1
|
Carli S, Schirripa A, Mirino P, Capirchio A, Caligiore D. The role of the prefrontal cortex in cocaine-induced noradrenaline release in the nucleus accumbens: a computational study. BIOLOGICAL CYBERNETICS 2025; 119:6. [PMID: 39920377 PMCID: PMC11805868 DOI: 10.1007/s00422-025-01005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Research has extensively explored the role of the dopaminergic system in the reward circuit, while the contribution of the noradrenergic system remains less understood. This study aims to fill this gap by employing computational modeling to examine how the medial prefrontal cortex (mPFC) influences cocaine-induced norepinephrine (NE) release in the nucleus accumbens shell (NAcc), with mediation by the nucleus of the tractus solitarius (NTS) and the locus coeruleus (LC). The model replicates previously reported data on NE release in the mPFC following cocaine administration. Additionally, it predicts that NE depletion in the mPFC affects NE release in the NAcc through interactions with the NTS and LC. This work proposes a system-level hypothesis, suggesting that the mPFC regulates NE release in the NAcc by modulating the LC and NTS. These findings enhance our understanding of the neurochemical response to cocaine and offer potential directions for future addiction treatments.
Collapse
Affiliation(s)
- Samuele Carli
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy
- Entersys s.r.l., Via San Pio X 44, 35027, Noventa Padovana, Padua, Italy
| | - Aurelia Schirripa
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy
| | - Pierandrea Mirino
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy
| | - Adriano Capirchio
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy.
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy.
| |
Collapse
|
2
|
Serafini RA, Farzinpour Z, Patel V, Kelley AM, Estill M, Pryce KD, Sakloth F, Teague CD, Torres-Berrio A, Nestler EJ, Shen L, Akbarian S, Karkhanis AN, Blitzer RD, Zachariou V. Nucleus accumbens myocyte enhancer factor 2C mediates the maintenance of peripheral nerve injury-induced physiological and behavioral maladaptations. Pain 2024; 165:2733-2748. [PMID: 38985454 DOI: 10.1097/j.pain.0000000000003316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/18/2024] [Indexed: 07/11/2024]
Abstract
ABSTRACT Preclinical and clinical work has demonstrated altered plasticity and activity in the nucleus accumbens (NAc) under chronic pain states, highlighting critical therapeutic avenues for the management of chronic pain conditions. In this study, we demonstrate that myocyte enhancer factor 2C (MEF2C), a master regulator of neuronal activity and plasticity, is repressed in NAc neurons after prolonged spared nerve injury (SNI). Viral-mediated overexpression of Mef2c in NAc neurons partially ameliorated sensory hypersensitivity and emotional behaviors in mice with SNI, while also altering transcriptional pathways associated with synaptic signaling. Mef2c overexpression also reversed SNI-induced potentiation of phasic dopamine release and neuronal hyperexcitability in the NAc. Transcriptional changes induced by Mef2c overexpression were different than those observed after desipramine treatment, suggesting a mechanism of action different from antidepressants. Overall, we show that interventions in MEF2C-regulated mechanisms in the NAc are sufficient to disrupt the maintenance of chronic pain states, providing potential new treatment avenues for neuropathic pain.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| | - Zahra Farzinpour
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| | - Vishwendra Patel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Abigail M Kelley
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kerri D Pryce
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Farhana Sakloth
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Collin D Teague
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Angelica Torres-Berrio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anushree N Karkhanis
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venetia Zachariou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| |
Collapse
|
3
|
Mah A, Golden CEM, Constantinople CM. Dopamine transients encode reward prediction errors independent of learning rates. Cell Rep 2024; 43:114840. [PMID: 39395170 PMCID: PMC11571066 DOI: 10.1016/j.celrep.2024.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
Biological accounts of reinforcement learning posit that dopamine encodes reward prediction errors (RPEs), which are multiplied by a learning rate to update state or action values. These values are thought to be represented by corticostriatal synaptic weights, which are updated by dopamine-dependent plasticity. This suggests that dopamine release reflects the product of the learning rate and RPE. Here, we characterize dopamine encoding of learning rates in the nucleus accumbens core (NAcc) in a volatile environment. Using a task with semi-observable states offering different rewards, we find that rats adjust how quickly they initiate trials across states using RPEs. Computational modeling and behavioral analyses show that learning rates are higher following state transitions and scale with trial-by-trial changes in beliefs about hidden states, approximating normative Bayesian strategies. Notably, dopamine release in the NAcc encodes RPEs independent of learning rates, suggesting that dopamine-independent mechanisms instantiate dynamic learning rates.
Collapse
Affiliation(s)
- Andrew Mah
- Center for Neural Science, New York University, New York, NY, USA
| | - Carla E M Golden
- Center for Neural Science, New York University, New York, NY, USA
| | | |
Collapse
|
4
|
Mah A, Golden CE, Constantinople CM. Dopamine transients encode reward prediction errors independent of learning rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590090. [PMID: 38659861 PMCID: PMC11042285 DOI: 10.1101/2024.04.18.590090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Biological accounts of reinforcement learning posit that dopamine encodes reward prediction errors (RPEs), which are multiplied by a learning rate to update state or action values. These values are thought to be represented in synaptic weights in the striatum, and updated by dopamine-dependent plasticity, suggesting that dopamine release might reflect the product of the learning rate and RPE. Here, we leveraged the fact that animals learn faster in volatile environments to characterize dopamine encoding of learning rates in the nucleus accumbens core (NAcc). We trained rats on a task with semi-observable states offering different rewards, and rats adjusted how quickly they initiated trials across states using RPEs. Computational modeling and behavioral analyses showed that learning rates were higher following state transitions, and scaled with trial-by-trial changes in beliefs about hidden states, approximating normative Bayesian strategies. Notably, dopamine release in the NAcc encoded RPEs independent of learning rates, suggesting that dopamine-independent mechanisms instantiate dynamic learning rates.
Collapse
Affiliation(s)
- Andrew Mah
- Center for Neural Science, New York University
| | | | | |
Collapse
|
5
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
6
|
Gárate-Pérez MF, Cáceres-Vergara D, Tobar F, Bahamondes C, Bahamonde T, Sanhueza C, Guzmán F, Sotomayor-Zárate R, Renard GM. Effect of lateral septum vasopressin administration on reward system neurochemistry and amphetamine-induced addictive-like behaviors in female rats. Front Pharmacol 2024; 15:1411927. [PMID: 39135790 PMCID: PMC11317434 DOI: 10.3389/fphar.2024.1411927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: The chronic use of psychostimulants increases the risk of addiction and, there is no specific pharmacologic treatment for psychostimulant addiction. The vasopressin (AVP) system is a possible pharmacological target in drug addiction. Previous results obtained in our laboratory showed that amphetamine (AMPH) treatment decreases lateral septum (LS) AVP levels in male rats, and AVP microinjection in LS decreases addictive-like behavior. The aim of the present work was to investigate the effect of AMPH treatment on LS AVP levels and the effect of LS AVP administration on the expression of AMPH-conditioned place preference (CPP) in female rats. The secondary objectives were to study the effect of LS AVP administration on LS GABA and glutamate release in male and female rats and on nucleus accumbens (NAc) dopamine (DA) release in female rats. Methods: Female rats were conditioned with AMPH (1.5 mg/kg i.p.) or saline for 4 days. Results: Conditioning with AMPH did not change LS AVP content in females. However, AVP microinjection into the LS decreased the expression of conditioned place preference (CPP) to AMPH. Glutamate and GABA extracellular levels in the LS induced by AVP were studied in males and females. NAc GABA and DA extracellular levels induced by LS AVP microinjection in female rats were measured by microdialysis. In males, AVP perfusion produced a significant increase in LS GABA extracellular levels; however, a decrease in GABA extracellular levels was observed in females. Both in males and females, LS AVP perfusion did not produce changes in LS glutamate extracellular levels. Microinjection of AVP into the LS did not change GABA or DA extracellular levels in the NAc of females. Discussion: Therefore, AVP administration into the LS produces different LS-NAc neurochemical responses in females than males but decreases CPP to AMPH in both sexes. The behavioral response in males is due to a decrease in NAc DA levels, but in females, it could be due to a preventive increase in NAc DA levels. It is reasonable to postulate that, in females, the decrease in conditioning produced by AVP microinjection is influenced by other factors inherent to sex, and an effect on anxiety cannot be discarded.
Collapse
Affiliation(s)
- Macarena Francisca Gárate-Pérez
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Daniela Cáceres-Vergara
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Francisca Tobar
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Carolina Bahamondes
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tamara Bahamonde
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Claudia Sanhueza
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Fanny Guzmán
- Laboratorio de Síntesis de Péptidos, Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Georgina M. Renard
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| |
Collapse
|
7
|
Rissardo JP, Vora N, Mathew B, Kashyap V, Muhammad S, Fornari Caprara AL. Overview of Movement Disorders Secondary to Drugs. Clin Pract 2023; 13:959-976. [PMID: 37623268 PMCID: PMC10453030 DOI: 10.3390/clinpract13040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Drug-induced movement disorders affect a significant percentage of individuals, and they are commonly overlooked and underdiagnosed in clinical practice. Many comorbidities can affect these individuals, making the diagnosis even more challenging. Several variables, including genetics, environmental factors, and aging, can play a role in the pathophysiology of these conditions. The Diagnostic and Statistical Manual of Mental Disorders (DSM) and the International Statistical Classification of Diseases and Related Health Problems (ICD) are the most commonly used classification systems in categorizing drug-induced movement disorders. This literature review aims to describe the abnormal movements associated with some medications and illicit drugs. Myoclonus is probably the most poorly described movement disorder, in which most of the reports do not describe electrodiagnostic studies. Therefore, the information available is insufficient for the diagnosis of the neuroanatomical source of myoclonus. Drug-induced parkinsonism is rarely adequately evaluated but should be assessed with radiotracers when these techniques are available. Tardive dyskinesias and dyskinesias encompass various abnormal movements, including chorea, athetosis, and ballism. Some authors include a temporal relationship to define tardive syndromes for other movement disorders, such as dystonia, tremor, and ataxia. Antiseizure medications and antipsychotics are among the most thoroughly described drug classes associated with movement disorders.
