1
|
Parida KK, Lahiri M, Ghosh M, Dalal A, Kalia NP. P-glycoprotein inhibitors as an adjunct therapy for TB. Drug Discov Today 2024; 29:104108. [PMID: 39032811 DOI: 10.1016/j.drudis.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The primary challenge in TB treatment is the emergence of multidrug-resistant TB (MDR-TB). One of the major factors responsible for MDR is the upregulation of efflux pumps. Permeation-glycoprotein (P-gp), an efflux pump, hinders the bioavailability of the administered drugs inside the infected cells. Simultaneously, angiogenesis, the formation of new blood vessels, contributes to drug delivery complexities. TB infection triggers a cascade of events that upregulates the expression of angiogenic factors and P-gp. The combined action of P-gp and angiogenesis foster the emergence of MDR-TB. Understanding these mechanisms is pivotal for developing targeted interventions to overcome MDR in TB. P-gp inhibitors, such as verapamil, and anti-angiogenic drugs, including bevacizumab, have shown improvement in TB drug delivery to granuloma. In this review, we discuss the potential of P-gp inhibitors as an adjunct therapy to shorten TB treatment.
Collapse
Affiliation(s)
- Kishan Kumar Parida
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Monali Lahiri
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Mainak Ghosh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aman Dalal
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Badaut J, Ghersi-Egea JF, Thorne RG, Konsman JP. Blood-brain borders: a proposal to address limitations of historical blood-brain barrier terminology. Fluids Barriers CNS 2024; 21:3. [PMID: 38183042 PMCID: PMC10770911 DOI: 10.1186/s12987-023-00478-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 01/07/2024] Open
Abstract
Many neuroscientists use the term Blood-Brain Barrier (BBB) to emphasize restrictiveness, often equating or reducing the notion of BBB properties to tight junction molecules physically sealing cerebral endothelial cells, rather than pointing out the complexity of this biological interface with respect to its selectivity and variety of exchange between the general blood circulation and the central nervous tissue. Several authors in the field find it unfortunate that the exquisitely dynamic interfaces between blood and brain continue to be viewed primarily as obstructive barriers to transport. Although the term blood-brain interface is an excellent descriptor that does not convey the idea of a barrier, it is important and preferable for the spreading of an idea beyond specialist communities to try to appeal to well-chosen metaphors. Recent evidence reviewed here indicates that blood-brain interfaces are more than selective semi-permeable membranes in that they display many dynamic processes and complex mechanisms for communication. They are thus more like 'geopolitical borders'. Furthermore, some authors working on blood-brain interface-relevant issues have started to use the word border, for example in border-associated macrophages. Therefore, we suggest adopting the term Blood-Brain Border to better communicate the flexibility of and movement across blood-brain interfaces.
Collapse
Affiliation(s)
- Jerome Badaut
- Brain Molecular Imaging Lab, UMR 5536, CNRS, RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Jean-François Ghersi-Egea
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR 5292, Lyon-1 University, Bron, France.
| | - Robert G Thorne
- Denali Therapeutics, Inc, 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
- Department of Pharmaceutics, University of Minnesota, 9-177 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.
| | - Jan Pieter Konsman
- UMR 5164, CNRS, ImmunoConcEpT, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
4
|
Hanafy AS, Steinlein P, Pitsch J, Silva MH, Vana N, Becker AJ, Graham ME, Schoch S, Lamprecht A, Dietrich D. Subcellular analysis of blood-brain barrier function by micro-impalement of vessels in acute brain slices. Nat Commun 2023; 14:481. [PMID: 36717572 PMCID: PMC9886996 DOI: 10.1038/s41467-023-36070-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
The blood-brain barrier (BBB) is a tightly and actively regulated vascular barrier. Answering fundamental biological and translational questions about the BBB with currently available approaches is hampered by a trade-off between accessibility and biological validity. We report an approach combining micropipette-based local perfusion of capillaries in acute brain slices with multiphoton microscopy. Micro-perfusion offers control over the luminal solution and allows application of molecules and drug delivery systems, whereas the bath solution defines the extracellular milieu in the brain parenchyma. Here we show, that this combination allows monitoring of BBB transport at the cellular level, visualization of BBB permeation of cells and molecules in real-time and resolves subcellular details of the neurovascular unit. In combination with electrophysiology, it permits comparison of drug effects on neuronal activity following luminal versus parenchymal application. We further apply micro-perfusion to the human and mouse BBB of epileptic hippocampi highlighting its utility for translational research and analysis of therapeutic strategies.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Pia Steinlein
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Julika Pitsch
- Section for Translational Epilepsy Research, Dept. of Neuropathology, University Hospital Bonn, Bonn, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Mariella Hurtado Silva
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Natascha Vana
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Dept. of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Mark Evan Graham
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Dept. of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
5
|
The Impact of P-Glycoprotein on Opioid Analgesics: What's the Real Meaning in Pain Management and Palliative Care? Int J Mol Sci 2022; 23:ijms232214125. [PMID: 36430602 PMCID: PMC9695906 DOI: 10.3390/ijms232214125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Opioids are widely used in cancer and non-cancer pain management. However, many transporters at the blood-brain barrier (BBB), such as P-glycoprotein (P-gp, ABCB1/MDR1), may impair their delivery to the brain, thus leading to opioid tolerance. Nonetheless, opioids may regulate P-gp expression, thus altering the transport of other compounds, namely chemotherapeutic agents, resulting in pharmacoresistance. Other kinds of painkillers (e.g., acetaminophen, dexamethasone) and adjuvant drugs used for neuropathic pain may act as P-gp substrates and modulate its expression, thus making pain management challenging. Inflammatory conditions are also believed to upregulate P-gp. The role of P-gp in drug-drug interactions is currently under investigation, since many P-gp substrates may also act as substrates for the cytochrome P450 enzymes, which metabolize a wide range of xenobiotics and endobiotics. Genetic variability of the ABCB1/MDR1 gene may be accountable for inter-individual variation in opioid-induced analgesia. P-gp also plays a role in the management of opioid-induced adverse effects, such as constipation. Peripherally acting mu-opioid receptors antagonists (PAMORAs), such as naloxegol and naldemedine, are substrates of P-gp, which prevent their penetration in the central nervous system. In our review, we explore the interactions between P-gp and opioidergic drugs, with their implications in clinical practice.
Collapse
|
6
|
Targeting organic cation transporters at the blood-brain barrier to treat ischemic stroke in rats. Exp Neurol 2022; 357:114181. [PMID: 35905840 DOI: 10.1016/j.expneurol.2022.114181] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Drug discovery and development for stroke is challenging as evidenced by few drugs that have advanced beyond a Phase III clinical trial. Memantine is a N-methyl-d-aspartate (NMDA) receptor antagonist that has been shown to be neuroprotective in various preclinical studies. We have identified an endogenous BBB uptake transport system for memantine: organic cation transporters 1 and 2 (Oct1/Oct2). Our goal was to evaluate Oct1/Oct2 as a required BBB mechanism for memantine neuroprotective effects. Male Sprague-Dawley rats (200-250 g) were subjected to middle cerebral artery occlusion (MCAO) for 90 min followed by reperfusion. Memantine (5 mg/kg, i.v.) was administered 2 h following intraluminal suture removal. Specificity of Oct-mediated transport was evaluated using cimetidine (15 mg/kg, i.v.), a competitive Oct1/Oct2 inhibitor. At 2 h post-MCAO, [3H]memantine uptake was increased in ischemic brain tissue. Cimetidine inhibited blood-to-brain uptake of [3H]memantine, which confirmed involvement of an Oct-mediated transport mechanism. Memantine reduced post-MCAO infarction and brain edema progression as well as improved neurological outcomes during post-stroke recovery. All positive effects of memantine were attenuated by co-administration of cimetidine, which demonstrates that Oct1/Oct2 transport is required for memantine to exert neuroprotective effects in ischemic stroke. Furthermore, Oct1/Oct2-mediated transport was shown to be the dominant mechanism for memantine brain uptake in the MCAO model despite a concurrent increase in paracellular "leak." These novel and translational findings provide mechanistic evidence for the critical role of BBB transporters in CNS delivery of stroke therapeutics, information that can help such drugs advance in clinical trials.
