1
|
Bie X, Zhang M, Wang Q, Wang Y. An unraveled mystery: What's the role of brain sphingolipids in neurodegenerative and psychiatric disorders. Neurobiol Dis 2025; 207:106852. [PMID: 39986545 DOI: 10.1016/j.nbd.2025.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025] Open
Abstract
Sphingolipids are a class of lipids highly expressed in brain, especially in the myelin sheath of white matter. In recent years, with the development of lipidomics, the role of brain sphingolipids in neurological disorders have raised lots of interests due to their function in neuronal signal transduction and survival. Although not thoroughly investigated, some previous studies have indicated that sphingolipids homeostasis are closely linked to the etiology and development of some neurological disorders. For example, disrupted sphingolipids level have been found in clinic patients with neurological disorders, such as neurodegeneration and psychiatric disorders. Conversely, intervention of sphingolipids metabolism by modulating activity of related enzymes also could result in pathological deficits identified in neurological disorders. Moreover, the alteration of sphingolipids catabolic pathway in the brain could be partly represented in cerebrospinal fluid and blood tissues, which show diagnostic potential for neurological disorders. Therefore, our review aims to summarize and discuss the known contents of bioactive sphingolipid metabolism with their related studies in neurodegenerative and psychiatric disorders, to help understand the potential mechanism underlying sphingolipid regulation of neural function and provide possible directions for further study. The new perspectives in this promising field will open up new therapeutic options for neurological disorders.
Collapse
Affiliation(s)
- Xintian Bie
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China
| | - Maoxing Zhang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ying Wang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China.
| |
Collapse
|
2
|
De Luca A, Faienza F, Fulci C, Nicolai E, Calligari P, Palumbo C, Caccuri AM. Molecular and cellular evidence of a direct interaction between the TRAF2 C-terminal domain and ganglioside GM1. Int J Biochem Cell Biol 2024; 167:106508. [PMID: 38142771 DOI: 10.1016/j.biocel.2023.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
TNF receptor-associated factor 2 (TRAF2) is involved in different cellular processes including signal transduction and transcription regulation. We here provide evidence of a direct interaction between the TRAF domain of TRAF2 and the monosialotetrahexosylganglioside (GM1). Previously, we showed that the TRAF domain occurs mainly in a trimeric form in solution, but it can also exist as a stable monomer when in the nanomolar concentration range. Here, we report that the quaternary structure of the TRAF domain is also affected by pH changes, since a weakly acidic pH (5.5) favors the dissociation of the trimeric TRAF domain into stable monomers, as previously observed at neutral pH (7.6) with the diluted protein. The TRAF domain-GM1 binding was similar at pH 5.5 and 7.6, suggesting that GM1 interacts with both the trimeric and monomeric forms of the protein. However, only the monomeric protein appeared to cause membrane deformation and inward vesiculation in GM1-containing giant unilamellar vesicles (GUVs). The formation of complexes between GM1 and TRAF2, or its TRAF domain, was also observed in cultured human leukemic HAP1 cells expressing either the truncated TRAF domain or the endogenous full length TRAF2. The GM1-protein complexes were observed after treatment with tunicamycin and were more concentrated in cells undergoing apoptosis, a condition which is known to cause cytoplasm acidification. These findings open the avenue for future studies aimed at deciphering the physiopathological relevance of the TRAF domain-GM1 interaction.
Collapse
Affiliation(s)
| | - Fiorella Faienza
- Department of Chemical Sciences and Technologies, University of Tor Vergata, Rome, Italy
| | - Chiara Fulci
- Department of Chemical Sciences and Technologies, University of Tor Vergata, Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Tor Vergata, Rome, Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, Rome, Italy.
| | - Anna Maria Caccuri
- Department of Chemical Sciences and Technologies, University of Tor Vergata, Rome, Italy; The NAST Centre for Nanoscience and Nanotechnology and Innovative Instrumentation, University of Tor Vergata, Rome, Italy.
| |
Collapse
|
3
|
Bortolin A, Neto E, Lamghari M. Calcium Signalling in Breast Cancer Associated Bone Pain. Int J Mol Sci 2022; 23:ijms23031902. [PMID: 35163823 PMCID: PMC8836937 DOI: 10.3390/ijms23031902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Calcium (Ca2+) is involved as a signalling mediator in a broad variety of physiological processes. Some of the fastest responses in human body like neuronal action potential firing, to the slowest gene transcriptional regulation processes are controlled by pathways involving calcium signalling. Under pathological conditions these mechanisms are also involved in tumoral cells reprogramming, resulting in the altered expression of genes associated with cell proliferation, metastatisation and homing to the secondary metastatic site. On the other hand, calcium exerts a central function in nociception, from cues sensing in distal neurons, to signal modulation and interpretation in the central nervous system leading, in pathological conditions, to hyperalgesia, allodynia and pain chronicization. It is well known the relationship between cancer and pain when tumoral metastatic cells settle in the bones, especially in late breast cancer stage, where they alter the bone micro-environment leading to bone lesions and resulting in pain refractory to the conventional analgesic therapies. The purpose of this review is to address the Ca2+ signalling mechanisms involved in cancer cell metastatisation as well as the function of the same signalling tools in pain regulation and transmission. Finally, the possible interactions between these two cells types cohabiting the same Ca2+ rich environment will be further explored attempting to highlight new possible therapeutical targets.