Collapse
Affiliation(s)
| | - Nilofar Vora
- Medicine Department, Terna Speciality Hospital and Research Centre, Navi Mumbai 400706, India;
| | - Bejoi Mathew
- Medicine Department, Sri Devaraj Urs Medical College, Kolar Karnataka 563101, India;
| | - Vikas Kashyap
- Medicine Department, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India;
| | - Sara Muhammad
- Neurology Department, Mayo Clinic, Rochester, MN 55906, USA;
| | | |
Collapse
|
8
|
Yuen J, Goyal A, Rusheen AE, Kouzani AZ, Berk M, Kim JH, Tye SJ, Abulseoud OA, Oesterle TS, Blaha CD, Bennet KE, Lee KH, Oh Y, Shin H. Oxycodone-induced dopaminergic and respiratory effects are modulated by deep brain stimulation. Front Pharmacol 2023; 14:1199655. [PMID: 37408764 PMCID: PMC10318172 DOI: 10.3389/fphar.2023.1199655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction: Opioids are the leading cause of overdose death in the United States, accounting for almost 70,000 deaths in 2020. Deep brain stimulation (DBS) is a promising new treatment for substance use disorders. Here, we hypothesized that VTA DBS would modulate both the dopaminergic and respiratory effect of oxycodone. Methods: Multiple-cyclic square wave voltammetry (M-CSWV) was used to investigate how deep brain stimulation (130 Hz, 0.2 ms, and 0.2 mA) of the rodent ventral segmental area (VTA), which contains abundant dopaminergic neurons, modulates the acute effects of oxycodone administration (2.5 mg/kg, i.v.) on nucleus accumbens core (NAcc) tonic extracellular dopamine levels and respiratory rate in urethane-anesthetized rats (1.5 g/kg, i.p.). Results: I.V. administration of oxycodone resulted in an increase in NAcc tonic dopamine levels (296.9 ± 37.0 nM) compared to baseline (150.7 ± 15.5 nM) and saline administration (152.0 ± 16.1 nM) (296.9 ± 37.0 vs. 150.7 ± 15.5 vs. 152.0 ± 16.1, respectively, p = 0.022, n = 5). This robust oxycodone-induced increase in NAcc dopamine concentration was associated with a sharp reduction in respiratory rate (111.7 ± 2.6 min-1 vs. 67.9 ± 8.3 min-1; pre- vs. post-oxycodone; p < 0.001). Continuous DBS targeted at the VTA (n = 5) reduced baseline dopamine levels, attenuated the oxycodone-induced increase in dopamine levels to (+39.0% vs. +95%), and respiratory depression (121.5 ± 6.7 min-1 vs. 105.2 ± 4.1 min-1; pre- vs. post-oxycodone; p = 0.072). Discussion: Here we demonstrated VTA DBS alleviates oxycodone-induced increases in NAcc dopamine levels and reverses respiratory suppression. These results support the possibility of using neuromodulation technology for treatment of drug addiction.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Jee Hyun Kim
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Susannah J. Tye
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Psychiatry and Behavioral Science, Emory University, Atlanta, GA, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | | | | | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Yuen J, Goyal A, Rusheen AE, Kouzani AZ, Berk M, Kim JH, Tye SJ, Blaha CD, Bennet KE, Lee KH, Shin H, Oh Y. High frequency deep brain stimulation can mitigate the acute effects of cocaine administration on tonic dopamine levels in the rat nucleus accumbens. Front Neurosci 2023; 17:1061578. [PMID: 36793536 PMCID: PMC9922701 DOI: 10.3389/fnins.2023.1061578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Cocaine's addictive properties stem from its capacity to increase tonic extracellular dopamine levels in the nucleus accumbens (NAc). The ventral tegmental area (VTA) is a principal source of NAc dopamine. To investigate how high frequency stimulation (HFS) of the rodent VTA or nucleus accumbens core (NAcc) modulates the acute effects of cocaine administration on NAcc tonic dopamine levels multiple-cyclic square wave voltammetry (M-CSWV) was used. VTA HFS alone decreased NAcc tonic dopamine levels by 42%. NAcc HFS alone resulted in an initial decrease in tonic dopamine levels followed by a return to baseline. VTA or NAcc HFS following cocaine administration prevented the cocaine-induced increase in NAcc tonic dopamine. The present results suggest a possible underlying mechanism of NAc deep brain stimulation (DBS) in the treatment of substance use disorders (SUDs) and the possibility of treating SUD by abolishing dopamine release elicited by cocaine and other drugs of abuse by DBS in VTA, although further studies with chronic addiction models are required to confirm that. Furthermore, we demonstrated the use of M-CSWV can reliably measure tonic dopamine levels in vivo with both drug administration and DBS with minimal artifacts.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Jee Hyun Kim
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Susannah J. Tye
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Frau R, Devoto P, Aroni S, Saba P, Sagheddu C, Siddi C, Santoni M, Carli M, Gessa GL. The potent α 2-adrenoceptor antagonist RS 79948 also inhibits dopamine D 2 -receptors: Comparison with atipamezole and raclopride. Neuropharmacology 2022; 217:109192. [PMID: 35850212 DOI: 10.1016/j.neuropharm.2022.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Neurochemical, electrophysiological and behavioral evidence indicate that the potent α2-adrenoceptor antagonist RS 79948 is also a dopamine (DA) D2 receptor antagonist. Thus, results from ligand binding and adenylate cyclase activity indicate that RS 79948 binds to D2 receptors and antagonized D2 receptor-mediated inhibition of cAMP synthesis at nanomolar concentrations. RESULTS: from microdialysis indicated that RS 79948 shared with the selective α2-adrenergic antagonist atipamezole the ability to increase the co-release of DA and norepinephrine (NE) from noradrenergic terminals in the medial prefrontal cortex (mPFC), except that RS 79948-induced DA release persisted after noradrenergic denervation, unlike atipamezole effect, indicating that RS 79948 releases DA from dopaminergic terminals as well. Similarly to the D2 antagonist raclopride, but unlike atipamezole, RS 79948 increased extracellular DA and DOPAC in the caudate nucleus. Electrophysiological results indicate that RS 79948 shared with raclopride the ability to activate the firing of ventral tegmental area (VTA) DA neurons, while atipamezole was ineffective. RESULTS: from behavioral studies indicated that RS 79948 exerted effects mediated by independent, cooperative and contrasting inhibition of α2-and D2 receptors. Thus, RS 79948, but not atipamezole, prevented D2-autoreceptor mediated hypomotility produced by a small dose of quinpirole. RS 79948 potentiated, more effectively than atipamezole, quinpirole-induced motor stimulation. RS 79948 antagonized, less effectively than atipamezole, raclopride-induced catalepsy. Future studies should clarify if the dual α2-adrenoceptor- and D2-receptor antagonistic action might endow RS 79948 with potential therapeutic relevance in the treatment of schizophrenia, drug dependence, depression and Parkinson's disease.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy; The Guy Everett Laboratory for Neuroscience, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy; The Guy Everett Laboratory for Neuroscience, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy.
| | - Sonia Aroni
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Carlotta Siddi
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Michele Santoni
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy; The Guy Everett Laboratory for Neuroscience, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| |
Collapse
|
11
|
Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. Int J Mol Sci 2021; 22:ijms22189806. [PMID: 34575969 PMCID: PMC8471564 DOI: 10.3390/ijms22189806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.
Collapse
|
12
|
Yuen J, Goyal A, Rusheen AE, Kouzani AZ, Berk M, Kim JH, Tye SJ, Blaha CD, Bennet KE, Jang DP, Lee KH, Shin H, Oh Y. Cocaine-Induced Changes in Tonic Dopamine Concentrations Measured Using Multiple-Cyclic Square Wave Voltammetry in vivo. Front Pharmacol 2021; 12:705254. [PMID: 34295252 PMCID: PMC8290896 DOI: 10.3389/fphar.2021.705254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
For over 40 years, in vivo microdialysis techniques have been at the forefront in measuring the effects of illicit substances on brain tonic extracellular levels of dopamine that underlie many aspects of drug addiction. However, the size of microdialysis probes and sampling rate may limit this technique’s ability to provide an accurate assessment of drug effects in microneural environments. A novel electrochemical method known as multiple-cyclic square wave voltammetry (M-CSWV), was recently developed to measure second-to-second changes in tonic dopamine levels at microelectrodes, providing spatiotemporal resolution superior to microdialysis. Here, we utilized M-CSWV and fast-scan cyclic voltammetry (FSCV) to measure changes in tonic or phasic dopamine release in the nucleus accumbens core (NAcc) after acute cocaine administration. Carbon-fiber microelectrodes (CFM) and stimulating electrodes were implanted into the NAcc and medial forebrain bundle (MFB) of urethane anesthetized (1.5 g/kg i.p.) Sprague-Dawley rats, respectively. Using FSCV, depths of each electrode were optimized by determining maximal MFB electrical stimulation-evoked phasic dopamine release. Changes in phasic responses were measured after a single dose of intravenous saline or cocaine hydrochloride (3 mg/kg; n = 4). In a separate group, changes in tonic dopamine levels were measured using M-CSWV after intravenous saline and after cocaine hydrochloride (3 mg/kg; n = 5). Both the phasic and tonic dopamine responses in the NAcc were augmented by the injection of cocaine compared to saline control. The phasic and tonic levels changed by approximately x2.4 and x1.9, respectively. These increases were largely consistent with previous studies using FSCV and microdialysis. However, the minimal disruption/disturbance of neuronal tissue by the CFM may explain why the baseline tonic dopamine values (134 ± 32 nM) measured by M-CSWV were found to be 10-fold higher when compared to conventional microdialysis. In this study, we demonstrated phasic dopamine dynamics in the NAcc with acute cocaine administration. M-CSWV was able to record rapid changes in tonic levels of dopamine, which cannot be achieved with other current voltammetric techniques. Taken together, M-CSWV has the potential to provide an unprecedented level of physiologic insight into dopamine signaling, both in vitro and in vivo, which will significantly enhance our understanding of neurochemical mechanisms underlying psychiatric conditions.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Dong-Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Noradrenergic Signaling Disengages Feedforward Transmission in the Nucleus Accumbens Shell. J Neurosci 2021; 41:3752-3763. [PMID: 33737458 DOI: 10.1523/jneurosci.2420-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
The nucleus accumbens shell (NAcSh) receives extensive monoaminergic input from multiple midbrain structures. However, little is known how norepinephrine (NE) modulates NAc circuit dynamics. Using a dynamic electrophysiological approach with optogenetics, pharmacology, and drugs acutely restricted by tethering (DART), we explored microcircuit-specific neuromodulatory mechanisms recruited by NE signaling in the NAcSh of parvalbumin (PV)-specific reporter mice. Surprisingly, NE had little direct effect on modulation of synaptic input at medium spiny projection neurons (MSNs). In contrast, we report that NE transmission selectively modulates glutamatergic synapses onto PV-expressing fast-spiking interneurons (PV-INs) by recruiting postsynaptically-localized α2-adrenergic receptors (ARs). The synaptic effects of α2-AR activity decrease PV-IN-dependent feedforward inhibition onto MSNs evoked via optogenetic stimulation of cortical afferents to the NAcSh. These findings provide insight into a new circuit motif in which NE has a privileged line of communication to tune feedforward inhibition in the NAcSh.SIGNIFICANCE STATEMENT The nucleus accumbens (NAc) directs reward-related motivational output by integrating glutamatergic input with diverse neuromodulatory input from monoamine centers. The present study reveals a synapse-specific regulatory mechanism recruited by norepinephrine (NE) signaling within parvalbumin-expressing interneuron (PV-IN) feedforward inhibitory microcircuits. PV-IN-mediated feedforward inhibition in the NAc is instrumental in coordinating NAc output by synchronizing the activity of medium spiny projection neurons (MSNs). By negatively regulating glutamatergic transmission onto PV-INs via α2-adrenergic receptors (ARs), NE diminishes feedforward inhibition onto MSNs to promote NAc output. These findings elucidate previously unknown microcircuit mechanisms recruited by the historically overlooked NE system in the NAc.