Collapse
|
7
|
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022; 8:e09777. [PMID: 35789865 PMCID: PMC9249865 DOI: 10.1016/j.heliyon.2022.e09777] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance phenomenon presents a major threat to the pharmaceutical industry. This resistance is a common occurrence in several diseases and is mediated by multidrug transporters that actively pump substances out of the cell and away from their target regions. The most well-known multidrug transporter is the P-glycoprotein transporter. The binding sites within P-glycoprotein can accommodate a variety of compounds with diverse structures. Hence, numerous drugs are P-glycoprotein substrates, with new ones being identified every day. For many years, the mechanisms of action of P-glycoprotein have been shrouded in mystery, and scientists have only recently been able to elucidate certain structural and functional aspects of this protein. Although P-glycoprotein is highly implicated in multidrug resistant diseases, this transporter also performs various physiological roles in the human body and is expressed in several tissues, including the brain, kidneys, liver, gastrointestinal tract, testis, and placenta. The expression levels of P-glycoprotein are regulated by different enzymes, inflammatory mediators and transcription factors; alterations in which can result in the generation of a disease phenotype. This review details the discovery, the recently proposed structure and the regulatory functions of P-glycoprotein, as well as the crucial role it plays in health and disease.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| |
Collapse
|
8
|
Begum S, Shareef MZ, Bharathi K. Part-II- in silico drug design: application and success. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In silico tools have indeed reframed the steps involved in traditional drug discovery and development process and the term in silico has become a familiar term in pharmaceutical sector like the terms in vitro and in vivo. The successful design of HIV protease inhibitors, Saquinavir, Indinavir and other important medicinal agents, initiated interest of researchers in structure based drug design approaches (SBDD). The interactions between biomolecules and a ligand, binding energy, free energy and stability of biomolecule-ligand complex can be envisioned and predicted by applying molecular docking studies. Protein-ligand, protein-protein, DNA-ligand interactions etc. aid in elucidating molecular level mechanisms of drug molecules. In the Ligand based drug design (LBDD) approaches, QSAR studies have tremendously contributed to the development of antimicrobial, anticancer, antimalarial agents. In the recent years, multiQSAR (mt-QSAR) approaches have been successfully employed for designing drugs against multifactorial diseases. Output of a research in several instances is rewarding when both SBDD and LBDD approaches are combined. Application of in silico studies for prediction of pharmacokinetics was once a real challenge but one can see unlimited number publications comprising tools, data bases which can accurately predict almost all the pharmacokinetic parameters. Absorption, distribution, metabolism, transporters, blood brain barrier permeability, hERG toxicity, P-gp affinity and several toxicological end points can be accurately predicted for a candidate molecule before its synthesis. In silico approaches are greatly encouraged a result of growing limitations and new legislations related to the animal use for research. The combined use of in vitro data and in silico tools will definitely decrease the use of animal testing in the future.In this chapter, in silico approaches and their applications are reviewed and discussed giving suitable examples.
Collapse
Affiliation(s)
- Shaheen Begum
- Institute of Pharmaceutical Technology , Sri Padmavati Mahila Visvavidyalayam , 517501 Tirupati , Andhra Pradesh , India
| | - Mohammad Zubair Shareef
- Institute of Pharmaceutical Technology , Sri Padmavati Mahila Visvavidyalayam , 517501 Tirupati , Andhra Pradesh , India
| | - Koganti Bharathi
- Institute of Pharmaceutical Technology , Sri Padmavati Mahila Visvavidyalayam , 517501 Tirupati , Andhra Pradesh , India
| |
Collapse
|
9
|
Mesiti F, Gaspar A, Chavarria D, Maruca A, Rocca R, Gil Martins E, Barreiro S, Silva R, Fernandes C, Gul S, Keminer O, Alcaro S, Borges F. Mapping Chromone-3-Phenylcarboxamide Pharmacophore: Quid Est Veritas? J Med Chem 2021; 64:11169-11182. [PMID: 34269579 DOI: 10.1021/acs.jmedchem.1c00510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromone-3-phenylcarboxamides (Crom-1 and Crom-2) were identified as potent, selective, and reversible inhibitors of human monoamine oxidase B (hMAO-B). Since they exhibit some absorption, distribution, metabolism, and excretion (ADME)-toxicity liabilities, new derivatives were synthesized to map the chemical structural features that compose the pharmacophore, a process vital for lead optimization. Structure-activity relationship data, supported by molecular docking studies, provided a rationale for the contribution of the heterocycle's rigidity, the carbonyl group, and the benzopyran heteroatom for hMAO-B inhibitory activity. From the study, N-(3-chlorophenyl)-4H-thiochromone-3-carboxamide (31) (hMAO-B IC50 = 1.52 ± 0.15 nM) emerged as a reversible tight binding inhibitor with an improved pharmacological profile. In in vitro ADME-toxicity studies, compound 31 showed a safe cytotoxicity profile in Caco-2, SH-SY5Y, HUVEC, HEK-293, and MCF-7 cells, did not present cardiotoxic effects, and did not affect P-gp transport activity. Compound 31 also protected SH-SY5Y cells from iron(III)-induced damage. Collectively, these studies highlighted compound 31 as the first-in-class and a suitable candidate for in vivo preclinical investigation.
Collapse
Affiliation(s)
- Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy.,Net4Science srl, Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy.,CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Alexandra Gaspar
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy.,Net4Science srl, Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy
| | - Roberta Rocca
- Net4Science srl, Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy.,Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, Catanzaro 88100, Italy
| | - Eva Gil Martins
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Sandra Barreiro
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Carlos Fernandes
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg 22525, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg 22525, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg 22525, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg 22525, Germany
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| |
Collapse
|
10
|
Blood-brain barrier dysfunction as a potential therapeutic target for neurodegenerative disorders. Arch Pharm Res 2021; 44:487-498. [PMID: 34028650 DOI: 10.1007/s12272-021-01332-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is composed of specific tight junction proteins and transporters expressed on the lining of endothelial cells of the vasculature in the brain. The structural and functional integrity of the BBB is one of the most critical factors for maintaining brain homeostasis and is mainly regulated by complex interactions between various cell types, such as endothelial cells, pericytes, and astrocytes, which are shaped by their differential responses to changes in microenvironments. Alterations in these cellular components have been implicated in neurodegenerative disorders. Although it has long been considered that BBB dysfunction is a mere ramification of pathological phenomena, emerging evidence supports its critical role in the pathogenesis of various disorders. In epilepsy, heightened BBB permeability has been found to be associated with increased occurrence of spontaneous seizures. Additionally, exaggerated inflammatory responses significantly correlate with increased BBB permeability during healthy aging. Furthermore, it has been previously reported that BBB disruption can be an early marker for predicting cognitive impairment in the progression of Alzheimer's disease. We herein review a potential role of the major cellular components of the BBB, with a focus on the contribution of BBB disruption, in neurodegenerative disease progression.
Collapse
|
11
|
Ding Y, Zhong Y, Baldeshwiler A, Abner EL, Bauer B, Hartz AMS. Protecting P-glycoprotein at the blood-brain barrier from degradation in an Alzheimer's disease mouse model. Fluids Barriers CNS 2021; 18:10. [PMID: 33676539 PMCID: PMC7937299 DOI: 10.1186/s12987-021-00245-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Failure to clear Aβ from the brain is partly responsible for Aβ brain accumulation in Alzheimer's disease (AD). A critical protein for clearing Aβ across the blood-brain barrier is the efflux transporter P-glycoprotein (P-gp). In AD, P-gp levels are reduced, which contributes to impaired Aβ brain clearance. However, the mechanism responsible for decreased P-gp levels is poorly understood and there are no strategies available to protect P-gp. We previously demonstrated in isolated brain capillaries ex vivo that human Aβ40 (hAβ40) triggers P-gp degradation by activating the ubiquitin-proteasome pathway. In this pathway, hAβ40 initiates P-gp ubiquitination, leading to internalization and proteasomal degradation of P-gp, which then results in decreased P-gp protein expression and transport activity levels. Here, we extend this line of research and present results from an in vivo study using a transgenic mouse model of AD (human amyloid precursor protein (hAPP)-overexpressing mice; Tg2576). METHODS In our study, hAPP mice were treated with vehicle, nocodazole (NCZ, microtubule inhibitor to block P-gp internalization), or a combination of NCZ and the P-gp inhibitor cyclosporin A (CSA). We determined P-gp protein expression and transport activity levels in isolated mouse brain capillaries and Aβ levels in plasma and brain tissue. RESULTS Treating hAPP mice with 5 mg/kg NCZ for 14 days increased P-gp levels to levels found in WT mice. Consistent with this, P-gp-mediated hAβ42 transport in brain capillaries was increased in NCZ-treated hAPP mice compared to untreated hAPP mice. Importantly, NCZ treatment significantly lowered hAβ40 and hAβ42 brain levels in hAPP mice, whereas hAβ40 and hAβ42 levels in plasma remained unchanged. CONCLUSIONS These findings provide in vivo evidence that microtubule inhibition maintains P-gp protein expression and transport activity levels, which in turn helps to lower hAβ brain levels in hAPP mice. Thus, protecting P-gp at the blood-brain barrier may provide a novel therapeutic strategy for AD and other Aβ-based pathologies.
