1
|
Putra M, Rao NS, Gardner C, Liu G, Trommater J, Bunney M, Gage M, Bassuk AG, Hefti M, Lee G, Thippeswamy T. Enhanced Fyn-tau and NR2B-PSD95 interactions in epileptic foci in experimental models and human epilepsy. Brain Commun 2024; 6:fcae327. [PMID: 39355003 PMCID: PMC11444080 DOI: 10.1093/braincomms/fcae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Epilepsy and Alzheimer's disease share some common pathologies such as neurodegeneration, seizures and impaired cognition. However, the molecular mechanisms of these changes are still largely unknown. Fyn, a Src-family non-receptor tyrosine kinase (SFK), and its interaction with tau in mediating brain pathology in epilepsy and Alzheimer's disease can be a potential therapeutic target for disease modification. Although Fyn and tau pathology occurs in both Alzheimer's disease and epilepsy, the dynamics of Fyn-tau and PSD95-NR2B interactions affected by seizures and their impact on brain pathology in epilepsy have not been investigated. In this study, we demonstrate a significant increase of Fyn-tau interactions following seizure induction by kainate in both acute and chronic rodent models and in human epilepsy. In the early phase of epileptogenesis, we show increased Fyn/tau/NR2B/PSD95/neuronal nitric oxide synthase complexes after status epilepticus and a postsynaptic increase of phosphorylated tau (pY18 and AT8), Fyn (pSFK-Y416), NMDAR (pNR2B-Y1472) and neuronal nitric oxide synthase. Hippocampal proximity ligation assay and co-immunoprecipitation revealed a sustained increase of Fyn-tau and NR2B-PSD95 complexes/binding in rat chronic epilepsy at 3 months post-status epilepticus. Enhanced Fyn-tau complexes strongly correlated with the frequency of spontaneously recurring convulsive seizures and epileptiform spikes in the chronic epilepsy model. In human epileptic brains, we also identified increased Fyn-tau and NR2B-PSD95 complexes, tau phosphorylation (pY18 and AT8) and Fyn activation (pSFK-Y416), implying the translational and therapeutic potential of these molecular interactions. In tau knockout mice and in rats treated with a Fyn/SFK inhibitor saracatinib, we found a significant reduction of phosphorylated Fyn, tau (AT8 in saracatinib-treated), NR2B and neuronal nitric oxide synthase and their interactions (Fyn-tau and NR2B-PSD95 in saracatinib-treated group; NR2B-PSD95 in tau knockout group). The reduction of Fyn-tau and NR2B-PSD95 interactions in the saracatinib-treated group, in contrast to the vehicle-treated group, correlated with the modification in seizure progression in the rat chronic epilepsy model. These findings from animal models and human epilepsy provide evidence for the role of Fyn-tau and NR2B-PSD95 interactions in seizure-induced brain pathology and suggest that blocking such interactions could modify the progression of epilepsy.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Cara Gardner
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Guanghao Liu
- Department of Internal Medicine, Carver College of Medicine, Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Jordan Trommater
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Michael Bunney
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Alexander G Bassuk
- Department of Pediatrics, The University of Iowa Stead Family, Iowa City, IA 52242, USA
- Department of Neurology, The University of Iowa Stead Family, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute (INI), College of Medicine, University of Iowa Carver, Iowa City, IA 52242, USA
| | - Marco Hefti
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | - Gloria Lee
- Department of Internal Medicine, Carver College of Medicine, Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
2
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Zhang J, Zhang C, Chen X, Wang B, Ma W, Yang Y, Zheng R, Huang Z. PKA-RIIβ autophosphorylation modulates PKA activity and seizure phenotypes in mice. Commun Biol 2021; 4:263. [PMID: 33649504 PMCID: PMC7921646 DOI: 10.1038/s42003-021-01748-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and intractable neurological disorders in adults. Dysfunctional PKA signaling is causally linked to the TLE. However, the mechanism underlying PKA involves in epileptogenesis is still poorly understood. In the present study, we found the autophosphorylation level at serine 114 site (serine 112 site in mice) of PKA-RIIβ subunit was robustly decreased in the epileptic foci obtained from both surgical specimens of TLE patients and seizure model mice. The p-RIIβ level was negatively correlated with the activities of PKA. Notably, by using a P-site mutant that cannot be autophosphorylated and thus results in the released catalytic subunit to exert persistent phosphorylation, an increase in PKA activities through transduction with AAV-RIIβ-S112A in hippocampal DG granule cells decreased mIPSC frequency but not mEPSC, enhanced neuronal intrinsic excitability and seizure susceptibility. In contrast, a reduction of PKA activities by RIIβ knockout led to an increased mIPSC frequency, a reduction in neuronal excitability, and mice less prone to experimental seizure onset. Collectively, our data demonstrated that the autophosphorylation of RIIβ subunit plays a critical role in controlling neuronal and network excitabilities by regulating the activities of PKA, providing a potential therapeutic target for TLE.