Collapse
|
14
|
Cunningham JI, Todtenkopf MS, Dean RL, Azar MR, Koob GF, Deaver DR, Eyerman DJ. Samidorphan, an opioid receptor antagonist, attenuates drug-induced increases in extracellular dopamine concentrations and drug self-administration in male Wistar rats. Pharmacol Biochem Behav 2021; 204:173157. [PMID: 33647274 DOI: 10.1016/j.pbb.2021.173157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/22/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Opioid receptors modulate neurochemical and behavioral responses to drugs of abuse in nonclinical models. Samidorphan (SAM) is a new molecular entity that binds with high affinity to human mu- (μ), kappa- (κ), and delta- (δ) opioid receptors and functions as a μ-opioid receptor antagonist with partial agonist activity at κ- and δ-opioid receptors. Based on its in vitro profile, we hypothesized that SAM would block key neurobiological effects of drugs of abuse. Therefore, we assessed the effects of SAM on ethanol-, oxycodone-, cocaine-, and amphetamine-induced increases in extracellular dopamine (DAext) in the nucleus accumbens shell (NAc-sh), and ethanol and cocaine self-administration behavior in rats. In microdialysis studies, administration of SAM alone did not result in measurable changes in NAc-sh DAext when given across a large range of doses. However, SAM markedly decreased average and maximal increases in NAc-sh DAext produced by each of the drugs of abuse tested. In behavioral studies, SAM attenuated fixed-ratio ethanol self-administration and progressive ratio cocaine self-administration. These results highlight the potential of SAM to counteract the neurobiological and behavioral effects of several drugs of abuse with differing mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - George F Koob
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
15
|
Devoto P, Sagheddu C, Santoni M, Flore G, Saba P, Pistis M, Gessa GL. Noradrenergic Source of Dopamine Assessed by Microdialysis in the Medial Prefrontal Cortex. Front Pharmacol 2020; 11:588160. [PMID: 33071798 PMCID: PMC7538903 DOI: 10.3389/fphar.2020.588160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
Previous results indicate that dopamine (DA) release in the medial prefrontal cortex (mPFC) is modified by α2 adrenoceptor- but not D2 DA receptor- agonists and antagonists, suggesting that DA measured by microdialysis in the mPFC originates from noradrenergic terminals. Accordingly, noradrenergic denervation was found to prevent α2-receptor-mediated rise and fall of extracellular DA induced by atipamezole and clonidine, respectively, in the mPFC. The present study was aimed to determine whether DA released by dopaminergic terminals in the mPFC is not detected by in vivo microdialysis because is readily taken up by norepinephrine transporter (NET). Accordingly, the D2-antagonist raclopride increased the electrical activity of DA neurons in the ventral tegmental area (VTA) and enhanced extracellular DOPAC but failed to modify DA in the mPFC. However, in rats whose NET was either inactivated by nisoxetine or eliminated by noradrenergic denervation, raclopride still elevated extracellular DOPAC and activated dopaminergic activity, but also increased DA. Conversely, the D2-receptor agonist quinpirole reduced DOPAC but failed to modify DA in the mPFC in control rats. However, in rats whose NET was eliminated by noradrenergic denervation or inhibited by locally perfused nisoxetine, quinpirole maintained its ability to reduce DOPAC but acquired that of reducing DA. Moreover, raclopride and quinpirole, when locally perfused into the mPFC of rats subjected to noradrenergic denervation, were able to increase and decrease, respectively, extracellular DA levels, while being ineffective in control rats. Transient inactivation of noradrenergic neurons by clonidine infusion into the locus coeruleus, a condition where NET is preserved, was found to reduce extracellular NE and DA in the mPFC, whereas noradrenergic denervation, a condition where NET is eliminated, almost totally depleted extracellular NE but increased DA. Both transient inactivation and denervation of noradrenergic neurons were found to reduce the number of spontaneously active DA neurons and their bursting activity in the VTA. The results indicate that DA released in the mPFC by dopaminergic terminals is not detected by microdialysis unless DA clearance from extracellular space is inactivated. They support the hypothesis that noradrenergic terminals are the main source of DA measured by microdialysis in the mPFC during physiologically relevant activities.
Collapse
Affiliation(s)
- Paola Devoto
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,"Guy Everett" Laboratory, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michele Santoni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Flore
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Gian Luigi Gessa
- "Guy Everett" Laboratory, University of Cagliari, Cagliari, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
16
|
Devoto P, Flore G, Saba P, Scheggi S, Mulas G, Gambarana C, Spiga S, Gessa GL. Noradrenergic terminals are the primary source of α 2-adrenoceptor mediated dopamine release in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:97-103. [PMID: 30472147 DOI: 10.1016/j.pnpbp.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022]
Abstract
In various psychiatric disorders, deficits in dopaminergic activity in the prefrontal cortex (PFC) are implicated. Treatments involving selective augmentation of dopaminergic activity in the PFC primarily depend on the inhibition of α2-adrenoreceptors singly or in combination with the inhibition of the norepinephrine transporter (NET). We aimed to clarify the relative contribution of dopamine (DA) release from noradrenergic and dopaminergic terminals to DA output induced by blockade of α2-adrenoreceptors and NET. To this end, we assessed whether central noradrenergic denervation modified catecholamine output in the medial PFC (mPFC) of rats elicited by atipamezole (an α2-adrenoreceptor antagonist), nisoxetine (an NET inhibitor), or their combination. Intraventricular administration of anti-dopamine-beta-hydroxylase-saporin (aDBH) caused a loss of DBH-positive fibers in the mPFC and almost total depletion of tissue and extracellular NE level; however, it did not reduce tissue DA level but increased extracellular DA level by 70% in the mPFC. Because noradrenergic denervation should have caused a loss of NET and reduced NE level at α2-adrenoceptors, the actual effect of an aDBH-induced lesion on DA output elicited by blockade of α2-adrenoceptors and NET was evaluated by comparing denervated and control rats following blockade of α2-adrenoceptors and NET with atipamezole and nisoxetine, respectively. In the control rats, extracellular NE and DA levels increased by approximately 150% each with 3 mg/kg atipamezole; 450% and 230%, respectively, with 3 mg/kg nisoxetine; and 2100% and 600%, respectively, with combined atipamezole and nisoxetine. In the denervated rats, consistent with the loss of NET, nisoxetine failed to modify extracellular DA level, whereas atipamezole, despite the lack of NE-induced stimulation of α2-adrenoceptors, increased extracellular DA level by approximately 30%. Overall, these results suggest that atipamezole-induced DA release mainly originated from noradrenergic terminals, possibly through the inhibition of α2-autoreceptors. Furthermore, while systemic and local administration of the α2-adrenoceptor agonist clonidine into the mPFC of the controls rats reduced extracellular NE level by 80% and 60%, respectively, and extracellular DA level by 50% and 60%, respectively, it failed to reduce DA output in the denervated rats, consistent with the loss of α2-autoreceptors. To eliminate the possibility that denervation reduced DA release potential via the effects at dopaminergic terminals in the mPFC, the effect of systemic administration of the D2-DA antagonist raclopride (0.5 mg/kg IP) on DA output was analyzed. In the control rats, raclopride was found to be ineffective when administered alone, but it increased extracellular DA level by 380% following NET inhibition with nisoxetine. In the denervated rats, as expected due to the loss of NET, raclopride-alone or with nisoxetine-increased DA release to approximately the same level as that observed in the control rats after NET inhibition. Overall, these results suggest that noradrenergic terminals in the mPFC are the primary source of DA released by blockade of α2-adrenoreceptors and NET and that α2-autoreceptors, and not α2-heteroreceptors, mediate DA output induced by α2-adrenoceptor blockade.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience, INN, Section of Cagliari, Italy.
| | - Giovanna Flore
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giovanna Mulas
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Saturnino Spiga
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Research Council, CNR, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
17
|
Fitzpatrick CM, Andreasen JT. Differential effects of ADHD medications on impulsive action in the mouse 5-choice serial reaction time task. Eur J Pharmacol 2019; 847:123-129. [DOI: 10.1016/j.ejphar.2019.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022]
|
18
|
Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. Anatomic Review of the Ventral Capsule/Ventral Striatum and the Nucleus Accumbens to Guide Target Selection for Deep Brain Stimulation for Obsessive-Compulsive Disorder. World Neurosurg 2019; 126:1-10. [PMID: 30790738 DOI: 10.1016/j.wneu.2019.01.254] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Disturbances in the reward network of the brain underlie addiction, depression, and obsessive-compulsive disorder. The ventral capsule/ventral striatum and nucleus accumbens (NAc) region is a clinically approved target for deep brain stimulation for obsessive-compulsive disorder. METHODS We performed a comprehensive literature review to define clinically relevant anatomy and connectivity of the ventral capsule/ventral striatum and NAc region to guide target selection for deep brain stimulation. RESULTS Architecturally and functionally, the NAc is divided into the core and the shell, with each area having different connections. The shell primarily receives limbic information, and the core typically receives information from the motor system. In general, afferents from the prefrontal cortex, hippocampus, and amygdala are excitatory. The dopaminergic projections to the NAc from the ventral tegmental area modulate the balance of these excitatory inputs. Several important inputs to the NAc converge at the junction of the internal capsule (IC) and the anterior commissure (AC): the ventral amygdalofugal pathways that run parallel to and underneath the AC, the precommissural fornical fibers that run anterior to the AC, axons from the ventral prefrontal cortex and medial orbitofrontal cortex that occupy the most ventral part of the IC and embedding within the NAc and AC, and the superolateral branch of the medial forebrain bundle located parallel to the anterior thalamic radiation in the IC. CONCLUSIONS The caudal part of the NAc passing through the IC-AC junction may be an effective target for deep brain stimulation to improve behavioral symptoms associated with obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Yong-Sook Park
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | | | - Nicole A Young
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - John Corrigan
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA.