Collapse
Affiliation(s)
- Yujie Ding
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Yu Zhong
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Andrea Baldeshwiler
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota, 55812, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, 40536, USA
| | - Björn Bauer
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
- University of Kentucky Sanders-Brown Center on Aging, 800 S Limestone, Lexington, KY, 40536, USA.
| |
Collapse
|
12
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
13
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
14
|
Neuronal Activity Regulates Blood-Brain Barrier Efflux Transport through Endothelial Circadian Genes. Neuron 2020; 108:937-952.e7. [PMID: 32979312 DOI: 10.1016/j.neuron.2020.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023]
Abstract
The blood vessels in the central nervous system (CNS) have a series of unique properties, termed the blood-brain barrier (BBB), which stringently regulate the entry of molecules into the brain, thus maintaining proper brain homeostasis. We sought to understand whether neuronal activity could regulate BBB properties. Using both chemogenetics and a volitional behavior paradigm, we identified a core set of brain endothelial genes whose expression is regulated by neuronal activity. In particular, neuronal activity regulates BBB efflux transporter expression and function, which is critical for excluding many small lipophilic molecules from the brain parenchyma. Furthermore, we found that neuronal activity regulates the expression of circadian clock genes within brain endothelial cells, which in turn mediate the activity-dependent control of BBB efflux transport. These results have important clinical implications for CNS drug delivery and clearance of CNS waste products, including Aβ, and for understanding how neuronal activity can modulate diurnal processes.
Collapse
|
15
|
Hoshi Y, Uchida Y, Tachikawa M, Ohtsuki S, Couraud PO, Suzuki T, Terasaki T. Oxidative stress-induced activation of Abl and Src kinases rapidly induces P-glycoprotein internalization via phosphorylation of caveolin-1 on tyrosine-14, decreasing cortisol efflux at the blood-brain barrier. J Cereb Blood Flow Metab 2020; 40:420-436. [PMID: 30621530 PMCID: PMC7370610 DOI: 10.1177/0271678x18822801] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure of the brain to high levels of glucocorticoids during ischemia-reperfusion induces neuronal cell death. Oxidative stress alters blood-brain barrier (BBB) function during ischemia-reperfusion, and so we hypothesized that it might impair P-glycoprotein (P-gp)-mediated efflux transport of glucocorticoids at the BBB. Therefore, the purpose of this study was to clarify the molecular mechanism of this putative decrease of P-gp-mediated efflux function. First, we established that H2O2 treatment of a human in vitro BBB model (hCMEC/D3) reduced both P-gp efflux transport activity and protein expression on the plasma membrane within 20 min. These results suggested that the rapid decrease of efflux function might be due to internalization of P-gp. Furthermore, H2O2 treatment markedly increased tyrosine-14-phosphorylated caveolin-1, which is involved in P-gp internalization. A brain perfusion study in rats showed that cortisol efflux at the BBB was markedly decreased by H2O2 administration, and inhibitors of Abl kinase and Src kinase, which phosphorylate tyrosine-14 in caveolin-1, suppressed this decrease. Overall, these findings support the idea that oxidative stress-induced activation of Abl kinase and Src kinase induces internalization of P-gp via the phosphorylation of tyrosine-14 in caveolin-1, leading to a rapid decrease of P-gp-mediated cortisol efflux at the BBB.
Collapse
Affiliation(s)
- Yutaro Hoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sumio Ohtsuki
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Chandra S, Michael Nguyen H, Wiltz K, Hall N, Chaudhry S, Olverson G, Mandal T, Dash S, Kundu A. Aptamer-functionalized Hybrid Nanoparticles to Enhance the Delivery of Doxorubicin into Breast Cancer Cells by Silencing P-glycoprotein. JOURNAL OF CANCER TREATMENT & DIAGNOSIS 2020; 4:1-13. [PMID: 32395707 PMCID: PMC7213597 DOI: 10.29245/2578-2967/2020/1.1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The MDR of metastatic breast cancer cells is accompanied by the overexpression of P-gp transporter. This study has been focused to determine whether silencing the expression of P-gp by aptamer-labeled siRNA nanoparticles could enhance the delivery of doxorubicin into breast cancer cells in culture. METHODOLOGY The nanoparticle F-31 was prepared using DOTAP, cholesterol, and PLGA, and then incorporating Mal-PEG to facilitate aptamer-binding. The nanoparticles were surface-functionalized with aptamer A6, which targets Her-2 receptors overexpressed on the surface of breast cancer cells. RESULTS This study has shown that the uptake of Dox by Dox-resistant 4T1-R is significantly less than Dox-sensitive 4T1-S which is partly attributed to the higher expression of drug-efflux pump P-gp on the surface of the resistant cells. The targeted knockdown of P-gp has been enhanced when the particles carrying P-gp siRNA was labeled with aptamer. Concurrently, the uptake of Dox into the Dox-resistant 4T1-R breast cancer cells has increased significantly when the P-gp was silenced by P-gp siRNA-encapsulated aptamer-labeled nanoparticles. CONCLUSIONS This preliminary study concludes that downregulating P-gp expression by targeted delivery of P-gp siRNA using aptamer-labeled lipid-based hybrid nanoparticles could effectively increase the intracellular trafficking of doxorubicin in Dox-resistant mouse breast cancer cells.
Collapse
Affiliation(s)
- Sruti Chandra
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | | | - Kylar Wiltz
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Nicholas Hall
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Shanzay Chaudhry
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - George Olverson
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Tarun Mandal
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, Louisiana
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| |
Collapse
|
17
|
Tome ME, Jarvis CK, Schaefer CP, Jacobs LM, Herndon JM, Hunn KC, Arkwright NB, Kellohen KL, Mierau PC, Davis TP. Acute pain alters P-glycoprotein-containing protein complexes in rat cerebral microvessels: Implications for P-glycoprotein trafficking. J Cereb Blood Flow Metab 2018; 38:2209-2222. [PMID: 30346224 PMCID: PMC6282220 DOI: 10.1177/0271678x18803623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
P-glycoprotein (PgP) is the major drug efflux pump in human cerebral microvessels. PgP prevents pathogens, toxins and therapeutic drugs from entering the CNS. Understanding the molecular regulation of PgP activity will suggest novel mechanisms to improve CNS drug delivery. Previously, we found that during peripheral inflammatory pain (PIP) (3 h after λ carrageenan injection in the rat paw), PgP traffics to the cortical microvessel endothelial cell plasma membrane concomitant with increased PgP activity. In the current study, we measured the changes in composition of PgP-containing protein complexes after PIP in rat microvessel isolates. We found that a portion of the PgP is contained in a multi-protein complex that also contains the caveolar proteins CAV1, SDPR, PTRF and PRKCDBP. With PIP, total CAV1 bound to PgP was unchanged; however, phosphorylated CAV1 (Y14P-CAV1) in the complex increased. There were few PgP/CAV1 complexes relative to total PgP and CAV1 in the microvessels suggesting CAV1 bound to PgP is unlikely to affect total PgP activity. However, both PgP and CAV1 trafficked away from the nucleus in response to PIP. These data suggest that P-CAV1 bound to PgP potentially regulates PgP trafficking and contributes to the acute PgP activity increase after a PIP stimulus.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Chelsea K Jarvis
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | | | - Leigh M Jacobs
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Joseph M Herndon
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Kristen C Hunn
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | | | | | - Peyton C Mierau
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
18
|
Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 2018; 10:pharmaceutics10040192. [PMID: 30340346 PMCID: PMC6321372 DOI: 10.3390/pharmaceutics10040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Opioids are highly effective analgesics that have a serious potential for adverse drug reactions and for development of addiction and tolerance. Since the use of opioids has escalated in recent years, it is increasingly important to understand biological mechanisms that can increase the probability of opioid-associated adverse events occurring in patient populations. This is emphasized by the current opioid epidemic in the United States where opioid analgesics are frequently abused and misused. It has been established that the effectiveness of opioids is maximized when these drugs readily access opioid receptors in the central nervous system (CNS). Indeed, opioid delivery to the brain is significantly influenced by the blood-brain barrier (BBB). In particular, ATP-binding cassette (ABC) transporters that are endogenously expressed at the BBB are critical determinants of CNS opioid penetration. In this review, we will discuss current knowledge on the transport of opioid analgesic drugs by ABC transporters at the BBB. We will also examine how expression and trafficking of ABC transporters can be modified by pain and/or opioid pharmacotherapy, a novel mechanism that can promote opioid-associated adverse drug events and development of addiction and tolerance.
