1
|
Lopez-Pajares V, Bhaduri A, Zhao Y, Gowrishankar G, Donohue LKH, Guo MG, Siprashvili Z, Miao W, Nguyen DT, Yang X, Li AM, Tung ASH, Shanderson RL, Winge MCG, Meservey LM, Srinivasan S, Meyers RM, Guerrero A, Ji AL, Garcia OS, Tao S, Gambhir SS, Long JZ, Ye J, Khavari PA. Glucose modulates IRF6 transcription factor dimerization to enable epidermal differentiation. Cell Stem Cell 2025; 32:795-810.e10. [PMID: 40120584 PMCID: PMC12048241 DOI: 10.1016/j.stem.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Non-energetic roles for glucose are largely unclear, as is the interplay between transcription factors (TFs) and ubiquitous biomolecules. Metabolomic analyses uncovered elevation of intracellular glucose during differentiation of diverse cell types. Human and mouse tissue engineered with glucose sensors detected a glucose gradient that peaked in the outermost differentiated layers of the epidermis. Free glucose accumulation was essential for epidermal differentiation and required the SGLT1 glucose transporter. Glucose affinity chromatography uncovered glucose binding to diverse regulatory proteins, including the IRF6 TF. Direct glucose binding enabled IRF6 dimerization, DNA binding, genomic localization, and induction of IRF6 target genes, including essential pro-differentiation TFs GRHL1, GRHL3, HOPX, and PRDM1. These data identify a role for glucose as a gradient morphogen that modulates protein multimerization in cellular differentiation.
Collapse
Affiliation(s)
- Vanessa Lopez-Pajares
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Aparna Bhaduri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gayatri Gowrishankar
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Marten C G Winge
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsey M Meservey
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angela Guerrero
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
2
|
Zou XF, Wu SH, Ma JG, Yin ZQ, Hu ZD, Wang YW, Yang J, Guo RD. 3-O-Methyl-D-Glucose Blunts Cold Ischemia Damage in Kidney via Inhibiting Ferroptosis. Biomed Pharmacother 2024; 173:116262. [PMID: 38394845 DOI: 10.1016/j.biopha.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The glucose derivative 3-O-methyl-D-glucose (OMG) is used as a cryoprotectant in freezing cells. However, its protective role and the related mechanism in static cold storage (CS) of organs are unknown. The present study aimed to investigate the effect of OMG on cod ischemia damage in cold preservation of donor kidney. METHODS Pretreatment of OMG on kidney was performed in an isolated renal cold storage model in rats. LDH activity in renal efflux was used to evaluate the cellular damage. Indicators including iron levels, mitochondrial damage, MDA level, and cellular apoptosis were measured. Kidney quality was assessed via a kidney transplantation (KTx) model in rats. The grafted animals were followed up for 7 days. Ischemia reperfusion (I/R) injury and inflammatory response were assessed by biochemical and histological analyses. RESULTS OMG pretreatment alleviated prolonged CS-induced renal damage as evidenced by reduced LDH activities and tubular apoptosis. Kidney with pCS has significantly increased iron, MDA, and TUNEL+ cells, implying the increased ferroptosis, which has been partly inhibited by OMG. OMG pretreatment has improved the renal function (p <0.05) and prolonged the 7-day survival of the grafting recipients after KTx, as compared to the control group. OMG has significantly decreased inflammation and tubular damage after KTx, as evidenced by CD3-positive cells and TUNEL-positive cells. CONCLUSION Our study demonstrated that OMG protected kidney against the prolonged cold ischemia-caused injuries through inhibiting ferroptosis. Our results suggested that OMG might have potential clinical application in cold preservation of donor kidney.
Collapse
Affiliation(s)
- Xun-Feng Zou
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Shao-Hua Wu
- Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi-Qi Yin
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Zhan-Dong Hu
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Yi-Wei Wang
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jie Yang
- University hospital, Tianjin Normal University, Tianjin 300192, China
| | - Ren-De Guo
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
3
|
Jabbar AA. Onosma mutabilis: Phytochemical composition, antioxidant, cytotoxicity, and acute oral toxicity. Food Sci Nutr 2021; 9:5755-5764. [PMID: 34646543 PMCID: PMC8498047 DOI: 10.1002/fsn3.2544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The traditional use of Onosma L. species as a remedy motivated scientists to discover great biological/pharmacological potentials in this plant. In the current study, in addition to the phytochemical composition of methanol (MeOH), water, and ethyl acetate extract of aerial parts of Onosma mutabilis Boiss., an endemic plant species in the flora of Kurdistan, Iraq, in vitro antioxidant, cytotoxicity, and oral toxicity activity were investigated. Results of total phenolic and total flavonoid tests show the MeOH extract superiority, and the results of Gas chromatography-mass spectrophotometer(GS/GS-MS) show 18 chemical compounds in the MeOH extract, and the majority of the detected compounds were alkaloids (78.77%) and steroids (11.48%), namely as 5,8-dihydroxy-2-(4-methylpent-3-enyl) naphthalene-1,4-dione (48.60%), 3-O-Methyl-d-glucose (27.49%), β-Sitosterol (6.81%), Phenol, 2,4-bis (1,1-dimethyl ethyl)-, phosphite (3.46%), and 24,25-Dihydroxycholecalciferol (3.14%). Results of the antioxidant tests show the MeOH extract superiority in the phosphomolybdenum assay, radical scavenging [on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)] assays, and reducing power [cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP)] assays (1.45, 3.54, 2.33, 1.12, 1.62, mg/ml, respectively). The cytotoxicity results of the plant extract are presented as IC50 (inhibitory concentration at 50%) on the prostate cancer cells (DU-145), mammary cancer cells (MCF-7), and human cervix carcinoma (Hep2c), at which values ranged from 28.79 to 41.83 μg/ml. Results of the acute toxicity in the dose-dependent trail (100, 200, 300, 600 mg/kg of MeOH) show the absence of the behavior and appearance changes of female Wister rats. Overall, O. mutabilis extract exhibited significant natural potentials probably because of its polar phytochemicals, which could be an alternative source for remedial, nutrient, and cosmetic manufacture.