| | - Ali R Rezai
- Department of Neurosurgery, West Virginia University Hospital, Morgantown, West Virginia, USA
| |
Collapse
|
19
|
Hamed A, Daszczuk P, Kursa MB, Turzyńska D, Sobolewska A, Lehner M, Boguszewski PM, Szyndler J. Non-parametric analysis of neurochemical effects and Arc expression in amphetamine-induced 50-kHz ultrasonic vocalization. Behav Brain Res 2016; 312:174-85. [DOI: 10.1016/j.bbr.2016.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022]
|
20
|
Hodes A, Rosen H, Deutsch J, Lifschytz T, Einat H, Lichtstein D. Endogenous cardiac steroids in animal models of mania. Bipolar Disord 2016; 18:451-9. [PMID: 27393337 DOI: 10.1111/bdi.12413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/25/2016] [Accepted: 06/04/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a complex psychiatric disorder characterized by mania and depression. Alterations in brain Na(+) , K(+) -ATPase and cardiac steroids (CSs) have been detected in BD, raising the hypothesis of their involvement in this pathology. The present study investigated the behavioral and biochemical consequences of a reduction in endogenous brain CS activity in animal models of mania. METHODS Amphetamine (AMPH)-induced hyperactivity in BALB/c and black Swiss mice served as a model of mania. Behavior was evaluated in the open-field test in naïve mice or in mice treated with anti-ouabain antibodies. CS levels were determined by enzyme-linked immunosorbent assay (ELISA), using sensitive and specific anti-ouabain antibodies. Extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) phosphorylation levels in the frontal cortex were determined by western blot analysis. RESULTS Administration of AMPH to BALB/c and black Swiss mice resulted in a marked increase in locomotor activity, accompanied by a threefold increase in brain CSs. The lowering of brain CSs by the administration of anti-ouabain antibodies prevented the hyperactivity and the increase in brain CS levels. AMPH caused an increase in phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt) levels in the frontal cortex, which was significantly reduced by administration of the antibodies. A synthetic 'functional antagonist' of CSs, 4-(3'α-15'β-dihydroxy-5'β-estran-17'β-yl) furan-2-methyl alcohol, also resulted in attenuation of AMPH-induced hyperactivity. CONCLUSIONS These results are in accordance with the notion that malfunctioning of the Na(+) , K(+) -ATPase/CS system may be involved in the manifestation of mania and identify this system as a potential new target for drug development.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haim Rosen
- Departments of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | - Tzuri Lifschytz
- Department of Psychiatry, Hadassah Hospital, Jerusalem, Israel
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
21
|
Kim M, Lee JG, Yang CH, Lee S. Silica stationary phase-based on-line sample enrichment coupled with LC-MS/MS for the quantification of dopamine, serotonin and their metabolites in rat brain microdialysates. Anal Chim Acta 2016; 923:55-65. [PMID: 27155302 DOI: 10.1016/j.aca.2016.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/29/2016] [Accepted: 03/16/2016] [Indexed: 01/15/2023]
Abstract
Accurate measurement of trace levels of endogenous compounds remains challenging despite advancements in analytical technologies. In particular, monoamine neurotransmitters such as dopamine (DA) and serotonin (5-HT) are polar compounds with low molecular weights, which complicates the optimization of retention and detection on liquid chromatography-mass spectrometry (LC-MS). Microdialysis is an important sampling technique to collect extracellular fluid from the brain of living animals. However, the very low basal concentrations of the neurotransmitters, small sample volume (maximum 30 μL) and the absence of matrix-matching calibrators are limitations of a microdialysate as an analytical sample. In the present study, an LC-MS/MS method was developed and fully validated for the quantification of DA, 5-HT and their main metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), in microdialysates from the rat nucleus accumbens shell. To improve the method sensitivity and accuracy, on-line sample enrichment using silica stationary phase was employed, before which any other sample pretreatment was not performed. The validation results proved the method to be selective, sensitive, accurate and precise, with acceptable linearity within calibration ranges. The lower limits of quantification were 0.025, 0.1, 0.5, 25 and 2.5 ng/mL for 5-HT, DA, 5-HIAA, HVA and DOPAC, respectively. This is a powerful analytical method to determine endogenous concentrations of those compounds in microdialysates from the rat nucleus accumbens and will be very useful to further study on the pathophysiological functions of monoamine neurotramsmitters in vivo.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Jin-Gyeom Lee
- College of Oriental Medicine, Daegu Haany University, 64 Gil, 25 Suseongro, Suseong-gu, Daegu 706-060, Republic of Korea
| | - Chae Ha Yang
- College of Oriental Medicine, Daegu Haany University, 64 Gil, 25 Suseongro, Suseong-gu, Daegu 706-060, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea.
| |
Collapse
|
22
|
Schippers MC, Schetters D, De Vries TJ, Pattij T. Differential effects of the pharmacological stressor yohimbine on impulsive decision making and response inhibition. Psychopharmacology (Berl) 2016; 233:2775-85. [PMID: 27251129 PMCID: PMC4917594 DOI: 10.1007/s00213-016-4337-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022]
Abstract
RATIONALE High levels of impulsivity have been associated with psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and substance abuse. In addition, acute stress is known to exacerbate many psychiatric symptoms in impulse control disorders. OBJECTIVES The purpose of the current study was to investigate the acute effects of the pharmacological stressor yohimbine on response inhibition and impulsive choice. METHODS A group of male rats (n = 12) was trained in the delayed reward task (DRT) to assess impulsive choice. A separate group (n = 10) was trained in the stop-signal task (SST) to measure response inhibition. Upon stable responding, the effects of yohimbine (0, 1.25, 2.5, and 5 mg/kg i.p.) were tested in a Latin square design. RESULTS Acute yohimbine significantly increased the preference for the large and delayed reinforcer in the DRT, indicating a decrease in impulsive choice. On the contrary, the effect size of 1.25 mg/kg yohimbine on stop-signal reaction times correlated negatively with baseline performance, suggesting a baseline-dependent effect on response inhibition as measured in the SST. CONCLUSIONS The current data suggest that the effects of the pharmacological stressor yohimbine on impulse control strongly depend on the type of impulsive behavior. Pharmacological stress decreased impulsive decision making, an observation that is in line with previously published rodent studies. By contrast, the lowest dose of yohimbine revealed a baseline-dependent effect on response inhibition. As such, the effects of yohimbine are largely comparable to the effects of psychostimulants on impulsivity and may support the notion of cross sensitization of stress and psychostimulants.
Collapse
Affiliation(s)
- M. C. Schippers
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - D. Schetters
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - T. J. De Vries
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - T. Pattij
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Carli M, Kostoula C, Sacchetti G, Mainolfi P, Anastasia A, Villani C, Invernizzi RW. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release. J Neurochem 2015; 135:674-85. [DOI: 10.1111/jnc.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Mirjana Carli
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Chrysaugi Kostoula
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Giuseppina Sacchetti
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Pierangela Mainolfi
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Alessia Anastasia
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Claudia Villani
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Roberto William Invernizzi
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| |
Collapse
|
24
|
Karkhanis AN, Locke JL, McCool BA, Weiner JL, Jones SR. Social isolation rearing increases nucleus accumbens dopamine and norepinephrine responses to acute ethanol in adulthood. Alcohol Clin Exp Res 2015; 38:2770-9. [PMID: 25421514 DOI: 10.1111/acer.12555] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Early-life stress is associated with increased vulnerability to alcohol addiction. However, the neural substrates linking chronic childhood/adolescent stress and increased risk of alcohol addiction are not well understood. In the nucleus accumbens (NAc), dopamine (DA) and norepinephrine (NE) signaling can be profoundly influenced by stress, anxiety, and drugs of abuse, including ethanol (EtOH). Here, we employed a rodent model of early-life stress that results in enduring increases in behavioral risk factors of alcoholism to gain a better understanding of how chronic adolescent stress may impact the EtOH sensitivity of DA and NE release in the NAc. METHODS Male Long-Evans rats were either group housed (GH; 4 rats/cage) or socially isolated (SI; 1 rat/cage) for 6 weeks beginning on postnatal day 28. SI and GH rats were tested in adulthood for anxiety-like behaviors (elevated plus maze), and the effects of EtOH (1 and 2 g/kg; intraperitoneally.) on NAc DA and NE were assessed by microdialysis. RESULTS SI animals showed increased anxiety-like behavior compared to GH animals. Although SI had no effect on baseline levels of DA or NE, baseline DA levels were positively correlated with anxiety measures. In addition, while no significant differences were observed with 1 g/kg EtOH, the 2 g/kg dose induced significantly greater DA release in SI animals. Moreover, EtOH (2 g/kg) only elevated NAc NE levels in SI rats. CONCLUSIONS These results suggest that chronic early-life stress sensitizes accumbal DA and NE release in response to an acute EtOH challenge. A greater EtOH sensitivity of DA and NE release dynamics in the NAc may contribute to increases in behavioral risk factors of alcoholism, like greater EtOH self-administration, that are observed in SI rats.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
25
|
Fulford AJ. Endogenous nociceptin system involvement in stress responses and anxiety behavior. VITAMINS AND HORMONES 2015; 97:267-93. [PMID: 25677776 DOI: 10.1016/bs.vh.2014.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mechanisms underpinning stress-related behavior and dysfunctional events leading to the expression of neuropsychiatric disorders remain incompletely understood. Novel candidates involved in the neuromodulation of stress, mediated both peripherally and centrally, provide opportunities for improved understanding of the neurobiological basis of stress disorders and may represent targets for novel therapeutic development. This chapter provides an overview of the mechanisms by which the opioid-related peptide, nociceptin, regulates the neuroendocrine stress response and stress-related behavior. In our research, we have employed nociceptin receptor antagonists to investigate endogenous nociceptin function in tonic control over stress-induced activity of the hypothalamo-pituitary-adrenal axis. Nociceptin demonstrates a wide range of functions, including modulation of psychological and inflammatory stress responses, modulation of neurotransmitter release, immune homeostasis, in addition to anxiety and cognitive behaviors. Greater appreciation of the complexity of limbic-hypothalamic neuronal networks, together with attention toward gender differences and the roles of steroid hormones, provides an opportunity for deeper understanding of the importance of the nociceptin system in the context of the neurobiology of stress and behavior.
Collapse
Affiliation(s)
- Allison Jane Fulford
- Centre for Comparative and Clinical Anatomy, University of Bristol, Bristol, BS2 8EJ, United Kingdom.
| |
Collapse
|
26
|
Zhang Y, Qu H, Zhou Y, Wang Y, Zhang D, Yang X, Yang C, Xu M. The involvement of norepinephrine in pain modulation in the nucleus accumbens of morphine-dependent rats. Neurosci Lett 2015; 585:6-11. [DOI: 10.1016/j.neulet.2014.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/29/2022]
|
27
|
Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome. PLoS One 2014; 9:e111300. [PMID: 25333512 PMCID: PMC4205097 DOI: 10.1371/journal.pone.0111300] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/15/2014] [Indexed: 01/22/2023] Open
Abstract
Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.
