important roles in regulating somatic information transmission. Although EM2-ergic neurons have been found in nodose ganglion (NG) which is mainly involved in transmitting visceral information into the nucleus tractus solitarii (NTS), the neurochemical phenotypes of EM2-ergic neurons have not yet been investigated. In the present study, immunofluorescent histochemical staining showed that 43.5% of the NG neurons contained EM2 and these neurons were small to medium in size. 15.2%, 27.8%, 74.4% and 25.2% of the EM2-LI NG neurons expressed substance P (SP), calcitonin gene-related peptide (CGRP), nitric oxide synthase (NOS) and vasoactive intestinal peptide (VIP), respectively. In addition, about 90.8% of EM2-LI NG neurons also contained mu-opioid receptor (MOR). EM2/MOR and EM2/SP double-labeled peripheral axons were observed in the vagal trunk. Anterograde tracing combined with immunofluorescent staining showed EM2/MOR and EM2/SP double-labeled vagal afferents in the NTS. EM2/MOR/SP and EM2/MOR/CGRP triple-labeled neurons and axons were observed in the NG. Importantly, at the ultrastructrual level, post-embedding electron microscopy revealed that EM2-LI and SP-LI gold particles coexisted in the same large dense-cored synaptic vesicles in the pre-synaptic button, while MOR-LI gold particles existed on both pre- and post-synaptic membranes in the NTS. These results suggest that EM2 in axon terminals of NG neurons might be involved in visceral information transmission and homeostatic control through modulating the release of other neurotransmitters (such as SP, CGRP, NO, VIP) via pre-synaptic MOR and through post-synaptic mechanisms in the NTS.
Collapse
Affiliation(s)
- Le Niu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, P.R. China
| | | | | | | |
Collapse
|
7
|
Hao S, Wolfe D, Glorioso JC, Mata M, Fink DJ. Effects of transgene-mediated endomorphin-2 in inflammatory pain. Eur J Pain 2008; 13:380-6. [PMID: 18567517 DOI: 10.1016/j.ejpain.2008.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/11/2008] [Accepted: 05/11/2008] [Indexed: 11/16/2022]
Abstract
We examined the analgesic properties of endomorphin-2 expressed in DRG neurons transduced with a non-replicating herpes simplex virus (HSV)-based vector containing a synthetic endomorphin-2 gene construct. HSV-mediated endomorphin-2 expression reduced nocisponsive behaviors in response to mechanical and thermal stimuli after injection of complete Freund's adjuvant (CFA) into the paw, and reduced peripheral inflammation measured by paw swelling after injection of CFA. The analgesic effect of the vector was blocked by either intraperitoneal or intrathecal administration of naloxone methiodide, blocking peripheral and central mu opioid receptors, respectively. Endomorphin-2 vector injection also reduced spontaneous pain-related behaviors in the delayed phase of the formalin test and in both CFA and formalin models suppressed spinal c-fos expression. The magnitude of the vector-mediated analgesic effect on the delayed phase of the formalin test was similar in naïve animals and in animals with opiate tolerance induced by twice daily treatment with morphine, suggesting that there was no cross-tolerance between vector-mediated endomorphin-2 and morphine. These results suggest that transgene-mediated expression of endomorphin-2 in transduced DRG neurons in vivo acts both peripherally and centrally through mu opioid receptors to reduce pain perception.
Collapse
Affiliation(s)
- Shuanglin Hao
- Department of Neurology and VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
8
|
Dansereau MA, Gosselin RD, Pohl M, Pommier B, Mechighel P, Mauborgne A, Rostene W, Kitabgi P, Beaudet N, Sarret P, Melik-Parsadaniantz S. Spinal CCL2 pronociceptive action is no longer effective in CCR2 receptor antagonist-treated rats. J Neurochem 2008; 106:757-69. [PMID: 18419759 DOI: 10.1111/j.1471-4159.2008.05429.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A better understanding of the mechanisms linked to chemokine pronociceptive effects is essential for the development of new strategies to better prevent and treat chronic pain. Among chemokines, MCP-1/CCL2 involvement in neuropathic pain processing is now established. However, the mechanisms by which MCP-1/CCL2 exerts its pronociceptive effects are still poorly understood. In the present study, we demonstrate that MCP-1/CCL2 can alter pain neurotransmission in healthy rats. Using immunohistochemical studies, we first show that CCL2 is constitutively expressed by primary afferent neurons and their processes in the dorsal horn of the spinal cord. We also observe that CCL2 is co-localized with pain-related peptides (SP and CGRP) and capsaicin receptor (VR1). Accordingly, using in vitro superfusion system of lumbar dorsal root ganglion and spinal cord explants of healthy rats, we show that potassium or capsaicin evoke calcium-dependent release of CCL2. In vivo, we demonstrate that intrathecal administration of CCL2 to healthy rats produces both thermal hyperalgesia and sustained mechanical allodynia (up to four consecutive days). These pronociceptive effects of CCL2 are completely prevented by the selective CCR2 antagonist (INCB3344), indicating that CCL2-induced pain facilitation is elicited via direct spinal activation of CCR2 receptor. Therefore, preventing the activation of CCR2 might provide a fruitful strategy for treating pain.
Collapse
Affiliation(s)
- Marc-André Dansereau
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Watanabe H, Nakayama D, Yuhki M, Sawai T, Sakurada W, Katsuyama S, Hayashi T, Watanabe C, Mizoguchi H, Fujimura T, Sakurada T, Sakurada S. Differential inhibitory effects of mu-opioids on substance P- and capsaicin-induced nociceptive behavior in mice. Peptides 2006; 27:760-8. [PMID: 16226344 DOI: 10.1016/j.peptides.2005.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/02/2005] [Accepted: 08/22/2005] [Indexed: 11/22/2022]
Abstract
The antinociceptive mechanisms of the selective mu-opioid receptor agonists [D-Ala2,NMePhe4,Gly(ol)5]enkephalin (DAMGO), H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA) or H-Tyr-D-Arg-Phe-beta-Ala-NH2 (TAPA-NH2) against substance P (SP)- or capsaicin-elicited nociceptive behaviors was investigated in mice. DAMGO, TAPA or TAPA-NH2 given intrathecally inhibited the nociceptive behaviors elicited by intrathecally administered SP or capsaicin, and these antinociceptive effects were completely eliminated by intrathecal co-administration with D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective mu-opioid receptor antagonist. Pretreatment subcutaneously with naloxonazine, a selective mu1-opioid receptor antagonist, partially attenuated the antinociceptive effect of TAPA-NH2, but not DAMGO and TAPA, against SP. However, the antinociception induced by TAPA, but not DAMGO and TAPA-NH2, against capsaicin was significantly inhibited by naloxonazine. On the other hand, co-administration intrathecally with Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), a selective mu2-opioid receptor antagonist, significantly attenuated the antinociceptive effects of DAMGO, but not TAPA and TAPA-NH2, against capsaicin, while the antinociceptions induced by three opioid peptides against SP were significantly inhibited by D-Pro2-Tyr-W-MIF-1. These results suggest that differential inhibitory mechanisms on pre- and postsynaptic sites in the spinal cord contribute to the antinociceptive effects of the three mu-opioid peptides.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Illes P. Modulation of transmitter and hormone release by multiple neuronal opioid receptors. Rev Physiol Biochem Pharmacol 2005; 112:139-233. [PMID: 2573137 DOI: 10.1007/bfb0027497] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Sanderson Nydahl K, Skinner K, Julius D, Basbaum AI. Co-localization of endomorphin-2 and substance P in primary afferent nociceptors and effects of injury: a light and electron microscopic study in the rat. Eur J Neurosci 2004; 19:1789-99. [PMID: 15078552 DOI: 10.1111/j.1460-9568.2004.03284.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endomorphin-2 (EM2) is a tetrapeptide with remarkable affinity and selectivity for the mu-opioid receptor. In the present study, we used double-fluorescence and electron microscopic immunocytochemistry to identify subsets of EM2-expressing neurons in dorsal root ganglia and spinal cord dorsal horn of adult rats. Within the lumbar dorsal root ganglia, we found EM2 immunoreactivity mainly in small-to-medium size neurons, most of which co-expressed the neuropeptide substance P (SP). In adult rat L4 dorsal root ganglia, 23.9% of neuronal profiles contained EM2 immunoreactivity and ranged in size from 15 to 36 microM in diameter (mean 24.3 +/- 4.3 microM). Double-labelling experiments with cytochemical markers of dorsal root ganglia neurons showed that approximately 95% of EM2-immunoreactive cell bodies also label with SP antisera, 83% co-express vanilloid receptor subtype 1/capsaicin receptor, and 17% label with isolectin B4, a marker of non-peptide nociceptors. Importantly, EM2 immunostaining persisted in mice with a deletion of the preprotachykinin-A gene that encodes SP. In the lumbar spinal cord dorsal horn, EM2 expression was concentrated in presumptive primary afferent terminals in laminae I and outer II. At the ultrastructural level, electron microscopic double-labelling showed co-localization of EM2 and SP in dense core vesicles of lumbar superficial dorsal horn synaptic terminals. Finally, 2 weeks after sciatic nerve axotomy we observed a greater than 50% reduction in EM2 immunoreactivity in the superficial dorsal horn. We suggest that the very strong anatomical relationship between primary afferent nociceptors that express SP and EM2 underlies an EM2 regulation of SP release via mu-opioid autoreceptors.