Collapse
|
19
|
Hartz AMS, Schulz JA, Sokola BS, Edelmann SE, Shen AN, Rempe RG, Zhong Y, Seblani NE, Bauer B. Isolation of Cerebral Capillaries from Fresh Human Brain Tissue. J Vis Exp 2018. [PMID: 30272660 DOI: 10.3791/57346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Understanding blood-brain barrier function under physiological and pathophysiological conditions is critical for the development of new therapeutic strategies that hold the promise to enhance brain drug delivery, improve brain protection, and treat brain disorders. However, studying the human blood-brain barrier function is challenging. Thus, there is a critical need for appropriate models. In this regard, brain capillaries isolated from human brain tissue represent a unique tool to study barrier function as close to the human in vivo situation as possible. Here, we describe an optimized protocol to isolate capillaries from human brain tissue at a high yield and with consistent quality and purity. Capillaries are isolated from fresh human brain tissue using mechanical homogenization, density-gradient centrifugation, and filtration. After the isolation, the human brain capillaries can be used for various applications including leakage assays, live cell imaging, and immune-based assays to study protein expression and function, enzyme activity, or intracellular signaling. Isolated human brain capillaries are a unique model to elucidate the regulation of the human blood-brain barrier function. This model can provide insights into central nervous system (CNS) pathogenesis, which will help the development of therapeutic strategies for treating CNS disorders.
Collapse
Affiliation(s)
- Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | - Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Brent S Sokola
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Stephanie E Edelmann
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | - Andrew N Shen
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | - Ralf G Rempe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Yu Zhong
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | | | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky;
| |
Collapse
|
20
|
Giannoni P, Badaut J, Dargazanli C, Fayd'Herbe De Maudave A, Klement W, Costalat V, Marchi N. The pericyte-glia interface at the blood-brain barrier. Clin Sci (Lond) 2018; 132:361-374. [PMID: 29439117 DOI: 10.1042/cs20171634] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
The cerebrovasculature is a multicellular structure with varying rheological and permeability properties. The outer wall of the brain capillary endothelium is enclosed by pericytes and astrocyte end feet, anatomically assembled to guarantee barrier functions. We, here, focus on the pericyte modifications occurring in disease conditions, reviewing evidence supporting the interplay amongst pericytes, the endothelium, and glial cells in health and pathology. Deconstruction and reactivity of pericytes and glial cells around the capillary endothelium occur in response to traumatic brain injury, epilepsy, and neurodegenerative disorders, impacting vascular permeability and participating in neuroinflammation. As this represents a growing field of research, addressing the multicellular reorganization occurring at the outer wall of the blood-brain barrier (BBB) in response to an acute insult or a chronic disease could disclose novel disease mechanisms and therapeutic targets.
Collapse
Affiliation(s)
| | - Jerome Badaut
- Laboratory of Brain Molecular Imaging, CNRS UMR5287, University of Bordeaux, France
- Basic Science Departments, Loma Linda University School of Medicine, CA, U.S.A
| | - Cyril Dargazanli
- Neuroradiology, University Hospital, Montpellier, France
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Alexis Fayd'Herbe De Maudave
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Wendy Klement
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Vincent Costalat
- Neuroradiology, University Hospital, Montpellier, France
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
21
|
Schaefer CP, Arkwright NB, Jacobs LM, Jarvis CK, Hunn KC, Largent-Milnes TM, Tome ME, Davis TP. Chronic morphine exposure potentiates p-glycoprotein trafficking from nuclear reservoirs in cortical rat brain microvessels. PLoS One 2018; 13:e0192340. [PMID: 29414996 PMCID: PMC5802945 DOI: 10.1371/journal.pone.0192340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022] Open
Abstract
The rates of opioid prescription and use have continued to increase over the last few decades resulting in a greater number of opioid tolerant patients. Treatment of acute pain from surgery and injury is a clinical challenge for these patients. Several pain management strategies including prescribing increased opioids are used clinically with limited success; all currently available strategies have significant limitations. Many opioids are a substrate for p-glycoprotein (p-gp), an efflux transporter at the blood-brain barrier (BBB). Increased p-gp is associated with a decreased central nervous system uptake and analgesic efficacy of morphine. Our laboratory previously found that acute peripheral inflammatory pain (PIP) induces p-gp trafficking from the nucleus to the luminal surface of endothelial cells making up the BBB concomitant with increased p-gp activity and decreased morphine analgesic efficacy. In the current study, we tested whether PIP-induced p-gp trafficking could contribute to decreased opioid efficacy in morphine tolerant rats. A 6-day continuous dosing of morphine from osmotic minipumps was used to establish morphine tolerance in female rats. PIP induced p-gp trafficking away from nuclear stores showed a 2-fold increase in morphine tolerant rats. This observation suggests that p-gp trafficking contributes to the decreased morphine analgesic effects in morphine tolerant rats experiencing an acute pain stimulus. Attenuating p-gp trafficking during an acute pain stimulus could improve pain management by increasing the amount of opioid that could reach CNS analgesic targets and decrease the need for the dose escalation that is a serious challenge in pain management.
Collapse
Affiliation(s)
- Charles P. Schaefer
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Nathan B. Arkwright
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Leigh M. Jacobs
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Chelsea K. Jarvis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Kristen C. Hunn
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Margaret E. Tome
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
22
|
Rodriguez-Grande B, Ichkova A, Lemarchant S, Badaut J. Early to Long-Term Alterations of CNS Barriers After Traumatic Brain Injury: Considerations for Drug Development. AAPS JOURNAL 2017; 19:1615-1625. [PMID: 28905273 DOI: 10.1208/s12248-017-0123-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability, particularly amongst the young and the elderly. The functions of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are strongly impaired after TBI, thus affecting brain homeostasis. Following the primary mechanical injury that characterizes TBI, a secondary injury develops over time, including events such as edema formation, oxidative stress, neuroinflammation, and alterations in paracelullar and transcellular transport. To date, most therapeutic interventions for TBI have aimed at direct neuroprotection during the acute phase and have not been successful. Targeting the barriers of the central nervous system (CNS) could be a wider therapeutic approach, given that restoration of brain homeostasis would benefit all brain cells, including neurons. Importantly, BBB disregulation has been observed even years after TBI, concomitantly with neurological and psychosocial sequelae; however, treatments targeting the post-acute phase are scarce. Here, we review the mechanisms of primary and secondary injury of CNS barriers, the accumulating evidence showing long-term damage to these structures and some of the therapies that have targeted these mechanisms. Finally, we discuss how the injury characteristics (hemorrhagic vs non-hemorrhagic, involvement of head rotation, gray vs white matter), the sex, and the age of the patient need to be carefully considered to improve clinical trial design and outcome interpretation, and to improve future drug development.
