1
|
Palmos AB, Duarte RRR, Smeeth DM, Hedges EC, Nixon DF, Thuret S, Powell TR. Telomere length and human hippocampal neurogenesis. Neuropsychopharmacology 2020; 45:2239-2247. [PMID: 32920596 PMCID: PMC7784985 DOI: 10.1038/s41386-020-00863-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Short telomere length is a risk factor for age-related disease, but it is also associated with reduced hippocampal volumes, age-related cognitive decline and psychiatric disorder risk. The current study explored whether telomere shortening might have an influence on cognitive function and psychiatric disorder pathophysiology, via its hypothesised effects on adult hippocampal neurogenesis. We modelled telomere shortening in human hippocampal progenitor cells in vitro using a serial passaging protocol that mimics the end-replication problem. Serially passaged progenitors demonstrated shorter telomeres (P ≤ 0.05), and reduced rates of cell proliferation (P ≤ 0.001), with no changes in the ability of cells to differentiate into neurons or glia. RNA-sequencing and gene-set enrichment analyses revealed an effect of cell ageing on gene networks related to neurogenesis, telomere maintenance, cell senescence and cytokine production. Downregulated transcripts in our model showed a significant overlap with genes regulating cognitive function (P ≤ 1 × 10-5), and risk for schizophrenia (P ≤ 1 × 10-10) and bipolar disorder (P ≤ 0.005). Collectively, our results suggest that telomere shortening could represent a mechanism that moderates the proliferative capacity of human hippocampal progenitors, which may subsequently impact on human cognitive function and psychiatric disorder pathophysiology.
Collapse
Affiliation(s)
- Alish B. Palmos
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Rodrigo R. R. Duarte
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| | - Demelza M. Smeeth
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Erin C. Hedges
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Douglas F. Nixon
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| | - Sandrine Thuret
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timothy R. Powell
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| |
Collapse
|
2
|
Sanderson SL, Simon AK. In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay. Aging Cell 2017; 16:1234-1243. [PMID: 28834142 PMCID: PMC5676074 DOI: 10.1111/acel.12640] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2017] [Indexed: 12/14/2022] Open
Abstract
The decline of the immune system with age known as immune senescence contributes to inefficient pathogen clearance and is a key risk factor for many aged‐related diseases. However, reversing or halting immune aging requires more knowledge about the cell biology of senescence in immune cells. Telomere shortening, low autophagy and mitochondrial dysfunction have been shown to underpin cell senescence. While autophagy has been found to control mitochondrial damage, no link has been made to telomere attrition. In contrast, mitochondrial stress can contribute to telomere attrition and vice versa. Whereas this link has been investigated in fibroblasts or cell lines, it is unclear whether this link exists in primary cells such as human lymphocytes and whether autophagy contributes to it. As traditional methods for measuring telomere length are low throughput or unsuitable for the analysis of cell subtypes within a mixed population of primary cells, we have developed a novel sensitive flow‐FISH assay using the imaging flow cytometer. Using this assay, we show a correlation between age and increased mitochondrial reactive oxygen species in CD8+ T‐cell subsets, but not with autophagy. Telomere shortening within the CD8+ subset could be prevented in vitro by treatment with a ROS scavenger. Our novel assay is a sensitive assay to measure relative telomere length in primary cells and has revealed ROS as a contributing factor to the decline in telomere length.