Collapse
|
12
|
Trafton JA, Basbaum AI. The contribution of spinal cord neurokinin-1 receptor signaling to pain. THE JOURNAL OF PAIN 2003; 1:57-65. [PMID: 14622844 DOI: 10.1054/jpai.2000.9806] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Discovery of the occurrence of neurokinin-1 (NK-1) receptor internalization in response to agonist activation has provided researchers with a new tool for studying tachykinin actions. Using the readily observable end point of NK-1 receptor internalization as an activity marker, this observation has allowed for more detailed study of tachykinin systems in vivo and in vitro. What has this technique taught us about tachykinin function and activity in the spinal cord? Here we discuss recent findings, which shed light on the functional relevance of receptor internalization, the regulation of neuropeptide release from primary afferent nociceptors, and the signaling produced by tachykinins during nociception and injury. The potential consequences of these discoveries for the treatment of pain and understanding of the role of tachykinins in nociception are discussed.
Collapse
Affiliation(s)
- J A Trafton
- Department of Anatomy, University of California San Francisco, 94143, USA.
| | | |
Collapse
|
13
|
Marvizón JCG, Wang X, Matsuka Y, Neubert JK, Spigelman I. Relationship between capsaicin-evoked substance P release and neurokinin 1 receptor internalization in the rat spinal cord. Neuroscience 2003; 118:535-45. [PMID: 12699788 DOI: 10.1016/s0306-4522(02)00977-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The relationship between substance P release and the activation of its receptor in the spinal cord remains unclear. Substance P release is usually measured by radioimmunoassay, whereas the internalization of the neurokinin 1 (NK1) receptor has been used to assess its activation by noxious stimuli. Our objective was to compare substance P release and NK1 receptor internalization produced by capsaicin in rat spinal cord slices. Superfusion of the slices with capsaicin for 3 min produced a gradual increase in substance P release that peaked 3-7 min afterward, and then decreased to baseline levels. The concentration-response curve for capsaicin was biphasic, with concentrations above 10 microM producing significantly less release. The effective concentration for 50% of response (EC(50)) for capsaicin, calculated from its stimulatory phase, was 2.3 microM. However, the potency of capsaicin to elicit NK1 receptor internalization in the same slices was one order of magnitude higher (EC(50)=0.37 microM) in lamina I, probably because NK1 receptors become saturated at relatively low concentrations of substance P. The potency of capsaicin to produce internalization was progressively lower in lamina III (EC(50)=1.9 microM) and lamina IV (EC(50)=14.5 microM), suggesting that neurokinins released in laminae I-II become diluted as they diffuse to the inner dorsal horn. To study the correlation between these two measures, we plotted substance P release against NK1 receptor internalization and fitted a saturation binding function to the points. The correlation was good for laminae I (R(2)=0.82) and III (R(2)=0.78), but it was poor (R(2)=0.35) for lamina IV because NK1 receptor internalization kept on increasing at high concentrations of capsaicin, whereas substance P release decreased. In conclusion, amounts of substance P able to activate NK1 receptors may fall under the threshold of detection of radioimmunoassay. Conversely, radioimmunoassay often detects levels of substance P release well over those required to saturate NK1 receptors in the superficial dorsal horn, but that may be able to activate these receptors in nearby regions of the spinal cord.
Collapse
Affiliation(s)
- J C G Marvizón
- Department of Medicine, David Geffen School of Medicine at UCLA, MRL 1240, 675 Charles E Young Drive, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
14
|
Mauborgne A, Poliénor H, Hamon M, Cesselin F, Bourgoin S. Adenosine receptor-mediated control of in vitro release of pain-related neuropeptides from the rat spinal cord. Eur J Pharmacol 2002; 441:47-55. [PMID: 12007919 DOI: 10.1016/s0014-2999(01)01619-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although it is well established that adenosine exerts antinociceptive effects at the spinal level in various species including human, the mechanisms responsible for such effects are still a matter of debate. We presently investigated whether adenosine-induced antinociception might possibly be related to an inhibitory influence of this neuromodulator on the spinal release of neuropeptides implicated in the transfer and/or control of nociceptive signals. For this purpose, the K(+)-evoked overflow of substance P-, calcitonin gene-related peptide (CGRP)- and cholecystokinin-like materials was measured from slices of the dorsal half of the rat lumbar enlargement superfused with an artificial cerebrospinal fluid supplemented with increasing concentrations of various adenosine receptor ligands. The data showed that stimulation of adenosine A(1) and (possibly) A(3) receptors, but not A(2A) receptors, exerted an inhibitory influence on the spinal release of CGRP-like material. In contrast, none of the adenosine A(1), A(2A) and A(3) receptor agonists tested within relevant ranges of concentrations significantly affected the release of substance P- and cholecystokinin-like materials. These results support the idea that adenosine-induced antinociception at the spinal level might possibly be caused, at least partly, by the stimulation of inhibitory adenosine A(1) receptors located presynaptically on primary afferent fibres containing CGRP but not substance P.
Collapse
Affiliation(s)
- Annie Mauborgne
- NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, INSERM U 288, Faculté de Médecine Pitié-Salpêtrière, 91 Boulevard de l'Hôpital, 75634 Paris Cedex 13, France
| | | | | | | | | |
Collapse
|
15
|
Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J Neurosci 2001. [PMID: 11588161 DOI: 10.1523/jneurosci.21-20-07881.2001] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is characterized by erosive inflammation of the joints, new bone proliferation, and ankylosis, leading to severely reduced locomotion and intense chronic pain. In a model of this disease, adjuvant-induced polyarthritis in the rat, neurons involved in pain transmission and control undergo plastic changes, especially at the spinal level. These changes affect notably neurons that contain opioids, such as enkephalins deriving from preproenkephalin A (PA) precursor protein. Using recombinant herpes simplex virus containing rat PA cDNA, we enhanced enkephalin synthesis in sensory neurons of polyarthritic rats. This treatment markedly improved locomotion and reduced hyperalgesia. Furthermore, the progression of bone destruction slowed down, which is the most difficult target to reach in the treatment of patients suffering from arthritis. These data demonstrate the therapeutic efficacy of enkephalin overproduction in a model of systemic inflammatory and painful chronic disorder.
Collapse
|
16
|
Nieto MM, Wilson J, Walker J, Benavides J, Fournié-Zaluski MC, Roques BP, Noble F. Facilitation of enkephalins catabolism inhibitor-induced antinociception by drugs classically used in pain management. Neuropharmacology 2001; 41:496-506. [PMID: 11543770 DOI: 10.1016/s0028-3908(01)00077-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the facilitatory effects of subanalgesic or low doses of different drugs (acetylsalicylic acid, ibuprofen and morphine) on the antinociceptive responses induced by the endogenous opioid peptides, enkephalins, protected from their catabolism by the dual enkephalin-degrading enzymes inhibitor RB101. According to the analgesic profile of the three studied compounds different antinociceptive assays were used: the hot plate and formalin tests in mice, and the tail flick and paw pressure tests on inflamed paws in rats and polyarthritic rats. Facilitatory effects of subanalgesic doses of acetylsalicylic acid and ibuprofen on RB101-induced antinociceptive responses were observed in the early and late phases of the formalin test, respectively. In the hot plate, tail flick and paw pressure tests, the dose-dependent analgesic effects of RB101 were strongly potentiated by subanalgesic doses of morphine (0.5 mg/kg), while in these tests, acetylsalicylic acid and ibuprofen were unable to modify the RB101-induced antinociceptive responses. The synergism in antinociceptive effects observed with the combination of RB101 and morphine supported by isobolographic analysis, may have interesting clinical implications, considering both the lack of opiate drawbacks observed with RB101 and the high potentiation of its antinociceptive effects with very low doses of morphine.
Collapse
Affiliation(s)
- M M Nieto
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS UMR 8600, Université René Descartes, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Antunes bras J, Becker C, Bourgoin S, Lombard M, Cesselin F, Hamon M, Pohl M. Met-enkephalin is preferentially transported into the peripheral processes of primary afferent fibres in both control and HSV1-driven proenkephalin A overexpressing rats. Neuroscience 2001; 103:1073-83. [PMID: 11301214 DOI: 10.1016/s0306-4522(01)00034-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The demonstration of preproenkephalin A gene expression in rat dorsal root ganglia has raised the question of the physiological role of met-enkephalin-containing primary afferent fibres. Recently, we showed that systemic infection with a recombinant Herpes simplex virus encoding preproenkephalin A (HSVLatEnk1) yielded a marked increase in the density of met-enkephalin-like material synthesising neurons in rat dorsal root ganglia. This study further investigated the synthesis, transport and release of met-enkephalin-like material in the central and/or peripheral processes of primary afferent fibres in HSVLatEnk1-infected and control rats. In controls, dorsal root ganglia neurons containing met-enkephalin-like material were scarce and only a few positively labelled processes were seen at the peripheral output of the dorsal root ganglia. Met-enkephalin-like material accumulated at the proximal side of ligatured sciatic nerve, but not in ligatured L4-L5 dorsal roots. In HSVLatEnk1-infected rats with numerous somas and fibres stained for met-enkephalin-like material in dorsal root ganglia, met-enkephalin immunoreactive material largely accumulated at the proximal side of the ligatured sciatic nerve and few positively stained fibres were also observed in ligatured dorsal roots. Electrical stimulation of L4-L5 dorsal roots attached to a dorsal slice of the lumbar enlargement produced an overflow of met-enkephalin-like material which was approximately 70% higher in HSVLatEnk1-infected rats compared to controls. At the periphery, subcutaneous microdialysis showed higher basal levels of met-enkephalin-like material in the interstitial fluid of hindpaw plantar area in HSVLatEnk1-infected rats, and electrical stimulation of the ipsilateral sciatic nerve resulted in an approximately three-fold-higher overflow of this material than in control rats. These data demonstrated that met-enkephalin synthesised in dorsal root ganglion of both control and preproenkephalin A overexpressing rats is preferentially transported into the peripheral processes of primary afferent fibres where the peptide reaches a releasable compartment, thus providing a neuronal source of peripheral met-enkephalin.
