1
|
Borroto-Escuela D, Serrano-Castro P, Sánchez-Pérez JA, Barbancho-Fernández MA, Fuxe K, Narváez M. Enhanced neuronal survival and BDNF elevation via long-term co-activation of galanin 2 (GALR2) and neuropeptide Y1 receptors (NPY1R): potential therapeutic targets for major depressive disorder. Expert Opin Ther Targets 2024; 28:295-308. [PMID: 38622072 DOI: 10.1080/14728222.2024.2342517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a prevalent and debilitating condition, necessitating novel therapeutic strategies due to the limited efficacy and adverse effects of current treatments. We explored how galanin receptor 2 (GALR2) and Neuropeptide Y1 Receptor (NPYY1R) agonists, working together, can boost brain cell growth and increase antidepressant-like effects in rats. This suggests new ways to treat Major Depressive Disorder (MDD). RESEARCH DESIGN AND METHODS In a controlled laboratory setting, adult naive Sprague-Dawley rats were administered directly into the brain's ventricles, a method known as intracerebroventricular (ICV) administration, with GALR2 agonist (M1145), NPYY1R agonist, both, or in combination with a GALR2 antagonist (M871). Main outcome measures included long-term neuronal survival, differentiation, and behavioral. RESULTS Co-administration of M1145 and NPYY1R agonist significantly enhanced neuronal survival and maturation in the ventral dentate gyrus, with a notable increase in Brain-Derived Neurotrophic Factor (BDNF) expression. This neurogenic effect was associated with an antidepressant-like effect, an outcome partially reversed by M871. CONCLUSIONS GALR2 and NPYY1R agonists jointly promote hippocampal neurogenesis and exert antidepressant-like effects in rats without adverse outcomes, highlighting their therapeutic potential for MDD. The study's reliance on an animal model and intracerebroventricular delivery warrants further clinical exploration to confirm these promising results.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Antidepressive Agents/pharmacology
- Antidepressive Agents/administration & dosage
- Brain-Derived Neurotrophic Factor/metabolism
- Cell Survival/drug effects
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/physiopathology
- Disease Models, Animal
- Neurons/drug effects
- Neurons/metabolism
- Peptides
- Rats, Sprague-Dawley
- Receptor, Galanin, Type 2/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide
- Receptors, Neuropeptide Y/metabolism
- Receptors, Neuropeptide Y/antagonists & inhibitors
Collapse
Affiliation(s)
- Dasiel Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Pedro Serrano-Castro
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| | - Jose Andrés Sánchez-Pérez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Psychiatry, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| |
Collapse
|
2
|
Alvarez‐Contino JE, Díaz‐Sánchez E, Mirchandani‐Duque M, Sánchez‐Pérez JA, Barbancho MA, López‐Salas A, García‐Casares N, Fuxe K, Borroto‐Escuela DO, Narváez M. GALR2 and Y1R agonists intranasal infusion enhanced adult ventral hippocampal neurogenesis and antidepressant-like effects involving BDNF actions. J Cell Physiol 2023; 238:459-474. [PMID: 36599082 PMCID: PMC10952952 DOI: 10.1002/jcp.30944] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Dysregulation of adult hippocampal neurogenesis is linked to major depressive disorder (MDD), with more than 300 million people diagnosed and worsened by the COVID-19 pandemic. Accumulating evidence for neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the proliferating role of GAL2 receptor (GALR2) and Y1R agonists interaction upon intranasal infusion in the ventral hippocampus. We studied their hippocampal proliferating actions using the proliferating cell nuclear antigen (PCNA) on neuroblasts or stem cells and the expression of the brain-derived neurothrophic factor (BDNF). Moreover, we studied the formation of Y1R-GALR2 heteroreceptor complexes and analyzed morphological changes in hippocampal neuronal cells. Finally, the functional outcome of the NPY and GAL interaction on the ventral hippocampus was evaluated in the forced swimming test. We demonstrated that the intranasal infusion of GALR2 and the Y1R agonists promotes neuroblasts proliferation in the dentate gyrus of the ventral hippocampus and the induction of the neurotrophic factor BDNF. These effects were mediated by the increased formation of Y1R-GALR2 heteroreceptor complexes, which may mediate the neurites outgrowth observed on neuronal hippocampal cells. Importantly, BDNF action was found necessary for the antidepressant-like effects after GALR2 and the Y1R agonists intranasal administration. Our data may suggest the translational development of new heterobivalent agonist pharmacophores acting on Y1R-GALR2 heterocomplexes in the ventral hippocampus for the novel therapy of MDD or depressive-affecting diseases.
Collapse
Affiliation(s)
- Jose Erik Alvarez‐Contino
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Estela Díaz‐Sánchez
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Grupo Hospitalario VithasVithas MálagaMálagaSpain
| | - Marina Mirchandani‐Duque
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Jose Andrés Sánchez‐Pérez
- Unit of Psychiatry, Instituto de Investigación Biomédica de MálagaHospital Universitario Virgen de la VictoriaMálagaSpain
| | - Miguel A. Barbancho
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Alexander López‐Salas
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Natalia García‐Casares
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Kjell Fuxe
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Dasiel O. Borroto‐Escuela
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Department of NeuroscienceKarolinska InstituteStockholmSweden
- Department of Biomolecular Science, Section of PhysiologyUniversity of UrbinoUrbinoItaly
| | - Manuel Narváez
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Grupo Hospitalario VithasVithas MálagaMálagaSpain
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| |
Collapse
|
3
|
Mirchandani-Duque M, Barbancho MA, López-Salas A, Alvarez-Contino JE, García-Casares N, Fuxe K, Borroto-Escuela DO, Narváez M. Galanin and Neuropeptide Y Interaction Enhances Proliferation of Granule Precursor Cells and Expression of Neuroprotective Factors in the Rat Hippocampus with Consequent Augmented Spatial Memory. Biomedicines 2022; 10:1297. [PMID: 35740319 PMCID: PMC9219743 DOI: 10.3390/biomedicines10061297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of hippocampal neurogenesis is linked to several neurodegenereative diseases, where boosting hippocampal neurogenesis in these patients emerges as a potential therapeutic approach. Accumulating evidence for a neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the role of the NPY and GAL interaction in the neurogenic actions on the dorsal hippocampus. We studied the Y1R agonist and GAL effects on: hippocampal cell proliferation through the proliferating cell nuclear antigen (PCNA), the expression of neuroprotective and anti-apoptotic factors, and the survival of neurons and neurite outgrowth on hippocampal neuronal cells. The functional outcome was evaluated in the object-in-place task. We demonstrated that the Y1R agonist and GAL promote cell proliferation and the induction of neuroprotective factors. These effects were mediated by the interaction of NPYY1 (Y1R) and GAL2 (GALR2) receptors, which mediate the increased survival and neurites' outgrowth observed on neuronal hippocampal cells. These cellular effects are linked to the improved spatial-memory effects after the Y1R agonist and GAL co-injection at 24 h in the object-in-place task. Our results suggest the development of heterobivalent agonist pharmacophores, targeting Y1R-GALR2 heterocomplexes, therefore acting on the neuronal precursor cells of the DG in the dorsal hippocampus for the novel therapy of neurodegenerative cognitive-affecting diseases.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Miguel A. Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Alexander López-Salas
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Jose Erik Alvarez-Contino
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Natalia García-Casares
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Dasiel O. Borroto-Escuela
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
- Department of Biomolecular Science, Section of Physiology, University of Urbino, 61029 Urbino, Italy
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
| |
Collapse
|
4
|
Kalocayova B, Snurikova D, Vlkovicova J, Navarova-Stara V, Michalikova D, Ujhazy E, Gasparova Z, Vrbjar N. Effect of handling on ATP utilization of cerebral Na,K-ATPase in rats with trimethyltin-induced neurodegeneration. Mol Cell Biochem 2021; 476:4323-4330. [PMID: 34427815 DOI: 10.1007/s11010-021-04239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Previously it was shown that for reduction of anxiety and stress of experimental animals, preventive handling seems to be one of the most effective methods. The present study was oriented on Na,K-ATPase, a key enzyme for maintaining proper concentrations of intracellular sodium and potassium ions. Malfunction of this enzyme has an essential role in the development of neurodegenerative diseases. It is known that this enzyme requires approximately 50% of the energy available to the brain. Therefore in the present study utilization of the energy source ATP by Na,K-ATPase in the frontal cerebral cortex, using the method of enzyme kinetics was investigated. As a model of neurodegeneration treatment with trimethyltin (TMT) was applied. Daily handling (10 min/day) of healthy rats and rats suffering neurodegeneration induced by administration of TMT in a dose of (7.5 mg/kg), at postnatal days 60-102 altered the expression of catalytic subunits of Na,K-ATPase as well as kinetic properties of this enzyme in the frontal cerebral cortex of adult male Wistar rats. In addition to the previously published beneficial effect on spatial memory, daily treatment of rats was accompanied by improved maintenance of sodium homeostasis in the frontal cortex. The key system responsible for this process, Na,K-ATPase, was able to utilize better the energy substrate ATP. In rats, manipulation of TMT-induced neurodegeneration promoted the expression of the α2 isoform of the enzyme, which is typical for glial cells. In healthy rats, manipulation was followed by increased expression of the α3 subunit, which is typical of neurons.