Collapse
Affiliation(s)
| | - Aleksandra Ichkova
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Sighild Lemarchant
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France. .,Basic Science Departments, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
23
|
DeMars KM, Yang C, Hawkins KE, McCrea AO, Siwarski DM, Candelario-Jalil E. Spatiotemporal Changes in P-glycoprotein Levels in Brain and Peripheral Tissues Following Ischemic Stroke in Rats. J Exp Neurosci 2017; 11:1179069517701741. [PMID: 28469478 PMCID: PMC5398227 DOI: 10.1177/1179069517701741] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 01/19/2023] Open
Abstract
P-glycoprotein (P-gp) is known to transport a diverse array of xenobiotics, including therapeutic drugs. A member of the ATP-binding cassette (ABC) transporter family, P-gp is a protein encoded by the gene Mdr1 in humans and Abcb1 in rodents (represented by 2 isoforms Abcb1a and Abcb1b). Lining the luminal and abluminal membrane of brain capillary endothelial cells, P-gp is a promiscuous efflux pump extruding a variety of exogenous toxins and drugs. In this study, we measured dynamic changes in Abcb1a and Abcb1b transcripts and P-gp protein in the brain, liver, and kidney after experimental stroke. P-glycoprotein has been shown to increase in brain endothelial cells following hypoxia in vitro or after exposure to proinflammatory cytokines. Using a rat model of ischemic stroke, we hypothesized that P-gp expression will be increased in the brain, liver, and kidney in response to neuroinflammation following ischemic stroke. Adult Sprague Dawley rats underwent middle cerebral artery occlusion (MCAO) for 90 minutes and were killed at 4, 14, 24, and 48 hours postreperfusion onset to determine the time course of P-gp expression. To mimic ischemia occurring at the blood-brain barrier, rat brain endothelial (RBE4) cells were subjected to hypoxia and low glucose (HLG) for 16 hours. Immunoblotting analyses showed P-gp increases in brain and liver following 90-minute MCAO, as well as in cultured RBE4 cells after 16-hour HLG treatment, but fluctuated in the kidney depending on the time point. The relative roles of each isoform in the protein expression were analyzed with quantitative reverse transcriptase polymerase chain reaction. Ischemic stroke leads to significant increases in P-gp levels not only in the brain but also in the liver. The increase in P-gp could dramatically reduce the bioavailability and efficacy of neuroprotective drugs. Therefore, P-gp represents a big hurdle to drug delivery to the ischemic brain.
Collapse
Affiliation(s)
- Kelly M DeMars
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Austin O McCrea
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David M Siwarski
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Mesev EV, Miller DS, Cannon RE. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling. Mol Pharmacol 2017; 91:373-382. [PMID: 28119480 PMCID: PMC5363708 DOI: 10.1124/mol.116.107169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/19/2017] [Indexed: 11/22/2022] Open
Abstract
P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein-coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS.
Collapse
Affiliation(s)
- Emily V Mesev
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - David S Miller
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Ronald E Cannon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
25
|
Ichkova A, Rodriguez-Grande B, Bar C, Villega F, Konsman JP, Badaut J. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury. Neurochem Int 2017; 111:93-102. [PMID: 28377126 DOI: 10.1016/j.neuint.2017.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options.
Collapse
Affiliation(s)
| | | | - Claire Bar
- CNRS UMR 5287, INCIA, University of Bordeaux, France; Department of Pediatric Neurology, University Children's Hospital of Bordeaux, France
| | - Frederic Villega
- Department of Pediatric Neurology, University Children's Hospital of Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
26
|
Chan GNY, Cannon RE. Assessment of Ex Vivo Transport Function in Isolated Rodent Brain Capillaries. ACTA ACUST UNITED AC 2017; 76:7.16.1-7.16.16. [PMID: 28306152 DOI: 10.1002/cpph.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The blood-brain barrier plays an important role in neuroprotection; however, it can be a major obstacle for drug delivery to the brain. This barrier primarily resides in the brain capillaries and functions as an interface between the brain and peripheral blood circulation. Several anatomical and biochemical elements of the blood-brain barrier are essential to regulate the permeability of nutrients, ions, hormones, toxic metabolites, and xenobiotics into and out of the brain. In particular, high expression of ATP-driven efflux transporters at the blood-brain barrier is a major obstacle in the delivery of CNS pharmacotherapeutics to the brain. The complete understanding of these elements can offer insights on how to modulate barrier functions for neuroprotection against CNS drug toxicity and to enhance drug delivery to the brain. In the literature, preclinical models of the blood-brain barrier are widely utilized to predict drug pharmacokinetics and pharmacodynamics properties in the brain. In addition, these models are essential tools to investigate cellular mechanisms and novel interventions that alter barrier function and permeability. This unit presents procedures to isolate fresh and viable rodent brain capillaries for the assessment of ex vivo transport activity at the blood-brain barrier. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Gary N Y Chan
- National Institutes of Health, National Institute of Environmental Health Sciences, Intracellular Regulatory Group, Signal Transduction Laboratory, Research Triangle Park, North Carolina, USA
| | - Ronald E Cannon
- National Institutes of Health, National Institute of Environmental Health Sciences, Intracellular Regulatory Group, Signal Transduction Laboratory, Research Triangle Park, North Carolina, USA
| |
Collapse
|
27
|
The ABCB1 2677G>T/A polymorphism is associated with baseline blood HDL-cholesterol levels in newly diagnosed hyperlipidemic patients. Hellenic J Cardiol 2017; 59:122-126. [PMID: 28189737 DOI: 10.1016/j.hjc.2017.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 09/06/2016] [Indexed: 11/22/2022] Open
|
28
|
Comparison of Linear and Cyclic His-Ala-Val Peptides in Modulating the Blood-Brain Barrier Permeability: Impact on Delivery of Molecules to the Brain. J Pharm Sci 2016; 105:797-807. [PMID: 26869430 DOI: 10.1016/s0022-3549(15)00188-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
The aim of this study is to evaluate the effect of peptide cyclization on the blood-brain barrier (BBB) modulatory activity and plasma stability of His-Ala-Val peptides, which are derived from the extracellular 1 domain of human E-cadherin. The activities to modulate the intercellular junctions by linear HAV4 (Ac-SHAVAS-NH2), cyclic cHAVc1 (Cyclo(1,8)Ac-CSHAVASC-NH2), and cyclic cHAVc3 (Cyclo(1,6)Ac-CSHAVC-NH2) were compared in in vitro and in vivo BBB models. Linear HAV4 and cyclic cHAVc1 have the same junction modulatory activities as assessed by in vitro MDCK monolayer model and in situ rat brain perfusion model. In contrast, cyclic cHAVc3 was more effective than linear HAV4 in modulating MDCK cell monolayers and in improving in vivo brain delivery of Gd-DTPA on i.v. administration in Balb/c mice. Cyclic cHAVc3 (t1/2 = 12.95 h) has better plasma stability compared with linear HAV4 (t1/2 = 2.4 h). The duration of the BBB modulation was longer using cHAVc3 (2-4 h) compared with HAV4 (<1 h). Both HAV4 and cHAVc3 peptides also enhanced the in vivo brain delivery of IRdye800cw-PEG (25 kDa) as detected by near IR imaging. The result showed that cyclic cHAVc3 peptide had better activity and plasma stability than linear HAV4 peptide.