Collapse
Affiliation(s)
- J Antunes bras
- INSERM U288, NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, C.H.U. Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013, Paris, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Riley RC, Trafton JA, Chi SI, Basbaum AI. Presynaptic regulation of spinal cord tachykinin signaling via GABA(B) but not GABA(A) receptor activation. Neuroscience 2001; 103:725-37. [PMID: 11274791 DOI: 10.1016/s0306-4522(00)00571-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Internalization of spinal cord neurokinin-1 receptors following noxious stimulation provides a reliable measure of tachykinin signaling. In the present study, we examined the contribution of GABAergic mechanisms to the control of nociceptor processing involving tachykinins. Spinal administration of the GABA(B) receptor agonist R(+)-baclofen in the rat, at antinociceptive doses, significantly reduced the magnitude of neurokinin-1 receptor internalization in neurons of lamina I in response to acute noxious mechanical or thermal stimulation. By contrast, administration of even high doses of the GABA(A) receptor agonists, muscimol or isoguvacine, were without effect. CGP55845, a selective GABA(B) receptor antagonist, completely blocked the effects of baclofen, but failed to increase the incidence of internalization when administered alone. These results provide evidence for a presynaptic control of nociceptive primary afferent neurons by GABA(B) but not GABA(A) receptors in the superficial laminae of the spinal cord, limiting tachykinin release. Because CGP5584 alone did not increase the magnitude of neurokinin-1 receptor internalization observed following noxious stimulation, there appears to be little endogenous activation of GABA(B) receptors on tachykinin-releasing nociceptors under acute stimulus conditions. The contribution of pre- and postsynaptic regulatory mechanisms to GABA(B) receptor-mediated antinociception was also investigated by comparing the effect of baclofen on Fos expression evoked by noxious stimulation to that induced by intrathecal injection of substance P. In both instances, baclofen reduced Fos expression not only in neurons that express the neurokinin-1 receptor, but also in neurons that do not. We conclude that baclofen acts at presynaptic sites to reduce transmitter release from small-diameter nociceptive afferents. Presynaptic actions on non-tachykinin-containing nociceptors could similarly account for the reduction by baclofen of noxious stimulus-induced Fos expression in neurokinin-1 receptor-negative neurons. However, the inhibition of Fos expression induced by exogenous substance P indicates that actions at sites postsynaptic to tachykinin- and/or non-tachykinin-containing primary afferent terminals must also contribute to the antinociceptive actions of GABA(B) receptor agonists.
Collapse
Affiliation(s)
- R C Riley
- Departments of Anatomy and Physiology and W. M. Keck Foundation Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
19
|
Ballet S, Aubel B, Mauborgne A, Poliénor H, Farré A, Cesselin F, Hamon M, Bourgoin AS. The novel analgesic, cizolirtine, inhibits the spinal release of substance P and CGRP in rats. Neuropharmacology 2001; 40:578-89. [PMID: 11249967 DOI: 10.1016/s0028-3908(00)00186-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although previous studies have established that cizolirtine (5-([(N,N-dimethylaminoethoxy)phenyl]methyl)-1-methyl-1H-pyrazol citrate) is a potent analgesic in rodents, its mechanism(s) of action remain(s) unclear. In vitro and in vivo approaches were used to assess whether cizolirtine could affect the spinal release of two pain-related neuropeptides, substance P (SP) and calcitonin gene-related peptide (CGRP), in rats. Cizolirtine significantly reduced the K(+)-evoked overflow of both the SP-like material (SPLM; -25% at 0.1 microM--0.1 mM) and CGRPLM (-20% at 0.1--1.0 microM) from slices of the dorsal half of the lumbar enlargement of the spinal cord. Intrathecal perfusion in halothane-anaesthetized rats showed that local application of cizolirtine markedly diminished the spinal outflow of SPLM (up to -50% at 0.1 mM) but only marginally that of CGRPLM. Systemic administration of cizolirtine at an analgesic dose (80 mg/kg i.p.) also reduced spinal SPLM outflow (-50%) but not that of CGRPLM. Under both in vitro and in vivo conditions, idazoxan (10 microM) antagonized the effects of cizolirtine on SPLM and CGRPLM release, suggesting their mediation through alpha(2) adrenoceptors.
Collapse
Affiliation(s)
- S Ballet
- INSERM U288, NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, 75634 Paris cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Substance P (SP) is a peptide that is present in unmyelinated primary afferents to the dorsal horn and is released in response to painful or noxious stimuli. Opiates active at the mu-opiate receptor (MOR) produce antinociception, in part, through modulation of responses to SP. MOR ligands may either inhibit the release of SP or reduce the excitatory responses of second-order neurons to SP. We examined potential functional sites for interactions between SP and MOR with dual electron microscopic immmunocytochemical localization of the SP receptor (NK1) and MOR in rat trigeminal dorsal horn. We also examined the relationship between SP-containing profiles and NK1-bearing profiles. We found that 56% of SP-immunoreactive terminals contact NK1 dendrites, whereas 34% of NK1-immunoreactive dendrites receive SP afferents. This result indicates that there is not a significant mismatch between sites of SP release and available NK1 receptors, although receptive neurons may contain receptors at sites distant from the peptide release site. With regard to opioid receptors, we found that many MOR-immunoreactive dendrites also contain NK1 (32%), whereas a smaller proportion of NK1-immunoreactive dendrites contain MOR (17%). Few NK1 dendrites (2%) were contacted by MOR-immunoreactive afferents. These results provide the first direct evidence that MORs are on the same neurons as NK1 receptors, suggesting that MOR ligands directly modulate SP-induced nociceptive responses primarily at postsynaptic sites, rather than through inhibition of SP release from primary afferents. This colocalization of NK1 and MORs has significant implications for the development of pain therapies targeted at these nociceptive neurons.
Collapse
|
21
|
Aicher SA, Sharma S, Cheng PY, Liu-Chen LY, Pickel VM. Dual ultrastructural localization of mu-opiate receptors and substance p in the dorsal horn. Synapse 2000; 36:12-20. [PMID: 10700022 DOI: 10.1002/(sici)1098-2396(200004)36:1<12::aid-syn2>3.0.co;2-e] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Opiates active at the mu-opiate receptor (MOR) produce antinociception, in part, through actions involving substance P (SP), a peptide present in both unmyelinated primary afferents and interneurons within the dorsal horn. We examined potential functional sites for interactions between SP and MOR by using dual electron microscopic immunocytochemical localization of antisera against SP and a sequence-specific antipeptide antibody against MOR in rat cervical spinal dorsal horn. The distribution was compared with that of the functionally analogous dorsal horn of the trigeminal nucleus caudalis. Many of the SP-immunoreactive terminals in the dorsal horn contacted dendrites that contain MOR (53% in trigeminal; 70% in cervical spinal cord). Conversely, within the cervical spinal dorsal horn 79% of the MOR-labeled dendrites that received any afferent input were contacted by at least one SP-containing axon or terminal. Although SP-immunoreactive dendrites were rare, many of these (48%) contained MOR, suggesting that the activity of SP-containing spinal interneurons may be regulated by MOR ligands. A few SP-labeled terminals also contained MOR (12% in trigeminal; 6% in cervical spinal cord). These data support the idea that MOR ligands produce antinociception primarily through modulation of postsynaptic second-order nociceptive neurons in the dorsal horns of spinal cord and spinal trigeminal nuclei, some of which contain SP. They also suggest, however, that in each region, MOR agonists can act presynaptically to control the release of SP and/or glutamate from afferent terminals. The post- and presynaptic MOR sites are likely to account for the potency of MOR agonists as analgesics.
Collapse
Affiliation(s)
- S A Aicher
- Cornell University Medical College, Department of Neurology and Neuroscience, Division of Neurobiology, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
22
|
Gintzler AR, Chakrabarti S. Opioid tolerance and the emergence of new opioid receptor-coupled signaling. Mol Neurobiol 2000; 21:21-33. [PMID: 11327148 DOI: 10.1385/mn:21:1-2:021] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiple cellular adaptations are elicited by chronic exposure to opioids. These include diminution of spare opioid receptors, decreased opioid receptor density, and G-protein content and coupling thereof. All imply that opioid tolefance is a manifestation of a loss of opioid function, i.e., desensitization. Recent observations challenge the exclusiveness of this formulation and indicate that opioid tolerance also results from qualitative changes in opioid signaling. In this article, Gintzler and Chakrabarti discuss the evidence that suggests that opioid tolerance results not only from impaired opioid receptor functionality, but also from altered consequences of coupling. Underlying the latter are fundamental changes in the nature of effectors that are coupled to the opioid receptor/G-protein signaling pathway. These molecular changes include the upregulation of adenylyl cyclase isoforms of the type II family as well as a substantial increase in their phosphorylation state. As a result, there is a shift in opioid receptor/G-protein signaling from predominantly Gialpha inhibitory to Gbetagamma stimulatory following chronic in vivo morphine exposure. These adaptations to chronic morphine indicate the plasticity of opioid-signal transduction mechanisms and the ability of chronic morphine to augment new signaling strategies.