Collapse
Affiliation(s)
- Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Denisa Snurikova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jana Vlkovicova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Navarova-Stara
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Dominika Michalikova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Eduard Ujhazy
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Zdenka Gasparova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Zubareva OE, Melik-Kasumov TB. The Gut–Brain Axis and Peroxisome Proliferator-Activated Receptors in the Regulation of Epileptogenesis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gao Y, Luo C, Yao Y, Huang J, Fu H, Xia C, Ye G, Yu L, Han J, Fan Y, Tao L. IL-33 Alleviated Brain Damage via Anti-apoptosis, Endoplasmic Reticulum Stress, and Inflammation After Epilepsy. Front Neurosci 2020; 14:898. [PMID: 32982679 PMCID: PMC7487557 DOI: 10.3389/fnins.2020.00898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-33 belongs to a novel chromatin-associated cytokine newly recognized by the IL-1 family, and its specific receptor is the orphan IL-1 receptor (ST2). Cumulative evidence suggests that IL-33 plays a crucial effect on the pathological changes and pathogenesis of central nervous system (CNS) diseases and injuries, such as recurrent neonatal seizures (RNS). However, the specific roles of IL-33 and its related molecular mechanisms in RNS remain confused. In the present study, we investigated the protein expression changes and co-localized cell types of IL-33 or ST2, as well as the effect of IL-33 on RNS-induced neurobehavioral defects, weight loss, and apoptosis. Moreover, an inhibitor of IL-33, anti-IL-33 was performed to further exploited underlying mechanisms. We found that administration of IL-33 up-regulated the expression levels of IL-33 and ST2, and increased the number of its co-localization with Olig-2-positive oligodendrocytes and NeuN-positive neurons at 72 h post-RNS. Noteworthily, RNS-induced neurobehavioral deficits, bodyweight loss, and spatial learning and memory impairment, as well as cell apoptosis, were reversed by IL-33 pretreatment. Additionally, the increase in IL-1β and TNF-α levels, up-regulation of ER stress, as well as a decrease in anti-apoptotic protein Bcl-2 and an increase in pro-apoptotic protein CC-3 induced by RNS are prevented by administration of IL-33. Moreover, IL-33 in combination with Anti-IL-33 significantly inverted the effects of IL-33 or Anti-IL-33 alone on apoptosis, ER stress, and inflammation. Collectively, these data suggest that IL-33 attenuates RNS-induced neurobehavioral disorders, bodyweight loss, and spatial learning and memory deficits, at least in part through mechanisms involved in inhibition of apoptosis, ER stress, and neuro-inflammation.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Science, Medical College of Soochow University, Suzhou, China.,Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,Shanghai Key Laboratory of Forensic Medicine, Department of Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chengliang Luo
- Department of Forensic Science, Medical College of Soochow University, Suzhou, China
| | - Yi Yao
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Junjie Huang
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Huifang Fu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Traditional Chinese Medicine Hospital, Nanjing, China
| | - Chongjian Xia
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Guanghua Ye
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Linsheng Yu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Junge Han
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanyan Fan
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Luyang Tao
- Department of Forensic Science, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
8
|
Ye M, Han BH, Kim JS, Kim K, Shim I. Neuroprotective Effect of Bean Phosphatidylserine on TMT-Induced Memory Deficits in a Rat Model. Int J Mol Sci 2020; 21:E4901. [PMID: 32664537 PMCID: PMC7402346 DOI: 10.3390/ijms21144901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Trimethyltin (TMT) is a potent neurotoxin affecting various regions of the central nervous system, including the neocortex, the cerebellum, and the hippocampus. Phosphatidylserine (PS) is a membrane phospholipid, which is vital to brain cells. We analyzed the neuroprotective effects of soybean-derived phosphatidylserine (Bean-PS) on cognitive function, changes in the central cholinergic systems, and neural activity in TMT-induced memory deficits in a rat model. METHODS The rats were randomly divided into an untreated normal group, a TMT group (injected with TMT + vehicle), and a group injected with TMT + Bean-PS. The rats were treated with 10% hexane (TMT group) or TMT + Bean-PS (50 mg·kg-1, oral administration (p.o.)) daily for 21 days, following a single injection of TMT (8.0 mg/kg, intraperitoneally (i.p.)). The cognitive function of Bean-PS was assessed using the Morris water maze (MWM) test and a passive avoidance task (PAT). The expression of acetylcholine transferase (ChAT) and acetylcholinesterase (AchE) in the hippocampus was assessed via immunohistochemistry. A positron emission tomography (PET) scan was used to measure the glucose uptake in the rat brain. RESULTS Treatment with Bean-PS enhanced memory function in the Morris water maze (MWM) test. Consistent with the behavioral results, treatment with Bean-PS diminished the damage to cholinergic cells in the hippocampus, in contrast to those of the TMT group. The TMT+Bean-PS group showed elevated glucose uptake in the frontal lobe of the rat brain. CONCLUSION These results demonstrate that Bean-PS protects against TMT-induced learning and memory impairment. As such, Bean-PS represents a potential treatment for neurodegenerative disorders, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Minsook Ye
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Bong Hee Han
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02435, Korea;
| | - Jin Su Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Kyungsoo Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02435, Korea;
| |
Collapse
|
9
|
Dragić M, Zarić M, Mitrović N, Nedeljković N, Grković I. Two Distinct Hippocampal Astrocyte Morphotypes Reveal Subfield-Different Fate during Neurodegeneration Induced by Trimethyltin Intoxication. Neuroscience 2019; 423:38-54. [PMID: 31682945 DOI: 10.1016/j.neuroscience.2019.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Astrocytes comprise a heterogenic group of glial cells, which perform homeostatic functions in the central nervous system. These cells react to all kind of insults by changing the morphology and function that result in a transition from the quiescent to a reactive phenotype. Trimethyltin (TMT) intoxication, which reproduces pathological events in the hippocampus similar to those associated with seizures and cognitive decline, has been proven as a useful model for studying responses of the glial cells to neurodegeneration. In the present study, we have explored morphological varieties of astrocytes in the hippocampal subregions of ovariectomized female rats exposed to TMT. We have demonstrated an early loss of neurons in CA1 and DG subfields. Distinct morphotypes of protoplasmic astrocytes observed in CA1/CA3 and the hilus of control animals developed different responses to TMT intoxication, as assessed by GFAP-immunohistochemistry. In CA1 subregion, GFAP+ astrocytes preserved their domain organization and responded with typical hypertrophy, while the hilar GFAP+ astrocytes developed atrophy-like phenotype and increased expression of vimentin and nestin 7 days after the exposure. Both reactive and atrophied-like astrocytes expressed Kir4.1 in CA1/CA3 and the hilus of DG, respectively, indicating that these cells did not change their potential for normal activity at this time point of pathology. Together, the results demonstrate the persistence of two protoplasmic morphotypes of astrocytes, with distinct appearance, function, and fate after TMT-induced neurodegeneration, suggesting their pleiotropic roles in the hippocampal response to neurodegeneration.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Studentski trg 3, 11001 Belgrade, Serbia; Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Studentski trg 3, 11001 Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