Collapse
|
29
|
Tome ME, Herndon JM, Schaefer CP, Jacobs LM, Zhang Y, Jarvis CK, Davis TP. P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab 2016; 36:1913-1928. [PMID: 27466374 PMCID: PMC5094312 DOI: 10.1177/0271678x16661728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/28/2016] [Indexed: 02/01/2023]
Abstract
P-glycoprotein (PgP), a drug efflux pump in blood-brain barrier endothelial cells, is a major clinical obstacle for effective central nervous system drug delivery. Identifying PgP regulatory pathways that can be exploited clinically is critical for improving central nervous system drug delivery. We previously found that PgP activity increases in rat brain microvessels concomitant with decreased central nervous system drug delivery in response to acute peripheral inflammatory pain. In the current study, we tested the hypothesis that PgP traffics to the luminal plasma membrane of the microvessel endothelial cells from intracellular stores during peripheral inflammatory pain. Using immunofluorescence microscopy, we detected PgP in endothelial cell nuclei and in the luminal plasma membrane in control animals. Following peripheral inflammatory pain, luminal PgP staining increased while staining in the nucleus decreased. Biochemical analysis of nuclear PgP content confirmed our visual observations. Peripheral inflammatory pain also increased endothelial cell luminal staining of polymerase 1 and transcript release factor/cavin1 and serum deprivation response protein/cavin2, two caveolar scaffold proteins, without changing caveolin1 or protein kinase C delta binding protein/cavin3 location. Our data (a) indicate that PgP traffics from stores in the nucleus to the endothelial cell luminal membrane in response to peripheral inflammatory pain; (b) provide an explanation for our previous observation that peripheral inflammatory pain inhibits central nervous system drug uptake; and (c) suggest a novel regulatory mechanism for PgP activity in rat brain.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | | | - Leigh M Jacobs
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Yifeng Zhang
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, USA
| |
Collapse
|
30
|
Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 2016; 94:609-22. [PMID: 27117494 PMCID: PMC5415378 DOI: 10.1002/jnr.23732] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | | | | | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
31
|
Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo Imaging of Human Neuroinflammation. ACS Chem Neurosci 2016; 7:470-83. [PMID: 26985861 DOI: 10.1021/acschemneuro.6b00056] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is implicated in the pathophysiology of a growing number of human disorders, including multiple sclerosis, chronic pain, traumatic brain injury, and amyotrophic lateral sclerosis. As a result, interest in the development of novel methods to investigate neuroinflammatory processes, for the purpose of diagnosis, development of new therapies, and treatment monitoring, has surged over the past 15 years. Neuroimaging offers a wide array of non- or minimally invasive techniques to characterize neuroinflammatory processes. The intent of this Review is to provide brief descriptions of currently available neuroimaging methods to image neuroinflammation in the human central nervous system (CNS) in vivo. Specifically, because of the relatively widespread accessibility of equipment for nuclear imaging (positron emission tomography [PET]; single photon emission computed tomography [SPECT]) and magnetic resonance imaging (MRI), we will focus on strategies utilizing these technologies. We first provide a working definition of "neuroinflammation" and then discuss available neuroimaging methods to study human neuroinflammatory processes. Specifically, we will focus on neuroimaging methods that target (1) the activation of CNS immunocompetent cells (e.g. imaging of glial activation with TSPO tracer [(11)C]PBR28), (2) compromised BBB (e.g. identification of MS lesions with gadolinium-enhanced MRI), (3) CNS-infiltration of circulating immune cells (e.g. tracking monocyte infiltration into brain parenchyma with iron oxide nanoparticles and MRI), and (4) pathological consequences of neuroinflammation (e.g. imaging apoptosis with [(99m)Tc]Annexin V or iron accumulation with T2* relaxometry). This Review provides an overview of state-of-the-art techniques for imaging human neuroinflammation which have potential to impact patient care in the foreseeable future.
Collapse
Affiliation(s)
| | - Cristina Granziera
- Neuro-Immunology,
Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier
Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
- LTS5, Ecole
Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
32
|
Abstract
INTRODUCTION The blood-brain barrier (BBB) possesses an outstanding ability to protect the brain against xenobiotics and potentially poisonous metabolites. Owing to this, ATP binding cassette (ABC) export proteins have garnered significant interest in the research community. These transport proteins are predominantly localized to the luminal membrane of brain microvessels, where they recognize a wide range of different substrates and transport them back into the blood circulation. AREAS COVERED This review summarizes recent findings on these transport proteins, including their expression in the endothelial cell membrane and their substrate recognition. Signaling cascades underlying the expression and function of these proteins will be discussed as well as their role in diseases such as Alzheimer's disease, epilepsy, amyotrophic lateral sclerosis and brain tumors. EXPERT OPINION ABC transporters represent an integral part of the human transportome and are of particular interest at the blood-brain barrier they as they significantly contribute to brain homeostasis. In addition, they appear to be involved in myriad CNS diseases. Therefore studying their mechanisms of action as well as their signaling cascades and responses to internal and external stimuli will help us understand the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anne Mahringer
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| | - Gert Fricker
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| |
Collapse
|
33
|
Wu M, Li T, Chen L, Peng S, Liao W, Bai R, Zhao X, Yang H, Wu C, Zeng H, Liu Y. Essential oils from Inula japonica and Angelicae dahuricae enhance sensitivity of MCF-7/ADR breast cancer cells to doxorubicin via multiple mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2016; 180:18-27. [PMID: 26795076 DOI: 10.1016/j.jep.2016.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/26/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelicae dahurica (Hoffm.) Benth. & Hook.f.ex Franch. & Sav combined with Pueraria and Gastrodia elata Bl. combined with Inula japonica Thunb. are widely used in herb-pairs of traditional chinese medicine. Previous studies have shown that Angelicae dahuricae essential oil (ADO) enhanced puerarin internalization into ABCB1-overexpressed Caco-2 cells. These findings suggest the possibility that essential oils may enhance the absorption via certain mechanisms related to ABCB1 and reverse multidrug resistance (MDR). AIM OF THE STUDY ADO and essential oils from Inula japonica (IJO) may reverse ABCB1-mediated MDR, but this ability has not been investigated in detail in the well-established cancer cell lines. In this study, the underlying molecular mechanisms were further investigated to examine how IJO and ADO reverse MDR in the resistant human breast cancer cell line of MCF-7/ADR. Also this work may help uncover the conceivable compatibility mechanisms of above herb-pairs involved in ABCB1. MATERIALS AND METHODS The MDR human breast cancer MCF-7/ADR cells were treated with IJO, its sesquiterpene component isoalantolactone (ISO) or ADOat non- cytotoxic concentrations. The MDR ability was examined by measuring the sensitivity to doxorubicin (DOX), DOX accumulation and efflux, ABCB1 ATPase activity, ABCB1 expression, membrane fluidity, and stability and localization of lipid rafts and caveolae. Finally, the molecular modeling was performed to postulate how ISO interacts with ABCB1. RESULTS Treating MCF-7/ADR cells with IJ oil, ISO or AD oil reversed MDR 2- to 3-fold, without affecting the sensitivity of the non-MDR parental cell line. Mechanistic studies showed that these oils down-regulated mRNA and protein expression of ABCB1, and reduced the stability of lipid rafts in the cell membrane, which has previously been shown to reduce ABCB1-mediated transport. On the other hand, IJO, ISO and ADO did not inhibit ABCB1 ATPase activity, and fluorescence polarization experiments showed that low concentrations of the oils did not appear to alter membrane fluidity, unlike some MDR-reversing agents, ISO showed a higher docking score than verapamil but lower than dofequidar and tariquidar. CONCLUSIONS Our results suggest that IJO, ISO and ADO could reverse MDR by down-regulating ABCB1 expression and reducing lipid raft stability. These findings may be useful for developing safer and effective MDR reversal agents and also help find out the compatibility mechanisms.
Collapse
Affiliation(s)
- Min Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, PR China; Department of Pharmacy, Chengdu Medical College, Chengdu 610081, Sichuan, PR China.
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, PR China.
| | - Lilan Chen
- Department of Pharmacy, Chengdu Medical College, Chengdu 610081, Sichuan, PR China.
| | - Sugang Peng
- Department of Pharmacy, Chengdu Medical College, Chengdu 610081, Sichuan, PR China.
| | - Wei Liao
- Department of Pharmacy, Chengdu Medical College, Chengdu 610081, Sichuan, PR China.
| | - Ruolan Bai
- Department of Pharmacy, Chengdu Medical College, Chengdu 610081, Sichuan, PR China.
| | - Xue Zhao
- Department of Pharmacy, Chengdu Medical College, Chengdu 610081, Sichuan, PR China.
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, PR China; Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, PR China; Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
| | - Hongjuan Zeng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, PR China; Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, PR China; Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
| |
Collapse
|
34
|
Karamanos Y, Pottiez G. Proteomics and the blood-brain barrier: how recent findings help drug development. Expert Rev Proteomics 2016; 13:251-8. [PMID: 26778576 DOI: 10.1586/14789450.2016.1143780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The drug discovery and development processes are divided into different stages separated by milestones to indicate that significant progress has been made and that certain criteria for target validation, hits, leads and candidate drugs have been met. Proteomics is a promising approach for the identification of protein targets and biochemical pathways involved in disease process and thus plays an important role in several stages of the drug development. The blood-brain barrier is considered as a major bottleneck when trying to target new compounds to treat neurodegenerative diseases. Based on the survey of recent findings and with a projection on expected improvements, this report attempt to address how proteomics participates in drug development.