Collapse
Affiliation(s)
- Jingliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Chenyu Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoling Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weining Ma
- Department of Neurology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN, USA
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- Neuroscience Research Institute, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education, Beijing, China.
- Key Laboratory for Neuroscience of National Health Commission, Beijing, China.
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education, Beijing, China.
- Key Laboratory for Neuroscience of National Health Commission, Beijing, China.
| |
Collapse
|
5
|
Yu X, Jia L, Yin K, Lv J, Yu W, Du H. Src is Implicated in Hepatic Ischemia Reperfusion-Induced Hippocampus Injury and Long-Term Cognitive Impairment in Young Mice via NMDA Receptor Subunit 2A Activation. Neuroscience 2018; 391:1-12. [DOI: 10.1016/j.neuroscience.2018.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022]
|
6
|
Nagappan-Chettiar S, Johnson-Venkatesh EM, Umemori H. Tyrosine phosphorylation of the transmembrane protein SIRPα: Sensing synaptic activity and regulating ectodomain cleavage for synapse maturation. J Biol Chem 2018; 293:12026-12042. [PMID: 29914984 DOI: 10.1074/jbc.ra117.001488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/08/2018] [Indexed: 11/06/2022] Open
Abstract
Synapse maturation is a neural activity-dependent process during brain development, in which active synapses preferentially undergo maturation to establish efficient neural circuits in the brain. Defects in this process are implicated in various neuropsychiatric disorders. We have previously reported that a postsynaptic transmembrane protein, signal regulatory protein-α (SIRPα), plays an important role in activity-dependently directing synapse maturation. In the presence of synaptic activity, the ectodomain of SIRPα is cleaved and released and then acts as a retrograde signal to induce presynaptic maturation. However, how SIRPα detects synaptic activity to promote its ectodomain cleavage and synapse maturation is unknown. Here, we show that activity-dependent tyrosine phosphorylation of SIRPα is critical for SIRPα cleavage and synapse maturation. We found that during synapse maturation and in response to neural activity, SIRPα is highly phosphorylated on its tyrosine residues in the hippocampus, a structure critical for learning and memory. Tyrosine phosphorylation of SIRPα was necessary for SIRPα cleavage and presynaptic maturation, as indicated by the fact that a phosphorylation-deficient SIRPα variant underwent much less cleavage and could not drive presynaptic maturation. However, SIRPα phosphorylation did not affect its synaptic localization. Finally, we show that inhibitors of the Src and JAK kinase family suppress neural activity-dependent SIRPα phosphorylation and cleavage. Together, our results indicate that SIRPα phosphorylation serves as a mechanism for detecting synaptic activity and linking it to the ectodomain cleavage of SIRPα, which in turn drives synapse maturation in an activity-dependent manner.
Collapse
Affiliation(s)
- Sivapratha Nagappan-Chettiar
- Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Hisashi Umemori
- Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
7
|
The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol Neurobiol 2016; 54:1008-1021. [DOI: 10.1007/s12035-016-9715-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
8
|
Kane LT, Costa BM. Identification of novel allosteric modulator binding sites in NMDA receptors: A molecular modeling study. J Mol Graph Model 2015; 61:204-13. [PMID: 26280688 DOI: 10.1016/j.jmgm.2015.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/31/2022]
Abstract
The dysfunction of N-methyl-d-Aspartate receptors (NMDARs), a subtype of glutamate receptors, is correlated with schizophrenia, stroke, and many other neuropathological disorders. However, not all NMDAR subtypes equally contribute towards these disorders. Since NMDARs composed of different GluN2 subunits (GluN2A-D) confer varied physiological properties and have different distributions in the brain, pharmacological agents that target NMDARs with specific GluN2 subunits have significant potential for therapeutic applications. In our previous research, we have identified a family of novel allosteric modulators that differentially potentiate and/or inhibit NMDARs of differing GluN2 subunit composition. To further elucidate their molecular mechanisms, in the present study, we have identified four potential binding sites for novel allosteric modulators by performing molecular modeling, docking, and in silico mutations. The molecular determinants of the modulator binding sites (MBS), analysis of particular MBS electrostatics, and the specific loss or gain of binding after mutations have revealed modulators that have strong potential affinities for specific MBS on given subunits and the role of key amino acids in either promoting or obstructing modulator binding. These findings will help design higher affinity GluN2 subunit-selective pharmaceuticals, which are currently unavailable to treat psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Lucas T Kane
- Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Blaise M Costa
- Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA 24060, USA; Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg VA, 24061, USA.