Collapse
Affiliation(s)
- Ahmed Aj. Jabbar
- Department of Medical Laboratory TechnologyErbil Technical Health CollegeErbil Polytechnic UniversityErbilIraq
| |
Collapse
|
4
|
Rivlin M, Navon G. Molecular imaging of tumors by chemical exchange saturation transfer MRI of glucose analogs. Quant Imaging Med Surg 2019; 9:1731-1746. [PMID: 31728315 DOI: 10.21037/qims.2019.09.12] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early detection of the cancerous process would benefit greatly from imaging at the cellular and molecular level. Increased glucose demand has been recognized as one of the hallmarks of cancerous cells (the "Warburg effect"), hence glucose and its analogs are commonly used for cancer imaging. One example is FDG-PET technique, that led to the use of chemical exchange saturation transfer (CEST) MRI of glucose ("glucoCEST") for tumor imaging. This technique combines high-resolution MRI obtained by conventional imaging with simultaneous molecular information obtained from the exploitation of agents with exchangeable protons from amine, amide or hydroxyl residues with the water signal. In the case of glucoCEST, these agents are based on glucose or its analogs. Recently, preclinical glucoCEST studies demonstrated the ability to increase the sensitivity of MRI to the level of metabolic activity, enabling identification of tumor staging, biologic potential, treatment planning, therapy response and local recurrence, in addition to guiding target biopsy for clinically suspected cancer. However, natural glucose limits this method because of its rapid conversion to lactic acid, leading to reduced CEST effect and short signal duration. For that reason, a variety of glucose analogs have been tested as alternatives to the original glucoCEST. This review discusses the merits of these analogs, including new data on glucose analogs heretofore not reported in the literature. This summarized preclinical data may help strengthen the translation of CEST MRI of glucose analogs into the clinic, improving cancer imaging to enable early intervention without the need for invasive techniques. The data should also broaden our knowledge of fundamental biological processes.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Rivlin M, Navon G. 3-O-Methyl-D-glucose mutarotation and proton exchange rates assessed by 13C, 1H NMR and by chemical exchange saturation transfer and spin lock measurements. JOURNAL OF BIOMOLECULAR NMR 2018; 72:93-103. [PMID: 30203383 DOI: 10.1007/s10858-018-0209-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
3-O-Methyl-D-glucose (3OMG) was recently suggested as an agent to image tumors using chemical exchange saturation transfer (CEST) MRI. To characterize the properties of 3OMG in solution, the anomeric equilibrium and the mutarotation rates of 3OMG were studied by 1H and 13C NMR. This information is essential in designing the in vivo CEST experiments. At room temperature, the ratio of α and β 3OMG anomers at equilibrium was 1:1.4, and the time to reach 95% equilibrium was 6 h. The chemical exchange rates between the hydroxyl protons of 3OMG and water, measured by CEST and spin lock at pH 6.14 and a temperature of 4 °C, were in the range of 360-670 s-1.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Sehgal AA, Li Y, Lal B, Yadav NN, Xu X, Xu J, Laterra J, van Zijl PCM. CEST MRI of 3-O-methyl-D-glucose uptake and accumulation in brain tumors. Magn Reson Med 2018; 81:1993-2000. [PMID: 30206994 DOI: 10.1002/mrm.27489] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE 3-O-Methyl-D-glucose (3-OMG) is a nonmetabolizable structural analog of glucose that offers potential to be used as a CEST-contrast agent for tumor detection. Here, we explore it for CEST-detection of malignant brain tumors and compare it with D-glucose. METHODS Glioma xenografts of a U87-MG cell line were implanted in five mice. Dynamic 3-OMG weighted images were collected using CEST-MRI at 11.7 T at a single offset of 1.2 ppm, showing the effect of accumulation of the contrast agent in the tumor, following an intravenous injection of 3-OMG (3 g/kg). RESULTS Tumor regions showed higher enhancement as compared to contralateral brain. The CEST contrast enhancement in the tumor region ranged from 2.5-5.0%, while it was 1.5-3.5% in contralateral brain. Previous D-glucose studies of the same tumor model showed an enhancement of 1.5-3.0% and 0.5-1.5% in tumor and contralateral brain, respectively. The signal gradually stabilized to a value that persisted for the length of the scan. CONCLUSIONS 3-OMG shows a CEST contrast enhancement that is approximately twice as much as that of D-glucose for a similar tumor line. In view of its suggested low toxicity and transport properties across the BBB, 3-OMG provides an option to be used as a nonmetallic contrast agent for evaluating brain tumors.