Collapse
Affiliation(s)
- Yannis Karamanos
- a Laboratoire de la Barrière Hématoencéphalique (LBHE) , Univesrité d'Artois EA2465 , Lens , France
| | - Gwënaël Pottiez
- a Laboratoire de la Barrière Hématoencéphalique (LBHE) , Univesrité d'Artois EA2465 , Lens , France
| |
Collapse
|
35
|
Worzfeld T, Schwaninger M. Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metab 2016; 36:340-62. [PMID: 26661193 PMCID: PMC4759676 DOI: 10.1177/0271678x15608644] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
Normal brain homeostasis depends on the integrity of the blood-brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood-brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, Marburg, Germany Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany German Research Centre for Cardiovascular Research, DZHK, Lübeck, Germany
| |
Collapse
|
36
|
Davis TP, Abbruscato TJ, Egleton RD. Peptides at the blood brain barrier: Knowing me knowing you. Peptides 2015; 72:50-6. [PMID: 25937599 PMCID: PMC4627938 DOI: 10.1016/j.peptides.2015.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
When the Davis Lab was first asked to contribute to this special edition of Peptides to celebrate the career and influence of Abba Kastin on peptide research, it felt like a daunting task. It is difficult to really understand and appreciate the influence that Abba has had, not only on a generation of peptide researchers, but also on the field of blood brain barrier (BBB) research, unless you lived it as we did. When we look back at our careers and those of our former students, one can truly see that several of Abba's papers played an influential role in the development of our personal research programs.
Collapse
Affiliation(s)
- Thomas P Davis
- The Davis Lab, Department of Medical Pharmacology, University of Arizona, Tucson, AZ 85724-5050.
| | - Thomas J Abbruscato
- Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106
| | - Richard D Egleton
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755
| |
Collapse
|
37
|
Liu J, Zhou F, Chen Q, Kang A, Lu M, Liu W, Zang X, Wang G, Zhang J. Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-κb pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Sci Rep 2015; 5:13558. [PMID: 26324318 PMCID: PMC4555107 DOI: 10.1038/srep13558] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Patients with inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, often suffer drug intolerance. This resistance can be divided into intrinsic resistance and acquired resistance. Although there is agreement on acquired resistance, studies regarding intrinsic resistance have demonstrated inconsistencies, especially for Crohn’s disease. For this reason, an animal model of Crohn’s disease was induced with 2,4,6-trinitrobenzene sulfonic acid solution (TNBS), and intrinsic resistance was analyzed by measuring the function and expression of P-glycoprotein (P-gp) in peripheral mononuclear blood cells (PMBC), followed by mechanistic studies. The results revealed reduced retention of cyclosporine A in PMBC over-expressing P-gp in a TNBS-treated group and enhanced secretion of the cytokines IL-1β, IL-6, IL-17, and TNF-α as well as LPS in plasma. These cytokines and LPS can induce P-gp expression through the STAT3/Nf-κb pathway, contributing to a decrease of cyclosporine A retention, which can be reversed by the application of a P-gp inhibitor. Our results demonstrated that the sustained chronic inflammation could induce the intrinsic resistance presented as P-gp over-expression in PBMC in Crohn’s disease through STAT3/Nf-κb pathway and this resistance might be reversed by combinational usage of P-gp inhibitors.
Collapse
Affiliation(s)
- Jiali Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qianying Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meng Lu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyue Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojie Zang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingwei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Abstract
Epilepsy is a serious neurological disorder that affects more than 60 million people worldwide. Intractable epilepsy (IE) refers to approximately 20%-30% of epileptic patients who fail to achieve seizure control with antiepileptic drug (AED) treatment. Although the mechanisms underlying IE are not well understood, it has been hypothesized that multidrug transporters such as P-glycoprotein (P-gp) play a major role in drug efflux at the blood-brain barrier, and may be the underlying factor in the variable responses of patients to AEDs. The main goal of the present review is to show evidence from different areas that support the idea that the overexpression of P-gp is associated with IE. We discuss here evidence from animal studies, pharmacology, clinical cases and genetic studies.
Collapse
Affiliation(s)
- Guang-Xin Wang
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Da-Wei Wang
- b Department of Biochemistry and Molecular Biology , School of Medicine, Shandong University , Jinan , P.R. China
| | - Yong Liu
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Yan-Hui Ma
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| |
Collapse
|
39
|
Tome ME, Schaefer CP, Jacobs LM, Zhang Y, Herndon JM, Matty FO, Davis TP. Identification of P-glycoprotein co-fractionating proteins and specific binding partners in rat brain microvessels. J Neurochem 2015; 134:200-10. [PMID: 25832806 DOI: 10.1111/jnc.13106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022]
Abstract
Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P-glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood-brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP-containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post-translationally regulated at the BBB. The goal of the current study was to identify proteins that co-localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co-localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co-fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post-translational regulation of PgP activity at the BBB.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Charles P Schaefer
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Leigh M Jacobs
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Yifeng Zhang
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Joseph M Herndon
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Fabian O Matty
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Thomas P Davis
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
40
|
Targeting transporters: promoting blood-brain barrier repair in response to oxidative stress injury. Brain Res 2015; 1623:39-52. [PMID: 25796436 DOI: 10.1016/j.brainres.2015.03.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., putative membrane transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
41
|
Luna-Munguia H, Salvamoser JD, Pascher B, Pieper T, Getzinger T, Kudernatsch M, Kluger G, Potschka H. Glutamate-mediated upregulation of the multidrug resistance protein 2 in porcine and human brain capillaries. J Pharmacol Exp Ther 2015; 352:368-78. [PMID: 25503388 DOI: 10.1124/jpet.114.218180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As a member of the multidrug-resistance associated protein (MRP) family, MRP2 affects the brain entry of different endogenous and exogenous compounds. Considering the role of this transporter at the blood-brain barrier, the regulation is of particular interest. However, there is limited knowledge regarding the factors that regulate MRP2 in neurologic disease states. Thus, we addressed the hypothesis that MRP2 might be affected by a glutamate-induced signaling pathway that we previously identified as one key mechanism in the regulation of P-glycoprotein. Studies in isolated porcine brain capillaries confirmed that glutamate and N-methyl-d-aspartic acid (NMDA) exposure upregulates expression and function of MPR2. The involvement of the NMDA receptor was further suggested by the fact that the NMDA receptor antagonist MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], as well as the NMDA receptor glycine binding site antagonist L-701,324 [7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolinone], prevented the impact of glutamate. A role of cyclooxygenase-2 was indicated by coincubation with the cyclooxygenase-2 inhibitor celecoxib and the cyclooxygenase-1/-2 inhibitor indomethacin, which both efficaciously abolished a glutamate-induced upregulation of MRP2. Translational studies in human capillaries from surgical specimen demonstrated a relevant MRP2 efflux function and indicated an effect of glutamate exposure as well as its prevention by cyclooxygenase-2 inhibition. Taken together the findings provide first evidence for a role of a glutamate-induced NMDA receptor/cyclooxygenase-2 signaling pathway in the regulation of MRP2 expression and function. The response to excessive glutamate concentrations might contribute to overexpression of MRP2, which has been reported in neurologic diseases including epilepsy. The overexpression might have implications for brain access of various compounds including therapeutic drugs.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Bettina Pascher
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Tom Pieper
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Thekla Getzinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Manfred Kudernatsch
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Gerhard Kluger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| |
Collapse
|
42
|
Miller DS. Regulation of ABC transporters at the blood-brain barrier. Clin Pharmacol Ther 2015; 97:395-403. [PMID: 25670036 DOI: 10.1002/cpt.64] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023]
Abstract
ATP binding cassette (ABC) transporters at the blood-brain barrier function as ATP-driven xenobiotic efflux pumps and limit delivery of small molecule drugs to the brain. Here I review recent progress in understanding the regulation of the expression and transport activity of these transporters and comment on how this new information might aid in improving drug delivery to the brain.
Collapse
Affiliation(s)
- D S Miller
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
43
|
Miller DS. Regulation of ABC transporters blood-brain barrier: the good, the bad, and the ugly. Adv Cancer Res 2015; 125:43-70. [PMID: 25640266 DOI: 10.1016/bs.acr.2014.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain capillary endothelial cells that constitute the blood-brain barrier express multiple ABC transport proteins on the luminal, blood-facing, plasma membrane. These transporters function as ATP-driven efflux pumps for xenobiotics and endogenous metabolites. High expression of these ABC transporters at the barrier is a major obstacle to the delivery of therapeutics, including chemotherapeutics, to the CNS. Here, I review the signals that alter ABC transporter expression and transport function with an emphasis on P-glycoprotein, Mrp2, and breast cancer resistance protein (BCRP), the efflux transporters for which we have the most detailed picture of regulation. Recent work shows that transporter protein expression can be upregulated in response to inflammatory and oxidative stress, therapeutic drugs, diet, and persistent environmental pollutants; as a consequence, drug delivery to the brain is reduced (potentially bad and ugly). In contrast, basal transport activity of P-glycoprotein and BCRP can be reduced through complex signaling pathways that involve events in and on the brain capillary endothelial cells. Targeting these signaling events provides opportunities to rapidly and reversibly increase brain accumulation of drugs that are substrates for the transporters (potentially good). The clinical usefulness of targeting signaling to reduce efflux transporter activity and improve drug delivery to the CNS remains to be established.