Collapse
|
28
|
Byun NE, Grannan M, Bubser M, Barry RL, Thompson A, Rosanelli J, Gowrishankar R, Kelm ND, Damon S, Bridges TM, Melancon BJ, Tarr JC, Brogan JT, Avison MJ, Deutch AY, Wess J, Wood MR, Lindsley CW, Gore JC, Conn PJ, Jones CK. Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology 2014; 39:1578-93. [PMID: 24442096 PMCID: PMC4023154 DOI: 10.1038/npp.2014.2] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that selective M4 muscarinic acetylcholine receptor (mAChR) activators may offer a novel strategy for the treatment of psychosis. However, previous efforts to develop selective M4 activators were unsuccessful because of the lack of M4 mAChR subtype specificity and off-target muscarinic adverse effects. We recently developed VU0152100, a highly selective M4 positive allosteric modulator (PAM) that exerts central effects after systemic administration. We now report that VU0152100 dose-dependently reverses amphetamine-induced hyperlocomotion in rats and wild-type mice, but not in M4 KO mice. VU0152100 also blocks amphetamine-induced disruption of the acquisition of contextual fear conditioning and prepulse inhibition of the acoustic startle reflex. These effects were observed at doses that do not produce catalepsy or peripheral adverse effects associated with non-selective mAChR agonists. To further understand the effects of selective potentiation of M4 on region-specific brain activation, VU0152100 alone and in combination with amphetamine were evaluated using pharmacologic magnetic resonance imaging (phMRI). Key neural substrates of M4-mediated modulation of the amphetamine response included the nucleus accumbens (NAS), caudate-putamen (CP), hippocampus, and medial thalamus. Functional connectivity analysis of phMRI data, specifically assessing correlations in activation between regions, revealed several brain networks involved in the M4 modulation of amphetamine-induced brain activation, including the NAS and retrosplenial cortex with motor cortex, hippocampus, and medial thalamus. Using in vivo microdialysis, we found that VU0152100 reversed amphetamine-induced increases in extracellular dopamine levels in NAS and CP. The present data are consistent with an antipsychotic drug-like profile of activity for VU0152100. Taken together, these data support the development of selective M4 PAMs as a new approach to the treatment of psychosis and cognitive impairments associated with psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Nellie E Byun
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Grannan
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Bubser
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert L Barry
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Analisa Thompson
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Rosanelli
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raajaram Gowrishankar
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Vanderbilt International Scholars Program, Vanderbilt University, Nashville, TN, USA
| | - Nathaniel D Kelm
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Stephen Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas M Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce J Melancon
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James C Tarr
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John T Brogan
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Malcolm J Avison
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ariel Y Deutch
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael R Wood
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, 418B Preston Research Building, Nashville, TN 37232, USA, Tel: +1 615 343 4337, Fax: +1 615 343 3088, E-mail:
| |
Collapse
|
29
|
Delay discounting task in pigs reveals response strategies related to dopamine metabolite. Physiol Behav 2013; 120:182-92. [DOI: 10.1016/j.physbeh.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/09/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022]
|
30
|
Meitzen J, Perry AN, Westenbroek C, Hedges VL, Becker JB, Mermelstein PG. Enhanced striatal β1-adrenergic receptor expression following hormone loss in adulthood is programmed by both early sexual differentiation and puberty: a study of humans and rats. Endocrinology 2013; 154:1820-31. [PMID: 23533220 PMCID: PMC3628022 DOI: 10.1210/en.2012-2131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After reproductive senescence or gonadectomy, changes occur in neural gene expression, ultimately altering brain function. The endocrine mechanisms underlying these changes in gene expression beyond immediate hormone loss are poorly understood. To investigate this, we measured changes in gene expression the dorsal striatum, where 17β-estradiol modulates catecholamine signaling. In human caudate, quantitative PCR determined a significant elevation in β1-adrenergic receptor (β1AR) expression in menopausal females when compared with similarly aged males. No differences were detected in β2-adrenergic and D1- and D2-dopamine receptor expression. Consistent with humans, adult ovariectomized female rats exhibited a similar increase in β1AR expression when compared with gonadectomized males. No sex difference in β1AR expression was detected between intact adults, prepubertal juveniles, or adults gonadectomized before puberty, indicating the necessity of pubertal development and adult ovariectomy. Additionally, increased β1AR expression in adult ovariectomized females was not observed if animals were masculinized/defeminized with testosterone injections as neonates. To generate a model system for assessing functional impact, increased β1AR expression was induced in female-derived cultured striatal neurons via exposure to and then removal of hormone-containing serum. Increased β1AR action on cAMP formation, cAMP response element-binding protein phosphorylation and gene expression was observed. This up-regulation of β1AR action was eliminated with 17β-estradiol addition to the media, directly implicating this hormone as a regulator of β1AR expression. Beyond having implications for the known sex differences in striatal function and pathologies, these data collectively demonstrate that critical periods early in life and at puberty program adult gene responsiveness to hormone loss after gonadectomy and potentially reproductive senescence.
Collapse
Affiliation(s)
- John Meitzen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Slaney TR, Mabrouk OS, Porter-Stransky KA, Aragona BJ, Kennedy RT. Chemical gradients within brain extracellular space measured using low flow push-pull perfusion sampling in vivo. ACS Chem Neurosci 2013; 4:321-9. [PMID: 23421683 DOI: 10.1021/cn300158p] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although populations of neurons are known to vary on the micrometer scale, little is known about whether basal concentrations of neurotransmitters also vary on this scale. We used low-flow push-pull perfusion to test if such chemical gradients exist between several small brain nuclei. A miniaturized polyimide-encased push-pull probe was developed and used to measure basal neurotransmitter spatial gradients within brain of live animals with 0.004 mm(3) resolution. We simultaneously measured dopamine (DA), norepinephrine, serotonin (5-HT), glutamate, γ-aminobutyric acid (GABA), aspartate (Asp), glycine (Gly), acetylcholine (ACh), and several neurotransmitter metabolites. Significant differences in basal concentrations between midbrain regions as little as 200 μm apart were observed. For example, dopamine in the ventral tegmental area (VTA) was 4.8 ± 1.5 nM but in the red nucleus was 0.5 ± 0.2 nM. Regions of high glutamate concentration and variability were found within the VTA of some individuals, suggesting hot spots of glutamatergic activity. Measurements were also made within the nucleus accumbens core and shell. Differences were not observed in dopamine and 5-HT in the core and shell; but their metabolites homovanillic acid (460 ± 60 nM and 130 ± 60 nM respectively) and 5-hydroxyindoleacetic acid (720 ± 200 nM and 220 ± 50 nM respectively) did differ significantly, suggesting differences in dopamine and 5-HT activity in these brain regions. Maintenance of these gradients depends upon a variety of mechanisms. Such gradients likely underlie highly localized effects of drugs and control of behavior that have been found using other techniques.
Collapse
Affiliation(s)
- Thomas R. Slaney
- Department of Chemistry, University of Michigan, 930 N. University Ave. Ann
Arbor, Michigan 48109, United States
| | - Omar S. Mabrouk
- Department of Chemistry, University of Michigan, 930 N. University Ave. Ann
Arbor, Michigan 48109, United States
| | - Kirsten A. Porter-Stransky
- Department of Psychology, University of Michigan, 530 Church St., Ann Arbor,
Michigan 48109, United States
| | - Brandon J. Aragona
- Department of Psychology, University of Michigan, 530 Church St., Ann Arbor,
Michigan 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave. Ann
Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Wright JM, Dobosiewicz MRS, Clarke PBS. The role of dopaminergic transmission through D1-like and D2-like receptors in amphetamine-induced rat ultrasonic vocalizations. Psychopharmacology (Berl) 2013; 225:853-68. [PMID: 23052567 DOI: 10.1007/s00213-012-2871-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/02/2012] [Indexed: 12/23/2022]
Abstract
RATIONALE Systemic amphetamine (AMPH) administration increases the rate of 50-kHz ultrasonic vocalizations (USVs) in adult rats and preferentially enhances the 'trill' subtype; these effects of AMPH critically depend on noradrenergic transmission, but the possible contributions of dopamine are unclear. OBJECTIVE To assess the role of dopamine in 50-kHz USVs emitted drug-free and following systemic AMPH administration. METHODS Adult male Long-Evans rats pre-selected for high AMPH-induced calling rates were tested with AMPH (1 mg/kg, intraperitoneal (IP)) and saline following pretreatment with the following dopamine receptor antagonists: SCH 23390 (0.005-0.02 mg/kg, subcutaneous (SC)), SCH 39166 (0.03-0.3 mg/kg, SC), haloperidol (0.1, 0.2 mg/kg, IP), sulpiride (20-80 mg/kg, SC), raclopride (0.1-0.5 mg/kg, SC), clozapine (4 mg/kg, SC), risperidone (0.5 mg/kg, SC), and pimozide (1 mg/kg, IP). The dopamine and noradrenaline reuptake inhibitors (GBR 12909 and nisoxetine, respectively) were also tested, alone and in combination. RESULTS SCH 23390, SCH 39166, haloperidol, and raclopride dose-dependently inhibited vocalizations under AMPH and suppressed the proportion of trill calls. Sulpiride, however, had no discernable effect on call rate or profile, even at a high dose that reduced locomotor activity. Single doses of clozapine, risperidone, and pimozide all markedly decreased calling under saline and AMPH. Finally, GBR 12909 and nisoxetine failed to promote 50-kHz USVs detectably or alter the subtype profile, when tested alone or in combination. CONCLUSIONS The rate of 50-kHz USVs and the call subtype profile following systemic AMPH administration depends on dopaminergic neurotransmission through D1-like and D2-like receptors. However, inhibiting dopamine and/or noradrenaline reuptake appears insufficient to induce calling.