Collapse
Affiliation(s)
- Akansha Ashvani Sehgal
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Bachchu Lal
- Department of Neurology, Oncology, and Neuroscience, The Johns Hopkins Medicine, and The Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
| | - Nirbhay N Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - John Laterra
- Department of Neurology, Oncology, and Neuroscience, The Johns Hopkins Medicine, and The Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
7
|
Jin T, Mehrens H, Wang P, Kim SG. Chemical exchange-sensitive spin-lock MRI of glucose analog 3-O-methyl-d-glucose in normal and ischemic brain. J Cereb Blood Flow Metab 2018; 38:869-880. [PMID: 28485194 PMCID: PMC5987935 DOI: 10.1177/0271678x17707419] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glucose transport is important for understanding brain glucose metabolism. We studied glucose transport with a presumably non-toxic and non-metabolizable glucose analog, 3-O-methyl-d-glucose, using a chemical exchange-sensitive spin-lock MRI technique at 9.4 Tesla. 3-O-methyl-d-glucose showed comparable chemical exchange properties with d-glucose and 2-deoxy-d-glucose in phantoms, and higher and lower chemical exchange-sensitive spin-lock sensitivity than Glc and 2-deoxy-d-glucose in in vivo experiments, respectively. The changes of the spin-lattice relaxation rate in the rotating frame (Δ R1ρ) in normal rat brain peaked at ∼15 min after the intravenous injection of 1 g/kg 3-O-methyl-d-glucose and almost maintained a plateau for >1 h. Doses up to 4 g/kg 3-O-methyl-d-glucose were linearly correlated with Δ R1ρ. In rats with focal ischemic stroke, chemical exchange-sensitive spin-lock with 3-O-methyl-d-glucose injection at 1 h after stroke onset showed reduced Δ R1ρ in the ischemic core but higher Δ R1ρ in the peri-core region compared to normal tissue, which progressed into the ischemic core at 3 h after stroke onset. This suggests that the hyper-chemical exchange-sensitive spin-lock region observed at 1 h is the ischemic penumbra at-risk of infarct. In summary, 3-O-methyl-d-glucose-chemical exchange-sensitive spin-lock can be a sensitive MRI technique to probe the glucose transport in normal and ischemic brains.
Collapse
Affiliation(s)
- Tao Jin
- 1 NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.,2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hunter Mehrens
- 1 NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ping Wang
- 1 NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- 3 Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea.,4 Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
8
|
Nedergaard S, Andreasen M. Opposing effects of 2-deoxy-d-glucose on interictal- and ictal-like activity when K+ currents and GABAA receptors are blocked in rat hippocampus in vitro. J Neurophysiol 2018; 119:1912-1923. [DOI: 10.1152/jn.00732.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ketogenic diet (KD), a high-fat, carbohydrate-restricted diet, is used as an alternative treatment for drug-resistant epileptic patients. Evidence suggests that compromised glucose metabolism has a significant role in the anticonvulsant action of the KD; however, it is unclear what part of the glucose metabolism that is important. The present study investigates how selective alterations in glycolysis and oxidative phosphorylation influence epileptiform activity induced by blocking K+ currents and GABAA and NMDA receptors in the hippocampal slice preparation. Blocking glycolysis with the glucose derivative 2-deoxy-d-glucose (2-DG; 10 mM) gave a fast reduction of the frequency of interictal discharge (IED) consistent with findings in other in vitro models. However, this was followed by the induction of seizure-like discharges in area CA1 and CA3. Substituting glucose with sucrose (glucopenia) had effects similar to those of 2-DG, whereas substitution with l-lactate or pyruvate reduced the IED but had a less proconvulsant effect. Blockade of ATP-sensitive K+ channels, glycine or adenosine 1 receptors, or depletion of the endogenous anticonvulsant compound glutathione did not prevent the actions of 2-DG. Baclofen (2 μM) reproduced the effect of 2-DG on IED activity. The proconvulsant effect of 2-DG could be reproduced by blocking the oxidative phosphorylation with the complex I toxin rotenone (4 μM). The data suggest that inhibition of IED, induced by 2-DG and glucopenia, is a direct consequence of impairment of glycolysis, likely exerted via a decreased recurrent excitatory synaptic transmission in area CA3. The accompanying proconvulsant effect is caused by an excitatory mechanism, depending on impairment of oxidative phosphorylation. NEW & NOTEWORTHY This study reveals two opposing effects of 2-deoxy-d-glucose (2-DG) and glucopenia on in vitro epileptiform discharge observed during combined blockade of K+ currents and GABAA receptors. Interictal-like activity is inhibited by a mechanism that selectively depends on impairment of glycolysis and that results from a decrease in the strength of excitatory recurrent synaptic transmission in area CA3. In contrast, 2-DG and glucopenia facilitate ictal-like activity by an excitatory mechanism, depending on impairment of mitochondrial oxidative phosphorylation.
Collapse
|
9
|
Bagga P, Haris M, D'Aquilla K, Wilson NE, Marincola FM, Schnall MD, Hariharan H, Reddy R. Non-caloric sweetener provides magnetic resonance imaging contrast for cancer detection. J Transl Med 2017; 15:119. [PMID: 28558795 PMCID: PMC5450413 DOI: 10.1186/s12967-017-1221-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Image contrast enhanced by exogenous contrast agents plays a crucial role in the early detection, characterization, and determination of the precise location of cancers. Here, we investigate the feasibility of using a non-nutritive sweetener, sucralose (commercial name, Splenda), as magnetic resonance imaging (MRI) contrast agent for cancer studies. METHODS High-resolution nuclear-magnetic-resonance spectroscopy and MR studies on sucralose solution phantom were performed to detect the chemical exchange saturation transfer (CEST) property of sucralose hydroxyl protons with bulk water (sucCEST). For the animal experiments, female Fisher rats (F344/NCR) were used to generate 9L-gliosarcoma model. MRI with CEST experiments were performed on anesthetized rats at 9.4 T MR scanner. Following the baseline CEST scans, sucralose solution was intravenously administered in control and tumor bearing rats. CEST acquisitions were continued during and following the administration of sucralose. Following the sucCEST, Gadolinium-diethylenetriamine pentaacetic acid was injected to perform Gd-enhanced imaging for visualizing the tumor. RESULTS The sucCEST contrast in vitro was found to correlate positively with the sucralose concentration and negatively with the pH, indicating the potential of this technique in cancer imaging. In a control animal, the CEST contrast from the brain was found to be unaffected following the administration of sucralose, demonstrating its blood-brain barrier impermeability. In a 9L glioma model, enhanced localized sucCEST contrast in the tumor region was detected while the unaffected brain region showed unaltered CEST effect implying the specificity of sucralose toward the tumorous tissue. The CEST asymmetry plots acquired from the tumor region before and after the sucralose infusion showed elevation of asymmetry at 1 ppm, pointing towards the role of sucralose in increased contrast. CONCLUSIONS We show the feasibility of using sucralose and sucCEST in study of preclinical models of cancer. This study paves the way for the potential development of sucralose and other sucrose derivatives as contrast agents for clinical MRI applications.