10
|
Neurochemical investigation of multiple locally induced seizures using microdialysis sampling: Epilepsy effects on glutamate release. Brain Res 2019; 1722:146360. [PMID: 31377104 DOI: 10.1016/j.brainres.2019.146360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
Abstract
The objective of this study was to develop an in vivo model for locally induced epilepsy. Epilepsy is a prominent neurological disorder that affects millions of people worldwide. Patients may experience either global seizures, affecting the entire brain, or focal seizures, affecting only one brain region. The majority of epileptic patients experience focal seizures but they go undiagnosed because such seizures can be difficult to detect. To better understand the effects of focal epilepsy on the neurochemistry of a brain region with high seizure diathesis, an animal model for locally induced seizures in the hippocampus was developed. In this model, two seizure events were chemically induced by administering the epileptogenic agent, 3-mercaptopropionic acid (3-MPA), to the hippocampus to disturb the balance between excitatory and inhibitory neurotransmitters in the brain. Microdialysis was used for local delivery of 3-MPA as well as for collection of dialysate for neurochemical analyses. Two periods of seizures separated by varying inter-seizure recovery times were employed, and changes in the release of the excitatory transmitter, glutamate, were measured. Significant differences in glutamate release were observed between the first and second seizure episodes. Diminished glutamate biosynthesis, enhanced glutamate re-uptake, and/or neuronal death were considered possible causes of the attenuated glutamate release during the second seizure episode. Biochemical measurements were indicative that a combination of these factors led to the attenuation in glutamate release.
Collapse
|
11
|
Marchese E, Corvino V, Di Maria V, Furno A, Giannetti S, Cesari E, Lulli P, Michetti F, Geloso MC. The Neuroprotective Effects of 17β-Estradiol Pretreatment in a Model of Neonatal Hippocampal Injury Induced by Trimethyltin. Front Cell Neurosci 2018; 12:385. [PMID: 30416427 PMCID: PMC6213803 DOI: 10.3389/fncel.2018.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Hippocampal dysfunction plays a central role in neurodevelopmental disorders, resulting in severe impairment of cognitive abilities, including memory and learning. On this basis, developmental studies represent an important tool both to understanding the cellular and molecular phenomena underlying early hippocampal damage and to study possible therapeutic interventions, that may modify the progression of neuronal death. Given the modulatory role played by 17β-estradiol (E2) on hippocampal functions and its neuroprotective properties, the present study investigates the effects of pretreatment with E2 in a model of neonatal hippocampal injury obtained by trimethyltin (TMT) administration, characterized by neuronal loss in CA1 and CA3 subfields and astroglial and microglial activation. At post-natal days (P)5 and P6 animals received E2 administration (0.2 mg/kg/die i.p.) or vehicle. At P7 they received a single dose of TMT (6.5 mg/kg i.p.) and were sacrificed 72 h (P10) or 7 days after TMT treatment (P14). Our findings indicate that pretreatment with E2 exerts a protective effect against hippocampal damage induced by TMT administration early in development, reducing the extent of neuronal death in the CA1 subfield, inducing the activation of genes involved in neuroprotection, lowering the neuroinflammatory response and restoring neuropeptide Y- and parvalbumin- expression, which is impaired in the early phases of TMT-induced damage. Our data support the efficacy of estrogen-based neuroprotective approaches to counteract early occurring hippocampal damage in the developing hippocampus.
Collapse
Affiliation(s)
- Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Alfredo Furno
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Cesari
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Paola Lulli
- Laboratorio di Biochimica Clinica e Biologia Molecolare, IRCCS Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Facoltà di Medicina e Chirurgia - IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Ernst L, Darschnik S, Roos J, González-Gómez M, Beemelmans C, Beemelmans C, Engelhardt M, Meyer G, Wahle P. Fast prenatal development of the NPY neuron system in the neocortex of the European wild boar, Sus scrofa. Brain Struct Funct 2018; 223:3855-3873. [PMID: 30094604 DOI: 10.1007/s00429-018-1725-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/26/2018] [Indexed: 11/25/2022]
Abstract
Knowledge on cortical development is based mainly on small rodents besides primates and carnivores, all being altricial nestlings. Ungulates are precocial and born with nearly mature sensory and motor systems. Almost no information is available on ungulate brain development. Here, we analyzed European wild boar cortex development, focusing on the neuropeptide Y immunoreactive (NPY-ir) neuron system in dorsoparietal cortex from E35 to P30. Transient NPY-ir neuron types including archaic cells of the cortical plate and axonal loop cells of the subplate which appear by E60 concurrent with the establishment of the ungulate brain basic sulcal pattern. From E70, NPY-ir axons have an axon initial segment which elongates and shifts closer towards the axon's point of origin until P30. From E85 onwards (birth at E114), NPY-ir neurons in cortical layers form basket cell-like local and Martinotti cell-like ascending axonal projections. The mature NPY-ir pattern is recognizable at E110. Together, morphologies are conserved across species, but timing is not: in pig, the adult pattern largely forms prenatally.
Collapse
Affiliation(s)
- Laura Ernst
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Simon Darschnik
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Johannes Roos
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Heidelberg, Germany
| | - Miriam González-Gómez
- Unit of Histology, Anatomy and Histology, Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, 38200, Santa Cruz de Tenerife, Tenerife, Spain
| | - Christa Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Christoph Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Heidelberg, Germany
| | - Gundela Meyer
- Unit of Histology, Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, 38200, Santa Cruz de Tenerife, Tenerife, Spain
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44870, Bochum, Germany.