Collapse
Affiliation(s)
- Andrea Bortolin
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
4
|
Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca 2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022; 474:33-61. [PMID: 34978597 PMCID: PMC8721633 DOI: 10.1007/s00424-021-02650-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex and intricate mechanisms involved in diabetic cardiomyopathy, Ca2+ mishandling and mitochondrial dysfunction have been described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina.
| |
Collapse
|
5
|
Bartish M, Del Rincón SV, Rudd CE, Saragovi HU. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy. Front Immunol 2020; 11:564499. [PMID: 33133075 PMCID: PMC7550643 DOI: 10.3389/fimmu.2020.564499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Though a healthy immune system is capable of recognizing and eliminating emergent cancerous cells, an established tumor is adept at escaping immune surveillance. Altered and tumor-specific expression of immunosuppressive cell surface carbohydrates, also termed the “tumor glycocode,” is a prominent mechanism by which tumors can escape anti-tumor immunity. Given their persistent and homogeneous expression, tumor-associated glycans are promising targets to be exploited as biomarkers and therapeutic targets. However, the exploitation of these glycans has been a challenge due to their low immunogenicity, immunosuppressive properties, and the inefficient presentation of glycolipids in a conventional major histocompatibility complex (MHC)-restricted manner. Despite this, a subset of T-cells expressing the gamma and delta chains of the T-cell receptor (γδ T cells) exist with a capacity for MHC-unrestricted antigen recognition and potent inherent anti-tumor properties. In this review, we discuss the role of tumor-associated glycans in anti-tumor immunity, with an emphasis on the potential of γδ T cells to target the tumor glycocode. Understanding the many facets of this interaction holds the potential to unlock new ways to use both tumor-associated glycans and γδ T cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Margarita Bartish
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Christopher E Rudd
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada.,Pharmacology and Therapeutics, and Ophthalmology and Vision Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Howlader MA, Li C, Zou C, Chakraberty R, Ebesoh N, Cairo CW. Neuraminidase-3 Is a Negative Regulator of LFA-1 Adhesion. Front Chem 2019; 7:791. [PMID: 31824923 PMCID: PMC6882948 DOI: 10.3389/fchem.2019.00791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 01/13/2023] Open
Abstract
Within the plasma membrane environment, glycoconjugate-receptor interactions play an important role in the regulation of cell-cell interactions. We have investigated the mechanism and activity of the human neuraminidase (NEU) isoenzyme, NEU3, on T cell adhesion receptors. The enzyme is known to prefer glycolipid substrates, and we confirmed that exogenous enzyme altered the glycolipid composition of cells. NEU3 was able to modify the sialic acid content of purified LFA-1 in vitro. Enzymatic activity of NEU3 resulted in re-organization of LFA-1 into large clusters on the membrane. This change was facilitated by an increase in the lateral mobility of LFA-1 upon NEU3 treatment. Changes to the lateral mobility of LFA-1 were specific for NEU3 activity, and we observed no significant change in diffusion when cells were treated with a bacterial NEU (NanI). Furthermore, we found that NEU3 treatment of cells increased surface expression levels of LFA-1. We observed that NEU3-treated cells had suppressed LFA-1 adhesion to an ICAM-1 coated surface using an in vitro static adhesion assay. These results establish that NEU3 can modulate glycoconjugate composition and contribute to the regulation of integrin activity. We propose that NEU3 should be investigated to determine its role on LFA-1 within the inflammatory cascade.
Collapse
Affiliation(s)
- Md Amran Howlader
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Caishun Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Chunxia Zou
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Njuacha Ebesoh
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
7
|
Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S. Gangliosides: Treatment Avenues in Neurodegenerative Disease. Front Neurol 2019; 10:859. [PMID: 31447771 PMCID: PMC6691137 DOI: 10.3389/fneur.2019.00859] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023] Open
Abstract
Gangliosides are cell membrane components, most abundantly in the central nervous system (CNS) where they exert among others neuro-protective and -restorative functions. Clinical development of ganglioside replacement therapy for several neurodegenerative diseases was impeded by the BSE crisis in Europe during the 1990s. Nowadays, gangliosides are produced bovine-free and new pre-clinical and clinical data justify a reevaluation of their therapeutic potential in neurodegenerative diseases. Clinical experience is greatest with monosialo-tetrahexosyl-ganglioside (GM1) in the treatment of stroke. Fourteen randomized controlled trials (RCTs) in overall >2,000 patients revealed no difference in survival, but consistently superior neurological outcomes vs. placebo. GM1 was shown to attenuate ischemic neuronal injuries in diabetes patients by suppression of ERK1/2 phosphorylation and reduction of stress to the endoplasmic reticulum. There is level-I evidence from 5 RCTs of a significantly faster recovery with GM1 vs. placebo in patients with acute and chronic spinal cord injury (SCI), disturbance of consciousness after subarachnoid hemorrhage, or craniocerebral injuries due to closed head trauma. In Parkinson's disease (PD), two RCTs provided evidence of GM1 to be superior to placebo in improving motor symptoms and long-term to result in a slower than expected symptom progression, suggesting disease-modifying potential. In Alzheimer's disease (AD), the role of gangliosides has been controversial, with some studies suggesting a "seeding" role for GM1 in amyloid β polymerization into toxic forms, and others more recently suggesting a rather protective role in vivo. In Huntington's disease (HD), no clinical trials have been conducted yet. However, low GM1 levels observed in HD cells were shown to increase cell susceptibility to apoptosis. Accordingly, treatment with GM1 increased survival of HD cells in vitro and consistently ameliorated pathological phenotypes in several murine HD models, with effects seen at molecular, cellular, and behavioral level. Given that in none of the clinical trials using GM1 any clinically relevant safety issues have occurred to date, current data supports expanding GM1 clinical research, particularly to conditions with high, unmet medical need.