Collapse
Affiliation(s)
- Puneet Bagga
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, B1-Stellar-Chance Laboratories, Philadelphia, PA, USA
| | - Mohammad Haris
- Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Kevin D'Aquilla
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, B1-Stellar-Chance Laboratories, Philadelphia, PA, USA
| | - Neil E Wilson
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, B1-Stellar-Chance Laboratories, Philadelphia, PA, USA
| | | | - Mitchell D Schnall
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, B1-Stellar-Chance Laboratories, Philadelphia, PA, USA
| | - Hari Hariharan
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, B1-Stellar-Chance Laboratories, Philadelphia, PA, USA
| | - Ravinder Reddy
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, B1-Stellar-Chance Laboratories, Philadelphia, PA, USA.
| |
Collapse
|
10
|
CEST MRI of 3-O-methyl-D-glucose on different breast cancer models. Magn Reson Med 2017; 79:1061-1069. [DOI: 10.1002/mrm.26752] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
|
11
|
Rivlin M, Tsarfaty I, Navon G. Functional molecular imaging of tumors by chemical exchange saturation transfer MRI of 3-O-Methyl-D-glucose. Magn Reson Med 2014; 72:1375-80. [DOI: 10.1002/mrm.25467] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Michal Rivlin
- School of Chemistry; Tel Aviv University; Tel Aviv Israel
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Israel
| | - Gil Navon
- School of Chemistry; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
12
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
13
|
Vollers SS, Carruthers A. Sequence determinants of GLUT1-mediated accelerated-exchange transport: analysis by homology-scanning mutagenesis. J Biol Chem 2012; 287:42533-44. [PMID: 23093404 DOI: 10.1074/jbc.m112.369587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The class 1 equilibrative glucose transporters GLUT1 and GLUT4 are structurally similar but catalyze distinct modes of transport. GLUT1 exhibits trans-acceleration, in which the presence of intracellular sugar stimulates the rate of unidirectional sugar uptake. GLUT4-mediated uptake is unaffected by intracellular sugar. Using homology-scanning mutagenesis in which domains of GLUT1 are substituted with equivalent domains from GLUT4 and vice versa, we show that GLUT1 transmembrane domain 6 is both necessary and sufficient for trans-acceleration. This region is not directly involved in GLUT1 binding of substrate or inhibitors. Rather, transmembrane domain 6 is part of two putative scaffold domains, which coordinate membrane-spanning amphipathic helices that form the sugar translocation pore. We propose that GLUT1 transmembrane domain 6 restrains import when intracellular sugar is absent by slowing transport-associated conformational changes.
Collapse
Affiliation(s)
- Sabrina S Vollers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
14
|
Gasior M, Yankura J, Hartman AL, French A, Rogawski MA. Anticonvulsant and proconvulsant actions of 2-deoxy-D-glucose. Epilepsia 2010; 51:1385-94. [PMID: 20491877 DOI: 10.1111/j.1528-1167.2010.02593.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE 2-Deoxy-D-glucose (2-DG), a glucose analog that accumulates in cells and interferes with carbohydrate metabolism by inhibiting glycolytic enzymes, has anticonvulsant actions. Recognizing that severe glucose deprivation can induce seizures, we sought to determine whether acute treatment with 2-DG can promote seizure susceptibility by assessing its effects on seizure threshold. For comparison, we studied 3-methyl-glucose (3-MG), which like 2-DG accumulates in cells and reduces glucose uptake, but does not inhibit glycolysis. METHODS Mice were treated with 2-DG or 3-MG and the seizure threshold determined in the 6-Hz test, the mouse electroshock seizure threshold (MEST) test, and the intravenous pentylenetetrazol (i.v. PTZ) or kainic acid (i.v. KA) seizure threshold tests. 2-DG was also tested in fully amygdala-kindled rats. RESULTS 2-DG (125-500 mg/kg, i.p., 30 min before testing) significantly elevated the seizure threshold in the 6-Hz seizure test. 2-DG (250-500 mg/kg) decreased the threshold in the MEST and i.v. PTZ and i.v. KA tests. 3-MG had no effect on seizure threshold in the 6-Hz test but, like 2-DG, decreased seizure threshold in the i.v. PTZ test. 2-DG (250 and 500 mg/kg, i.p., 30 min before testing) had no effect on amygdala-kindled seizures. CONCLUSIONS Although 2-DG protects against seizures in the 6-Hz seizure test, it promotes seizures in some other models. The proconvulsant action may relate to reduced glucose uptake, whereas the anticonvulsant action may require inhibition of glycolysis and shunting of glucose metabolism through the pentose phosphate pathway.
Collapse
Affiliation(s)
- Maciej Gasior
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
The memory-improving action of glucose has now been studied for almost 20 years and the study of this phenomenon has led to a number of important developments in the understanding of memory, brain physiology and pathological consequences of impaired glucose tolerance. Glucose improvement of memory appears to involve two optimal doses in animals (100 mg/kg and 2 g/kg) that may correspond to two physiological mechanisms underlying glucose effects on memory. In humans, there have been few dose-response studies so the existence of more than one effective dose in humans is uncertain. Many tasks are facilitated by glucose in humans but tasks that are difficult to master or involve divided attention are improved more readily that easier tasks. There are a number of hypotheses about the physiological bases of the memory-improving action of glucose. Peripheral glucose injections could alleviate localized deficits in extracellular glucose in the hippocampus. These localized deficits may be due to changes in glucose transporters in that structure. Because certain neurotransmitters such as acetylcholine are directly dependent on the glucose supply for their synthesis, glucose is thought to facilitate neurotransmitter synthesis under certain circumstances. However, these hypotheses cannot account for the specificity of the dose-response effect of glucose. A number of peripheral mechanisms have been proposed, including the possibility that glucose-sensitive neurons in the brain or in the periphery may serve as glucose sensors and eventually produce neural changes that would facilitate memory processing. These latter results could be of importance because the mechanisms they suggest appear to be dose-dependent, a crucial characteristic to explain the dose-dependent effects of glucose. There may be an advantage to develop hypotheses that include both peripheral and central actions of glucose. There is evidence that impaired glucose regulation is associated with impaired cognition, particularly episodic memory. This impairment is minimal in young people but increases in older people (65 years and over) where it may compound other aging processes leading to reduced brain function. A small number of studies showed that glucose improvement of memory is associated with poor glucose regulation although this may not be the case for diabetic patients. Results of a few studies also suggest that drug treatments that improve glucose regulation also produce cognitive improvement in diabetic patients.