| |
Collapse
|
13
|
Carron SF, Yan EB, Allitt BJ, Rajan R. Immediate and Medium-term Changes in Cortical and Hippocampal Inhibitory Neuronal Populations after Diffuse TBI. Neuroscience 2018; 388:152-170. [PMID: 30036662 DOI: 10.1016/j.neuroscience.2018.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023]
Abstract
Changes in inhibition following traumatic brain injury (TBI) appear to be one of the major factors that contribute to excitation:inhibition imbalance. Neuron pathology, interneurons in particular evolves from minutes to weeks post injury and follows a complex time course. Previously, we showed that in the long-term in diffuse TBI (dTBI), there was select reduction of specific dendrite-targeting neurons in sensory cortex and hippocampus while in motor cortex there was up-regulation of specific dendrite-targeting neurons. We now investigated the time course of dTBI effects on interneurons in neocortex and hippocampus. Brains were labeled with antibodies against calbindin (CB), parvalbumin (PV), calretinin (CR) neuropeptide Y (NPY), and somatostatin (SOM) at 24 h and 2 weeks post dTBI. We found time-dependent, brain area-specific changes in inhibition at 24 h and 2 weeks. At 24 h post-injury, reduction of dendrite-targeting inhibitory neurons occurred in sensory cortex and hippocampus. At 2 weeks, we found compensatory changes in the somatosensory cortex and CA2/3 of hippocampus affected at 24 h, with affected interneuronal populations returning to sham levels. However, DG of hippocampus now showed reduction of dendrite-targeting inhibitory neurons. Finally, with respect to motor cortex, there was an upregulation of dendrite-targeting interneurons in the supragranular layers at 24 h returning to normal levels by 2 weeks. Overall, our findings reconfirm that dendritic inhibition is particularly susceptible to brain trauma, but also show that there are complex brain-area-specific changes in inhibitory neuronal numbers and in compensatory changes, rather than a simple monotonic progression of changes post-dTBI.
Collapse
Affiliation(s)
- Simone F Carron
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| | - Edwin B Yan
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| | - Benjamin J Allitt
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| | - Ramesh Rajan
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Yasuhara T, Date I, Liska MG, Kaneko Y, Vale FL. Translating regenerative medicine techniques for the treatment of epilepsy. Brain Circ 2017; 3:156-162. [PMID: 30276318 PMCID: PMC6057691 DOI: 10.4103/bc.bc_21_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is considered a chronic neurological disorder and is accompanied by persistent and diverse disturbances in electrical brain activity. While antiepileptic pharmaceuticals are still the predominant treatment for epilepsy, the advent of numerous surgical interventions has further improved outcomes for patients. Despite these advancements, a subpopulation continues to experience intractable seizures which are resistant to current conventional and nonconventional therapeutic options. In this review, we begin with an introduction to the clinical presentation of epilepsy before discussing the clinically relevant laboratory models of epilepsy. Finally, we explore the implications of regenerative medicine – including cell therapy, neuroprotective agents, and electrical stimulation – for epilepsy, supplemented with our laboratory's data. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - M Grant Liska
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| | - Fernando L Vale
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
16
|
Pandey R, Rai V, Mishra J, Mandrah K, Kumar Roy S, Bandyopadhyay S. From the Cover: Arsenic Induces Hippocampal Neuronal Apoptosis and Cognitive Impairments via an Up-Regulated BMP2/Smad-Dependent Reduced BDNF/TrkB Signaling in Rats. Toxicol Sci 2017; 159:137-158. [DOI: 10.1093/toxsci/kfx124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Post-natal Deletion of Neuronal cAMP Responsive-Element Binding (CREB)-1 Promotes Pro-inflammatory Changes in the Mouse Hippocampus. Neurochem Res 2017; 42:2230-2245. [DOI: 10.1007/s11064-017-2233-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 12/19/2022]
|
18
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
19
|
Qiu B, Bell RL, Cao Y, Zhang L, Stewart RB, Graves T, Lumeng L, Yong W, Liang T. Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight. J Genet Genomics 2016; 43:421-30. [PMID: 27461754 PMCID: PMC5055068 DOI: 10.1016/j.jgg.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is widely expressed in the central nervous system and influences many physiological processes. It is located within the rat quantitative trait locus (QTL) for alcohol preference on chromosome 4. Alcohol-nonpreferring (NP) rats consume very little alcohol, but have significantly higher NPY expression in the brain than alcohol-preferring (P) rats. We capitalized on this phenotypic difference by creating an Npy knockout (KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption. Zinc finger nuclease (ZNF) technology was applied, resulting in a 26-bp deletion in the Npy gene. RT-PCR, Western blotting and immunohistochemistry confirmed the absence of Npy mRNA and protein in KO rats. Alcohol consumption was increased in Npy(+/-) but not Npy(-/-) rats, while Npy(-/-) rats displayed significantly lower body weight when compared to Npy(+/+) rats. In whole brain tissue, expression levels of Npy-related and other alcohol-associated genes, Npy1r, Npy2r, Npy5r, Agrp, Mc3r, Mc4r, Crh and Crh1r, were significantly greater in Npy(-/-) rats, whereas Pomc and Crhr2 expressions were highest in Npy(+/-) rats. These findings suggest that the NPY-system works in close coordination with the melanocortin (MC) and corticotropin-releasing hormone (CRH) systems to modulate alcohol intake and body weight.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Cao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Robert B Stewart
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University of Indianapolis, Indianapolis, IN 46202, USA
| | - Tamara Graves
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lawrence Lumeng
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Tiebing Liang
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
20
|
Beart PM. Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. J Neurochem 2016; 139 Suppl 2:76-90. [PMID: 27144305 DOI: 10.1111/jnc.13598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
This 'Past to Future' Review as part of the 60th anniversary year of the Journal of Neurochemistry focuses on synaptic transmission and associated signalling, and seeks to identify seminal progress in neurochemistry over the last 10 years which has advanced our understanding of neuronal communication in brain. The approach adopted analyses neurotransmitters on a case by case basis (i.e. amino acids, monoamines, acetylcholine, neuropeptides, ATP/purines and gasotransmitters) to highlight novel findings that have changed the way we view each type of transmitter, to explore commonalities and interactions, and to note how new insights have changed the way we view the biology of degenerative, psychiatric and behavioural conditions. Across all transmitter systems there was remarkable growth in the identification of targets likely to provide therapeutic benefit and which undoubtedly was driven by the elucidation of circuit function and new vistas of synaptic signalling. There has been an increasing trend to relate signalling to disease, notably for Alzheimer's and Parkinson's disease and related conditions, and which has occurred for each transmitter family. Forebrain circuitry and tonic excitatory control have been the centre of great attention yielding novel findings that will impact upon cognitive, emotional and addictive behaviours. Other impressive insights focus on gasotransmitters integrating activity as volume transmitters. Exciting developments in how serotonin, cholinergic, l-glutamate, galanin and adenosine receptors and their associated signalling can be beneficially targeted should underpin the development of new therapies. Clearly integrated, multifaceted neurochemistry has changed the way we view synaptic signalling and its relevance to pathobiology. Highlighted are important advances in synaptic signalling over the last decade in the Journal of Neurochemistry. Across all transmitter systems elucidation of circuit function, and notably molecular insights, have underpinned remarkable growth in the identification of targets likely to provide therapeutic benefit in neuropathologies. Another commonality was wide interest in forebrain circuitry and its tonic excitatory control. Increasingly observations relate to signalling in disease and behavioural conditions. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Philip M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
21
|
Setkowicz Z, Kosonowska E, Kaczyńska M, Gzieło-Jurek K, Janeczko K. Physical training decreases susceptibility to pilocarpine-induced seizures in the injured rat brain. Brain Res 2016; 1642:20-32. [PMID: 26972533 DOI: 10.1016/j.brainres.2016.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 01/27/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
There is growing evidence that physical activity ameliorates the course of epilepsy in animal models as well as in clinical conditions. Since traumatic brain injury is one of the strongest determinants of epileptogenesis, the present study focuses on the question whether a moderate long-term physical training can decrease susceptibility to seizures evoked following brain damage. Wistar rats received a mechanical brain injury and were subjected to daily running sessions on a treadmill for 21 days. Thereafter, seizures were induced by pilocarpine injections in trained and non-trained, control groups. During the acute period of status epilepticus, the intensity of seizures was assessed within the six-hour observation period. The trained rats showed considerable amelioration of pilocarpine-induced motor symptoms when compared with their non-trained counterparts. Histological investigations of effects of the brain injury and of physical training detected significant quantitative changes in parvalbumin-, calretinin- and NPY-immunopositive neuronal populations. Some of the injury-induced changes, especially those shoved by parvalbumin-immunopositive neurons, were abolished by the subsequent physical training procedure and could, therefore, be considered as neuronal correlates of the observed functional amelioration of the injured brain.