Collapse
Affiliation(s)
- Pierre J. Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Fred H. Geisler
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jay S. Schneider
- Parkinson's Disease Research Unit, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Fu P, Ebenezer DL, Ha AW, Suryadevara V, Harijith A, Natarajan V. Nuclear lipid mediators: Role of nuclear sphingolipids and sphingosine-1-phosphate signaling in epigenetic regulation of inflammation and gene expression. J Cell Biochem 2018; 119:6337-6353. [PMID: 29377310 DOI: 10.1002/jcb.26707] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Phospholipids, sphingolipids, and cholesterol are integral components of eukaryotic cell organelles, including the nucleus. Recent evidence shows characteristic features of nuclear lipid composition and signaling, which are distinct from that of the cytoplasm and plasma membrane. While the nuclear phosphoinositol lipid signaling in cell cycle regulation and differentiation has been well described, there is a paucity on the role of nuclear sphingolipids and sphingolipid signaling in different physiological and pathophysiological human conditions. In this prospective, we describe the role of sphingolipids and specifically focus on the sphingoid bases, such as sphingosine, ceramide, and sphingosine-1-phosphate (S1P) generation and catabolism in nuclear signaling and function. Particularly, S1P generated in the nucleus by phosphorylation of SPHK2 modulates HDAC activity either by direct binding or through activation of nuclear reactive oxygen species and regulates cell cycle and pro-inflammatory gene expression. Potential implication of association of SPHK2 with the co-repressor complexes and generation of S1P in the nucleus on chromatin remodeling under normal and pathological conditions is discussed. A better understanding of sphingolipid signaling in the nucleus will facilitate the design and development of new and novel therapeutic approaches to modulate expression of pro-inflammatory and cell cycle dependent genes in human pathologies such as cancer, bacterial lung infection, neurodegeneration, and cystic fibrosis.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois
| | | | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois.,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
9
|
Na +/Ca 2+ exchanger 1 on nuclear envelope controls PTEN/Akt pathway via nucleoplasmic Ca 2+ regulation during neuronal differentiation. Cell Death Discov 2018. [PMID: 29531809 PMCID: PMC5841316 DOI: 10.1038/s41420-017-0018-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nuclear envelope (NE) is a Ca2+-storing organelle controlling neuronal differentiation through nuclear Ca2+ concentrations ([Ca2+]n). However, how [Ca2+]n regulates this important function remains unknown. Here, we investigated the role of the nuclear form of the Na+/Ca2+ exchanger 1(nuNCX1) during the different stages of neuronal differentiation and the involvement of PTEN/PI3'K/Akt pathway. In neuronal cells, nuNCX1 was detected on the inner membrane of the NE where protein expression and activity of the exchanger increased during NGF-induced differentiation. nuNCX1 activation by Na+-free perfusion induced a time-dependent activation of nuclear-resident PI3K/Akt pathway in isolated nuclei. To discriminate the contribution of nuNCX1 from those of plasma membrane NCX, we generated a chimeric protein composed of the fluorophore EYFP, the exchanger inhibitory peptide, and the nuclear localization signal, named XIP-NLS. Fura-2 measurements on single nuclei and patch-clamp experiments in whole-cell configuration showed that XIP-NLS selectively inhibited nuNCX1. Once it reached the nuclear compartment, XIP-NLS increased the nucleoplasmic Ca2+ peak elicited by ATP and reduced Akt phosphorylation, GAP-43 and MAP-2 expression through nuclear-resident PTEN induction. Furthermore, in accordance with the prevention of the neuronal phenotype, XIP-NLS significantly reduced TTX-sensitive Na+ currents and membrane potential during neuronal differentiation. The selective inhibition of nuNCX1 by XIP-NLS increased the percentage of β III tubulin-positive immature neurons in mature cultures of MAP-2-positive cortical neurons, thus unraveling a new function for nuNCX1 in regulating neuronal differentiation through [Ca2+]n-dependent PTEN/PI3K/Akt pathway.
Collapse
|
10
|
Akkhawattanangkul Y, Maiti P, Xue Y, Aryal D, Wetsel WC, Hamilton D, Fowler SC, McDonald MP. Targeted deletion of GD3 synthase protects against MPTP-induced neurodegeneration. GENES BRAIN AND BEHAVIOR 2017; 16:522-536. [PMID: 28239983 DOI: 10.1111/gbb.12377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/07/2023]
Abstract
Parkinson's disease is a debilitating neurodegenerative condition for which there is no cure. Converging evidence implicates gangliosides in the pathogenesis of several neurodegenerative diseases, suggesting a potential new class of therapeutic targets. We have shown that interventions that simultaneously increase the neuroprotective GM1 ganglioside and decrease the pro-apoptotic GD3 ganglioside - such as inhibition of GD3 synthase (GD3S) or administration of sialidase - are neuroprotective in vitro and in a number of preclinical models. In this study, we investigated the effects of GD3S deletion on parkinsonism induced by 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP was administered to GD3S-/- mice or controls using a subchronic regimen consisting of three series of low-dose injections (11 mg/kg/day × 5 days each, 3 weeks apart), and motor function was assessed after each. The typical battery of tests used to assess parkinsonism failed to detect deficits in MPTP-treated mice. More sensitive measures - such as the force-plate actimeter and treadmill gait parameters - detected subtle effects of MPTP, some of which were absent in mice lacking GD3S. In wild-type mice, MPTP destroyed 53% of the tyrosine-hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc) and reduced striatal dopamine 60.7%. In contrast, lesion size was only 22.5% in GD3S-/- mice and striatal dopamine was reduced by 37.2%. Stereological counts of Nissl-positive SNc neurons that did not express TH suggest that neuroprotection was complete but TH expression was suppressed in some cells. These results show that inhibition of GD3S has neuroprotective properties in the MPTP model and may warrant further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Y Akkhawattanangkul
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P Maiti
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Y Xue
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D Aryal
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - W C Wetsel
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - D Hamilton
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S C Fowler
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - M P McDonald
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
|
12
|
Gabius HJ, Manning JC, Kopitz J, André S, Kaltner H. Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 2016; 73:1989-2016. [PMID: 26956894 PMCID: PMC11108359 DOI: 10.1007/s00018-016-2163-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Carbohydrates establish the third alphabet of life. As part of cellular glycoconjugates, the glycans generate a multitude of signals in a minimum of space. The presence of distinct glycotopes and the glycome diversity are mapped by sugar receptors (antibodies and lectins). Endogenous (tissue) lectins can read the sugar-encoded information and translate it into functional aspects of cell sociology. Illustrated by instructive examples, each glycan has its own ligand properties. Lectins with different folds can converge to target the same epitope, while intrafamily diversification enables functional cooperation and antagonism. The emerging evidence for the concept of a network calls for a detailed fingerprinting. Due to the high degree of plasticity and dynamics of the display of genes for lectins the validity of extrapolations between different organisms of the phylogenetic tree yet is inevitably limited.