Collapse
Affiliation(s)
- Claude Messier
- School of Psychology, University of Ottawa, 145 Jean-Jacques Lussier Room 352, Ottawa, Ontario, Canada K1N 6N5.
| |
Collapse
|
16
|
Feinendegen LE, Herzog H, Thompson KH. Cerebral glucose transport implies individualized glial cell function. J Cereb Blood Flow Metab 2001; 21:1160-70. [PMID: 11598493 DOI: 10.1097/00004647-200110000-00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous positron emission tomography (PET) measurements of cerebral glucose transport using [11C]-3-O-methylglucose (CMG) suggested an interindividual variation in the values of the rate constant of tracer outflow (k2) larger than that for the clearance rate of inflow (K1). These two parameters were examined in healthy cerebral cortex by dynamic PET in 4 men and 2 women (aged 24 to 73 years) without neurologic disease, and in 1 man (42 years) with a recent left hemispheric cerebral infarction under normoglycemia (average blood plasma d-glucose concentration, 5.44 +/- 1.94 micromol/mL) and again under hyperglycemia (average, 10.24 +/- 1.44 micromol/mL). Time-radioactivity curves were obtained from healthy cortex (grey matter) and plasma and analyzed for the values of K1 and k2 by two graphical approaches and two fitting procedures. Both K1 and k2 significantly declined with increasing plasma glucose levels. A highly significant interindividual but not intraindividual variability for k2 was found at normoglycemia and hyperglycemia. The interindividual variability of K1, although borderline significant, was less than that of k2. Accordingly variable were the distribution volumes K1/k2. These data suggest individualized glial cell function and may be relevant to pathogenesis of neuropsychiatric disease.
Collapse
Affiliation(s)
- L E Feinendegen
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | |
Collapse
|
17
|
Xu YZ, Krnjevic K. Unlike 2-deoxy-D-glucose, 3-O-methyl-D-glucose does not induce long-term potentiation in rat hippocampal slices. Brain Res 2001; 895:250-2. [PMID: 11259785 DOI: 10.1016/s0006-8993(01)02077-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Equimolar replacement of 10 mM glucose by 2-deoxy-D-glucose (2-DG) causes substantial depression followed by a sharp and sustained potentiation of CA1 field EPSPs. In the present experiments, similar applications of 3-O-methyl-D-glucose, which is also taken up by cells but is not phosphorylated, had only a weak blocking action and elicited no potentiation. Possible explanations for the marked effects of 2-DG include a more rapid block of glycolysis and the production of phosphorylated derivatives of 2-DG.
Collapse
Affiliation(s)
- Y Z Xu
- Department of Biology, University of Science and Technology, Hefei, Anhui 23002, China
| | | |
Collapse
|
18
|
Boccia MM, Kopf SR, Baratti CM. Phlorizin, a competitive inhibitor of glucose transport, facilitates memory storage in mice. Neurobiol Learn Mem 1999; 71:104-12. [PMID: 9889076 DOI: 10.1006/nlme.1998.3856] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Posttraining intraperitoneal administration of phlorizin (3.0-300.0 microg/kg), a competitive inhibitor of glucose transport from blood to brain, facilitated 48-h retention, in male Swiss mice, of a one-trial step-through inhibitory avoidance task. The dose-response curve was an inverted-U shape. Phlorizin did not increase the retention latencies of mice that had not received a foot shock during training. The effects of phlorizin (30.0 microg/kg) on retention were time dependent, and the administration of phlorizin (30.0 microg/kg) 5 or 10 min prior to the retention test did not affect the retention performance of mice given posttraining injections of saline or phlorizin (30.0 microg/kg). These findings indicate that phlorizin influenced memory storage, but not memory retrieval. Finally, the simultaneous administration of phlorizin (3. 0-300.0 microg/kg, ip) antagonized, in a dose-related manner, the memory impairment induced by insulin (8 IU/kg, ip). Taken together, the results show that phlorizin enhance retention acting as a "glucose-like substance" although the mechanism(s) of this enhancement is unknown.
Collapse
Affiliation(s)
- M M Boccia
- Cátedra de Farmacología-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Junín 956-5 degrees Piso, 1113-, Argentina
| | | | | |
Collapse
|
19
|
Abstract
Astroglial swelling occurs in acute hyperammonemic states, including acute hepatic encephalopathy. In these conditions, the peripheral-type benzodiazepine receptor (PBR), a receptor associated with neurosteroidogenesis, is up-regulated. This study examined the potential involvement of PBRs and neurosteroids in ammonia-induced astrocyte swelling in culture. At low micromolar concentrations, the PBR antagonist PK 11195, atrial natriuretic peptide, and protoporhyrin IX, which are known to interact with the PBR, attenuated (16-100%) the effects of ammonia, whereas the PBR agonists Ro5-4864, diazepam binding inhibitor (DBI51-70), and octadecaneuropeptide exacerbated (10-15%) the effects of ammonia. At micromolar concentrations, diazepam, which interacts with both the PBR and the central-type benzodiazepine receptor (CBR), increased swelling by 11%, whereas flumazenil, a CBR antagonist, had no effect. However, at 100 nM diazepam and flumazenil abrogated ammonia-induced swelling. The neurosteroids dehydroepiandrosterone sulfate, tetrahydroprogesterone, pregnenolone sulfate, and tetrahydrodeoxycorticosterone (THDOC), products of PBR stimulation, at micromolar concentrations significantly enhanced (70%) ammonia-induced swelling. However, at nanomolar concentrations, these neurosteroids, with exception of THDOC, blocked ammonia-induced swelling. We conclude that neurosteroids and agents that interact with the PBR influence ammonia-induced swelling. These agents may represent novel therapies for acute hyperammonemic syndromes and other conditions associated with brain edema and astrocyte swelling.