Collapse
Affiliation(s)
- Zuzanna Setkowicz
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Emilia Kosonowska
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kaczyńska
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Kinga Gzieło-Jurek
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 9 Gronostajowa St., 30-387 Kraków, Poland.
| |
Collapse
|
22
|
Trimethyltin Modulates Reelin Expression and Endogenous Neurogenesis in the Hippocampus of Developing Rats. Neurochem Res 2016; 41:1559-69. [DOI: 10.1007/s11064-016-1869-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/22/2016] [Accepted: 02/10/2016] [Indexed: 02/08/2023]
|
23
|
Edalatmanesh MA, Hosseini M, Ghasemi S, Golestani S, Sadeghnia HR, Mousavi SM, Vafaee F. Valproic acid-mediated inhibition of trimethyltin-induced deficits in memory and learning in the rat does not directly depend on its anti-oxidant properties. Ir J Med Sci 2016; 185:75-84. [PMID: 25638225 DOI: 10.1007/s11845-014-1224-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 11/01/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Trimethyltin (TMT) acts as a potent neurotoxic compound especially for the hippocampus. The effects of valproic acid (VPA) on TMT-induced learning and memory deficits were investigated. METHODS The rats were divided into: (1) control, (2) TMT, (3) TMT-VPA 1, (4) TMT-VPA 5, (5) TMT-VPA 10. TMT was injected as a single dose (12 mg/kg, ip) in groups 2-5. The animals of groups 3-5 were treated by 1, 5, and 10 mg/kg of VPA for 2 weeks. Learning and memory deficits were assessed by Morris water maze (MWM) and passive avoidance (PA) tests. The markers of oxidative stress mainly malondialdehyde (MDA) level and total thiol content were measured in the brain regions. RESULTS In MWM test, escape latency and traveled path in the TMT group were higher than control (p < 0.05 and p < 0.01). Treatment by 1, 5, and 10 mg/kg of VPA reduced escape latency and traveled path (p < 0.01-p < 0.001). In PA test, the time latency to enter the dark compartment in TMT group was lower than control group (p < 0.01). Treatment by 5 and 10 mg/kg of VPA increased the time latency (p < 0.05-p < 0.001). MDA concentration in hippocampal tissues of TMT group was higher while, total thiol content was lower than control ones (p < 0.05). Pretreatment with 10 mg/kg of VPA decreased the MDA level while, increased total thiol content (p < 0.01). CONCLUSIONS The results of present study showed that VPA attenuates TMT-induced memory deficits. Protective effects against brain tissues oxidative damage might have a role in the beneficial effects of VPA.
Collapse
Affiliation(s)
- M A Edalatmanesh
- Department of Biology, Faculty of Basic Sciences, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - M Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - S Ghasemi
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Golestani
- Department of Biology, Faculty of Basic Sciences, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - H R Sadeghnia
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S M Mousavi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - F Vafaee
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Moghadas M, Edalatmanesh MA, Robati R. Histopathological Analysis from Gallic Acid Administration on Hippocampal Cell Density, Depression, and Anxiety Related Behaviors in A Trimethyltin Intoxication Model. CELL JOURNAL 2016; 17:659-67. [PMID: 26862525 PMCID: PMC4746416 DOI: 10.22074/cellj.2016.3838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/01/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The present study investigated the effects of gallic acid (GA) administration on trimethyltin chloride (TMT) induced anxiety, depression, and hippocampal neurodegen- eration in rats. MATERIALS AND METHODS In this experimental study, the rats received intraperitoneal (i.p.) injections of TMT (8 mg/kg). The animals received either GA (50, 100 and 150 mg/kg) or saline as the vehicle for 14 consecutive days. We measured depression and anxiety levels of the rats by conducting the behavioral tail suspension (TST), elevatedplusmaze (EPM), and novelty suppressed feeding (NSF) tests. Histological analyses were then used to de- termine the cell densities of different hippocampal subdivisions. The data were analyzed with ANOVA and Tukey's post hoc test. RESULTS GA administration ameliorated anxiety and depression in the behavioral tests. The cell densities in the CA1, CA2, CA3 and DG hippocampal subdivisionsfrom GA-treat- ed rats were higher than saline treated rats. CONCLUSION GA treatment against TMT-induced hippocampal degeneration altered cellular loss in the hippocampus and ameliorated the depression-anxiety state in rats.
Collapse
Affiliation(s)
| | - Mohammad Amin Edalatmanesh
- P.O.Box: 71993-1Department of PhysiologyCollege of SciencesShiraz BranchIslamic Azad UniversityShirazIran
| | | |
Collapse
|
25
|
Chen J, Riazifar H, Guan MX, Huang T. Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets. Stem Cell Res Ther 2016; 7:2. [PMID: 26738566 PMCID: PMC4704249 DOI: 10.1186/s13287-015-0264-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background Many retinal degenerative diseases are caused by the loss of retinal ganglion cells (RGCs). Autosomal dominant optic atrophy is the most common hereditary optic atrophy disease and is characterized by central vision loss and degeneration of RGCs. Currently, there is no effective treatment for this group of diseases. However, stem cell therapy holds great potential for replacing lost RGCs of patients. Compared with embryonic stem cells, induced pluripotent stem cells (iPSCs) can be derived from adult somatic cells, and they are associated with fewer ethical concerns and are less prone to immune rejection. In addition, patient-derived iPSCs may provide us with a cellular model for studying the pathogenesis and potential therapeutic agents for optic atrophy. Methods In this study, iPSCs were obtained from patients carrying an OPA1 mutation (OPA1+/−-iPSC) that were diagnosed with optic atrophy. These iPSCs were differentiated into putative RGCs, which were subsequently characterized by using RGC-specific expression markers BRN3a and ISLET-1. Results Mutant OPA1+/−-iPSCs exhibited significantly more apoptosis and were unable to efficiently differentiate into RGCs. However, with the addition of neural induction medium, Noggin, or estrogen, OPA1+/−-iPSC differentiation into RGCs was promoted. Conclusions Our results suggest that apoptosis mediated by OPA1 mutations plays an important role in the pathogenesis of optic atrophy, and both noggin and β-estrogen may represent potential therapeutic agents for OPA1-related optic atrophy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0264-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Chen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Hamidreza Riazifar
- Department of Pediatrics, Division of Human Genetics, University of California, Irvine, CA, 92697, USA.