Collapse
Affiliation(s)
- H-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany.
| | - J C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - J Kopitz
- Institute of Pathology, Department of Applied Tumor Biology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - S André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - H Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| |
Collapse
|
13
|
Nakao S, Wakabayashi S, Nakamura TY. Stimulus-dependent regulation of nuclear Ca2+ signaling in cardiomyocytes: a role of neuronal calcium sensor-1. PLoS One 2015; 10:e0125050. [PMID: 25897502 PMCID: PMC4405540 DOI: 10.1371/journal.pone.0125050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/14/2015] [Indexed: 11/18/2022] Open
Abstract
In cardiomyocytes, intracellular calcium (Ca2+) transients are elicited by electrical and receptor stimulations, leading to muscle contraction and gene expression, respectively. Although such elevations of Ca2+levels ([Ca2+]) also occur in the nucleus, the precise mechanism of nuclear [Ca2+] regulation during different kinds of stimuli, and its relationship with cytoplasmic [Ca2+] regulation are not fully understood. To address these issues, we used a new region-specific fluorescent protein-based Ca2+ indicator, GECO, together with the conventional probe Fluo-4 AM. We confirmed that nuclear Ca2+ transients were elicited by both electrical and receptor stimulations in neonatal mouse ventricular myocytes. Kinetic analysis revealed that electrical stimulation-elicited nuclear Ca2+ transients are slower than cytoplasmic Ca2+ transients, and chelating cytoplasmic Ca2+ abolished nuclear Ca2+ transients, suggesting that nuclear Ca2+ are mainly derived from the cytoplasm during electrical stimulation. On the other hand, receptor stimulation such as with insulin-like growth factor-1 (IGF-1) preferentially increased nuclear [Ca2+] compared to cytoplasmic [Ca2+]. Experiments using inhibitors revealed that electrical and receptor stimulation-elicited Ca2+ transients were mainly mediated by ryanodine receptors and inositol 1,4,5-trisphosphate receptors (IP3Rs), respectively, suggesting different mechanisms for the two signals. Furthermore, IGF-1-elicited nuclear Ca2+ transient amplitude was significantly lower in myocytes lacking neuronal Ca2+ sensor-1 (NCS-1), a Ca2+ binding protein implicated in IP3R-mediated pathway in the heart. Moreover, IGF-1 strengthened the interaction between NCS-1 and IP3R. These results suggest a novel mechanism for receptor stimulation-induced nuclear [Ca2+] regulation mediated by IP3R and NCS-1 that may further fine-tune cardiac Ca2+ signal regulation.
Collapse
MESH Headings
- Aniline Compounds
- Animals
- Animals, Newborn
- Calcium/metabolism
- Calcium Signaling
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- Electric Stimulation
- Fluorescent Dyes
- Gene Expression Regulation
- Heart Ventricles/cytology
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Insulin-Like Growth Factor I/pharmacology
- Ion Transport
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Neuronal Calcium-Sensor Proteins/deficiency
- Neuronal Calcium-Sensor Proteins/genetics
- Neuropeptides/deficiency
- Neuropeptides/genetics
- Primary Cell Culture
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Xanthenes
Collapse
Affiliation(s)
- Shu Nakao
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Shigeo Wakabayashi
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tomoe Y. Nakamura
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
14
|
Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane. Biochim Biophys Acta Gen Subj 2015; 1850:784-93. [PMID: 25603543 DOI: 10.1016/j.bbagen.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/24/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The subcellular distribution of aquaporin-5 (AQP5) in rat parotid acinar cells in response to muscarinic acetylcholine receptor (mAChR) activation remains unclear. METHODS Immunoconfocal and immunoelectron microscopy were used to visualize the distribution of AQP5 in parotid acinar cells. Western blotting was used to analyze AQP5 levels in membranes. To clarify the characteristics of membrane domains associated with AQP5, detergent solubility and sucrose-density flotation experiments were performed. RESULTS Under control conditions, AQP5 was diffusely distributed on the apical plasma membrane (APM) and apical plasmalemmal region and throughout the cytoplasm. Upon mAChR activation, AQP5 was predominantly located in the nucleus, APM and lateral plasma membrane (LPM). Subsequently, localization of AQP5 in the nucleus, APM and LPM was decreased. Prolonged atropine treatment inhibited mAChR agonist-induced translocation of AQP5 to the nucleus, APM and LPM. AQP5 levels were enhanced in isolated nuclei and nuclear membranes prepared from parotid tissues incubated with mAChR agonist. mAChR agonist induced AQP5 levels in both soluble and insoluble nuclear fractions solubilized with Triton X-100 or Lubrol WX. Small amounts of AQP5 in nuclei were detected using low-density sucrose gradient. When AQP5 was present in the nuclear membrane, nuclear size decreased. CONCLUSION The activation of mAChR induced AQP5 translocation to the nucleus, APM and LPM, and AQP5 may trigger water transport across the nuclear membrane and plasma membrane in rat parotid acinar cells. GENERAL SIGNIFICANCE AQP5 translocates to the nuclear membrane and may trigger the movement of water, inducing shrinkage of the nucleus and the start of nuclear functions.
Collapse
|
15
|
Kirkeby S. Cholera toxin B subunit-binding and ganglioside GM1 immuno-expression are not necessarily correlated in human salivary glands. Acta Odontol Scand 2014; 72:694-700. [PMID: 24655314 DOI: 10.3109/00016357.2014.898090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine and compare the presence and in situ localization of the glycosphingolipid ganglioside GM1 in human salivary glands using the biomarkers for GM1: cholera toxin and antibodies against GM1. MATERIALS AND METHODS Immunohistochemical analyses were performed on sections of adult human submandibular, parotid and palatinal glands using cholera toxin sub-unit B and two polyclonal antibodies against ganglioside GM1 as biomarkers. RESULTS Immunofluorescence microscopy showed that the toxin and antibodies were co-localized in some acini but not in others. The cholera toxin mainly reacted with the cell membranes of the mucous acini in the submandibular gland, while incubation with the antibody against GM1 gave rise to a staining of the cytoplasm. The cytoplasm in some secretory acinar cells in the parotid gland was stained by the cholera toxin, whereas only small spots on the plasma membranes reacted with anti-GM1. The plasma membranes in the parotid excretory ducts appeared to react to anti-GM1, but not to cholera toxin. CONCLUSIONS Cholera toxin induces the expression of ion channels and carriers in the small intestine and increases the production of secretory mucins. Although their mutual immunohistochemical localization may differ, both cholera toxin and ganglioside GM1 are present in the mucin-producing acini from salivary glands. This could point to a relationship between ganglioside expression and production of salivary mucins.