| |
Collapse
|
9
|
Colciaghi F, Finardi A, Nobili P, Locatelli D, Spigolon G, Battaglia GS. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia. PLoS One 2014; 9:e89898. [PMID: 24587109 PMCID: PMC3937400 DOI: 10.1371/journal.pone.0089898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/28/2014] [Indexed: 01/17/2023] Open
Abstract
Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Paola Nobili
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Giada Spigolon
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
10
|
Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 2013; 45:1067-72. [PMID: 23933819 DOI: 10.1038/ng.2728] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 07/18/2013] [Indexed: 12/20/2022]
Abstract
Idiopathic focal epilepsy (IFE) with rolandic spikes is the most common childhood epilepsy, comprising a phenotypic spectrum from rolandic epilepsy (also benign epilepsy with centrotemporal spikes, BECTS) to atypical benign partial epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS). The genetic basis is largely unknown. We detected new heterozygous mutations in GRIN2A in 27 of 359 affected individuals from 2 independent cohorts with IFE (7.5%; P = 4.83 × 10(-18), Fisher's exact test). Mutations occurred significantly more frequently in the more severe phenotypes, with mutation detection rates ranging from 12/245 (4.9%) in individuals with BECTS to 9/51 (17.6%) in individuals with CSWS (P = 0.009, Cochran-Armitage test for trend). In addition, exon-disrupting microdeletions were found in 3 of 286 individuals (1.0%; P = 0.004, Fisher's exact test). These results establish alterations of the gene encoding the NMDA receptor NR2A subunit as a major genetic risk factor for IFE.
Collapse
|
11
|
Naylor DE, Liu H, Niquet J, Wasterlain CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 2013; 54:225-38. [PMID: 23313318 DOI: 10.1016/j.nbd.2012.12.015] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE.
Collapse
Affiliation(s)
- David E Naylor
- Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, USA; Department of Neurology, Veterans Administration Greater Los Angeles Healthcare System, USA.
| | | | | | | |
Collapse
|
12
|
Frasca A, Aalbers M, Frigerio F, Fiordaliso F, Salio M, Gobbi M, Cagnotto A, Gardoni F, Battaglia GS, Hoogland G, Di Luca M, Vezzani A. Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity. Neurobiol Dis 2011; 43:507-15. [DOI: 10.1016/j.nbd.2011.04.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/15/2011] [Accepted: 04/28/2011] [Indexed: 02/07/2023] Open
|
13
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2690] [Impact Index Per Article: 179.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu JX, Tang YC, Liu Y, Tang FR. Status epilepticus alters hippocampal PKAbeta and PKAgamma expression in mice. Seizure 2010; 19:414-20. [PMID: 20630779 DOI: 10.1016/j.seizure.2010.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 06/12/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES To investigate the localization and progressive changes of cyclic-AMP dependent protein kinase (cPKA) in the mouse hippocampus at acute stages during and after pilocarpine induced status epilepticus. METHODS Pilocarpine induced status epilepticus mice were sacrificed 30 min, 2 h or 1 day after the start of a approximately 7 h lasting status as assessed by video-electroencephalography. Brains were processed for quantitative immunohistochemistry of hippocampal cPKAbeta and cPKAgamma, and immunohistochemical co-localization of cPKAbeta and cPKAgamma with calbindin (CB), calretinin (CR), and parvalbumin (PV). RESULTS Based on anatomical and morphological assessment, cPKAbeta was primarily expressed by principal cells and cPKAgamma by interneurons. In CA1, cPKAbeta co-localized with 76% of CB, 41% of CR, and 95% of PV-immunopositive cells, while cPKAgamma co-localized with 50% of CB, 29% of CR, and 80% of PV-immunopositive cells. Upon induction of status epilepticus, cPKAbeta expression was transiently reduced in CA1, whereas cPKAgamma expression was sustainably reduced. CONCLUSION cPKA may play an important role in neuronal hyperexcitability, death and epileptogenesis during and after pilocarpine induced status epilepticus.