| | - Min-Xin Guan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
26
|
Neuropeptide Y Negatively Influences Monocyte Recruitment to the Central Nervous System during Retrovirus Infection. J Virol 2015; 90:2783-93. [PMID: 26719257 DOI: 10.1128/jvi.02934-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Monocyte infiltration into the CNS is a hallmark of several viral infections of the central nervous system (CNS), including retrovirus infection. Understanding the factors that mediate monocyte migration in the CNS is essential for the development of therapeutics that can alter the disease process. In the current study, we found that neuropeptide Y (NPY) suppressed monocyte recruitment to the CNS in a mouse model of polytropic retrovirus infection. NPY(-/-) mice had increased incidence and kinetics of retrovirus-induced neurological disease, which correlated with a significant increase in monocytes in the CNS compared to wild-type mice. Both Ly6C(hi) inflammatory and Ly6C(lo) alternatively activated monocytes were increased in the CNS of NPY(-/-) mice following virus infection, suggesting that NPY suppresses the infiltration of both cell types. Ex vivo analysis of myeloid cells from brain tissue demonstrated that infiltrating monocytes expressed high levels of the NPY receptor Y2R. Correlating with the expression of Y2R on monocytes, treatment of NPY(-/-) mice with a truncated, Y2R-specific NPY peptide suppressed the incidence of retrovirus-induced neurological disease. These data demonstrate a clear role for NPY as a negative regulator of monocyte recruitment into the CNS and provide a new mechanism for suppression of retrovirus-induced neurological disease. IMPORTANCE Monocyte recruitment to the brain is associated with multiple neurological diseases. However, the factors that influence the recruitment of these cells to the brain are still not well understood. In the current study, we found that neuropeptide Y, a protein produced by neurons, affected monocyte recruitment to the brain during retrovirus infection. We show that mice deficient in NPY have increased influx of monocytes into the brain and that this increase in monocytes correlates with neurological-disease development. These studies provide a mechanism by which the nervous system, through the production of NPY, can suppress monocyte trafficking to the brain and reduce retrovirus-induced neurological disease.
Collapse
|
27
|
Corvino V, Di Maria V, Marchese E, Lattanzi W, Biamonte F, Michetti F, Geloso MC. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats. Front Cell Neurosci 2015; 9:433. [PMID: 26594149 PMCID: PMC4633568 DOI: 10.3389/fncel.2015.00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2) administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT) administration (8 mg/kg), characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields, associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg intra-peritoneal) or vehicle, and were sacrificed 48 h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48 h) upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, cadherin 2 and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad) 67, neuropeptide Y (Npy), parvalbumin, Pgc-1α and Sirtuin 1 genes, the latter involved in parvalbumin (PV) synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT-treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain.
Collapse
Affiliation(s)
- Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
28
|
Amal IH, Mona AMG, Rasha YMI. Therapeutic role of glucogalactan polysaccharide extracted from Agaricus bisporus on trimethyltin chloride induced neuropathy in rats. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2015.14501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Park MH, Jin HK, Min WK, Lee WW, Lee JE, Akiyama H, Herzog H, Enikolopov GN, Schuchman EH, Bae JS. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. EMBO J 2015; 34:1648-60. [PMID: 25916827 DOI: 10.15252/embj.201490174] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/01/2015] [Indexed: 01/08/2023] Open
Abstract
Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.
Collapse
Affiliation(s)
- Min Hee Park
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| | - Hee Kyung Jin
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Woo-Kie Min
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Korea
| | - Won Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Eun Lee
- Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Korea
| | | | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jae-sung Bae
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| |
Collapse
|
30
|
Geloso MC, Corvino V, Di Maria V, Marchese E, Michetti F. Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front Cell Neurosci 2015; 9:85. [PMID: 25852477 PMCID: PMC4360818 DOI: 10.3389/fncel.2015.00085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are emerging as key regulators of stem cell niche activities in health and disease, both inside and outside the central nervous system (CNS). Among them, neuropeptide Y (NPY), one of the most abundant neuropeptides both in the nervous system and in non-neural districts, has become the focus of much attention for its involvement in a wide range of physiological and pathological conditions, including the modulation of different stem cell activities. In particular, a pro-neurogenic role of NPY has been evidenced in the neurogenic niche, where a direct effect on neural progenitors has been demonstrated, while different cellular types, including astrocytes, microglia and endothelial cells, also appear to be responsive to the peptide. The marked modulation of the NPY system during several pathological conditions that affect neurogenesis, including stress, seizures and neurodegeneration, further highlights the relevance of this peptide in the regulation of adult neurogenesis. In view of the considerable interest in understanding the mechanisms controlling neural cell fate, this review aims to summarize and discuss current data on NPY signaling in the different cellular components of the neurogenic niche in order to elucidate the complexity of the mechanisms underlying the modulatory properties of this peptide.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
31
|
Moghadas M, Edalatmanesh MA. Protective effect of Lithium Chloride against Trimethyltin-induced hippocampal degeneration and comorbid depression in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-2055-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Geil CR, Hayes DM, McClain JA, Liput DJ, Marshall SA, Chen KY, Nixon K. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:103-13. [PMID: 24842804 PMCID: PMC4134968 DOI: 10.1016/j.pnpbp.2014.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/01/2014] [Accepted: 05/08/2014] [Indexed: 01/29/2023]
Abstract
Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kimberly Nixon
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
33
|
Kir HM, Sahin D, Oztaş B, Musul M, Kuskay S. Effects of single-dose neuropeptide Y on levels of hippocampal BDNF, MDA, GSH, and NO in a rat model of pentylenetetrazole-induced epileptic seizure. Bosn J Basic Med Sci 2014; 13:242-7. [PMID: 24289760 DOI: 10.17305/bjbms.2013.2332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, which may increase the content of reactive oxygen and nitrogen species. The objective of this study was to investigate the effects of Neuropeptide Y on oxidative and nitrosative balance and brain-derived neurotrophic factor levels induced by pentylenetetrazole (a standard convulsant drug) in the hippocampus of Wistar rats. Three groups of seven rats were treated intraperitoneally as follows: group 1 (saline + saline) 1 ml saline, group 2 (salin + Pentylenetetrazole) 1 ml saline 30 min before Pentylenetetrazole; and group 3 (Neuropeptide Y + Pentylenetetrazole) 60 μg/kg Neuropeptide Y 30 min before 60 mg/kg Pentylenetetrazole. After 24 h, the animals were euthanized by decapitation. Hippocampus were isolated to evaluate the malondialdehyde, glutathione, nitric oxide, and brain-derived neurotrophic factor levels in three rat groups. The results of this study demonstrated that while intraperitoneally administered neuropeptide Y did not result in a statistically significant difference in BDNF levels, its administration caused a statistically significant decrease in malondialdehyde and nitric oxide levels and an increase in glutathione levels in rats with pentylenetetrazole-induced epileptic seizure. Neuropeptide Y were able to reduce nitroxidative damage induced by pentylenetetrazole in the hippocampus of Wistar rats.
Collapse
Affiliation(s)
- Hale Maral Kir
- Department of Biochemistry, School of Medicine, Kocaeli University, Umuttepe Kampusu, 41380, Kocaeli, Turkey
| | | | | | | | | |
Collapse
|
34
|
Developmental and degenerative modulation of brain-derived neurotrophic factor transcript variants in the mouse hippocampus. Int J Dev Neurosci 2014; 38:68-73. [PMID: 25124374 DOI: 10.1016/j.ijdevneu.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 02/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is regarded as an important factor for neurogenesis, synaptic plasticity, and neuronal network organization in brain circuits. However, little is known about the regulation of BDNF transcript variants in the hippocampus during postnatal development and following chemically induced neurotoxicity. In the present study, we examined the expression of individual BDNF transcript variants in the mouse hippocampus on postnatal day (PD) 3, 7, 14, 21, and 56, as well as in the adult hippocampus 1, 2, 4, and 8 days after trimethyltin (TMT) treatment. During postnatal development, the expression levels of common BDNF-coding transcripts and BDNF transcript variants increased gradually in the hippocampus, but the temporal patterns of each exon transcript showed significant differences. In the TMT-treated hippocampus, the levels of common BDNF-coding transcripts and exon I, IIC, III, VII, VIII, and IXA transcripts were significantly increased 1 day post-treatment. These observations suggest that the differential regulation of BDNF exon transcripts may be associated with neuronal and synaptic maturation during postnatal development, and neuronal survival and synaptic plasticity in chemically induced neurodegeneration.