Collapse
Affiliation(s)
- A S Bender
- Veterans Administration Medical Center, Department of Pathology, University of Miami School of Medicine, Florida 33101, USA
| | | |
Collapse
|
20
|
Patlak CS, Hospod FE, Trowbridge SD, Newman GC. Diffusion of radiotracers in normal and ischemic brain slices. J Cereb Blood Flow Metab 1998; 18:776-802. [PMID: 9663508 DOI: 10.1097/00004647-199807000-00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diffusion in the extracellular space (ECS) is important in physiologic and pathologic brain processes but remains poorly understood. To learn more about factors influencing tissue diffusion and the role of diffusion in solute-tissue interactions, particularly during cerebral ischemia, we have studied the kinetics of several radiotracers in control and hypoxic 450-microm hippocampal slices and in 1,050-microm thick slices that model the ischemic penumbra. Kinetics were analyzed by nonlinear least squares methods using models that combine extracellular diffusion with tissue compartments in series or in parallel. Studies with 14C-polyethylene glycol confirmed prior measurements of extracellular volume and that ECS shrinks during ischemia. Separating diffusion from transport also revealed large amounts of 45Ca that bind to or enter brain as well as demonstrating a small, irreversibly bound compartment during ischemia. The rapidity of 3H2O entry into cells made it impossible for us to distinguish intracellular from extracellular diffusion. The diffusion-compartment analysis of 3-O-methylglucose data appears to indicate that 5 mmol/L glucose is inadequate to support glycolysis fully in thick slices. Unexpectedly, the diffusion coefficient for all four tracers rose in thick slices compared with thin slices, suggesting that ECS becomes less tortuous in the penumbra.
Collapse
Affiliation(s)
- C S Patlak
- Department of Surgery, State University of New York at Stony Brook, 11794-8121, USA
| | | | | | | |
Collapse
|
21
|
Rett K, Maerker E, Renn W, van Gilst W, Haering HU. Perfusion-independent effect of bradykinin and fosinoprilate on glucose transport in Langendorff rat hearts. Am J Cardiol 1997; 80:143A-147A. [PMID: 9293968 DOI: 10.1016/s0002-9149(97)00470-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiotensin-converting enzyme (ACE) inhibitor-stimulated glucose metabolism and perfusion in muscle tissue seem to be, at least in part, mediated by kinins. However, the relative contribution of direct metabolic or secondary hemodynamically induced effects is unclear. It was the aim of this study to characterize the effects of ACE inhibition and bradykinin on glucose transport while changes in cardiocoronary function that might influence glucose transport were minimized. Hearts from Wistar rats were perfused by a Langendorff preparation and a set of functional parameters were simultaneously measured. Bradykinin (10[-11] M) and fosinoprilate (10[-7] M) were administered at concentrations that did not affect coronary flow. Insulin was employed as reference at half-maximal concentration. The nonmetabolizable glucose analog 3-O-[14C]methyl-D-glucose and the nontransportable tracer L-[3H]glucose were coperfused for the calculation of glucose transport. Using a 2-compartment mathematical model we found that the glucose transport rate, which was doubled with insulin, was increased almost 3-fold by either bradykinin or fosinoprilate. In the presence of the B2 bradykinin receptor antagonist HOE 140 (D-Arg[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin; icatibant), the effect of both agents was completely abolished. Both agents also induced minor changes in contractility/relaxation parameters that again were completely neutralized with icatibant. A perfusion-independent but B2-kinin receptor-dependent stimulating effect on glucose transport by either bradykinin or fosinoprilate is concluded. This effect could, in analogy to insulin be due to increased glucose transporter translocation, increased endothelium-derived nitric oxide formation, or--despite constant coronary flow conditions--secondary to altered cardiac function.
Collapse
Affiliation(s)
- K Rett
- University of Tübingen, Medical Department IV, Germany
| | | | | | | | | |
Collapse
|
22
|
Abstract
Brain slice glucose utilization (SGU) can be measured by methods analogous to those used for in vivo cerebral glucose utilization. In order to make this technique more accessible and applicable to a broad range of experimental conditions, we have derived a simplified operational rate equation and generated the table of apparent rate coefficients necessary to apply the equation under different experimental situations. Calculations of the apparent rate coefficients were based upon an eight-parameter kinetic model combined with Michaelis-Menten theory to account for changes in the rate constants as a function of buffer glucose concentration. The theory was tested with a series of experiments using rat brain slices. [14C]-2-deoxyglucose (2DG) and [14C]-3-O-methylglucose (3OMG). The errors involved in the simplified technique were estimated by a variety of techniques and found to be acceptable over a broad range of conditions. A detailed, practical protocol for the simplified method is presented.