Collapse
Affiliation(s)
- Svend Kirkeby
- Dental School, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
16
|
Hagenston AM, Simonetti M. Neuronal calcium signaling in chronic pain. Cell Tissue Res 2014; 357:407-26. [PMID: 25012522 DOI: 10.1007/s00441-014-1942-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 01/03/2023]
Abstract
Acute physiological pain, the unpleasant sensory response to a noxious stimulus, is essential for animals and humans to avoid potential injury. Pathological pain that persists after the original insult or injury has subsided, however, not only results in individual suffering but also imposes a significant cost on society. Improving treatments for long-lasting pathological pain requires a comprehensive understanding of the biological mechanisms underlying pain perception and the development of pain chronicity. In this review, we aim to highlight some of the major findings related to the involvement of neuronal calcium signaling in the processes that mediate chronic pain.
Collapse
Affiliation(s)
- Anna M Hagenston
- University of Heidelberg, Neurobiology, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany,
| | | |
Collapse
|
17
|
Hohendanner F, McCulloch AD, Blatter LA, Michailova AP. Calcium and IP3 dynamics in cardiac myocytes: experimental and computational perspectives and approaches. Front Pharmacol 2014; 5:35. [PMID: 24639654 PMCID: PMC3944219 DOI: 10.3389/fphar.2014.00035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/18/2014] [Indexed: 11/22/2022] Open
Abstract
Calcium plays a crucial role in excitation-contraction coupling (ECC), but it is also a pivotal second messenger activating Ca2+-dependent transcription factors in a process termed excitation-transcription coupling (ETC). Evidence accumulated over the past decade indicates a pivotal role of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release in the regulation of cytosolic and nuclear Ca2+ signals. IP3 is generated by stimulation of plasma membrane receptors that couple to phospholipase C (PLC), liberating IP3 from phosphatidylinositol 4,5-bisphosphate (PIP2). An intriguing aspect of IP3 signaling is the presence of the entire PIP2-PLC-IP3 signaling cascade as well as the presence of IP3Rs at the inner and outer membranes of the nuclear envelope (NE) which functions as a Ca2+ store. The observation that the nucleus is surrounded by its own putative Ca2+ store raises the possibility that nuclear IP3-dependent Ca2+ release plays a critical role in ETC. This provides a potential mechanism of regulation that acts locally and autonomously from the global cytosolic Ca2+ signal underlying ECC. Moreover, there is evidence that: (i) the sarcoplasmic reticulum (SR) and NE are a single contiguous Ca2+ store; (ii) the nuclear pore complex is the major gateway for Ca2+ and macromolecules to pass between the cytosol and the nucleoplasm; (iii) the inner membrane of the NE hosts key Ca2+ handling proteins including the Na+/Ca2+ exchanger (NCX)/GM1 complex, ryanodine receptors (RyRs), nicotinic acid adenine dinucleotide phosphate receptors (NAADPRs), Na+/K+ ATPase, and Na+/H+ exchanger. Thus, it appears that the nucleus represents a Ca2+ signaling domain equipped with its own ion channels and transporters that allow for complex local Ca2+ signals. Many experimental and modeling approaches have been used for the study of intracellular Ca2+ signaling but the key to the understanding of the dual role of Ca2+ mediating ECC and ECT lays in quantitative differences of local [Ca2+] in the nuclear and cytosolic compartment. In this review, we discuss the state of knowledge regarding the origin and the physiological implications of nuclear Ca2+ transients in different cardiac cell types (adult atrial and ventricular myocytes) as well as experimental and mathematical approaches to study Ca2+ and IP3 signaling in the cytosol and nucleus. In particular, we focus on the concept that highly localized Ca2+ signals are required to translocate and activate Ca2+-dependent transcription factors (e.g., nuclear factor of activated T-cells, NFAT; histone deacetylase, HDAC) through phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego La Jolla, CA, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Anushka P Michailova
- Department of Bioengineering, University of California San Diego La Jolla, CA, USA
| |
Collapse
|
18
|
Ryan JM, Rice GE, Mitchell MD. The role of gangliosides in brain development and the potential benefits of perinatal supplementation. Nutr Res 2013; 33:877-87. [PMID: 24176227 DOI: 10.1016/j.nutres.2013.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022]
Abstract
The maternal diet provides critical nutrients that can influence fetal and infant brain development and function. This review highlights the potential benefits of maternal dietary ganglioside supplementation on fetal and infant brain development. English-language systematic reviews, preclinical studies, and clinical studies were obtained through searches on PubMed. Reports were selected if they included benefits and harms of maternal ganglioside supplementation during pregnancy or ganglioside-supplemented formula after pregnancy. The potential benefits of ganglioside supplementation were explored by investigating the following: (1) their role in neural development, (2) their therapeutic use in neural injury and disease, (3) their presence in human breast milk, and (4) their use as a dietary supplement during or after pregnancy. Preclinical studies indicate that ganglioside supplementation at high doses (1% of total dietary intake) can significantly increase cognitive development and body weight when given prenatally. However, lower ganglioside supplementation doses have no beneficial cognitive effects, even when given throughout pregnancy and lactation. In human clinical trials, infants given formula supplemented with gangliosides showed increased cognitive development and an increase in ganglioside content. Ganglioside supplementation may promote brain development and function in offspring when administered at the optimum dosage. We propose that prenatal maternal dietary supplementation with gangliosides throughout pregnancy may promote greater long-term effects on brain development and function. Before this concept can be encouraged in preconception clinics, future research and clinical trials are needed to confirm the ability of dietary gangliosides to improve cognitive development, but available results already encourage this area of research.