Collapse
Affiliation(s)
- A R Gintzler
- Department of Biochemistry, State University of New York Health Science Center at Brooklyn, 11203, USA.
| | | |
Collapse
|
23
|
Abstract
Although opioids can reduce stimulus-evoked efflux of Substance P (SP) from nociceptive primary afferents, the consequences of this reduction on spinal cord nociceptive processing has not been studied. Rather than assaying SP release, in the present study we examined the effect of opioids on two postsynaptic measures of SP release, Fos expression and neurokinin-1 (NK-1) receptor internalization, in the rat. The functional significance of the latter was first established in in vitro studies that showed that SP-induced Ca(2+) mobilization is highly correlated with the magnitude of SP-induced NK-1 receptor internalization in dorsal horn neurons. Using an in vivo analysis, we found that morphine had little effect on noxious stimulus-evoked internalization of the NK-1 receptor in lamina I neurons. However, internalization was reduced when we coadministered morphine with a dose of an NK-1 receptor antagonist that by itself was without effect. Thus, although opioids may modulate SP release, the residual release is sufficient to exert maximal effects on the target NK-1 receptors. Morphine significantly reduced noxious stimulus-induced Fos expression in lamina I, but the Fos inhibition was less pronounced in neurons that expressed the NK-1 receptor. Taken together, these results suggest that opioid analgesia predominantly involves postsynaptic inhibitory mechanisms and/or presynaptic control of non-SP-containing primary afferent nociceptors.
Collapse
|
24
|
Antunes Bras JM, Laporte AM, Benoliel JJ, Bourgoin S, Mauborgne A, Hamon M, Cesselin F, Pohl M. Effects of peripheral axotomy on cholecystokinin neurotransmission in the rat spinal cord. J Neurochem 1999; 72:858-67. [PMID: 9930763 DOI: 10.1046/j.1471-4159.1999.720858.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Because cholecystokinin (CCK) acts as a "functional" endogenous opioid antagonist, it has been proposed that changes in central CCKergic neurotransmission might account for the relative resistance of neuropathic pain to the analgesic action of morphine. This hypothesis was addressed by measuring CCK-related parameters 2 weeks after unilateral sciatic nerve section in rats. As expected, significant decreases (-25-38%) in the tissue concentrations and in vitro release of both substance P and calcitonin gene-related peptide were noted in the dorsal quadrant of the lumbar spinal cord on the lesioned side. In contrast, the tissue levels and in vitro release of CCK were unchanged in the same area in lesioned rats. Measurements in dorsal root ganglia at L4-L6 levels revealed no significant changes in proCCK mRNA after the lesion. However, sciatic nerve section was associated with a marked ipsilateral increase in both CCK-B receptor mRNA levels in these ganglia (+70%) and the autoradiographic labeling of CCK-B receptors by [3H]pBC 264 (+160%) in the superficial layers of the lumbar dorsal horn. Up-regulation of CCK-B receptors rather than CCK synthesis and release probably contributes to increased spinal CCKergic neurotransmission in neuropathic pain.
Collapse
Affiliation(s)
- J M Antunes Bras
- INSERM U 288, NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Keren O, Gafni M, Sarne Y. Opioids potentiate transmitter release from SK-N-SH human neuroblastoma cells by modulating N-type calcium channels. Brain Res 1997; 764:277-82. [PMID: 9295225 DOI: 10.1016/s0006-8993(97)00599-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Opioids induce dual (inhibitory and excitatory) regulation of depolarization-evoked [3H]dopamine release in SK-N-SH cells through either mu or delta receptors. The potentiation of dopamine release by opioid agonists is mediated by N-type voltage-dependent calcium channels and does not involve Gi/Go proteins. Removal of the excitatory opioid effect by blockade with omega-conotoxin, an N-channel antagonist, reveals the inhibitory effect of opioids on release, thus suggesting that both modulatory effects of opioids are exerted in parallel.
Collapse
Affiliation(s)
- O Keren
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Israel
| | | | | |
Collapse
|
26
|
Cohen RM, Andreason PJ, Doudet DJ, Carson RE, Sunderland T. Opiate receptor avidity and cerebral blood flow in Alzheimer's disease. J Neurol Sci 1997; 148:171-80. [PMID: 9129113 DOI: 10.1016/s0022-510x(96)05315-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Positron emission tomography was performed on 12 Alzheimer's patients and 12 age-matched normal controls following the administration of the opiate receptor antagonist 6-deoxy-6-beta-[18F]fluoronaltrexone (cyclofoxy, CF). Tracer kinetic analysis was used to determine the volume of distribution of CF, a measure of unoccupied mu and kappa receptor density, i.e. opiate receptor avidity in 34 brain regions. Regional cerebral blood flow rates (CBF) were determined on the same day with H2[15O]. Global gray CF avidity and global gray CBF were found to be lower in the Alzheimer's patients and correlated (r=0.73, P<0.03). Regional CBF differences were superimposed on global CBF changes in the Alzheimer's patients, with the subcortex relatively spared. Multivariate statistical analyses, however, failed to demonstrate regional specificity for the CF avidity changes. Furthermore, percent changes in regional CF avidity were not correlated with percent changes in regional CBF (r=0.12, P=NS). These findings demonstrate involvement of the opiate system in Alzheimer's disease. Although, neurodegeneration is the likely underlying process responsible for both the changes in CF avidity and CBF in Alzheimer's disease, the differences with respect to the patterns of these losses suggest that the intermediate mechanisms leading from neurodegeneration to loss are distinct.
Collapse
Affiliation(s)
- R M Cohen
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, MD 20892-4030, USA.
| | | | | | | | | |
Collapse
|
27
|
Chen JJ, Dymshitz J, Vasko MR. Regulation of opioid receptors in rat sensory neurons in culture. Mol Pharmacol 1997; 51:666-73. [PMID: 9106633 DOI: 10.1124/mol.51.4.666] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To determine whether opioid receptors in sensory neurons are regulated by chronic exposure to opioids, we assessed the binding of various opioid ligands to membranes derived from isolated rat dorsal root ganglia neurons grown in culture. Equilibrium binding of [3H]diprenorphine onto membranes from cells grown for 13-15 days revealed a saturable binding site with a Kd value of 0.3 +/- 0.2 nM and an approximate Bmax value of 1300 +/- 200 fmol/mg of protein. [3H]Diprenorphine binding increased 3-fold from 1-15 days in culture. The mu receptors represent approximately 70 +/- 11% of the [3H]diprenorphine binding sites, as indicated by saturation binding of [3H]DAMGO. The kappa and delta receptors represent approximately 10 +/- 3% and approximately 5 +/- 2% of the [3H]diprenorphine binding sites, respectively. Preexposure of neurons to 10 microM naloxone for 48 hr up-regulated the receptors by 40%, whereas incubation with 100 nM to 10 microM DAMGO for 48 hr resulted in a significant decrease in the Bmax value of opioid receptors, with a maximum reduction of 70%. The identification of a high level of opioid receptors expressed in isolated sensory neurons and their modulation by opioids demonstrates that cultured sensory neurons are an excellent model with which to study opioid receptor regulation.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Cells, Cultured
- Diprenorphine/metabolism
- Down-Regulation/drug effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/pharmacology
- Female
- Kinetics
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Pregnancy
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/classification
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Tritium
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- J J Chen
- Department of Pharmacology and Toxicology, Indiana University School ofMedicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
28
|
Sarne Y, Fields A, Keren O, Gafni M. Stimulatory effects of opioids on transmitter release and possible cellular mechanisms: overview and original results. Neurochem Res 1996; 21:1353-61. [PMID: 8947925 DOI: 10.1007/bf02532376] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Opiates and opioid peptides carry out their regulatory effects mainly by inhibiting neuronal activity. At the cellular level, opioids block voltage-dependent calcium channels, activate potassium channels and inhibit adenylate cyclase, thus reducing neurotransmitter release. An increasing body of evidence indicates an additional opposite, stimulatory activity of opioids. The present review summarizes the potentiating effects of opioids on transmitter release and the possible cellular events underlying this potentiation: elevation of cytosolic calcium level (by either activating Ca2+ influx or mobilizing intracellular stores), blockage of K+ channels and stimulation of adenylate cyclase. Biochemical, pharmacological and molecular biology studies suggest several molecular mechanisms of the bimodal activity of opioids, including the coupling of opioid receptors to various GTP-binding proteins, the involvement of different subunits of these proteins, and the activation of several intracellular signal transduction pathways. Among the many experimental preparations used to study the bimodal opioid activity, the SK-N-SH neuroblastoma cell line is presented here as a suitable model for studying the complete chain of events leading from binding to receptors down to regulation of transmitter release, and for elucidating the molecular mechanism involved in the stimulatory effects of opioid agonists.