Collapse
Affiliation(s)
- Jian Xin Liu
- Institute of Neurobiology, School of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | |
Collapse
|
15
|
Wu GM, Hou XY. Oligomerized Abeta25-35 induces increased tyrosine phosphorylation of NMDA receptor subunit 2A in rat hippocampal CA1 subfield. Brain Res 2010; 1343:186-93. [PMID: 20441772 DOI: 10.1016/j.brainres.2010.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/20/2010] [Accepted: 04/20/2010] [Indexed: 11/24/2022]
Abstract
Amyloid-beta peptide (Abeta) plays a causal role in the pathogenesis of Alzheimer's disease (AD). To elucidate the mechanisms underlying the over-activation of NMDA receptors in AD, we investigated the alteration of NR2A tyrosine phosphorylation after intracerebroventricular infusion of Abeta25-35 oligomers. Abeta25-35 treatment resulted in the elevated tyrosine phosphorylation of NR2A in rat hippocampal CA1 subfield and facilitated the interactions of NR2A or PSD-95 with Src kinases. PP2, a specific inhibitor of Src family protein tyrosine kinases (SrcPTKs), not only attenuated the Abeta25-35-induced increases in the tyrosine phosphorylation of NR2A and in the associations among Src, NR2A, and PSD-95, but also protected against neuronal loss in the CA1 region. Preapplication of a noncompetitive NMDA receptor antagonist amantadine, an NR2A-selective NMDA receptor antagonist NVP-AAM077, or an NR2B-selective NMDA receptor antagonist Ro25-6981 inhibited the increased tyrosine phosphorylation of NR2A and prevented the associations among Src, NR2A, and PSD-95, but Ro25-6981 had less contribution. These results suggest that the activation of NMDA receptors after Abeta treatment promotes the formation of NR2A-PSD-95-Src complex and thus increases the tyrosine phosphorylation of NR2A by Src kinases, which up-regulates the function of NMDA receptors. Such positive feedback mediates the Abeta-induced over-activation of NMDA receptors and is involved in neuronal impairment.
Collapse
Affiliation(s)
- Gui-Mei Wu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, 84 West Huaihai Road, Jiangsu 221002, China
| | | |
Collapse
|
16
|
Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 2009; 205:529-64. [PMID: 19455309 PMCID: PMC2814770 DOI: 10.1007/s00213-009-1562-z] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/30/2009] [Indexed: 12/12/2022]
Abstract
The past decade has brought many advances in our understanding of GABA(A) receptor-mediated ethanol action in the central nervous system. We now know that specific GABA(A) receptor subtypes are sensitive to ethanol at doses attained during social drinking while other subtypes respond to ethanol at doses attained by severe intoxication. Furthermore, ethanol increases GABAergic neurotransmission through indirect effects, including the elevation of endogenous GABAergic neuroactive steroids, presynaptic release of GABA, and dephosphorylation of GABA(A) receptors promoting increases in GABA sensitivity. Ethanol's effects on intracellular signaling also influence GABAergic transmission in multiple ways that vary across brain regions and cell types. The effects of chronic ethanol administration are influenced by adaptations in GABA(A) receptor function, expression, trafficking, and subcellular localization that contribute to ethanol tolerance, dependence, and withdrawal hyperexcitability. Adolescents exhibit altered sensitivity to ethanol actions, the tendency for higher drinking and longer lasting GABAergic adaptations to chronic ethanol administration. The elucidation of the mechanisms that underlie adaptations to ethanol exposure are leading to a better understanding of the regulation of inhibitory transmission and new targets for therapies to support recovery from ethanol withdrawal and alcoholism.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - Patrizia Porcu
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - David F. Werner
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | | | | | - Rebecca S. Helfand
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - A. Leslie Morrow
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|
17
|
Neuroprotection after status epilepticus by targeting protein interactions with postsynaptic density protein 95. J Neuropathol Exp Neurol 2009; 68:823-31. [PMID: 19535989 DOI: 10.1097/nen.0b013e3181ac6b70] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate essential neuronal excitation, but overactivation of NMDARs results in excitotoxic cell death in a variety of pathologic conditions, including status epilepticus (SE). Although NMDAR antagonists attenuate SE-induced brain injury, undesirable side effects have limited their clinical efficacy. Tat-NR2B9c was designed to disrupt protein interactions involving postsynaptic density protein 95 in the NMDAR signaling complex while not interfering with function of the NMDAR ion channel. We examined the ability of Tat-NR2B9c to provide neuroprotection in the hippocampus of rats after 60 minutes of SE induced by the repeated injection of low doses of pilocarpine (10 mg/kg). Tat-NR2B9c was administered 3hours after the termination of SE, and neuronal densities were assessed 14 days later by stereologic analysis of NeuN-positive cells. After SE, pyramidal cell densities were reduced by 70% in CA1, 34% in CA3, 58% in CA4, and 88% in the piriform cortex. In Tat-NR2B9c-treated rats, neuronal densities in CA1, a subregion of CA3, and CA4 were decreased by only 38%, 4%, and 26%, respectively. Tat-NR2B9c did not reduce cell loss in the posterior piriform cortex. The results indicate that targeted disruption of the NMDAR signaling complex represents a potential therapeutic approach for limiting neuronal cell loss after SE.