Collapse
Affiliation(s)
- Jennifer M Ryan
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
19
|
Interorganellar membrane microdomains: dynamic platforms in the control of calcium signaling and apoptosis. Cells 2013; 2:574-90. [PMID: 24709798 PMCID: PMC3972666 DOI: 10.3390/cells2030574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022] Open
Abstract
The dynamic interplay among intracellular organelles occurs at specific membrane tethering sites, where two organellar membranes come in close apposition but do not fuse. Such membrane microdomains allow for rapid and efficient interorganelle communication that contributes to the maintenance of cell physiology. Pathological conditions that interfere with the proper composition, number, and physical vicinity of the apposing membranes initiate a cascade of events resulting in cell death. Membrane contact sites have now been identified that tether the extensive network of the endoplasmic reticulum (ER) membranes with the mitochondria, the plasma membrane (PM), the Golgi and the endosomes/lysosomes. Thus far, the most extensively studied are the MAMs, or mitochondria associated ER membranes, and the ER-PM junctions that share functional properties and crosstalk to one another. Specific molecular components that define these microdomains have been shown to promote the interaction in trans between these intracellular compartments and the transfer or exchange of Ca2+ ions, lipids, and metabolic signaling molecules that determine the fate of the cell.
Collapse
|
20
|
Ledeen RW, Wu G, André S, Bleich D, Huet G, Kaltner H, Kopitz J, Gabius HJ. Beyond glycoproteins as galectin counterreceptors: tumor-effector T cell growth control via ganglioside GM1. Ann N Y Acad Sci 2012; 1253:206-21. [DOI: 10.1111/j.1749-6632.2012.06479.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Bieberich E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res 2012; 37:1208-29. [PMID: 22246226 DOI: 10.1007/s11064-011-0698-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/31/2011] [Indexed: 01/20/2023]
Abstract
Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called "bioactive lipids". Pioneering work in Dr. Robert Ledeen's laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: (1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and (2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street Room CA4012, Augusta, GA 30912, USA.
| |
Collapse
|
22
|
Becchetti A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol 2011; 301:C255-65. [DOI: 10.1152/ajpcell.00047.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progress through the cell mitotic cycle requires precise timing of the intrinsic molecular steps and tight coordination with the environmental signals that maintain a cell into the proper physiological context. Because of their great functional flexibility, ion channels coordinate the upstream and downstream signals that converge on the cell cycle machinery. Both voltage- and ligand-gated channels have been implicated in the control of different cell cycle checkpoints in normal as well as neoplastic cells. Ion channels mediate the calcium signals that punctuate the mitotic process, the cell volume oscillations typical of cycling cells, and the exocytosis of autocrine or angiogenetic factors. Other functions of ion channels in proliferation are still matter of debate. These may or may not depend on ion transport, as the channel proteins can form macromolecular complexes with growth factor and cell adhesion receptors. Direct conformational coupling with the cytoplasmic regulatory proteins is also possible. Derangement or relaxed control of the above processes can promote neoplasia. Specific types of ion channels have turned out to participate in the different stages of the tumor progression, in which cell heterogeneity is increased by the selection of malignant cell clones expressing the ion channel types that better support unrestrained growth. However, a comprehensive mechanistic picture of the functional relations between ion channels and cell proliferation is yet not available, partly because of the considerable experimental challenges offered by studying these processes in living mammalian cells. No doubt, such studies will constitute one of the most fruitful research fields for the next generation of cell physiologists.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
23
|
Abstract
GM1 and GD1a gangliosides occur in both membranes of the nuclear envelope (NE) together with two isoforms of neuraminidase. The Neu3 isoform of neuraminidase occurs in the inner membrane of the NE and Neu1 in the outer membrane. Both isoforms convert GD1a to GM1 within the respective membranes. GM1 in the inner membrane is tightly associated with a Na(+) /Ca(2+) exchanger (NCX) and potentiates the latter's activity. The NCX/GM1 complex mediates transfer of nucleoplasmic Ca(2+) to the NE lumen and hence to the endoplasmic reticulum (ER) with which it is continuous. Since cytoplasmic- and nucleoplasmic Ca(2+) are in homeostatic equilibrium (via nuclear pores), the nuclear NCX/GM1 complex acts to gate Ca(2+) transfer from cytosol to ER via nucleoplasm and NE. This constitutes an alternate route to the SERCA pump, indicating the influence of nuclear NCX/GM1 on whole cell Ca(2+) homeostasis. Use of cameleon-fluorescent Ca(2+) indicators (R. Tsien) demonstrated no Ca(2+) transfer from cytosol/nucleoplasm to ER in cells lacking nuclear NCX (Jurkat), and significantly reduced Ca(2+) transfer in cells lacking nuclear GM1 (NG-CR72). NCX/GM1 appears in the NE of neurons as they differentiate and serves a cytoprotective function, as seen in the high susceptibility of GalNAcT-/- knockout mice to kainate-induced seizure activity. This was alleviated by intraperitoneal injections of LIGA-20 a derivative of GM1 that is able (unlike GM1 itself) to traverse the blood brain barrier and neuronal plasma membrane and insert into the NE where it restores NCX exchanger activity. Absence or loss of nuclear GM1 renders cells vulnerable to apoptotic elimination.