Collapse
Affiliation(s)
- G C Newman
- Neurology Service, Veterans Administration Medical Center at Northport, New York, USA
| | | | | | | |
Collapse
|
23
|
Sweet IR, Peterson L, Kroll K, Goodner CJ, Berry M, Graham MM. Effect of glucose on uptake of radiolabeled glucose, 2-DG, and 3-O-MG by the perfused rat liver. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E384-96. [PMID: 8770034 DOI: 10.1152/ajpendo.1996.271.2.e384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the transition from the fasting to the fed state, plasma glucose levels rise, and the liver converts from an organ producing glucose to one of storage. To determine the effect of glucose on hepatic glucose uptake, radiolabeled glucose, 2-deoxyglucose, and 3-O-methylglucose were injected into perfused rat livers during different nontracer glucose levels, and the concentrations in the outflow were measured. A mathematical model was developed that described the behavior of the injected compounds as they traveled through the liver and was used to simulate and fit the experimental results. The rates of membrane transport, glucokinase, glucose-6-phosphatase, and the consumption of glucose 6-phosphate were estimated. Membrane transport for all of the tracers decreased as nontracer glucose increased, demonstrating competitive inhibition of the glucose transporter. In contrast, the consumption of injected [2-14C]glucose increased when glucose was elevated, demonstrating that glucose caused an activation of enzyme activity that overcame the competitive inhibition of transport and phosphorylation. When glucose was elevated, the rate coefficient of glucokinase did not decrease, indicating that glucokinase was stimulated by glucose. Both changes would lead to the increased glycogen synthesis and decreased glucose production rate observed in vivo during the fasted-to-fed transition.
Collapse
Affiliation(s)
- I R Sweet
- Center for Bioengineering, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
24
|
Nakanishi H, Cruz NF, Adachi K, Sokoloff L, Dienel GA. Influence of glucose supply and demand on determination of brain glucose content with labeled methylglucose. J Cereb Blood Flow Metab 1996; 16:439-49. [PMID: 8621748 DOI: 10.1097/00004647-199605000-00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The equilibrium brain/plasma distribution ratio for 3-0-methyl-D-glucose (methylglucose) varies with plasma and tissue glucose contents and can be used to determine local glucose levels in brain. This ratio was previously found to rise as brain glucose concentration fell in response to lowered plasma glucose content. The ratios, however, differed with the same tissue glucose levels in conscious and pentobarbital-sedated rats, suggesting that changes in metabolic demand might alter the quantitative relationship between the methylglucose distribution ratio and brain glucose concentration. To examine this possibility, metabolic rate was varied by focal drug application, and hexose concentrations measured in treated and surrounding tissue. When tissue glucose levels were reduced by raised metabolic demand, methylglucose distribution ratios also fell. When brain glucose levels rose due to reduced consumption, the methylglucose distribution ratio also rose. Thus, in contrast to the inverse relationship between brain/plasma methylglucose ratio and brain glucose concentration when brain glucose content is altered secondarily to changes in plasma glucose level, changes in brain glucose content induced by altered glucose utilization cause the brain glucose level and methylglucose distribution ratio to rise and fall in a direct relationship. Determination of brain glucose content from methylglucose distribution ratios must take into account rates of glucose delivery and consumption.
Collapse
Affiliation(s)
- H Nakanishi
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
25
|
Messier C, Gagnon M. Glucose regulation and cognitive functions: relation to Alzheimer's disease and diabetes. Behav Brain Res 1996; 75:1-11. [PMID: 8800646 DOI: 10.1016/0166-4328(95)00153-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucose has been found to improve memory in animals and humans. Animal research has revealed that glucose may improve memory through a facilitation of acetylcholine (ACh) synthesis and release in the brain. This glucose-related memory improvement has prompted research in elderly humans. These studies have shown that the memory-improving action of glucose depends on each individuals' blood glucose regulation. Based on these data, researchers have evaluated the effect of glucose on memory in patients with Alzheimer's disease (AD). Results demonstrated that glucose could improve memory in a subset of patients that had abnormalities in their blood glucose regulation. Interestingly, these alterations in blood glucose regulation were believed to depend on the severity of the disease process. Another line of investigation has focused on alterations in brain glucose metabolism. Both animal models and studies with Type II diabetic elderly patients have shown that altered glucose regulation impairs learning and memory processes. It is possible that in AD patients, hyperglycemia exerts a deleterious effect by potentiating the neuronal death produced by other pathological processes taking place such as amyloid deposition. Based on these data, it appears important to find the prevalence of altered glucoregulation at various stages of AD. Secondly, it may be of interest to determine prospectively whether altered glucoregulation is linked to a faster progression of the disease. Finally, if such a relationship is observed, the next logical step would be to determine whether AD patients could benefit from treatments aimed at normalizing blood glucose regulation and improving insulin sensitivity.
Collapse
Affiliation(s)
- C Messier
- School of Psychology, University of Ottawa, Ontario, Canada.
| | | |
Collapse
|
26
|
Gatley SJ. Iodine-123-labeled glucose analogs: prospects for a single-photon-emitting analog of fluorine-18-labeled deoxyglucose. Nucl Med Biol 1995; 22:829-35. [PMID: 8547880 DOI: 10.1016/0969-8051(95)00034-u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
Kelly PA, Sharkey J, Ritchie IM. Autoradiographic determination of glucose content and estimation of the lumped constant in intracerebral neuronal tissue transplants. Neuroscience 1992; 48:417-22. [PMID: 1603326 DOI: 10.1016/0306-4522(92)90501-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The quasi-steady-state distribution volume of brain glucose was measured using 3-O-[14C]methylglucose quantitative autoradiography in a group of rats (n = 5) which 12-15 weeks previously had undergone unilateral ibotenic acid-induced lesion of the nucleus basalis magnocellularis, followed by implantation into ipsilateral neocortex of primordial basal forebrain cell suspensions. The effects of the lesion and the presence of transplanted tissue in neocortex were visualized by acetylcholinesterase histochemistry. The 3-O-[14C]methylglucose tracer was distributed homogeneously throughout the host brain areas analysed, with no side-to-side differences, despite a marked unilateral depletion of acetylcholinesterase activity ipsilateral to the lesion site. Whilst the transplants were indistinguishable from the homogeneity of surrounding host frontal cortex, there was a 70% increase in the apparent distribution volume of methylglucose localized around the ibotenate injection site and associated needle tract. Brain glucose content is an important experimental variable affecting the lumped constant of the 2-deoxyglucose technique. There was no evidence of any significant difference in the lumped constant between transplant and host tissue which might compromise the validity of the 2-deoxyglucose technique when used together with intracerebral implantation of fetal neuronal cell suspensions.