Collapse
Affiliation(s)
- Jennifer M Wright
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building Rm. 1320 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | | | | |
Collapse
|
33
|
Schouw MLJ, Kaag AM, Caan MWA, Heijtel DFR, Majoie CBLM, Nederveen AJ, Booij J, Reneman L. Mapping the hemodynamic response in human subjects to a dopaminergic challenge with dextroamphetamine using ASL-based pharmacological MRI. Neuroimage 2013; 72:1-9. [PMID: 23296186 DOI: 10.1016/j.neuroimage.2012.12.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/10/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022] Open
Abstract
Pharmacological magnetic resonance imaging (phMRI) maps the neurovascular response to a pharmacological challenge and is increasingly used to assess neurotransmitter systems. Here we investigated the hemodynamic response to a dopaminergic (DAergic) challenge with dextroamphetamine (dAMPH) in humans using arterial spin labeling (ASL) based phMRI. Twelve healthy male subjects aged 21.0years (±1.5) were included. We used a pseudo-continuous ASL sequence (40min) to quantify cerebral blood flow (CBF) and started dAMPH infusion (0.3mg/kg) after 10min. On another day, we measured baseline dopamine D2/3 receptor availability with [(123)I]IBZM single photon emission computed tomography (SPECT). Baseline measures on mood and impulsivity and subjective behavioral responses to dAMPH were obtained. CBF response was corrected for cardiovascular effects using an occipital cortex mask for internal reference. Corrected CBF (sCBF) was analyzed using ROI-based and voxel-based analysis, in addition to independent component analysis (ICA). CBF data was correlated to D2/3 receptor availability and behavioral measures. Subjects reported experiencing euphoria following dAMPH administration. In the striatum sCBF significantly increased, as demonstrated by all three analysis methods. Voxel-based analysis and ICA also showed increased sCBF in the thalamus, anterior cingulate and cerebellum. Decreased sCBF was observed in several cortical areas, the posterior cingulated and paracingulate cortex. Apart from one ICA component, no correlations were found with sCBF changes and D2/3 receptor availability and behavioral measures. Our observations are in line with literature and provide further evidence that ASL-based phMRI with dAMPH is a promising technique to assess DAergic function in human subjects.
Collapse
Affiliation(s)
- M L J Schouw
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Espana RA, Jones SR. Presynaptic dopamine modulation by stimulant self-administration. Front Biosci (Schol Ed) 2013; 5:261-76. [PMID: 23277050 DOI: 10.2741/s371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine.
Collapse
Affiliation(s)
- Rodrigo A Espana
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
35
|
Economidou D, Theobald DEH, Robbins TW, Everitt BJ, Dalley JW. Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction time task through opponent actions in the shell and core sub-regions of the nucleus accumbens. Neuropsychopharmacology 2012; 37:2057-66. [PMID: 22510726 PMCID: PMC3398724 DOI: 10.1038/npp.2012.53] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impulsive behavior is a hallmark of several neuropsychiatric disorders (eg, attention-deficit/hyperactivity disorder, ADHD). Although dopamine (DA) and norepinephrine (NE) have a significant role in the modulation of impulsivity their neural loci of action is not well understood. Here, we investigated the effects of the selective NE re-uptake inhibitor atomoxetine (ATO) and the mixed DA/NE re-uptake inhibitor methylphenidate (MPH), both with proven clinical efficacy in ADHD, on the number of premature responses on a five-choice serial reaction time task, an operational measure of impulsivity. Microinfusions of ATO into the shell, but not the core, sub-region of the nucleus accumbens (NAcb) significantly decreased premature responding whereas infusions of MPH in the core, but not the shell, sub-region significantly increased premature responding. However, neither ATO nor MPH significantly altered impulsive behavior when infused into the prelimbic or infralimbic cortices. The opposing effects of ATO and MPH in the NAcb core and shell on impulsivity were unlikely mediated by ancillary effects on behavioral activation as locomotor activity was either unaffected, as in the case of ATO infusions in the core and shell, or increased when MPH was infused into either the core and shell sub-region. These findings indicate an apparently 'opponent' modulation of premature responses by NE and DA in the NAcb shell or core, respectively, and suggest that the symptom clusters of hyperactive-impulsive type ADHD may have distinct neural and neurochemical substrates.
Collapse
Affiliation(s)
- Daina Economidou
- Behavioral and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - David EH Theobald
- Behavioral and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Behavioral and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Barry J Everitt
- Behavioral and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Behavioral and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Cambridge, UK,Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK,Behavioral and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EB, UK. Tel: +44(1223) 765 291, Fax: +44(1223) 333 564, E-mail:
| |
Collapse
|
36
|
α-1 Adrenergic receptors are localized on presynaptic elements in the nucleus accumbens and regulate mesolimbic dopamine transmission. Neuropsychopharmacology 2012; 37:2161-72. [PMID: 22588352 PMCID: PMC3398716 DOI: 10.1038/npp.2012.68] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brainstem noradrenergic neurons innervate the mesocorticolimbic reward pathway both directly and indirectly, with norepinephrine facilitating dopamine (DA) neurotransmission via α1-adrenergic receptors (α1ARs). Although α1AR signaling in the prefrontal cortex (PFC) promotes mesolimbic transmission and drug-induced behaviors, the potential contribution of α1ARs in other parts of the pathway, such as the ventral tegmental area (VTA) and nucleus accumbens (NAc), has not been investigated before. We found that local blockade of α1ARs in the medial NAc shell, but not the VTA, attenuates cocaine- and morphine-induced locomotion. To determine the neuronal substrates that could mediate these effects, we analyzed the cellular, subcellular, and subsynaptic localization of α1ARs and characterized the chemical phenotypes of α1AR-containing elements within the mesocorticolimbic system using single and double immunocytochemical methods at the electron microscopic (EM) level. We found that α1ARs are found mainly extra-synaptically in axons and axon terminals in the NAc and are enriched in glutamatergic and dopaminergic elements. α1ARs are also abundant in glutamatergic terminals in the PFC, and in GABA-positive terminals in the VTA. In line with these observations, microdialysis experiments revealed that local blockade of α1ARs attenuated the increase in extracellular DA in the medial NAc shell following administration of cocaine. These data indicate that local α1ARs control DA transmission in the medial NAc shell and behavioral responses to drugs of abuse.
Collapse
|
37
|
α- and β-Adrenergic receptors differentially modulate the emission of spontaneous and amphetamine-induced 50-kHz ultrasonic vocalizations in adult rats. Neuropsychopharmacology 2012; 37:808-21. [PMID: 22030713 PMCID: PMC3260979 DOI: 10.1038/npp.2011.258] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Amphetamine (AMPH) increases adult rat 50-kHz ultrasonic vocalizations, preferentially promoting frequency-modulated (FM) calls that have been proposed to reflect positive affect. The main objective of this study was to investigate a possible noradrenergic contribution to AMPH-induced calling. Adult male Long-Evans rats were tested with AMPH (1 mg/kg intraperitoneal) or saline combined with various systemic pretreatments: clonidine (α2 adrenergic agonist), prazosin (α1 antagonist), atipamezole (α2 antagonist), propranolol, betaxolol, and/or ICI 118,551 (β1/β2, β1, and β2 antagonists, respectively), nadolol (β1/β2 antagonist, peripheral only), or NAD-299 (5HT(1A) antagonist). In addition, effects of cirazoline (α1 adrenergic agonist) and cocaine (0.25-1.5 mg/kg intravenous) were studied alone. AMPH-induced calling was suppressed by low-dose clonidine and prazosin. Cirazoline and atipamezole did not significantly affect calling rate. Propranolol, without affecting the call rate, dose dependently promoted 'flat' calls under AMPH while suppressing 'trills,' thus reversing the effects of AMPH on the 'call subtype profile.' This effect of propranolol seemed to be mediated by simultaneous inhibition of CNS β1 and β2 rather than by 5HT(1A) receptors. Finally, cocaine elicited fewer calls than did AMPH, but produced the same shift in the call subtype profile. Taken together, these results reveal differential drug effects on flat vs trill vs other FM 50-kHz calls. These findings highlight the value of detailed call subtype analyses, and show that 50-kHz calls are associated with adrenergic α1- and β-receptor mechanisms. These preclinical findings suggest that noradrenergic contributions to psychostimulant subjective effects may warrant further investigation.
Collapse
|
38
|
Pohorecky LA, Sweeny A. Amphetamine modifies ethanol intake of psychosocially stressed male rats. Pharmacol Biochem Behav 2012; 101:417-26. [PMID: 22285324 DOI: 10.1016/j.pbb.2012.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 11/19/2022]
Abstract
Studies of socially housed rodents have provided significant information regarding the consequences of exposure to stressors. Psychosocial stressors are known to alter the ingestion of ethanol and the activity of the dopaminergic neuronal system. Since both stressors and ethanol are known to affect the function of dopaminergic neurons, we employed amphetamine to assess the role of this neural system on the ingestion of ethanol by psychosocially stressed male rats. Male rats housed two per cage were designated as dominant or subdominant rats based on evaluations of agonistic behavior and body weight changes. The dyad-housed rats and a group of single-housed rats were sequentially assessed for ethanol intake after injections of saline or amphetamine (0.3, 0.9 or 2.7 mg/kg i.p.) both prior to dyad housing and subsequently again during dyad-housing. Prior to dyad housing ethanol intake of future subdominant rats was higher than that of future dominant rats. Dyad-housing significantly increased ethanol intake of dominant rats. Pre-dyad the highest dose of amphetamine potently depressed ethanol ingestion. Sensitivity to amphetamine's depressant effect on ethanol intake was higher at the dyad test in all subjects, most prominently in single-housed rats. In contrast to the single-housed rats, the dyad-housed rats displayed saccharin anhedonia. It can be concluded that dopaminergic system modulates, at least partially, the psychosocial stress-induced changes in ethanol intake. Furthermore, the level of ethanol ingestion at the pre-dyad test was predictive of future hierarchical status.
Collapse
|
39
|
Fernando ABP, Economidou D, Theobald DE, Zou MF, Newman AH, Spoelder M, Caprioli D, Moreno M, Hipόlito L, Aspinall AT, Robbins TW, Dalley JW. Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists. Psychopharmacology (Berl) 2012; 219:341-52. [PMID: 21761147 PMCID: PMC3249163 DOI: 10.1007/s00213-011-2408-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/18/2011] [Indexed: 12/31/2022]
Abstract
RATIONALE Impulsivity is associated with a number of psychiatric disorders, most notably attention deficit/hyperactivity disorder (ADHD). Drugs that augment catecholamine function (e.g. methylphenidate and the selective noradrenaline reuptake inhibitor atomoxetine) have clinical efficacy in ADHD, but their precise mechanism of action is unclear. OBJECTIVE The objective of this study is to investigate the relative contribution of dopamine (DA) and noradrenaline (NA) to the therapeutic effects of clinically effective drugs in ADHD using rats selected for high impulsivity on the five-choice serial reaction time task (5CSRTT). METHODS We examined the effects of direct and indirect DA and NA receptor agonists and selective DA and NA reuptake inhibitors in rats showing high and low levels of impulsivity on the 5CSRTT (designated high impulsive 'HI' and low impulsive 'LI', respectively). Drugs were administered by systemic injection in a randomized, counterbalanced manner. RESULTS Low doses of quinpirole (a D2/D3 agonist) and sumanirole (a D2 agonist) selectively reduced impulsivity on the 5CSRTT, whilst higher doses resulted in increased omissions and slower response latencies. The NA reuptake inhibitor, atomoxetine, and the alpha-2 adrenoreceptor agonist, guanfacine, dose dependently decreased premature responding. The dopaminergic reuptake inhibitor GBR-12909 increased impulsivity, whereas the nonselective DA and NA reuptake inhibitor methylphenidate had no significant effect on impulsive responses in HI and LI rats. CONCLUSIONS These findings indicate that high impulsivity can be ameliorated in rats by drugs that mimic the effects of DA and NA, just as in ADHD, and that activation of D2/3 receptors selectively decreases high impulsivity on the 5CSRTT.