Collapse
|
18
|
Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Three distinct neuroprotective functions of myricetin against glutamate-induced neuronal cell death: involvement of direct inhibition of caspase-3. J Neurosci Res 2008; 86:1836-45. [PMID: 18265412 DOI: 10.1002/jnr.21629] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The excitatory neurotransmitter glutamate can accumulate in the brain and is thought to be involved in the etiology of many neurodegenerative disorders, including ischemia and Alzheimer disease. Therefore, it is important to search for compounds that reduce glutamate neurotoxicity. This glutamate-mediated excitotoxicity is caused by intracellular Ca2+ overload via the N-methyl-D-aspartate receptor NMDAR), reactive oxygen species (ROS) generation, and caspase-3 activation. Here we show that the natural flavonoid myricetin inhibited glutamate-induced excitotoxicity and protected neurons by multiple, distinct pathways. First, myricetin affected modulation of the NMDAR by phosphorylation, causing a subsequent reduction in glutamate-induced intracellular Ca2+ overload. Second, myricetin inhibited the ROS production caused by glutamate. Finally, glutamate-induced activation of caspase-3 was reduced by myricetin treatment. Moreover, myricetin directly interacted with the active site of caspase-3 via three hydrogen bonds and inhibited its activity. We conclude that myricetin inhibited glutamate-induced neuronal toxicity by multiple biochemical pathways. These results show that myricetin is a potent antineurodegenerative compound and may contribute to the discovery of a drug with which to combat neurodegeneration.
Collapse
Affiliation(s)
- Yoshiari Shimmyo
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
19
|
Fuortes MG, Faria LC, Merlin LR. Impact of protein kinase C activation on epileptiform activity in the hippocampal slice. Epilepsy Res 2008; 82:38-45. [PMID: 18715754 DOI: 10.1016/j.eplepsyres.2008.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/03/2008] [Accepted: 07/02/2008] [Indexed: 11/24/2022]
Abstract
There is evidence suggesting that protein kinase C (PKC) activation can prevent the enhanced network excitability associated with status epilepticus and group I metabotropic glutamate receptor (mGluR)-induced epileptogenesis. However, we observed no suppression of mGluR-induced burst prolongation in the guinea pig hippocampal slice when applied in the presence of the PKC activator phorbol-12,13-dibutyrate (PDBu). Furthermore, PDBu alone converted picrotoxin-induced interictal bursts into ictal-length discharges ranging from 2 to 6s in length. This effect could not be elicited by the inactive analog 4-alpha-PDBu and was suppressed with the PKC inhibitor chelerythrine, indicating PKC dependence. PKC activation can enhance neurotransmitter release, and both glutamate and acetylcholine are capable of eliciting similar prolonged synchronized discharges. However, neither mGluR1 nor NMDA receptor antagonist suppressed PDBu-driven burst prolongation, suggesting that increased glutamate release alone is unlikely to account for the PKC-induced expression of ictaform discharges. Similarly, atropine, a broad-spectrum muscarinic receptor antagonist, had no effect on PKC-induced burst prolongation. By contrast, AMPA/kainate receptor antagonist abolished PKC-induced burst prolongation, and mGluR5 antagonist significantly blunted the maximum burst length induced by PKC. These data suggest that PKC-induced prolongation of epileptiform bursts is dependent on changes specific to mGluR5 and AMPA/kainate receptors and not mediated simply by a generalized increase in transmitter release.
Collapse
Affiliation(s)
- Michaelangelo G Fuortes
- Neural and Behavioral Sciences Program, School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States
| | | | | |
Collapse
|
20
|
Involvement of the cAMP-dependent pathway in the reduction of epileptiform bursting caused by somatostatin in the mouse hippocampus. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:563-77. [PMID: 18665350 DOI: 10.1007/s00210-008-0338-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/10/2008] [Indexed: 11/27/2022]
Abstract
The cyclic AMP pathway is major signal transduction system involved in hippocampal neurotransmission. Recently, the peptide somatostatin-14 (SRIF) has emerged as a key signal that, by activating its receptors, inhibits epileptiform bursting in the mouse hippocampus. Little is known on transduction mechanisms, which may mediate SRIF function in native cell/tissues. Using a well-established model of epileptiform activity induced by Mg(2+)-free medium with 4-aminopyridine [0 Mg(2+)/4-aminopyridine (4-AP)] in mouse hippocampal slices, we demonstrated that protein kinase A (PKA)-related signaling is upregulated by hippocampal bursting and that treatment with SRIF normalizes this upregulation. We also demonstrated that the SRIF-induced inhibition of PKA impairs phosphorylation of the NMDA receptor subunit NR1. Extracellular recordings of the 0 Mg(2+)/4-AP-induced hippocampal discharge from the CA3 region demonstrated that treating slices with compounds, which interfere with PKA activity, prevent SRIF inhibition of epileptiform bursting. Our results suggest that SRIF modulation of hippocampal activity may involve PKA-related signaling.