Collapse
Affiliation(s)
- Y Sarne
- Sackler School of Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
29
|
Nagy I, Woolf CJ. Lignocaine selectively reduces C fibre-evoked neuronal activity in rat spinal cord in vitro by decreasing N-methyl-D-aspartate and neurokinin receptor-mediated post-synaptic depolarizations; implications for the development of novel centrally acting analgesics. Pain 1996; 64:59-70. [PMID: 8867247 DOI: 10.1016/0304-3959(95)00072-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The action of lignocaine on nociceptive transmission in the spinal cord has been studied in vitro using ventral root potential (VRP) recordings from 10-12-day-old rat hemisected spinal cord preparations. Single-shock stimulation of a dorsal root at intensities sufficient to activate high-threshold C-primary afferent fibres elicited VRPs lasting for 15-20 sec in the corresponding ventral root. The VRP consisted of 3 distinct parts: the early, slow and prolonged components, as previously described (Thompson et al. 1992), where the early represents A beta fibre-evoked mono- and polysynaptic responses lasting for tens of milliseconds, the slow is a largely N-methyl-D-aspartic acid (NMDA) receptor-mediated small-calibre afferent-generated component, lasting for about 1.5 sec, and the prolonged is a neurokinin receptor-mediated long-lasting component generated by high-threshold fibres. Lignocaine superfusion (40-60 microM) significantly and reversibly reduced the slow and prolonged components of the C fibre-evoked VRP in a dose-dependent manner without any effect on the early or A beta fibre-mediated component of the VRP. The amplitude of the cumulative VRP generated by repetitive inputs (1 and 10 Hz) was also significantly reduced as was the depolarization produced by bath application of NMDA (100 microM) or substance P (SP, 1 microM) in the presence or absence of tetrodotoxin (TTX) (300 nM). At this dose range lignocaine had no effect on the compound action potential (CAP) elicited by stimulating the sciatic nerve and recorded on the dorsal root. The CAP was only significantly reduced with a 300 microM dose of lignocaine. Application of the opiate, glycine, GABAA and GABAB receptor antagonists, naloxone (1 microM), strychnine (100 microM), bicuculline (100 microM) and phaclofen (100 microM) did not alter the depressant effects of lignocaine on the VRP. Low concentrations of lignocaine have a selective action on nociceptive transmission in the spinal cord which is different and more potent than its local anaesthetic conduction blockade in the periphery. This includes a reduction of direct or synaptically driven NMDA- and NK receptor-mediated post-synaptic depolarizations indicating that this class of sodium channel blockers may be potentially useful as analgesic agents, possibly acting on TTX-resistant sodium ion channels.
Collapse
Affiliation(s)
- Istvan Nagy
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WCIE 6BT UK
| | | |
Collapse
|
30
|
Minami M, Satoh M. Molecular biology of the opioid receptors: structures, functions and distributions. Neurosci Res 1995; 23:121-45. [PMID: 8532211 DOI: 10.1016/0168-0102(95)00933-k] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Opiates like morphine and endogenous opioid peptides exert their pharmacological and physiological effects through binding to their endogenous receptors, opioid receptors. The opioid receptors are classified into at least three types, mu-, delta- and kappa-types. Recently, cDNAs of the opioid receptors have been cloned and have greatly advanced our understanding of their structure, function and expression. This review focuses on the recent advances in the studies on opioid receptors using the cloned cDNAs. We describe the molecular cloning of the opioid receptor gene family and studies of the structure-function relationships, modes of coupling to second messenger systems, pharmacological effects of antisense oligonucleotide and anatomical distributions of opioid receptors.
Collapse
Affiliation(s)
- M Minami
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | |
Collapse
|
31
|
Fields A, Gafni M, Oron Y, Sarne Y. Multiple effects of opiates on intracellular calcium level and on calcium uptake in three neuronal cell lines. Brain Res 1995; 687:94-102. [PMID: 7583318 DOI: 10.1016/0006-8993(95)00475-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study examines the modulation by opiates of intracellular calcium levels and calcium entry, using fura-2 imaging and 45Ca2+ uptake, in three neuronal cell lines. We show that opiates (10(-7)-10(-5) M morphine and 10(-9)-10(-7) M etorphine) exert both inhibitory and excitatory effects on KCl-induced elevation in intracellular calcium level in SK-N-SH, NG108-15 and NMB cell lines. In addition, opiates elevate basal (non KCl-stimulated) intracellular calcium level in all three cell cultures. 45Ca2+ uptake is augmented by opiates in SK-N-SH cells and this stimulatory effect is not blocked by pertussis toxin. In NMB cells, an additional inhibitory effect of opiates on basal calcium takes place: opiates reduce intracellular calcium level as measured by fura-2, and decrease calcium influx as detected by 45Ca2+ uptake. The heterogeneity in the opioid regulation of calcium could not be attributed to the type of opioid drug, neither to its concentration nor to the experimental conditions, since neighboring cells within the same culture responded differently.
Collapse
Affiliation(s)
- A Fields
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
32
|
Minami M, Maekawa K, Yabuuchi K, Satoh M. Double in situ hybridization study on coexistence of mu-, delta- and kappa-opioid receptor mRNAs with preprotachykinin A mRNA in the rat dorsal root ganglia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 30:203-10. [PMID: 7543648 DOI: 10.1016/0169-328x(94)00290-u] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Coexistence of the mRNA for each subtype of opioid receptor (OPR) with the mRNA for preprotachykinin A (PPTA), a precursor protein of substance P (SP), in the rat dorsal root ganglia was examined by double in situ hybridization technique. About 90% and 30% of PPTA mRNA-positive neurons expressed mu- and kappa-OPR mRNAs at high level, respectively. However, only about 3% of PPTA mRNA-positive neurons expressed delta-OPR mRNA at high level. These results suggest that mu- and kappa-OPRs exist on most of and a part of the primary afferent terminals containing SP, respectively. On the other hand, among the neurons which highly expressed mu-, delta- or kappa-OPR mRNA, PPTA mRNA was not expressed in about 58%, 95% or 24% of those neurons, respectively. These findings suggest the possibility that OPRs co-exist with other neurotransmitters and/or neuromodulators than SP in the primary afferent neurons.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Ganglia, Spinal/physiology
- In Situ Hybridization
- Male
- Protein Precursors/biosynthesis
- RNA Probes
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/biosynthesis
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, kappa/biosynthesis
- Receptors, Opioid, mu/biosynthesis
- Substance P/metabolism
- Tachykinins/biosynthesis
Collapse
Affiliation(s)
- M Minami
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | |
Collapse
|
33
|
Ueda M, Sugimoto K, Oyama T, Kuraishi Y, Satoh M. Opioidergic inhibition of capsaicin-evoked release of glutamate from rat spinal dorsal horn slices. Neuropharmacology 1995; 34:303-8. [PMID: 7630485 DOI: 10.1016/0028-3908(94)00160-t] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the effects of opioid agonists on the capsaicin-evoked release of glutamate from nociceptive primary afferent fibers of the rat (6-8 weeks) using a fluorometric on-line continuous monitoring system for glutamate. In the presence of 0.3 microM tetrodotoxin, the application of 3 microM capsaicin to spinal dorsal horn slices produced an evoked glutamate release (55.9 +/- 4.02 pmol.mg-1 protein, n = 15). DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin; 0.3-10 microM) and morphine (1-30 microM), mu-opioid agonists, produced a concentration-dependent reduction (approximately 85 and approximately 77% reduction, respectively) in the capsaicin (3 microM)-evoked release of glutamate. These inhibitory effects were significantly antagonized by naloxone (1 microM). DPDPE ([D-Pen2,5]enkephalin; 1-10 microM), a delta-opioid agonist, also reduced the capsaicin-evoked release in a concentration-dependent manner (approximately 59% reduction). Naltrindole (1 microM), a selective delta-antagonist, significantly antagonized the inhibitory effect of DPDPE (10 microM). In contrast, neither U-50,488H (1-10 microM) nor U-69,593 (10 microM), kappa-opioid agonists, had any effects on the evoked release of glutamate. These results suggest that mu-, and delta-opioid agonists modulate pain transmission in the spinal dorsal horn, at least in part, by inhibiting the release of glutamate from capsaicin-sensitive primary afferents.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- Analgesics/pharmacology
- Animals
- Benzeneacetamides
- Capsaicin/antagonists & inhibitors
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/pharmacology
- Glutamate Dehydrogenase/metabolism
- Glutamic Acid/metabolism
- In Vitro Techniques
- Male
- Morphine/pharmacology
- Nerve Endings/drug effects
- Nerve Endings/metabolism
- Neurons, Afferent/metabolism
- Opioid Peptides/pharmacology
- Pyrrolidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Spinal Cord/drug effects
- Spinal Cord/enzymology
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- M Ueda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- A W Duggan
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Royal (Dick) School of Veterinary Studies, Summerhall, UK
| |
Collapse
|
35
|
Sivilotti LG, Gerber G, Rawat B, Woolf CJ. Morphine selectively depresses the slowest, NMDA-independent component of C-fibre-evoked synaptic activity in the rat spinal cord in vitro. Eur J Neurosci 1995; 7:12-8. [PMID: 7711929 DOI: 10.1111/j.1460-9568.1995.tb01015.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of morphine on the depolarizing synaptic responses produced in motoneurons by electrical stimulation of primary sensory neurones have been recorded in hemisected spinal cord preparations (8- to 12-day-old rat pups). Morphine at concentrations of 0.1-20 microM reduced a slow, long-lasting (latency greater than 1 s, duration up to 10 s) component of the ventral root potential (VRP) evoked by C-fibre strength stimulation of the dorsal root. At 2 microM the reduction in area of this slow synaptic potential was 71.7 +/- 0.9% of control values (n = 15). The earliest components of the C-fibre strength VRP (the first 100 ms) and the responses to A beta strength stimuli were unaffected by the opioid even at 10-20 microM. The intermediate, NMDA receptor antagonist (D-AP5, 40 microM)-sensitive component (which lasts 100-1000 ms) was reduced by 34 +/- 2.2% of control (n = 15), which was significantly less than the reduction of the later NMDA-independent component (P < 0.001). Morphine (0.1-20 microM) also depressed the cumulative depolarization generated by the temporal summation of synaptic responses evoked by brief trains of C-fibre strength stimuli (1 or 10 Hz). A significantly greater reduction at the lower frequency of stimulation (56.3 +/- 2.0%) than at the higher (20.3 +/- 1.69%, n = 10, measured at 2 microM morphine) was found (P < 0.005). The effects of morphine were reversible upon wash-out or superfusion with the opioid receptor antagonist naloxone (2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L G Sivilotti
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | | | |
Collapse
|
36
|
Abstract
Opioid receptors are the primary sites of actions of opiates and endogenous opioid peptides, which have a wide variety of pharmacological and physiological effects. The opioid receptors are classified into at least three subtypes, mu, delta, and kappa, and their cDNAs have been cloned. In this review, we describe the molecular cloning of opioid receptor gene family and studies of the structure-function relationships, modes of coupling to second messenger systems, pharmacological effects of antisense oligonucleotides, and anatomical distribution of opioid receptor mRNAs.