Collapse
Affiliation(s)
- Anushka B. P. Fernando
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - Daina Economidou
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - David E. Theobald
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - Mu-Fa Zou
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Amy H. Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Marcia Spoelder
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - Daniele Caprioli
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - Margarita Moreno
- Department of Neuroscience and Health Sciences, University of Almeria, Almeria, Spain
| | - Lucia Hipόlito
- Depto. Farmacia i Technologia Farmaceutica, University of Valencia, Valencia, Spain
| | - Albert T. Aspinall
- School of Psychology, The University of St Andrews, St Mary’s College, South Street, St Andrews, Fife, KY16 9JP UK
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK ,Department of Psychiatry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 2QQ UK
| |
Collapse
|
40
|
Social bonding decreases the rewarding properties of amphetamine through a dopamine D1 receptor-mediated mechanism. J Neurosci 2011; 31:7960-6. [PMID: 21632917 DOI: 10.1523/jneurosci.1006-11.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the protective effects of social bonds on drug use/abuse have been well documented, we know little about the underlying neural mechanisms. Using the prairie vole (Microtus ochrogaster)--a socially monogamous rodent that forms long-term pair bonds after mating--we demonstrate that amphetamine (AMPH) conditioning induced a conditioned place preference (CPP) in sexually naive (SN), but not pair-bonded (PB), males. Although AMPH treatment induced a similar magnitude of dopamine release in the nucleus accumbens (NAcc) of SN and PB males, it had differential effects on NAcc D1 receptor (D1R) binding. Specifically, AMPH treatment increased D1R binding in SN, but decreased D1R binding in PB males. NAcc D1R, but not D2 receptor, antagonism blocked AMPH-induced CPP in SN males and NAcc D1R activation before AMPH conditioning enabled AMPH-induced CPP in PB males. Together, our data demonstrate that pair-bonding experience decreases the rewarding properties of AMPH through a D1R-mediated mechanism.
Collapse
|
41
|
Kerfoot EC, Williams CL. Interactions between brainstem noradrenergic neurons and the nucleus accumbens shell in modulating memory for emotionally arousing events. Learn Mem 2011; 18:405-13. [PMID: 21602321 PMCID: PMC3101775 DOI: 10.1101/lm.2108911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/31/2011] [Indexed: 01/13/2023]
Abstract
The nucleus accumbens shell (NAC) receives axons containing dopamine-β-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these mnemonic effects are mediated by norepinephrine (NE) release from NTS terminals onto NAC neurons. The present studies approached this question by examining the contribution of NAC α-noradrenergic receptors in mediating this effect and assessed whether glutamatergic activation of the NTS alters NE concentrations in the NAC. Rats were trained for 6 d to drink from a water spout located at the end of an inhibitory avoidance chamber. On day 7, a 0.35-mA footshock was initiated once the rat approached the spout and remained active until it escaped into the neutral compartment. Blockade of α-noradrenergic receptors in the NAC with phentolamine (0.5 µg/0.5 µL) attenuated memory enhancement produced by glutamatergic (50 ng/0.5 µL) infusion on NTS neurons (P < 0.01). Experiment 2 used in vivo microdialysis to assess whether glutamate activation of NTS alters NAC NE concentrations. NE levels were unchanged by NTS infusion of phosphate-buffered saline (PBS) or low dose glutamate (50 ng/0.5 µL) but elevated significantly (P < 0.05) by combining the same dose with the footshock (0.35 mA, 2 sec) given in Study 1 or infusion of (100 ng/0.5 µL) glutamate alone. Findings demonstrate that NE released from NTS terminals enhances representations in memory by acting on α-noradrenergic receptors within the NAC.
Collapse
Affiliation(s)
- Erin C Kerfoot
- Department of Psychology, Graduate Program in Neuroscience, University of Virginia, Charlottesville, Virginia 22904, USA.
| | | |
Collapse
|
42
|
Economidou D, Dalley JW, Everitt BJ. Selective norepinephrine reuptake inhibition by atomoxetine prevents cue-induced heroin and cocaine seeking. Biol Psychiatry 2011; 69:266-74. [PMID: 21109233 DOI: 10.1016/j.biopsych.2010.09.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/26/2010] [Accepted: 09/28/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND Preventing relapse to drug use is a major challenge for drug addiction treatment. We have recently shown that impulsivity predating drug-taking increases the susceptibility to relapse to cocaine seeking and that treatment with the anti-impulsivity drug atomoxetine (ATO), a selective norepinephrine re-uptake inhibitor (norepinephrine transporter), prevents relapse. Here, we investigated further the effects of ATO on cue-maintained heroin and cocaine seeking and relapse and compared these effects with those of the anti-impulsivity stimulant drug methylphenidate (MPH). METHODS Rats were trained to seek and self-administer cocaine or heroin under a second-order schedule of reinforcement. After acquisition of stable responding, groups of rats (n = 10-12) were treated, in a within-subject design, with either ATO or MPH (.3-3.0 mg/kg IP), and the effects on cocaine and heroin seeking were measured. The effects of ATO (.3-1.0 mg/kg) on cue-induced relapse to cocaine seeking after a 1-week period of abstinence were also studied. RESULTS Atomoxetine significantly decreased both cue-controlled cocaine and heroin seeking, whereas MPH had no significant effect. Atomoxetine also significantly attenuated cue-induced relapse to cocaine seeking after abstinence. The effects of ATO were selective for cue-controlled drug-seeking, because it did not affect responding in the absence of the drug-paired cue; nor did it alter responding for oral sucrose, except minimally at the highest dose, or locomotor activity. CONCLUSIONS Selective norepinephrine transporter inhibition by ATO might be an effective treatment for the prevention of relapse to both stimulant and opiate addiction.
Collapse
Affiliation(s)
- Daina Economidou
- Behavioral and Clinical Neuroscience Institute, Department of Experimental Psychology, University of Cambridge, Addenbrooke’s Hospital, United Kingdom.
| | | | | |
Collapse
|
43
|
Meitzen J, Luoma JI, Stern CM, Mermelstein PG. β1-Adrenergic receptors activate two distinct signaling pathways in striatal neurons. J Neurochem 2011; 116:984-95. [PMID: 21143600 DOI: 10.1111/j.1471-4159.2010.07137.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine (NE) and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP response element binding protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. NE-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which NE and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how NE and β1-adrenergic receptors may affect striatal physiology.
Collapse
Affiliation(s)
- John Meitzen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
44
|
Ventral striatal noradrenergic mechanisms contribute to sensorimotor gating deficits induced by amphetamine. Neuropsychopharmacology 2010; 35:2346-56. [PMID: 20686455 PMCID: PMC2955791 DOI: 10.1038/npp.2010.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The psychotomimetic drug D-amphetamine (AMPH), disrupts prepulse inhibition (PPI) of the startle response, an operational measure of sensorimotor gating that is deficient in schizophrenia patients. Historically, this effect has been attributed to dopaminergic substrates; however, AMPH also increases norepinephrine (NE) levels, and enhancement of central NE transmission has been shown recently to disrupt PPI. This study examined the extent to which NE might participate in AMPH-induced disruptions of PPI and increases in locomotor activity, another classic behavioral effect of AMPH, by determining whether antagonism of postsynaptic NE receptors blocked these effects. Separate groups of male Sprague-Dawley rats received either the α1 receptor antagonist, prazosin (0, 0.3, 1 mg/kg), or the β receptor antagonist timolol (0, 3, 10 mg/kg) before administration of AMPH (0 or 1 mg/kg) before testing for PPI or locomotor activity. As an initial exploration of the anatomical substrates underlying possible α1 receptor-mediated effects on AMPH-induced PPI deficits, the α1 receptor antagonist terazosin (0 or 40 μg/0.5 μl) was microinfused into the nucleus accumbens shell (NAccSh) in conjunction with systemic AMPH administration before startle testing in a separate experiment. Prazosin, but not timolol, blocked AMPH-induced hyperactivity; both drugs reversed AMPH-induced PPI deficits without altering baseline startle responses. Interestingly, AMPH-induced PPI deficits also were partially blocked by terazosin in NAccSh. Thus, behavioral sequelae of AMPH (PPI disruption and hyperactivity) may be mediated in part by NE receptors, with α1 receptors in NAccSh possibly having an important role in the sensorimotor gating deficits induced by this psychotomimetic drug.
Collapse
|
45
|
Cope ZA, Huggins KN, Sheppard AB, Noel DM, Roane DS, Brown RW. Neonatal quinpirole treatment enhances locomotor activation and dopamine release in the nucleus accumbens core in response to amphetamine treatment in adulthood. Synapse 2010; 64:289-300. [PMID: 19953655 DOI: 10.1002/syn.20729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neonatal quinpirole treatment to rats produces long-term increases in D(2) receptor sensitivity that persists throughout the animal's lifetime, a phenomenon referred to as D(2) priming. Male and female Sprague-dawley rats were administered quinpirole (1 mg kg(-1)) or saline from postnatal days (P)1-11. At P60, all animals were given an injection of quinpirole (100 microg kg(-1)), and results showed that rats neonatally treated with quinpirole demonstrated enhanced yawning in response to quinprole, verifying D(2) receptor priming because yawning is a D(2) receptor mediated event. Beginning 1-3 days later, locomotor sensitization was tested through administration of d-amphetamine (1 mg kg(-1)) or saline every other day over 14 days, and horizontal activity and turning behavior were analyzed. Findings indicated that D(2)-priming enhanced horizontal activity in response to amphetamine in females compared to males at Days 1 and 4 of locomotor sensitization testing, and D(2)-priming enhanced turning in response to amphetamine. Seven to ten days after sensitization was complete, microdialysis of the NAcc core was performed using a cumulative dosing regimen of amphetamine (0.1-3.0 mg kg(-1)). D(2)-primed rats administered amphetamine demonstrated a 500% increase in accumbal DA overflow compared to control rats administered amphetamine. Additionally, amphetamine produced a significant increase in NE overflow compared to controls, but this was unaffected by D(2) priming. These results indicate that D(2) receptor priming as is produced by neonatal quinpirole treatment robustly enhances behavioral activation and accumbal DA overflow in response to amphetamine, which may underlie increases in psychostimulant use and abuse within the psychotic population where increased D(2) receptor sensitivity is a hallmark.