Collapse
Affiliation(s)
- Robert Ledeen
- Department of Neurology & Neurosciences, New Jersey Medical School, UMDNJ, Newark, NJ 07103, USA.
| | | |
Collapse
|
24
|
Souza FID, Barros Filho TEP, Cristante AF. Avaliação do emprego do GM1 após lesão medular experimental em ratos. COLUNA/COLUMNA 2011. [DOI: 10.1590/s1808-18512011000400011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJETIVO: Avaliar a eficácia do GM1, administrado por via intraperitoneal, após lesão medular experimental em ratos. MÉTODOS: Foram utilizados 20 ratos da raça Wistar machos, adultos jovens, com média de idade de 20 semanas, pesando em torno de 350 g, divididos em dois grupos de 10 animais. No grupo 1 foi administrado apenas soro fisiológico por via intraperitoneal. Ao grupo 2, administraram-se 30 mg/kg de GM1 diariamente por essa mesma via. As lesões foram produzidas seguindo-se o protocolo internacional MASCIS (Multicenter Animal Spinal Cord Injury Study), com o sistema NYImpactor. Os animais foram avaliados funcionalmente pela escala BBB nos dias 14, 28 e 42 após a lesão. O potencial evocado foi realizado em todos os animais, no 42º dia após o trauma. RESULTADOS: Utilizou-se um modelo de variância de dois fatores (ANOVA) e o teste t de Student. As avaliações funcionais e por meio de potencial evocado não demonstraram diferença estatisticamente significante entre os dois grupos. CONCLUSÃO: O emprego de GM1 intraperitoneal não demonstrou resultados satisfatórios após lesão medular experimental.
Collapse
|
25
|
Nishimura B, Tabuchi K, Nakamagoe M, Hara A. The influences of sphingolipid metabolites on gentamicin-induced hair cell loss of the rat cochlea. Neurosci Lett 2010; 485:1-5. [PMID: 20709153 DOI: 10.1016/j.neulet.2010.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 12/13/2022]
Abstract
Sphingolipid metabolites inducing ceramide, sphingosine, and sphingosine-1-phosphate (S1P) play important roles in the regulation of cell proliferation, survival, and death. Aminoglycoside antibiotics including gentamicin induce inner ear hair cell loss and sensorineural hearing loss. Apoptotic cell death is considered to play a key role in this injury. The present study was designed to investigate the possible involvement of ceramide and S1P in hair cell death due to gentamicin. In addition, the effects of other metabolites of ceramide, gangliosides GM1 (GM1) and GM3 (GM3), on gentamicin ototoxicity were also investigated. Basal turn organ of Corti explants from p3 to p5 rats were maintained in tissue culture and exposed to 20 or 35μM gentamicin for 48h. The effects of ceramide, S1P, GM1, and GM3 on gentamicin-induced hair cell loss were examined. Gentamicin-induced hair cell loss was increased by ceramide but was decreased by S1P. GM1 and GM3 exhibited protective effects against gentamicin-induced hair cell death at the limited concentrations. These results indicate that ceramide enhances gentamicin ototoxicity by promoting apoptotic hair cell death, and that S1P, GM1, and GM3 act as cochlear protectants. In conclusion, sphingolipid metabolites influence the apoptotic reaction of hair cells to gentamicin ototoxicity.
Collapse
Affiliation(s)
- Bungo Nishimura
- Department of Otolaryngology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | |
Collapse
|
26
|
Wang J, Wu G, Miyagi T, Lu ZH, Ledeen RW. Sialidase occurs in both membranes of the nuclear envelope and hydrolyzes endogenous GD1a. J Neurochem 2009; 111:547-54. [DOI: 10.1111/j.1471-4159.2009.06339.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL. An update on nuclear calcium signalling. J Cell Sci 2009; 122:2337-50. [PMID: 19571113 DOI: 10.1242/jcs.028100] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the past 15 years or so, numerous studies have sought to characterise how nuclear calcium (Ca2+) signals are generated and reversed, and to understand how events that occur in the nucleoplasm influence cellular Ca2+ activity, and vice versa. In this Commentary, we describe mechanisms of nuclear Ca2+ signalling and discuss what is known about the origin and physiological significance of nuclear Ca2+ transients. In particular, we focus on the idea that the nucleus has an autonomous Ca2+ signalling system that can generate its own Ca2+ transients that modulate processes such as gene transcription. We also discuss the role of nuclear pores and the nuclear envelope in controlling ion flux into the nucleoplasm.
Collapse
Affiliation(s)
- Martin D Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | | | | | | | | |
Collapse
|
28
|
Sodium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci U S A 2009; 106:10829-34. [PMID: 19541636 DOI: 10.1073/pnas.0903408106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inner membrane of the nuclear envelope (NE) was previously shown to contain a Na/Ca exchanger (NCX) tightly linked to GM1 ganglioside that mediates transfer of nucleoplasmic Ca(2+) to the NE lumen and constitutes a cytoprotective mechanism. This transfer was initially observed with isolated nuclei and is now demonstrated in living cells in relation to subcellular Ca(2+) dynamics. Four cell lines with varying expression of NCX and GM1 in the NE were transfected with cameleon-fluorescent Ca(2+) indicators genetically targeted to NE/endoplasmic reticulum (ER) and nucleoplasm to monitor [Ca(2+)](ne/er) and [Ca(2+)](n) respectively. Cytosolic Ca(2+) ([Ca(2+)](cyt)) was indicated with fura-2. Thapsigargin caused progressive loss of [Ca(2+)](ne/er), which was rapidly replaced on addition of extrinsic Ca(2+) to those cells containing fully functional NCX/GM1: differentiated NG108-15 and C6 cells. Reduced elevation of [Ca(2+)](ne/er) following thapsigargin depletion occurred in cells containing little or no GM1 in the NE: undifferentiated NG108-15 and NG-CR72 cells. No change in [Ca(2+)](ne/er) due to applied Ca(2+) was seen in Jurkat cells, which entirely lack NCX. Ca(2+) entry to NE/ER was also blocked by KB-R7943, inhibitor of NCX. [Ca(2+)](n) and [Ca(2+)](cyt) were elevated independent of [Ca(2+)](ne/er) and remained in approximate equilibrium with each other. Ca(2+) rise in the ER originated in the NE region and extended to the entire ER network. These results indicate the nuclear NCX/GM1 complex acts to gate Ca(2+) transfer from cytosol to ER, an alternate route to the sarcoplasmic/endoplasmic reticulum calcium ATPase pump. They also suggest a possible contributory mechanism for independent regulation of nuclear Ca(2+).