Collapse
MESH Headings
- Amino Acid Sequence
- Central Nervous System/metabolism
- Ganglia, Spinal/metabolism
- Molecular Sequence Data
- RNA, Messenger/analysis
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Second Messenger Systems/physiology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M Satoh
- Department of Molecular Pharmacology, Kyoto University, Japan
| | | |
Collapse
|
37
|
Benoliel JJ, Collin E, Mauborgne A, Bourgoin S, Legrand JC, Hamon M, Cesselin F. Mu and delta opioid receptors mediate opposite modulations by morphine of the spinal release of cholecystokinin-like material. Brain Res 1994; 653:81-91. [PMID: 7982079 DOI: 10.1016/0006-8993(94)90375-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The possible modulations by morphine and various opioids of the spinal release of cholecystokinin-like material (CCKLM) evoked by 30 mM K+ was studied in vitro, using slices of the dorsal part of the rat lumbar enlargement superfused with an artificial cerebrospinal fluid. Addition of the mu agonist, DAGO (0.1-10 microM), to the perfusing fluid produced a concentration-dependent decrease in the peptide release, which could be prevented by the preferential mu antagonist, naloxone. Complex modulations were induced by the delta agonist, DTLET, as this drug inhibited CCKLM release when added at 10 nM-3 microM to the perfusing fluid, but enhanced it at 10 microM. Both effects were preventable by the delta antagonists naltrindole and ICI 154129, suggesting that delta receptors, possibly of different subtypes, mediated the inhibition and stimulation by DTLET. Morphine also exerted a biphasic effect, as the alkaloid decreased CCKLM release at 0.01-0.1 microM and enhanced it at 10 microM. Morphine-induced inhibition was preventable by naloxone, whereas its stimulatory effect could be blocked by naltrindole and ICI 154129. Although inactive on its own on CCKLM release, the selective kappa 1 agonist U 50488H (1 microM) prevented the inhibitory effects of both DAGO (10 microM) and morphine (0.1 microM), suggesting the existence of interactions between kappa 1 and mu receptors within the dorsal zone of the rat spinal cord. These data indicate that low concentrations of morphine exert an inhibitory influence on spinal CCKergic neurons that depends on the stimulation of mu opioid receptors. The excitatory influence of 10 microM morphine likely results from the simultaneous stimulation of mu, delta and kappa receptors, as the inhibitory effect of mu receptor stimulation can be masked by that of kappa 1 receptors, allowing only the expression of a delta-dependent excitatory effect similar to that induced by 10 microM DTLET.
Collapse
Affiliation(s)
- J J Benoliel
- INSERM U 288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Zerari F, Zouaoui D, Gastard M, Apartis E, Fischer J, Herbrecht F, Cupo A, Cucumel K, Conrath M. Ultrastructural study of delta-opioid receptors in the dorsal horn of the rat spinal cord using monoclonal anti-idiotypic antibodies. J Chem Neuroanat 1994; 7:159-70. [PMID: 7848572 DOI: 10.1016/0891-0618(94)90026-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ultrastructural localization of delta-opioid receptors was studied using monoclonal anti-idiotypic antibody prepared with an anti-D-Ala2-D-Leu5-enkephalin. Immunocytochemical techniques were used on vibratome sections from rats perfused with paraformaldehyde. A high density of immunoreactivity was observed in the dorsal horn of the spinal cord, particularly the two superficial layers, the dorsolateral funiculus and the area surrounding the central canal. The labelling was absent when the antibody was preincubated with the immunogen. Competition between the anti-idiotypic antibody and different ligands, delta or mu, was controlled by preincubation of tissue sections with the ligand in the presence of peptidase inhibitors for 3-4 h before addition of the anti-idiotypic antibody. Enkephalin, dermenkephalin and naltrindole induced disappearance of the labelling at 10(-9) M while dermorphin or dermorphin Lys7 were ineffective at the same concentration. Lamina II of the dorsal horn was studied by electron microscopy. The immunolabelling was mainly localized on cell membranes at appositions between the two neurons. About one third were localized between an axon terminal and a dendrite, the same proportion of labellings were between two axon terminals. Labelling was occasionally observed at appositions between a glomerular terminal and a dendrite or a terminal or at axoglial appositions. Axosomatic localizations were rare. The presynaptic localization of the labelling is in favor of a presynaptic mechanism of action for delta-opioids in the spinal cord, providing that these receptors are functional. delta-Opioid peptides probably act non-synaptically since receptors were never localized on synaptic differentiations.
Collapse
Affiliation(s)
- F Zerari
- Département de Neurobiologie des Signaux Intercellulaires, CNRS URA 1488, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bourgoin S, Benoliel JJ, Collin E, Mauborgne A, Pohl M, Hamon M, Cesselin F. Opioidergic control of the spinal release of neuropeptides. Possible significance for the analgesic effects of opioids. Fundam Clin Pharmacol 1994; 8:307-21. [PMID: 7851837 DOI: 10.1111/j.1472-8206.1994.tb00809.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several neuropeptides play a key role in the transfer (substance P, calcitonin gene-related peptide, etc) and control (enkephalins, cholecystokinin, etc) of nociceptive messages from primary afferent fibres to spino-thalamic neurones in the dorsal horn of the spinal cord. This first relay in nociceptive pathways has been shown to be a major target for opioids such as analgesic drugs, and the effects of exogenous (mainly morphine) and endogenous opioids on the release of neuropeptides within the dorsal horn are reviewed here for a better understanding of the cellular mechanisms responsible for their antinociceptive action. Complex modulations of the in vitro (from tissue slices) and in vivo (in halothane-anaesthetized rats whose intrathecal space was perfused with an artificial cerebrospinal fluid) release of substance P and calcitonin gene-related peptide by opioids have been reported, depending on the opioid receptor (mu, delta, kappa, and their subtypes) stimulated by these compounds. In particular, the inhibition by delta agonists of substance P release from primary afferent fibres, and that by the concomitant stimulation of mu and kappa receptors of the release of calcitonin gene-related peptide are very probably involved in the analgesic action of specific opioids and morphine at the level of the spinal cord. Furthermore, the negative modulation (through presynaptic opioid autoreceptors) by delta and mu agonists of the spinal release of met-enkephalin, and the complex inhibitory/excitatory influence of delta, mu and kappa receptor ligands on the release of cholecystokinin within the dorsal horn very likely also contribute to the antinociceptive action of these drugs and morphine. The reviewed data strongly support the existence of functional interactions between mu and kappa receptors within the spinal cord, and their key role in the analgesic action of non specific opiates (acting on mu, delta and kappa receptors) such as morphine.