Collapse
Affiliation(s)
- Zackary A Cope
- Department of Psychology, East Tennessee State University College of Pharmacy, Johnson City, Tennessee 37614, USA
| | | | | | | | | | | |
Collapse
|
46
|
In vivo voltammetric monitoring of catecholamine release in subterritories of the nucleus accumbens shell. Neuroscience 2010; 169:132-42. [PMID: 20451589 DOI: 10.1016/j.neuroscience.2010.04.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 11/23/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes has been used to demonstrate that sub-second changes in catecholamine concentration occur within the nucleus accumbens (NAc) shell during motivated behaviors, and these fluctuations have been attributed to rapid dopamine signaling. However, FSCV cannot distinguish between dopamine and norepinephrine, and caudal regions of the NAc shell receive noradrenergic projections. Therefore, in the present study, we examined the degree to which norepinephrine contributes to catecholamine release within rostral and caudal portion of NAc shell. Analysis of tissue content revealed that dopamine was the major catecholamine detectable in the rostral NAc shell, whereas both dopamine and norepinephrine were found in the caudal subregion. To examine releasable catecholamines, electrical stimulation was used to evoke release in anesthetized rats with either stimulation of the medial forebrain bundle, a pathway containing both dopaminergic and noradrenergic projections to the NAc, or the ventral tegmental area/substantia nigra, the origin of dopaminergic projections. The catecholamines were distinguished by their responses to different pharmacological agents. The dopamine autoreceptor blocker, raclopride, as well as the monoamine and dopamine transporter blockers, cocaine and GBR 12909, increased evoked catecholamine overflow in both the rostral and caudal NAc shell. The norepinephrine autoreceptor blocker, yohimbine, and the norepinephrine transporter blocker, desipramine, increased catecholamine overflow in the caudal NAc shell without significant alteration of evoked responses in the rostral NAc shell. Thus, the neurochemical and pharmacological results show that norepinephrine signaling is restricted to caudal portions of the NAc shell. Following raclopride and cocaine or raclopride and GBR 12909, robust catecholamine transients were observed within the rostral shell but these were far less apparent in the caudal NAc shell, and they did not occur following yohimbine and desipramine. Taken together, the data demonstrate that catecholamine signals in the rostral NAc shell detected by FSCV are due to change in dopamine transmission.
Collapse
|
47
|
Burton CL, Nobrega JN, Fletcher PJ. The effects of adolescent methylphenidate self-administration on responding for a conditioned reward, amphetamine-induced locomotor activity, and neuronal activation. Psychopharmacology (Berl) 2010; 208:455-68. [PMID: 20020108 DOI: 10.1007/s00213-009-1745-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Abuse of methylphenidate (Ritalin) is rising, particularly during adolescence and early adulthood, but the long-term effects of its abuse during adolescence are unclear. METHODS In experiment 1, we examined the effect of adolescent methylphenidate self-administration (0.0625 mg/infusion), as compared with cocaine self-administration (0.125 mg/infusion), under a fixed ratio 1 schedule of reinforcement in male Sprague-Dawley rats during adolescence (postnatal day (PND) 32-47) on adult dopamine-mediated behaviors (PND >70). These included responding for a conditioned reward (CR), a measure of incentive motivation, and amphetamine-induced locomotor activity. In experiment 2, we aimed to replicate and enhance the effects observed in experiment 1, and we also examined the effects of methylphenidate self-administration during adolescence on adult amphetamine-induced zif268 messenger ribonucleic acid (mRNA) expression. RESULTS Adolescent rats self-administered both cocaine and methylphenidate. There was no effect of adolescent drug self-administration on adult baseline or amphetamine-induced responding for a CR. However, both adolescent methylphenidate and cocaine self-administration increased amphetamine-induced locomotion. Adolescent methylphenidate self-administration also enhanced amphetamine-induced zif268 mRNA expression in the nucleus accumbens. CONCLUSIONS Our findings suggest that repeated, behaviorally contingent exposure to methylphenidate during adolescence enhances responsivity to the locomotor-stimulating and neuronal activating effects of amphetamine but not incentive motivation.
Collapse
Affiliation(s)
- Christie L Burton
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S3G3, Canada.
| | | | | |
Collapse
|
48
|
Rada P, Barson JR, Leibowitz SF, Hoebel BG. Opioids in the hypothalamus control dopamine and acetylcholine levels in the nucleus accumbens. Brain Res 2009; 1312:1-9. [PMID: 19948154 DOI: 10.1016/j.brainres.2009.11.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
Abstract
The experimental question is whether hypothalamic opioids, known to stimulate consummatory behavior, control a link to the nucleus accumbens (NAc). It was hypothesized that opioids injected in the hypothalamic paraventricular nucleus (PVN) alter the balance of dopamine (DA) and acetylcholine (ACh) in the NAc in a manner that fosters appetite for food or ethanol. Rats were implanted with two guide shafts, one in the NAc to measure extracellular DA and ACh by microdialysis and the other in the PVN for microinjection of opioid mu- and delta-agonists, an antagonist, or saline vehicle. The compounds tested were morphine, the mu-receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-Enkephalin (DAMGO), the delta-receptor agonist D-Ala-Gly-Phe-Met-NH2 (DALA), and the opioid antagonist naloxone methiodide (m-naloxone). Morphine in the PVN increased the release of accumbens DA (+41%) and decreased ACh (-35%). Consistent with this, the opioid antagonist m-naloxone decreased DA (-24%) and increased ACh (+19%). In terms of receptor involvement, DAMGO dose-dependently increased DA to up to 209% of baseline. Simultaneously, ACh levels were markedly decreased to 55% of baseline. The agonist DALA produced a smaller but significant, 34% increase in DA, without affecting ACh. In contrast, control injections of saline had no significant effect. These results demonstrate that mu- and delta-opioids in the PVN contribute to the control of accumbens DA and ACh release and suggest that this circuit from the PVN to the NAc may be one of the mechanisms underlying opiate-induced ingestive behavior as well as naltrexone therapy for overeating and alcoholism.
Collapse
Affiliation(s)
- Pedro Rada
- Laboratory of Behavioral Physiology, School of Medicine, University of Los Andes, Mérida, Venezuela
| | | | | | | |
Collapse
|
49
|
Prefrontal cortical D1 dopamine receptors modulate subcortical D2 dopamine receptor-mediated stress responsiveness. Int J Neuropsychopharmacol 2009; 12:1195-208. [PMID: 19275776 DOI: 10.1017/s1461145709000121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increased responsiveness to stress plays an important role in the manifestation of schizophrenia symptoms. Evidence indicates that the prefrontal cortex (PFC), and dopamine neurotransmission in the PFC in particular, is involved in the modulation of stress responsiveness. Decreased dopaminergic activity and loss of dopamine fibres have been reported in PFC in schizophrenia patients. Consequently, it was hypothesized that depletion of dopamine in PFC may facilitate increased stress responsiveness. Adult Sprague-Dawley rats received injections of 6-hydroxydopamine or saline bilaterally into the medial PFC (mPFC) following desipramine pretreatment to selectively deplete dopaminergic fibres. Following a 3-wk recovery period, the lesioned and control rats received injections of a D1 or D2 dopamine receptor agonist or vehicle into the mPFC and were immediately subjected to forced swimming as a stressor. Results showed that frequency of locomotion and rearing, behavioural measures indicative of increased dopaminergic activity in the nucleus accumbens (NAc), were significantly increased following stress in prefrontal cortical dopamine-depleted rats. This effect was significantly ameliorated by infusions of a D1 dopamine receptor agonist directly into the mPFC in a dose-dependent manner but not by infusion of a D2 dopamine receptor agonist. In addition, stress-induced behavioural changes in prefrontal cortical dopamine-depleted rats were significantly reduced following selective discrete infusions of a D2 dopamine receptor antagonist into the NAc shell. The results suggest that dopaminergic transmission via D1 receptors in the mPFC modulates D2 dopamine receptor-mediated stress responsiveness in the NAc, a feature that may be disrupted in schizophrenia patients.
Collapse
|
50
|
Franklin KM, Engleman EA, Ingraham CM, McClaren JA, Keith CM, McBride WJ, Murphy JM. A single, moderate ethanol exposure alters extracellular dopamine levels and dopamine d receptor function in the nucleus accumbens of wistar rats. Alcohol Clin Exp Res 2009; 33:1721-30. [PMID: 19572982 PMCID: PMC2858589 DOI: 10.1111/j.1530-0277.2009.01009.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The nucleus accumbens (NAc) has been implicated in the neurochemical effects of ethanol (EtOH). Evidence suggests that repeated EtOH exposures and chronic EtOH drinking increase dopamine (DA) neurotransmission in the NAc due, in part, to a reduction in D(2) autoreceptor function. The objectives of the current study were to evaluate the effects of a single EtOH pretreatment and repeated EtOH pretreatments on DA neurotransmission and D(2) autoreceptor function in the NAc of Wistar rats. METHODS Experiment 1 examined D(2) receptor function after a single intraperitoneal (i.p.) injection or repeated i.p. injections of 0.0, 0.5, 1.0, or 2.0 g/kg EtOH to female Wistar rats. Single EtOH pretreatment groups received 1 daily i.p. injection of 0.9% NaCl (saline) for 4 days, followed by 1 day of saline or EtOH administration; repeated EtOH pretreatment groups received 5 days of saline or EtOH injections. Reverse microdialysis experiments were conducted to determine the effects of local perfusion with the D(2)-like receptor antagonist (-)sulpiride (SUL; 100 uM), on extracellular DA levels in the NAc. Experiment 2 evaluated if pretreatment with a single, moderate (1.0 g/kg) dose of EtOH would alter levels and clearance of extracellular DA in the NAc, as measured by no-net-flux (NNF) microdialysis. Subjects were divided into the EtOH-naïve and the single EtOH pretreated groups from Experiment 1. RESULTS Experiment 1: Changes in extracellular DA levels induced with SUL perfusion were altered by the EtOH dose (p < 0.001), but not the number of EtOH pretreatments (p > 0.05). Post-hoc analyses indicated that groups pretreated with single or repeated 1.0 g/kg EtOH showed significantly attenuated DA response to SUL, compared with all other groups (p < 0.001). Experiment 2: Multiple linear regression analyses yielded significantly (p < 0.05) higher extracellular DA concentrations in the NAc of rats receiving EtOH pretreatment, compared with their EtOH-naïve counterparts (3.96 +/- 0.42 nM and 3.25 +/- 0.23 nM, respectively). Extraction fractions were not significantly different between the 2 groups. CONCLUSIONS The present results indicate that a single EtOH pretreatment at a moderate dose can increase DA neurotransmission in the NAc due, in part, to reduced D(2) autoreceptor function.
Collapse
Affiliation(s)
- Kelle M Franklin
- Department of Psychology, Purdue School of Science, IUPUI, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|