Collapse
|
21
|
Merlin LR. Impact of protein kinase C activation on status epilepticus and epileptogenesis: oh, what a tangled web. Epilepsy Curr 2008; 8:101-3. [PMID: 18596877 DOI: 10.1111/j.1535-7511.2008.00256.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Deficits in Phosphorylation of GABAA Receptors by Intimately Associated Protein Kinase C Activity Underlie Compromised Synaptic Inhibition during Status Epilepticus. Terunuma M, Xu J, Vithlani M, Sieghart W, Kittler J, Pangalos M, Haydon PG, Coulter DA, Moss SJ. J Neurosci 2008;28(2):376–384. Status epilepticus (SE) is a progressive and often lethal human disorder characterized by continuous or rapidly repeating seizures. Of major significance in the pathology of SE are deficits in the functional expression of GABAA receptors (GABAARs), the major sites of fast synaptic inhibition in the brain. We demonstrate that SE selectively decreases the phosphorylation of GABAARs on serine residues 408/9 (S408/9) in the β3 subunit by intimately associated protein kinase C isoforms. Dephosphorylation of S408/9 unmasks a basic patch-binding motif for the clathrin adaptor AP2, enhancing the endocytosis of selected GABAAR subtypes from the plasma membrane during SE. In agreement with this, enhancing S408/9 phosphorylation or selectively blocking the binding of the β3 subunit to AP2 increased GABAAR cell surface expression levels and restored the efficacy of synaptic inhibition in SE. Thus, enhancing phosphorylation of GABAARs or selectively blocking their interaction with AP2 may provide novel therapeutic strategies to ameliorate SE.
Collapse
|
22
|
Deficits in phosphorylation of GABA(A) receptors by intimately associated protein kinase C activity underlie compromised synaptic inhibition during status epilepticus. J Neurosci 2008; 28:376-84. [PMID: 18184780 DOI: 10.1523/jneurosci.4346-07.2008] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Status epilepticus (SE) is a progressive and often lethal human disorder characterized by continuous or rapidly repeating seizures. Of major significance in the pathology of SE are deficits in the functional expression of GABA(A) receptors (GABA(A)Rs), the major sites of fast synaptic inhibition in the brain. We demonstrate that SE selectively decreases the phosphorylation of GABA(A)Rs on serine residues 408/9 (S408/9) in the beta3 subunit by intimately associated protein kinase C isoforms. Dephosphorylation of S408/9 unmasks a basic patch-binding motif for the clathrin adaptor AP2, enhancing the endocytosis of selected GABA(A)R subtypes from the plasma membrane during SE. In agreement with this, enhancing S408/9 phosphorylation or selectively blocking the binding of the beta3 subunit to AP2 increased GABA(A)R cell surface expression levels and restored the efficacy of synaptic inhibition in SE. Thus, enhancing phosphorylation of GABA(A)Rs or selectively blocking their interaction with AP2 may provide novel therapeutic strategies to ameliorate SE.
Collapse
|
23
|
Ghelardini C, Galeotti N, Vivoli E, Norcini M, Zhu W, Stefano GB, Guarna M, Bianchi E. Molecular interaction in the mouse PAG between NMDA and opioid receptors in morphine-induced acute thermal nociception. J Neurochem 2007; 105:91-100. [PMID: 17996026 DOI: 10.1111/j.1471-4159.2007.05117.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous evidence demonstrates that low dose morphine systemic administration induces acute thermal hyperalgesia in normal mice through microOR stimulation of the inositol signaling pathway. We investigated the site of action of morphine and the mechanism of action of microOR activation by morphine to NMDA receptor as it relates to acute thermal hyperalgesia. Our experiments show that acute thermal hyperalgesia is blocked in periaqueductal gray with the microOR antagonist CTOP, the NMDA antagonist MK801 and the protein kinase C inhibitor chelerythrine. Therefore, a site of action of systemically administered morphine low dose on acute thermal hyperalgesic response appears to be located at the periaqueductal gray. At this supraspinal site, microOR stimulation by systemically morphine low dose administration leads to an increased phosphorylation of specific subunit of NMDA receptor. Our experiments show that the phosphorylation of subunit 1 of NMDA receptor parallels the acute thermal hyperalgesia suggesting a role for this subunit in morphine-induced hyperalgesia. Protein kinase C appears to be the key element that links microOR activation by morphine administration to mice with the recruitment of the NMDA/glutamatergic system involved in the thermal hyperalgesic response.
Collapse
Affiliation(s)
- Carla Ghelardini
- Department of Clinical and Preclinical Pharmacology, University of Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The Inhibition of Epileptogenesis During Status Epilepticus by Ginsenosides of Korean Red Ginseng and Ginseng Cell Culture (Dan25). J Ginseng Res 2007. [DOI: 10.5142/jgr.2007.31.3.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Abstract
Neurodegeneration in limbic circuits is a hallmark feature of chronic temporal lobe epilepsy (TLE). Studies in experimental animal models and human patients indicate that seizure-induced neuronal injury involves some active, as well as passive cell death processes. Experimental approaches that inhibit active steps in cell death programs have been shown to reduce neuronal cell death and sclerosis, but not to prevent epileptogenesis in animal models of TLE. These findings suggest that we need additional research using both animal models and brain slices from human patients to understand the pathological mechanisms underlying seizure generation. Such comparative studies will also aid in evaluating the potential therapeutic value of inhibiting cell death in seizure disorders.