Collapse
Affiliation(s)
- S Bourgoin
- INSERM U 288, Neurobiologie Cellulaire et Fonctionelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Collin E, Frechilla D, Pohl M, Bourgoin S, Mauborgne A, Hamon M, Cesselin F. Differential effects of the novel analgesic, S 12813-4, on the spinal release of substance P- and calcitonin gene-related peptide-like materials in the rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1994; 349:387-93. [PMID: 7520130 DOI: 10.1007/bf00170885] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The possible inhibitory control by the novel analgesic S 12813-4 (3-(2-(4-phenylpiperazine-1-yl)-ethyl)-2-oxo-2,3- dihydrooxazolo(b)pyridine) of spinal neurones containing substance P (SP) and/or calcitonin gene-related peptide (CGRP) was assessed in vitro and in vivo in the rat. S 12813-4 (10 nM-0.1 mM) did not affect the spinal release of CGRP-like material (CGRPLM) but inhibited in a concentration dependent manner the K(+)-evoked overflow of SP-like material (SPLM) from slices of the dorsal half of the rat lumbar enlargement. The inhibitory effect of 10 microM S 12813-4 on SPLM release was not additive with that of Na (0.1 mM), and could be prevented by the alpha 2-adrenoceptor antagonist idazoxan (10 microM). Similarly, idazoxan (10 microM) suppressed the inhibition by intrathecally administered S 12813-4 (10 microM) of the spinal outflow of SPLM in halothane anaesthetized rats whose intrathecal space was perfused with an artificial cerebrospinal fluid. These data suggest that the analgesic effect of S 12813-4 might involve some alpha 2-adrenoreceptor-mediated control of SPLM release within the spinal cord. Whether this control concerns SP-containing primary afferent fibres (presynaptic inhibition) or SP-containing interneurones and/or bulbo-spinal SP-ergic pathways (postsynaptic inhibition) deserves further investigations.
Collapse
Affiliation(s)
- E Collin
- INSERM U. 288, Faculté de Médecine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Barg J, Belcheva M, Rowinski J, Ho A, Burke WJ, Chung HD, Schmidt CA, Coscia CJ. Opioid receptor density changes in Alzheimer amygdala and putamen. Brain Res 1993; 632:209-15. [PMID: 8149229 DOI: 10.1016/0006-8993(93)91155-l] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since opioids can influence the release of acetylcholine, substance P and a number of other neurotransmitters that have been implicated in the pathogenesis of Alzheimer's disease (AD), it is of interest to assess opioid receptor levels in AD. We have examined mu, delta and kappa opioid receptor binding parameters, binding sensitivity to a GTP analog and distribution in amygdala, frontal cortex and putamen of AD brain. Control brains were matched according to age, sex, post-mortem interval and storage time. Kd values and GTP analog binding sensitivity did not differ in AD and control brains. Bmax values for mu ([3H]DAMGE) sites also appeared unaffected by in vitro binding assays. In contrast, kappa ([3H]U69593) and delta ([3H]DSLET) opioid receptor levels, were significantly changed. In AD amygdala kappa Bmax values increased from control levels of 123 +/- 12 to 168 +/- 13 fmol/mg protein, whereas densities of kappa and delta sites were decreased from 94 +/- 8 to 48 +/- 8 and 102 +/- 3.6 to 69 +/- 8.5 fmol/mg protein, respectively, in putamen. Autoradiography revealed corresponding differences in the distribution of kappa opioid receptors. The findings indicate that the kappa binding site, which is quantitatively the major opioid receptor class in human brain, undergoes marked changes in AD amygdala and putamen.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Amygdala/metabolism
- Amygdala/pathology
- Analgesics/metabolism
- Autoradiography
- Benzeneacetamides
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/metabolism
- Enkephalins/metabolism
- Female
- Frontal Lobe/metabolism
- Frontal Lobe/pathology
- Humans
- Kinetics
- Male
- Putamen/metabolism
- Putamen/pathology
- Pyrrolidines/metabolism
- Receptors, Opioid, delta/analysis
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/analysis
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/analysis
- Receptors, Opioid, mu/metabolism
- Reference Values
- Tritium
Collapse
Affiliation(s)
- J Barg
- Department of Biochemistry and Molecular Biology, St. Louis University, MO 63104-1079
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bourgoin S, Pohl M, Mauborgne A, Benoliel JJ, Collin E, Hamon M, Cesselin F. Monoaminergic control of the release of calcitonin gene-related peptide- and substance P-like materials from rat spinal cord slices. Neuropharmacology 1993; 32:633-40. [PMID: 7689707 DOI: 10.1016/0028-3908(93)90076-f] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The possible control by monoamines of the spinal release of substance P- and calcitonin gene-related peptide-like materials (SPLM and CGRPLM, respectively) was investigated in vitro, using slices of the dorsal half of the rat lumbar enlargement superfused with an artificial cerebrospinal fluid. Whereas the spontaneous outflow of SPLM and CGRPLM was changed by none of the agonists/antagonists of monoamine receptors tested, the overflow of both peptide-like materials due to 30 mM K+ was differentially affected by alpha 2-adrenoreceptor and dopamine D-1 receptor ligands. Noradrenaline (10 microM to 0.1 mM) and clonidine (0.1 mM) significantly reduced the K(+)-evoked overflow of SPLM, and both effects could be prevented by idazoxan (10 microM) and prazosin (10 microM) as expected from their mediation through the stimulation of alpha 2B-adrenoreceptors. In contrast, CGRPLM overflow remained unaffected by alpha 2-adrenoreceptor ligands. Dopamine D-1 receptor stimulation by SKF 82958 (10-100 nM) significantly increased the K(+)-evoked overflow of both SPLM and CGRPLM, and this effect could be prevented by the selective D-1 antagonist SCH 39166 (1 microM). Further studies with selective ligands of other monoamine receptors indicated that neither alpha 1- and beta-adrenergic receptors, dopamine D-2, nor serotonin 5-HT1A and 5-HT3 receptors are apparently involved in some control of the spinal release of CGRPLM and SPLM. These data are discussed in line with the postulated presynaptic control by monoamines of primary afferent fibres conveying nociceptive messages within the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- S Bourgoin
- INSERM U 288, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Luo L, Wiesenfeld-Hallin Z. Low-dose intrathecal clonidine releases tachykinins in rat spinal cord. Eur J Pharmacol 1993; 235:157-9. [PMID: 7686104 DOI: 10.1016/0014-2999(93)90837-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In decerebrate, spinalized, unanesthetized rats, 37 pmol (10 ng) intrathecally injected clonidine facilitated the flexor reflex. This effect was blocked by the specific tachykinin antagonists CP-96,345, which acts at the NK1 receptor, and Men 10207, which acts at the NK2 receptor. Thus, low-dose intrathecal clonidine releases the tachykinins substance P and neurokinin A in the spinal cord.
Collapse
Affiliation(s)
- L Luo
- Karolinska Institute, Department of Clinical Physiology, Huddinge, Sweden
| | | |
Collapse
|
44
|
Cahill CM, White TD, Sawynok J. Morphine activates omega-conotoxin-sensitive Ca2+ channels to release adenosine from spinal cord synaptosomes. J Neurochem 1993; 60:894-901. [PMID: 7679729 DOI: 10.1111/j.1471-4159.1993.tb03234.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Morphine-induced release of adenosine from the spinal cord is believed to contribute to spinal antinociception. Although this release is Ca2+ dependent, little is known of the nature of this dependence. In this study, the effects of the dihydropyridine L-type Ca2+ channel agonist Bay K 8644 and the antagonist nifedipine, the N-type Ca2+ channel antagonist omega-conotoxin, and ruthenium red, a blocker of Ca2+ influx induced by capsaicin, on release of adenosine evoked by morphine were determined. The effect of partial depolarization with a minimally effective concentration of K+ on morphine-evoked release of adenosine also was examined. Morphine 10(-5)-10(-4) M produced a dose-dependent enhancement of adenosine release from dorsal spinal cord synaptosomes. Following the addition of 6 mM K+ (total K+ concentration of 10.7 mM), 10(-6) M morphine also enhanced release, and an additional component of action at 10(-8) M was revealed. Release was Ca(2+)-dependent as it was not observed in the absence of Ca2+ and presence of EGTA. Bay K 8644 (10 nM) and nifedipine (100 nM) had no effect on the release of adenosine evoked by morphine, but omega-conotoxin (100 nM) markedly reduced such release in both the absence and the presence of the additional 6 mM K+. Morphine-evoked adenosine release was not altered in the presence of a partially effective dose of capsaicin, nor by ruthenium red.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C M Cahill
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
45
|
Xu XJ, Puke MJC, Wiesenfeld-Hallin Z. The depressive effect of intrathecal clonidine on the spinal flexor reflex is enhanced after sciatic nerve section in rats. Pain 1993; 51:145-151. [PMID: 1362458 DOI: 10.1016/0304-3959(92)90255-a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effect of intrathecal (i.t.) alpha 2-adrenoceptor agonist, clonidine, on the spinal nociceptive flexor reflex was studied in decerebrate, spinalized, unanesthetized rats with intact sciatic nerves or in rats in which the sciatic nerve had been ipsilaterally sectioned. In rats with intact nerves i.t. clonidine caused a dose-dependent biphasic effect on flexor reflex excitability. At low dose (10 ng) the effect of clonidine was purely facilitatory, whereas with 50-100 ng clonidine the initial facilitation was often followed by reflex depression. Long-lasting, strong reflex depression was observed after i.t. injection of high doses of clonidine (1 and 10 micrograms). Four to 18 days after sciatic nerve section, the depressive effect of clonidine on the flexor reflex was dramatically enhanced. Depression was frequently observed already with doses of 5 and 10 ng, and maximal depression was reached at 100 ng and 1 micrograms in axotomized rats. The facilitatory effect of low doses of clonidine on the reflex was also observed, although somewhat less frequently than in normals. The depressive effect of clonidine on the flexor reflex was reversed by the selective alpha 2-receptor antagonist, atipamezole (20 micrograms, i.t.), in rats with both intact and sectioned sciatic nerves. The present results revealed an increased sensitivity and effectiveness of the depression of spinal reflex mechanisms by i.t. clonidine after sciatic nerve section, which is opposite to the decreased sensitivity to i.t. morphine after axotomy that we observed previously.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Xiao-Jun Xu
- Karolinska Institute, StockholmSweden, Department of Clinical Physiology, Section of Clinical Neurophysiology, Huddinge University Hospital, HuddingeSweden Department of Anaesthesiology, Karolinska Hospital, StockholmSweden
| | | | | |
Collapse
|
46
|
Sublette E, Gintzler AR. Stimulus frequency and intensity: critical determinants of opioid enhancement or inhibition of evoked methionine-enkephalin release. Brain Res 1992; 599:165-70. [PMID: 1337301 DOI: 10.1016/0006-8993(92)90867-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Responses to opioids can be bimodal depending on the concentration of opioid used. For example, low concentrations (nM) enhance whereas higher concentrations (10-100 nM) inhibit the electrically evoked release of enkephalin from the myenteric plexus. The nature of the responsiveness of the enkephalin release process to opioids is also dependent on the intracellular and/or extracellular milieu of enkephalin-containing neurons or other neurons of this plexus. Intracellular levels of cAMP, availability of pertussis toxin- and cholera toxin-sensitive guanine nucleotide binding proteins and intracellular calcium concentration have all been shown to be important determinants of opioid excitatory versus inhibitory actions. The present data indicate that the inhibition of enkephalin release produced by U50,488H or sufentanil is no longer observed when the applied voltage is increased 3- or 2-fold, respectively. Under this condition, a previously inhibitory concentration of opioid produces an enhancement of stimulated enkephalin release. Increasing the frequency of the applied stimulation from 5 to 60 Hz (at a constant voltage) also reverses the sufentanil-induced inhibition to a facilitation of enkephalin release. These data indicate that the intensity (voltage) or frequency of the stimulation that is used to release enkephalin is a critical determinant of the nature of its modulation by opioids. The possible relevance of these findings to known differences in opioid sensitivity between different types of pain is discussed.