Collapse
|
35
|
Angelucci F, Gelfo F, Fiore M, Croce N, Mathé AA, Bernardini S, Caltagirone C. The effect of neuropeptide Y on cell survival and neurotrophin expression in in-vitro models of Alzheimer's disease. Can J Physiol Pharmacol 2014; 92:621-30. [PMID: 25026432 DOI: 10.1139/cjpp-2014-0099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a disorder characterized by the accumulation of abnormally folded protein fragments in neurons, i.e., β-amyloid (Aβ) and tau protein, leading to cell death. Several neuropeptides present in the central nervous system (CNS) are believed to be involved in the pathophysiology of AD. Among them, neuropeptide Y (NPY), a small peptide widely distributed throughout the brain, has generated interest because of its role in neuroprotection against excitotoxicity in animal models of AD. In addition, it has been shown that NPY modulates neurogenesis. Interestingly, these latter effects are similar to those elicited by neurotrophins, which are critical molecules for the function and survival of neurons that degenerate during the course of AD. In this review we summarize the evidence for the involvement of NPY and neurotrophins in AD pathogenesis, and the similarity between them in CNS neurons. Finally, we recapitulate our recent in-vitro evidence for the involvement of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the neuroprotective effect elicited by NPY in AD neuron-like models (neuroblastoma cells or primary cultures exposed to toxic concentrations of Aβ's pathogenic fragment 25-35), and propose a putative mechanism based on NPY-induced inhibition of voltage-dependent Ca(2+) influx in pre- and post-synaptic neurons.
Collapse
Affiliation(s)
- Francesco Angelucci
- a Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00142 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu X, Guo F, He Q, Cai X, Min D, Wang Q, Wang S, Tian L, Cai J, Zhao Y. Altered expression of neuropeptide Y, Y1 and Y2 receptors, but not Y5 receptor, within hippocampus and temporal lobe cortex of tremor rats. Neuropeptides 2014; 48:97-105. [PMID: 24444822 DOI: 10.1016/j.npep.2013.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 01/24/2023]
Abstract
As an endogenous inhibitor of glutamate-mediated synaptic transmission in mammalian central nervous system, neuropeptide Y (NPY) plays a crucial role in regulating homeostasis of neuron excitability. Loss of balance between excitatory and inhibitory neurotransmission is thought to be a chief mechanism of epileptogenesis. The abnormal expression of NPY and its receptors observed following seizures have been demonstrated to be related to the production of epilepsy. The tremor rat (TRM) is a hereditary epileptic animal model. So far, there is no report concerning whether NPY and its receptors may be involved in TRM pathogenesis. In this study, we focused on the expression of NPY and its three receptor subtypes: Y1R, Y2R and Y5R in the TRM brain. We first found the expression of NPY in TRM hippocampus and temporal lobe cortex was increased compared with control (Wistar) rats. The mRNA and protein expression of Y1R was down-regulated in hippocampus but up-regulated in temporal lobe cortex, whereas Y2R expression was significantly increased in both areas. There was no significant change of Y5R expression in either area. The immunohistochemistry data showed that Y1R, Y2R, Y5R were present throughout CA1, CA3, dentate gyrus (DG) and the entorhinal cortex which is included in the temporal lobe cortex of TRM. In conclusion, our results showed the altered expression of NPY, Y1R and Y2R but not Y5R in hippocampus and temporal lobe cortex of TRM brain. This abnormal expression may be associated with the generation of epileptiform activity and provide a candidate target for treatment of genetic epilepsy.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China; Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Qun He
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | - Xinze Cai
- Central Lab, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dongyu Min
- Experiment Center of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Qianhui Wang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Shaocheng Wang
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | - Liu Tian
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | - Jiqun Cai
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Yujie Zhao
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China.
| |
Collapse
|
37
|
Corvino V, Marchese E, Podda MV, Lattanzi W, Giannetti S, Di Maria V, Cocco S, Grassi C, Michetti F, Geloso MC. The neurogenic effects of exogenous neuropeptide Y: early molecular events and long-lasting effects in the hippocampus of trimethyltin-treated rats. PLoS One 2014; 9:e88294. [PMID: 24516629 PMCID: PMC3917853 DOI: 10.1371/journal.pone.0088294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/05/2014] [Indexed: 01/08/2023] Open
Abstract
Modulation of endogenous neurogenesis is regarded as a promising challenge in neuroprotection. In the rat model of hippocampal neurodegeneration obtained by Trimethyltin (TMT) administration (8 mg/kg), characterised by selective pyramidal cell loss, enhanced neurogenesis, seizures and cognitive impairment, we previously demonstrated a proliferative role of exogenous neuropeptide Y (NPY), on dentate progenitors in the early phases of neurodegeneration. To investigate the functional integration of newly-born neurons, here we studied in adult rats the long-term effects of intracerebroventricular administration of NPY (2 µg/2 µl, 4 days after TMT-treatment), which plays an adjuvant role in neurodegeneration and epilepsy. Our results indicate that 30 days after NPY administration the number of new neurons was still higher in TMT+NPY-treated rats than in control+saline group. As a functional correlate of the integration of new neurons into the hippocampal network, long-term potentiation recorded in Dentate Gyrus (DG) in the absence of GABAA receptor blockade was higher in the TMT+NPY-treated group than in all other groups. Furthermore, qPCR analysis of Kruppel-like factor 9, a transcription factor essential for late-phase maturation of neurons in the DG, and of the cyclin-dependent kinase 5, critically involved in the maturation and dendrite extension of newly-born neurons, revealed a significant up-regulation of both genes in TMT+NPY-treated rats compared with all other groups. To explore the early molecular events activated by NPY administration, the Sonic Hedgehog (Shh) signalling pathway, which participates in the maintenance of the neurogenic hippocampal niche, was evaluated by qPCR 1, 3 and 5 days after NPY-treatment. An early significant up-regulation of Shh expression was detected in TMT+NPY-treated rats compared with all other groups, associated with a modulation of downstream genes. Our data indicate that the neurogenic effect of NPY administration during TMT-induced neurodegeneration involves early Shh pathway activation and results in a functional integration of newly-generated neurons into the local circuit.