Collapse
Affiliation(s)
- Janice R Naegele
- Department of Biology, Room 257, Hall-Atwater Laboratory, Lawn Avenue, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
26
|
McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. ACTA ACUST UNITED AC 2006; 2006:re12. [PMID: 17033045 DOI: 10.1126/stke.3562006re12] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epilepsy, a disorder of recurrent seizures, is a common and frequently devastating neurological condition. Available therapy is only symptomatic and often ineffective. Understanding epileptogenesis, the process by which a normal brain becomes epileptic, may help identify molecular targets for drugs that could prevent epilepsy. A number of acquired and genetic causes of this disorder have been identified, and various in vivo and in vitro models of epileptogenesis have been established. Here, we review current insights into the molecular signaling mechanisms underlying epileptogenesis, focusing on limbic epileptogenesis. Study of different models reveals that activation of various receptors on the surface of neurons can promote epileptogenesis; these receptors include ionotropic and metabotropic glutamate receptors as well as the TrkB neurotrophin receptor. These receptors are all found in the membrane of a discrete signaling domain within a particular type of cortical neuron--the dendritic spine of principal neurons. Activation of any of these receptors results in an increase Ca2+ concentration within the spine. Various Ca2+-regulated enzymes found in spines have been implicated in epileptogenesis; these include the nonreceptor protein tyrosine kinases Src and Fyn and a serine-threonine kinase [Ca2+-calmodulin-dependent protein kinase II (CaMKII)] and phosphatase (calcineurin). Cross-talk between astrocytes and neurons promotes increased dendritic Ca2+ and synchronous firing of neurons, a hallmark of epileptiform activity. The hypothesis is proposed that limbic epilepsy is a maladaptive consequence of homeostatic responses to increases of Ca2+ concentration within dendritic spines induced by abnormal neuronal activity.
Collapse
Affiliation(s)
- James O McNamara
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
27
|
Viviani B, Gardoni F, Bartesaghi S, Corsini E, Facchi A, Galli CL, Di Luca M, Marinovich M. Interleukin-1β Released by gp120 Drives Neural Death through Tyrosine Phosphorylation and Trafficking of NMDA Receptors. J Biol Chem 2006; 281:30212-22. [PMID: 16887807 DOI: 10.1074/jbc.m602156200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Interleukin-1beta is a proinflammatory cytokine implicated under pathological conditions involving NMDA receptor activation, including the AIDS dementia complex (HAD). No information is available on the molecular mechanisms recruited by native interleukin-1beta produced under this type of condition. Using a sandwich co-culture of primary hippocampal neurons and glia, we investigated whether native interleukin-1beta released by HIV-gp120-activated glia (i) affects NMDAR functions and (ii) the relevance on neuronal spine density and survival, two specific traits of HAD. Increased phosphorylation of NR2B Tyr-1472 was observed after 24 h of exposure of neurons to 600 pm gp120. This effect occurred only when neurons were treated in the presence of glial cells and was abolished by the interleukin-1 receptor antagonist (IL-1ra). Gp120-induced phosphorylation of NR2B resulted in a sustained elevation of intracellular Ca(2+) in neurons and in a significant increase of NR2B binding to PSD95. Increased intracellular Ca(2+) was prevented by 10 mum ifenprodil, that selectively inhibits receptors containing the NR2B, by interleukin-1ra and by Ca-pYEEIE, a Src family SH2 inhibitor peptide. These last two inhibitors, prevented also NR2B binding to PSD95. Finally, gp120 reduced by 35% of the total PSD95 positive spine density after 48 h of treatment and induced by 30% of the neuronal death. Again, both of these effects were blocked by Ca-pYEEIE. Altogether, our data show that gp120 releasing interleukin-1beta from glia increases tyrosine phosphorylation of NMDAR. Thus, tyrosine phosphorylation may contribute to the sensitization of the receptor increasing its function and synaptic localization. Both of these effects are relevant for neurodegeneration.
Collapse
Affiliation(s)
- Barbara Viviani
- Laboratory of Toxicology and Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Huo JZ, Dykstra CM, Gurd JW. Increase in tyrosine phosphorylation of the NMDA receptor following the induction of status epilepticus. Neurosci Lett 2006; 401:266-70. [PMID: 16600505 DOI: 10.1016/j.neulet.2006.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/13/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
The administration of lithium followed by pilocarpine induces status epilepticus (SE) that produces neurodegeneration and the subsequent development of spontaneous recurrent seizures. We have reported that tyrosine phosphorylation of the NMDA receptor is elevated over controls for several hours following 60 min of SE. In the current study, we assessed the temporal relationship between tyrosine phosphorylation of the NMDA receptor and the onset of SE. SE was induced using the Li/pilocarine model and phosphorylation of the NMDA receptor subunits NR2A and NR2B determined. Tyrosine phosphorylation of the NMDAR remained unchanged prior to the onset of SE and increased gradually thereafter. The onset of SE was accompanied by activation of Src-family tyrosine kinases and Pyk2 in the post-synaptic density, consistent with a role for these enzymes in SE-induced tyrosine phosphorylation. The results indicate that tyrosine phosphorylation of the NMDAR closely parallels the activation of Src-family kinases and follows, rather than precedes, the onset of SE.