Collapse
Affiliation(s)
- E Sublette
- Department of Biochemistry, State University of New York Health Science Center, Brooklyn 11203
| | | |
Collapse
|
47
|
Suarez-Roca H, Maixner W. Delta-opioid-receptor activation by [D-Pen2,D-Pen5]enkephalin and morphine inhibits substance P release from trigeminal nucleus slices. Eur J Pharmacol 1992; 229:1-7. [PMID: 1282103 DOI: 10.1016/0014-2999(92)90278-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The release of substance P (SP) from spinal dorsal horn slices is partially inhibited by micromolar concentrations of selective delta-opioid receptor agonists. In the present study, we have examined the effect of nanomolar concentrations of [D-Pen2,D-Pen5]enkephalin (DPDPE, delta-opioid receptor agonist) and low micromolar of concentrations morphine on K(+)-evoked SP release from rat trigeminal nucleus caudalis (TNC) slices. DPDPE and morphine inhibited SP release with an apparent maximal effect at 3 nM and at 3 microM, respectively. DPDPE and morphine produced U-shaped concentration-response curves that were completely autoinhibited at 100 nM DPDPE and 1 microM morphine. The inhibition of SP release produced by 3 nM DPDPE and 3 microM morphine was blocked by the opioid receptor antagonists naloxone (30 nM; non-selective) and ICI 174,864 (0.3 microM; delta-selective) but not by nor-binaltorphimine (3 nM n-BNI; kappa-selective), naloxonazine (1 nM; micro 1-selective) or beta-funaltrexamine (20 nM beta-FNA; mu-selective). These findings indicate that delta-opioid receptor-mediated inhibition of SP release from TNC can be achieved by nanomolar concentrations of selective delta-opioid receptor agonists. Activation of delta-opioid receptors by morphine might be involved in the residual analgesia observed after mu 1-opioid receptor blockade and in the analgesia produced by high doses of morphine.
Collapse
Affiliation(s)
- H Suarez-Roca
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599-7455
| | | |
Collapse
|
48
|
Collin E, Mauborgne A, Bourgoin S, Mantelet S, Ferhat L, Hamon M, Cesselin F. Kappa-/mu-receptor interactions in the opioid control of the in vivo release of substance P-like material from the rat spinal cord. Neuroscience 1992; 51:347-55. [PMID: 1281527 DOI: 10.1016/0306-4522(92)90319-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The possible involvement of mu and kappa receptors in the opioid control of the spinal release of substance P-like material was assessed in vivo, in halothane-anaesthetized rats whose intrathecal space was continuously perfused with an artificial cerebrospinal fluid supplemented with various opioid receptor agonists and antagonists. Whereas the intrathecal perfusion with the mu agonist DAGO (10 microM) significantly enhanced (approximately + 50%) the spontaneous release of substance P-like material, that with the kappa agonist U 50488 H (10 microM) produced no change in the peptide outflow. The respective antagonists naloxone (10 microM) for the mu receptors and nor-binaltorphimine (10 microM) for the kappa receptors did not affect the spontaneous release of substance P-like material, indicating that endogenous opioids acting at mu and kappa receptors do not exert a tonic control on substance P-containing neurons in the spinal cord of halothane-anaesthetized rats. However, as expected from the involvement of mu receptors, the stimulatory effect of DAGO on the peptide outflow could be prevented by naloxone but not norbinaltorphimine. Furthermore, instead of an increase with DAGO alone, a significant decrease in the spinal release of substance P-like material was observed upon the intrathecal perfusion with DAGO plus U 50488 H. Additional experiments with the respective mu and kappa antagonists naloxone and nor-binaltorphimine demonstrated that this effect actually resulted from the simultaneous stimulation of mu and kappa receptors.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- Analgesics/pharmacology
- Animals
- Drug Interactions
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/pharmacology
- Kinetics
- Male
- Models, Neurological
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Pyrrolidines/pharmacology
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Spinal Cord/drug effects
- Spinal Cord/physiology
- Substance P/metabolism
Collapse
Affiliation(s)
- E Collin
- INSERM U.288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Benoliel JJ, Bourgoin S, Mauborgne A, Pohl M, Legrand JC, Hamon M, Cesselin F. GABA, acting at both GABAA and GABAB receptors, inhibits the release of cholecystokinin-like material from the rat spinal cord in vitro. Brain Res 1992; 590:255-62. [PMID: 1330214 DOI: 10.1016/0006-8993(92)91103-l] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Superfusion of slices of the dorsal zone of the lumbar enlargement of the rat spinal cord with an artificial cerebrospinal fluid allowed the collection of cholecystokinin-like material (CCKLM) whose Ca(2+)-dependent release could be evoked by tissue depolarization with 30 mM K+. Studies on the possible influence of GABA and related agonists on this process showed that the amino acid, the GABAA agonist, muscimol, and the GABAB agonist, baclofen, inhibited the K(+)-evoked release of CCKLM from the rat spinal cord in a concentration-dependent manner. Maximal inhibition did not exceed -40% with either agonist. Furthermore, the effects of GABAA and GABAB receptor stimulation were not additive. Whereas the effects of muscimol (10 microM) and baclofen (1 microM) could be completely antagonized by bicuculline (1 microM) and phaclofen (10 microM), respectively, complete blockade of the inhibition by GABA (1 microM) could only be achieved in the presence of both antagonists. These data indicate that both GABAA and GABAB receptors are involved in the negative influence of GABA onto CCK-containing neurones within the dorsal horn of the rat spinal cord. Apparently, these receptors are not located on CCK-containing neurones themselves, since the inhibitory effect of GABA on the K(+)-evoked release of CCKLM could be completely prevented by tetrodotoxin (1 microM). As CCK acts centrally as an endogenous opioid antagonist, such a GABA-inhibitory control of spinal CCK-containing neurones might participate in the analgesic action of the amino acid via the intrathecal route.
Collapse
Affiliation(s)
- J J Benoliel
- INSERM U 288, Neurobiologie Cellulaire et Fonctionnelle, Paris, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Bourgoin S, Pohl M, Benoliel JJ, Mauborgne A, Collin E, Hamon M, Cesselin F. gamma-Aminobutyric acid, through GABAA receptors, inhibits the potassium-stimulated release of calcitonin gene-related peptide- but not that of substance P-like material from rat spinal cord slices. Brain Res 1992; 583:344-8. [PMID: 1380400 DOI: 10.1016/s0006-8993(10)80048-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Superfusion of slices of the dorsal zone of the lumbar enlargement with an artificial cerebrospinal fluid was used to investigate the possible modulation by GABA receptor ligands of the in vitro release of calcitonin gene-related peptide- and substance P-like materials (CGRPLM and SPLM) from the rat spinal cord. Whereas the spontaneous outflow of both peptides remained unaffected, the K+ (30 mM)-evoked overflow of CGRPLM could be partially inhibited (approx. -30%) by GABA (1 microM-0.1 mM) and muscimol (10 microM-0.1 mM) but not by baclofen (1-10 microM). Bicuculline methiodide (1 microM) completely prevented the inhibition by GABA (1 microM) and muscimol (10 microM) as expected from an action through GABAA receptors. By contrast, the K(+)-evoked SPLM overflow was altered neither by GABA nor muscimol and baclofen. These data further support that GABA exerts a presynaptic inhibitory control of (CGRP-containing) primary afferent fibres within the rat dorsal horn.
Collapse
Affiliation(s)
- S Bourgoin
- INSERM U288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|