Collapse
Affiliation(s)
- David S Miller
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, USA.
| |
Collapse
|
44
|
Lok J, Wang XS, Xing CH, Maki TK, Wu LM, Guo SZ, Noviski N, Arai K, Whalen MJ, Lo EH, Wang XY. Targeting the neurovascular unit in brain trauma. CNS Neurosci Ther 2014; 21:304-8. [PMID: 25475543 DOI: 10.1111/cns.12359] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 01/22/2023] Open
Abstract
Although the neurovascular unit was originally developed as a conceptual framework for stroke, it is now recognized that these cell-cell interactions play critical roles in many other CNS disorders as well. In brain trauma, perturbations within the neurovascular unit may be especially important. Changes in neurovascular coupling may disrupt blood flow and metabolic regulation. Disruption of transmitter release-reuptake kinetics in neurons and astrocytes may augment excitotoxicity. Alterations in gliovascular signaling may underlie blood-brain barrier disruptions and traumatic edema. Perturbations in cell-cell signaling between all neuronal, glial, and vascular compartments may increase susceptibility to cell death. Finally, repairing the brain after trauma requires the integrated restoration of all neural, glial, and vascular connectivity for effective functional recovery. Just as in stroke, saving neurons alone may also be insufficient for treating brain trauma. In this minireview, we attempt to briefly highlight some of these pathways to underscore the importance of rescuing the entire neurovascular unit in brain trauma.
Collapse
Affiliation(s)
- Josephine Lok
- Departments of Radiology, Neurology and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
46
|
Badaut J, Ajao DO, Sorensen DW, Fukuda AM, Pellerin L. Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: signs of blood-brain barrier healing? Neuroscience 2014; 285:215-26. [PMID: 25450954 DOI: 10.1016/j.neuroscience.2014.10.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is one of the major causes of death and disability in pediatrics, and results in a complex cascade of events including the disruption of the blood-brain barrier (BBB). A controlled-cortical impact on post-natal 17-day-old rats induced BBB disruption by IgG extravasation from 1 to 3 days after injury and returned to normal at day 7. In parallel, we characterized the expression of three caveolin isoforms, caveolin 1 (cav-1), caveolin 2 (cav-2) and caveolin 3 (cav-3). While cav-1 and cav-2 are expressed on endothelial cells, both cav-1 and cav-3 were found to be present on reactive astrocytes, in vivo and in vitro. Following TBI, cav-1 expression was increased in blood vessels at 1 and 7 days in the perilesional cortex. An increase of vascular cav-2 expression was observed 7 days after TBI. In contrast, astrocytic cav-3 expression decreased 3 and 7 days after TBI. Activation of endothelial nitric oxide synthase (eNOS) (via its phosphorylation) was detected 1 day after TBI and phospho-eNOS was detected both in association with blood vessels and with astrocytes. The molecular changes involving caveolins occurring in endothelial cells following juvenile-TBI might participate, independently of eNOS activation, to a mechanism of BBB repair while, they might subserve other undefined roles in astrocytes.
Collapse
Affiliation(s)
- J Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Department of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.
| | - D O Ajao
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - D W Sorensen
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - A M Fukuda
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - L Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
47
|
DosSantos MF, Holanda-Afonso RC, Lima RL, DaSilva AF, Moura-Neto V. The role of the blood-brain barrier in the development and treatment of migraine and other pain disorders. Front Cell Neurosci 2014; 8:302. [PMID: 25339863 PMCID: PMC4189386 DOI: 10.3389/fncel.2014.00302] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
The function of the blood-brain barrier (BBB) related to chronic pain has been explored for its classical role in regulating the transcellular and paracellular transport, thus controlling the flow of drugs that act at the central nervous system, such as opioid analgesics (e.g., morphine) and non-steroidal anti-inflammatory drugs. Nonetheless, recent studies have raised the possibility that changes in the BBB permeability might be associated with chronic pain. For instance, changes in the relative amounts of occludin isoforms, resulting in significant increases in the BBB permeability, have been demonstrated after inflammatory hyperalgesia. Furthermore, inflammatory pain produces structural changes in the P-glycoprotein, the major efflux transporter at the BBB. One possible explanation for these findings is the action of substances typically released at the site of peripheral injuries that could lead to changes in the brain endothelial permeability, including substance P, calcitonin gene-related peptide, and interleukin-1 beta. Interestingly, inflammatory pain also results in microglial activation, which potentiates the BBB damage. In fact, astrocytes and microglia play a critical role in maintaining the BBB integrity and the activation of those cells is considered a key mechanism underlying chronic pain. Despite the recent advances in the understanding of BBB function in pain development as well as its interference in the efficacy of analgesic drugs, there remain unknowns regarding the molecular mechanisms involved in this process. In this review, we explore the connection between the BBB as well as the blood-spinal cord barrier and blood-nerve barrier, and pain, focusing on cellular and molecular mechanisms of BBB permeabilization induced by inflammatory or neuropathic pain and migraine.
Collapse
Affiliation(s)
- Marcos F. DosSantos
- Universidade Federal do Rio de Janeiro – Campus MacaéRio de Janeiro, Brazil
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Rosenilde C. Holanda-Afonso
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Rodrigo L. Lima
- Departamento de Ortodontia e Odontopediatria, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Estadual do Cérebro Paulo NiemeyerRio de Janeiro, Brazil
| |
Collapse
|
48
|
Zhao YL, Song JN, Zhang M. Role of caveolin-1 in the biology of the blood-brain barrier. Rev Neurosci 2014; 25:247-54. [PMID: 24501156 DOI: 10.1515/revneuro-2013-0039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/26/2013] [Indexed: 11/15/2022]
Abstract
Caveolin-1 is the principal marker of caveolae in endothelial cells. It plays an important role in physiological and pathological conditions of the blood-brain barrier and serves as a mediator in drug delivery through the blood-brain barrier. Caveolin-1 is related to the diminished expression of tight junction-associated proteins and metabolic pinocytosis vesicles when the blood-brain barrier is destroyed by outside invaders or malignant stimulus. The permeability of the blood-brain barrier, regulated by types of drugs or physical irradiation, is connected with drug transportation with the participation of caveolin-1. Caveolin-1, which serves as a platform or medium for signal transduction, cooperates with several signal molecules by forming a complex. Silencing of caveolin-1 and disruption of caveolae can attenuate or remove pathological damage and even engender the opposite effects in the blood-brain barrier. This review considers the role of caveolin-1 in the blood-brain barrier that may have profound implications for central nervous system disease and drug delivery through the blood-brain barrier.
Collapse
|
49
|
P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:25-44. [PMID: 25307213 DOI: 10.1016/bs.apha.2014.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription.
Collapse
|
50
|
Fischer MJM, McNaughton PA. How anchoring proteins shape pain. Pharmacol Ther 2014; 143:316-22. [PMID: 24727631 DOI: 10.1016/j.pharmthera.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 11/29/2022]
Abstract
Cellular responsiveness to external stimuli can be altered by extracellular mediators which activate membrane receptors, in turn signalling to the intracellular space via calcium, cyclic nucleotides, membrane lipids or enzyme activity. These signalling events trigger a cascade leading to an effector which can be a channel, an enzyme or a transcription factor. The effectiveness of these intracellular events is enhanced when they are maintained in close proximity by anchoring proteins, which assemble complexes of signalling molecules such as kinases together with their targets, and in this way enhance both the speed and the precision of intracellular signalling. The A kinase anchoring protein (AKAP) family are adaptor proteins originally named for their ability to associate Protein Kinase A and its targets, but several other enzymes bound by AKAPs have now been found and a wide variety of target structures has been described. This review provides an overview of anchoring proteins involved in pain signalling. The key anchoring proteins and their ion channel targets in primary sensory neurons responding to painful stimuli (nociceptors) are discussed.
Collapse
Affiliation(s)
- Michael J M Fischer
- Institute of Physiology and Pathophysiology, FAU Erlangen-Nürnberg, Germany.
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Research, Hodgkin Building, King's College London, London SE1 1UH, UK
| |
Collapse
|