Collapse
Affiliation(s)
- P A Kelly
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Scotland, U.K
| | | | | |
Collapse
|
28
|
Brazitikos PD, Tsacopoulos M. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera). Brain Res 1991; 567:33-41. [PMID: 1815828 DOI: 10.1016/0006-8993(91)91432-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Experimental evidence showing metabolic interaction and signaling between photoreceptors-neurons and glial cells of the honeybee drone retina is presented. In this tissue [3H]2-deoxyglucose ([3H]2DG) in the dark and during repetitive light stimulation is phosphorylated to [3H]2-deoxyglucose-6P ([3H]2DG-6P) almost exclusively in the glial cells. Hence, stimulus-induced changes in the rate of formation of [3H]2DG-6P occurs predominantly in the glial cells. Repetitive stimulation of the photoreceptors with light flashes induced about a 47% rise in the rate of formation of [3H]2DG-6P in the glial cells and this effect is probably due to the activation of hexokinase. The potent inhibitor of glycolysis iodoacetic acid (IAA), inhibited this phosphorylation by about 75%. Probably this was largely due to an about 70% decrease of adenosine triphosphate (ATP). Exposure of the retina to IAA suppressed the transient rise in oxygen consumption (delta QO2) in the photoreceptors and subsequently the light-induced receptor potential. This indicates that the supply of a glycolytic substrate by glial cells to the photoreceptors is greatly reduced by IAA. Anoxia, by rapidly suppressing QO2, abolished the receptor potential of the photoreceptors and caused a rapid drop of about 50% in the ATP content of the retina. At the same time the formation of [3H]2DG-6P was inhibited by about 30%. This indicates that respiring photoreceptors send a metabolic signal to glial cells which is suppressed by anoxia.
Collapse
Affiliation(s)
- P D Brazitikos
- Department of Oto-neuro-ophthalmology, University of Geneva Medical School, Switzerland
| | | |
Collapse
|
29
|
Holden JE, Mori K, Dienel GA, Cruz NF, Nelson T, Sokoloff L. Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant. J Cereb Blood Flow Metab 1991; 11:171-82. [PMID: 1997495 DOI: 10.1038/jcbfm.1991.50] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The steady-state distribution volumes of glucose, 3-O-methylglucose, and 2-deoxyglucose (2DG) are known to change as the concentration of glucose in plasma ranges from hypo- to hyperglycemic values. Model estimates of the three distribution volumes were compared with distribution volume values experimentally measured in the brains of conscious rats as the concentration of glucose in plasma was varied from 2 to 28 mM. The dependence on plasma glucose concentration of the 2DG lumped constant, the factor that relates the phosphorylation rate of 2DG to the net rate of glucose utilization at unit specific radioactivity in the plasma, had been determined previously in separate series of experiments. The model was extended to incorporate this dependence of the lumped constant. In the model both the transport and the phosphorylation barriers were assumed to be single and saturable. The values of their respective half-saturation concentrations and the ratio of the two maximum velocities for glucose were assumed to be invariant over the entire range of plasma glucose concentration. Good agreement between measured and estimated values for the distribution volumes and the lumped constant was attained over the full range of plasma glucose concentration. The model estimates reflected the progressive transport limitation of the brain glucose content as plasma glucose levels were reduced to hypoglycemic values. The results also indicated that these changes should be evident in the time course of 2DG in brain following administration by bolus or continuous infusion, and thus that indexes of local lumped constant change could be derived from the time course data.
Collapse
Affiliation(s)
- J E Holden
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
30
|
Dienel GA, Cruz NF, Mori K, Holden JE, Sokoloff L. Direct measurement of the lambda of the lumped constant of the deoxyglucose method in rat brain: determination of lambda and lumped constant from tissue glucose concentration or equilibrium brain/plasma distribution ratio for methylglucose. J Cereb Blood Flow Metab 1991; 11:25-34. [PMID: 1984002 DOI: 10.1038/jcbfm.1991.3] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Steady-state distribution spaces of 2-[14C]deoxyglucose ([14C]DG), glucose, and 3-O-[14C]methylglucose at various concentrations of glucose in brain and plasma ranging from hypoglycemic to hyperglycemic levels have been determined by direct chemical analyses in the brains of conscious rats. The hexose concentrations were measured chemically in freeze-blown brain extracted with ethanol to avoid the degradation of acid-labile products of [14C]DG back to free [14C]DG that has been found to occur with the more commonly used perchloric acid extraction of brain. Corrections were also made for nonphosphorylatable, labeled products of [14C]DG found in the nonacidic fractions of the brain extracts, which were previously included with the assayed [14C]DG, and for the contribution of the hexose contents in the blood in the brain, which was found to be particularly critical for the determination of the glucose distribution space, especially in hypoglycemic states. From the measured contents of the hexoses in brain and plasma, the relationships of the tissue concentrations and distribution spaces of each of the hexoses and of the lambda (i.e., ratio of tissue distribution space of DG to that of glucose) of the DG method to the tissue glucose concentration were derived. The lambda was then quantitatively related to the measured equilibrium ratio for [14C]methylglucose over the full range of brain and plasma glucose levels. By combining these new data with the values for the lumped constant, the factor that converts the rate of DG phosphorylation to glucose phosphorylation, previously determined in rats over the same range of plasma glucose levels, the phosphorylation coefficient was calculated and the lumped constant graphed as a function of the measured distribution space in brain for [14C]methylglucose.
Collapse
Affiliation(s)
- G A Dienel
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|