Collapse
|
29
|
Sachl R, Mikhalyov I, Hof M, Johansson LBA. A comparative study on ganglioside micelles using electronic energy transfer, fluorescence correlation spectroscopy and light scattering techniques. Phys Chem Chem Phys 2009; 11:4335-43. [PMID: 19458836 DOI: 10.1039/b821658d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ganglioside (G(M1)) micelles have been studied by means of three different techniques: fluorescence correlation spectroscopy (FCS), electronic energy transfer, as monitored by time-resolved fluorescence spectroscopy, as well as static and dynamic light scattering. The aggregation numbers obtained, 168 +/- 4, remain constant over a wide range of G(M1) concentrations (0.764-156 muM), are very consistent when using different donor-acceptor energy transfer pairs and have served as reference values in tests of the FCS method. It is recommended to calibrate the focal volume by using known dye concentrations. For this the rhodamine dye, 5-TAMRA, turns out to be most suitable. It is also shown that FCS provides correct values of the aggregation numbers, provided that the focal volume is calibrated by using updated values of the diffusion constant of Rhodamine 6G. These results also support recent methodological advances in FCS.
Collapse
Affiliation(s)
- Radek Sachl
- Department of Chemistry, Biophysical Chemistry, Umeå University, S-901 87, Umeå, Sweden
| | | | | | | |
Collapse
|
30
|
Mazars C, Bourque S, Mithöfer A, Pugin A, Ranjeva R. Calcium homeostasis in plant cell nuclei. THE NEW PHYTOLOGIST 2009; 181:261-274. [PMID: 19130634 DOI: 10.1111/j.1469-8137.2008.02680.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plant cells, calcium-based signaling pathways are involved in a large array of biological processes, including cell division, polarity, growth, development and adaptation to changing biotic and abiotic environmental conditions. Free calcium changes are known to proceed in a nonstereotypical manner and produce a specific signature, which mirrors the nature, strength and frequency of a stimulus. The temporal aspects of calcium signatures are well documented, but their vectorial aspects also have a profound influence on biological output. Here, we will focus on the regulation of calcium homeostasis in the nucleus. We will discuss data and present hypotheses suggesting that, while interacting with other organelles, the nucleus has the potential to generate and regulate calcium signals on its own.
Collapse
Affiliation(s)
- Christian Mazars
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| | - Stéphane Bourque
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| | - Axel Mithöfer
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| | - Alain Pugin
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| | - Raoul Ranjeva
- UMR CNRS 5546/Université de Toulouse, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP 42617 Auzeville, 31326 Castanet-Tolosan cédex, France;UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France;Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Hans-Knöll-Str. 8, 07745 Jena, Germany;GDR CNRS Calcium et Régulation des Gènes, 118 route de Narbonne, 31062 Toulouse cédex, France
| |
Collapse
|
31
|
Ariga T, McDonald MP, Yu RK. Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease--a review. J Lipid Res 2008; 49:1157-75. [PMID: 18334715 DOI: 10.1194/jlr.r800007-jlr200] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gangliosides are expressed in the outer leaflet of the plasma membrane of the cells of all vertebrates and are particularly abundant in the nervous system. Ganglioside metabolism is closely associated with the pathology of Alzheimer's disease (AD). AD, the most common form of dementia, is a progressive degenerative disease of the brain characterized clinically by progressive loss of memory and cognitive function and eventually death. Neuropathologically, AD is characterized by amyloid deposits or "senile plaques," which consist mainly of aggregated variants of amyloid beta-protein (Abeta). Abeta undergoes a conformational transition from random coil to ordered structure rich in beta-sheets, especially after addition of lipid vesicles containing GM1 ganglioside. In AD brain, a complex of GM1 and Abeta, termed "GAbeta," has been found to accumulate. In recent years, Abeta and GM1 have been identified in microdomains or lipid rafts. The functional roles of these microdomains in cellular processes are now beginning to unfold. Several articles also have documented the involvement of these microdomains in the pathogenesis of certain neurodegenerative diseases, such as AD. A pivotal neuroprotective role of gangliosides has been reported in in vivo and in vitro models of neuronal injury, Parkinsonism, and related diseases. Here we describe the possible involvement of gangliosides in the development of AD and the therapeutic potentials of gangliosides in this disorder.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
32
|
Abstract
Sphingolipids are most prominently expressed in the plasma membrane, but recent studies have pointed to important signaling and regulatory roles in the nucleus. The most abundant nuclear sphingolipid is sphingomyelin (SM), which occurs in the nuclear envelope (NE) as well as intranuclear sites. The major metabolic product of SM is ceramide, which is generated by nuclear sphingomyelinase and triggers apoptosis and other metabolic changes. Ceramide is further hydrolyzed to free fatty acid and sphingosine, the latter undergoing conversion to sphingosine phosphate by action of a specific nuclear kinase. Gangliosides are another type of sphingolipid found in the nucleus, members of the a-series of gangliotetraose gangliosides (GM1, GD1a) occurring in the NE and endonuclear compartments. GM1 in the inner membrane of the NE is tightly associated with a Na(+)/Ca(2+) exchanger whose activity it potentiates, thereby contributing to regulation of Ca(2+) homeostasis in the nucleus. This was shown to exert a cytoprotective role as absence or inactivation of this nuclear complex rendered cells vulnerable to apoptosis. This was demonstrated in the greatly enhanced kainite-induced seizure activity in knockout mice lacking gangliotetraose gangliosides. The pathology included apoptotic destruction of neurons in the CA3 region of the hippocampus. Ca(2+) homeostasis was restored in these animals with LIGA-20, a membrane-permeant derivative of GM1 that entered the NE and activated the nuclear Na(+)/Ca(2+) exchanger. Some evidence suggests the presence of uncharged glycosphingolipids in the nucleus.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology & Neurosciences, New Jersey Medical School, The University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | |
Collapse
|