Collapse
Affiliation(s)
- Valentina Corvino
- Institute of Anatomy and Cell Biology - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Vittoria Podda
- Institute of Human Physiology - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Cocco
- Institute of Human Physiology - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology - Università Cattolica del Sacro Cuore, Rome, Italy
- * E-mail:
| |
Collapse
|
38
|
Podda MV, Leone L, Barbati SA, Mastrodonato A, Li Puma DD, Piacentini R, Grassi C. Extremely low-frequency electromagnetic fields enhance the survival of newborn neurons in the mouse hippocampus. Eur J Neurosci 2013; 39:893-903. [DOI: 10.1111/ejn.12465] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Maria V. Podda
- Institute of Human Physiology; Medical School; Università Cattolica del Sacro Cuore; Largo Francesco Vito 1 00168 Rome Italy
| | - Lucia Leone
- Institute of Human Physiology; Medical School; Università Cattolica del Sacro Cuore; Largo Francesco Vito 1 00168 Rome Italy
| | - Saviana A. Barbati
- Institute of Human Physiology; Medical School; Università Cattolica del Sacro Cuore; Largo Francesco Vito 1 00168 Rome Italy
| | - Alessia Mastrodonato
- Institute of Human Physiology; Medical School; Università Cattolica del Sacro Cuore; Largo Francesco Vito 1 00168 Rome Italy
| | - Domenica D. Li Puma
- Institute of Human Physiology; Medical School; Università Cattolica del Sacro Cuore; Largo Francesco Vito 1 00168 Rome Italy
| | - Roberto Piacentini
- Institute of Human Physiology; Medical School; Università Cattolica del Sacro Cuore; Largo Francesco Vito 1 00168 Rome Italy
| | - Claudio Grassi
- Institute of Human Physiology; Medical School; Università Cattolica del Sacro Cuore; Largo Francesco Vito 1 00168 Rome Italy
| |
Collapse
|
39
|
Yasuhara T, Agari T, Kameda M, Kondo A, Kuramoto S, Jing M, Sasaki T, Toyoshima A, Sasada S, Sato K, Shinko A, Wakamori T, Okuma Y, Miyoshi Y, Tajiri N, Borlongan CV, Date I. Regenerative medicine for epilepsy: from basic research to clinical application. Int J Mol Sci 2013; 14:23390-401. [PMID: 24287913 PMCID: PMC3876052 DOI: 10.3390/ijms141223390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 11/15/2013] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurological disorder, which presents with various forms of seizures. Traditional treatments, including medication using antiepileptic drugs, remain the treatment of choice for epilepsy. Recent development in surgical techniques and approaches has improved treatment outcomes. However, several epileptic patients still suffer from intractable seizures despite the advent of the multimodality of therapies. In this article, we initially provide an overview of clinical presentation of epilepsy then describe clinically relevant animal models of epilepsy. Subsequently, we discuss the concepts of regenerative medicine including cell therapy, neuroprotective agents, and electrical stimulation, which are reviewed within the context of our data.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-86-235-7336; Fax: +81-86-227-0191
| | - Takashi Agari
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Akihiko Kondo
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Satoshi Kuramoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Meng Jing
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Atsuhiko Toyoshima
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Kenichiro Sato
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Aiko Shinko
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Takaaki Wakamori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Yu Okuma
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Yasuyuki Miyoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Naoki Tajiri
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; E-Mails: (N.T.); (C.V.B.)
| | - Cesario V. Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; E-Mails: (N.T.); (C.V.B.)
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| |
Collapse
|
40
|
Gene expression profiling as a tool to investigate the molecular machinery activated during hippocampal neurodegeneration induced by trimethyltin (TMT) administration. Int J Mol Sci 2013; 14:16817-35. [PMID: 23955266 PMCID: PMC3759937 DOI: 10.3390/ijms140816817] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 12/31/2022] Open
Abstract
Trimethyltin (TMT) is an organotin compound exhibiting neurotoxicant effects selectively localized in the limbic system and especially marked in the hippocampus, in both experimental animal models and accidentally exposed humans. TMT administration causes selective neuronal death involving either the granular neurons of the dentate gyrus or the pyramidal cells of the Cornu Ammonis, with a different pattern of localization depending on the different species studied or the dosage schedule. TMT is broadly used to realize experimental models of hippocampal neurodegeneration associated with cognitive impairment and temporal lobe epilepsy, though the molecular mechanisms underlying the associated selective neuronal death are still not conclusively clarified. Experimental evidence indicates that TMT-induced neurodegeneration is a complex event involving different pathogenetic mechanisms, probably acting differently in animal and cell models, which include neuroinflammation, intracellular calcium overload, and oxidative stress. Microarray-based, genome-wide expression analysis has been used to investigate the molecular scenario occurring in the TMT-injured brain in different in vivo and in vitro models, producing an overwhelming amount of data. The aim of this review is to discuss and rationalize the state-of-the-art on TMT-associated genome wide expression profiles in order to identify comparable and reproducible data that may allow focusing on significantly involved pathways.
Collapse
|
41
|
Lattanzi W, Barba M, Novegno F, Massimi L, Tesori V, Tamburrini G, Galgano S, Bernardini C, Caldarelli M, Michetti F, Di Rocco C. Lim mineralization protein is involved in the premature calvarial ossification in sporadic craniosynostoses. Bone 2013; 52:474-84. [PMID: 22982077 DOI: 10.1016/j.bone.2012.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 07/27/2012] [Accepted: 09/01/2012] [Indexed: 01/31/2023]
Abstract
Sporadic mono-sutural craniosynostosis represents a highly prevalent regional bone disorder, where a single cranial suture undergoes premature ossification due to a generally unclear etiopathogenesis. The LIM mineralization protein (LMP) was recently described as an efficient osteogenic molecule involved in osteoblast differentiation, expressed in calvarial tissues upon corticosteroid-osteogenic induction and used as a potent inducer of bone formation in several animal models. In this study, calvarial cells isolated from both prematurely fused and physiologically patent sutures of children with sporadic craniosynostosis, were used as an in vitro paradigmatic model for the study of the molecular events involved in calvarial osteogenesis, focusing on the possible role of the LMP-related osteogenic signaling. Calvarial cells isolated from both patent and fused sutures expressed a mesenchymal-like immunophenotype. Cells isolated from fused sutures displayed an increased osteogenic potential, being able to undergo spontaneous mineralization and premature response to osteogenic induction, leading to in vitro bone nodule formation. The expression of LMP and its target genes (bone morphogenetic protein-2, osteocalcin and Runt-related transcription factor 2) was significantly up-regulated in cells derived from the fused sutures. Upon silencing the expression of LMP in fused suture-derived cells, the osteogenic potential along with the expression of osteo-specific transcription factors decreased, restoring the "physiologic" cell behavior. These results suggested that: 1. mesenchymal cells residing in fused sutures display a constitutionally active osteogenic disposition leading to the premature suture ossification; 2. the molecular basis of the overactive osteogenic process may at least in part involve a deregulation of the LMP-related pathway in calvarial cells.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica S. Cuore, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Malva JO, Xapelli S, Baptista S, Valero J, Agasse F, Ferreira R, Silva AP. Multifaces of neuropeptide Y in the brain--neuroprotection, neurogenesis and neuroinflammation. Neuropeptides 2012; 46:299-308. [PMID: 23116540 DOI: 10.1016/j.npep.2012.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) has been implicated in the modulation of important features of neuronal physiology, including calcium homeostasis, neurotransmitter release and excitability. Moreover, NPY has been involved as an important modulator of hippocampal and thalamic circuits, receiving particular attention as an endogenous antiepileptic peptide and as a potential master regulator of feeding behavior. NPY not only inhibits excessive glutamate release (decreasing circuitry hyperexcitability) but also protects neurons from excitotoxic cell death. Furthermore, NPY has been involved in the modulation of the dynamics of dentate gyrus and subventricular zone neural stem cell niches. In both regions, NPY is part of the chemical resource of the neurogenic niche and acts through NPY Y1 receptors to promote neuronal differentiation. Interestingly, NPY is also considered a neuroimmune messenger. In this review, we highlight recent evidences concerning paracrine/autocrine actions of NPY involved in neuroprotection, neurogenesis and neuroinflammation. In summary, the three faces of NPY, discussed in the present review, may contribute to better understand the dynamics and cell fate decision in the brain parenchyma and in restricted areas of neurogenic niches, in health and disease.
Collapse
Affiliation(s)
- J O Malva
- Laboratory of Biochemistry and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
43
|
Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 2012. [PMID: 23179590 DOI: 10.1007/s11064-012-0932-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell-cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases.
Collapse
|