Collapse
Affiliation(s)
- Jeanne Zhen Huo
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada M1C 1A4
| | | | | |
Collapse
|
29
|
Gardoni F, Di Luca M. New targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 2006; 545:2-10. [PMID: 16831414 DOI: 10.1016/j.ejphar.2006.06.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 03/20/2006] [Accepted: 06/13/2006] [Indexed: 12/13/2022]
Abstract
Excitotoxicity is thought to be a major mechanism in many human disease states such as ischemia, trauma, epilepsy and chronic neurodegenerative disorders. Briefly, synaptic overactivity leads to the excessive release of glutamate that activates postsynaptic cell membrane receptors, which upon activation open their associated ion channel pore to produce ion influx. To date, although molecular basis of glutamate toxicity remain uncertain, there is general agreement that N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors plays a key role in mediating at least some aspects of glutamate neurotoxicity. On this view, research has focused in the discovery of new compounds able to either reduce glutamate release or activation of postsynaptic NMDA receptors. Although NMDA receptor antagonists prevent excitotoxicity in cellular and animal models, these drugs have limited usefulness clinically. Side effects such as psychosis, nausea, vomiting, memory impairment, and neuronal cell death accompany complete NMDA receptor blockade, dramatizing the crucial role of the NMDA receptor in normal neuronal processes. Recently, however, well-tolerated compounds such as memantine has been shown to be able to block excitotoxic cell death in a clinically tolerated manner. Understanding the biochemical properties of the multitude of NMDA receptor subtypes offers the possibility of developing more effective and clinically useful drugs. The increasing knowledge of the structure and function of this postsynaptic NMDA complex may improve the identification of specific molecular targets whose pharmacological or genetic manipulation might lead to innovative therapies for brain disorders.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy.
| | | |
Collapse
|
30
|
Grabauskas G, Chapman H, Wheal HV. Role of protein kinase C in modulation of excitability of CA1 pyramidal neurons in the rat. Neuroscience 2006; 139:1301-13. [PMID: 16533575 DOI: 10.1016/j.neuroscience.2006.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 01/06/2006] [Accepted: 01/21/2006] [Indexed: 11/18/2022]
Abstract
Biochemical and in situ hybridization studies demonstrated that the levels of protein kinase C variants were significantly increased in the hippocampus of the experimental models of epilepsy in rats. In addition it has been demonstrated that protein kinase C plays an important role in modulating synaptic transmission in the hippocampus. We examined the effects of activating of protein kinase C on the excitability of CA1 pyramidal neurons and synaptic transmission, using whole-cell current-clamp and extracellular field potential recording techniques. Indolactam V (1 microM) a novel protein kinase C activator, increased the excitability of CA1 neurons acting at both pre- and post-synaptic sites. Indolactam V, acting postsynaptically, significantly reduced the threshold for initiation of action potential from -42+/-3.8 mV to -51+/-3.1 mV and selectively inhibited the slow afterhyperpolarizing potential. Indolactam V also altered the neuronal firing properties in response to prolonged depolarizing pulse by eliminating the spike frequency accommodation. Our data indicate that indolactam V potentiated both amplitudes of Shaffer-collateral stimulation evoked excitatory postsynaptic currents and disynaptically evoked inhibitory evoked postsynaptic currents. However, the potentiation of inhibitory evoked postsynaptic currents amplitudes was not observed after blockade of NMDA and AMPA/kainate currents suggesting it was due to excitatory activity driving inhibitory neurons. The results indicate that the potentiation of pharmacologically isolated excitatory postsynaptic currents (215% of control) and amplitudes of population spikes (290% of control) was due to action of indolactam V presynaptically since the agonist reduced the paired-pulse ratio and the potentiating effect was not blocked by dialyzing the postsynaptic neuron through the recording electrode with a specific protein kinase C inactivator calphostin C. These findings suggest that protein kinase C increases the amplitude of epileptiform activity by causing potentiation of excitatory synaptic transmission, increasing the excitability of postsynaptic neurons and reducing negative feed back provided by slow afterhyperpolarizing potential.
Collapse
Affiliation(s)
- G Grabauskas
- Neuroscience Research Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, UK
| | | | | |
Collapse
|