Collapse
Affiliation(s)
- Sharon Lesley Sanderson
- Translational Immunology Laboratory NIHR BRC John Radcliffe Hospital Oxford OX3 9DU UK
- Kennedy Institute of Rheumatology University of Oxford Oxford OX3 7FY UK
| | - Anna Katharina Simon
- Translational Immunology Laboratory NIHR BRC John Radcliffe Hospital Oxford OX3 9DU UK
- Kennedy Institute of Rheumatology University of Oxford Oxford OX3 7FY UK
| |
Collapse
|
3
|
AIELLO AE, JAYABALASINGHAM B, SIMANEK AM, DIEZ-ROUX A, FEINSTEIN L, MEIER HCS, NEEDHAM BL, DOWD JB. The impact of pathogen burden on leukocyte telomere length in the Multi-Ethnic Study of Atherosclerosis. Epidemiol Infect 2017; 145:3076-3084. [PMID: 28879822 PMCID: PMC9152739 DOI: 10.1017/s0950268817001881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Several infections have been linked to telomere shortening and in some cases these associations have varied by sex. We assessed the association between seropositivity to four persistent pathogens (cytomegalovirus (CMV), herpes simplex virus-1, Helicobacter pylori, Chlamydia pneumoniae), and total pathogen burden on leukocyte telomere length in a diverse US sample. Data came from the Multi-Ethnic Study of Atherosclerosis, a population-based cohort study. We utilized cross-sectional survey data, and biological samples from participants tested for pathogens and telomere length (N = 163). Linear regression was used to examine the association between seropositivity for individual pathogens as well as total pathogen burden and telomere length, adjusting for various confounders. CMV seropositivity and increased total pathogen burden level were significantly associated with shorter telomere length among females (β = -0·1204 (standard error (s.e.) 0·06), P = 0·044) and (β = -0·1057 (s.e. = 0·05), P = 0·033), respectively. There was no statistically significant association among males. Our findings suggest that prevention or treatment of persistent pathogens, in particular CMV, may play an important role in reducing telomere shortening over the life course among women. Future research is needed to confirm these novel findings in larger longitudinal samples.
Collapse
Affiliation(s)
- A. E. AIELLO
- Department of Epidemiology, Gillings School of Global Public Health, and the Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B. JAYABALASINGHAM
- Department of Epidemiology and Biostatistics, CUNY School of Public Health, Hunter College, City University of New York, USA
| | - A. M. SIMANEK
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - A. DIEZ-ROUX
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - L. FEINSTEIN
- Department of Epidemiology, Gillings School of Global Public Health, and the Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Social & Scientific Systems, Inc., Durham, NC, USA
| | - H. C. S. MEIER
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - B. L. NEEDHAM
- Department of Epidemiology, Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - J. B. DOWD
- Department of Epidemiology and Biostatistics, CUNY School of Public Health, Hunter College, City University of New York, USA
| |
Collapse
|
4
|
Figueira I, Fernandes A, Mladenovic Djordjevic A, Lopez-Contreras A, Henriques CM, Selman C, Ferreiro E, Gonos ES, Trejo JL, Misra J, Rasmussen LJ, Xapelli S, Ellam T, Bellantuono I. Interventions for age-related diseases: Shifting the paradigm. Mech Ageing Dev 2016; 160:69-92. [DOI: 10.1016/j.mad.2016.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
|
5
|
Rapamycin safeguards lymphocytes from DNA damage accumulation in vivo. Eur J Cell Biol 2016; 95:331-41. [PMID: 27349711 DOI: 10.1016/j.ejcb.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 12/29/2022] Open
Abstract
Several studies reported the benefits of switching from anticalcineurins to mTOR inhibitors to avoid cancer occurrence after organ transplantation. The purpose of our study was to determine in vivo biological markers to explain these benefits. Cellular changes related to cellular senescence and DNA damage were analyzed in peripheral blood lymphocytes. Thirty-five kidney transplanted patients receiving anticalcineurins were investigated: 17 patients were proposed to switch to rapamycin and 18 patients with similar age and transplantation duration, continued anticalcineurins. Rapamycin effects were studied one year after the switch. Thirteen healthy volunteers and 18 hemodialyzed patients were evaluated as control. Compared with the healthy group, hemodialyzed and transplanted patients exhibited a significant decrease in telomere length, an increase in p16(INK4A) mRNA expression and in lymphocytes with 53BP1 foci. A destabilization of the shelterin complexes was suggested by a significant TIN2 mRNA decrease in transplanted patients compared with controls and a significant increase in TRF1, TRF2 and POT1 expression in switch-proposed patients compared with the non-switched subgroup. Rapamycin treatment resulted in a significant decrease in DNA damage and a slight TIN2 increase. In vitro experiments strengthened in vivo results showing that rapamycin but not FK506 induced a significant DNA damage decrease and TIN2 expression increase compared with controls. The roles of rapamycin in the decrease in DNA damage in vivo and the rescue of shelterin gene expression are demonstrated for the first time. These data provide new insights into understanding of how rapamycin may overcome genomic injuries.
Collapse
|
6
|
Manzoni D, Catallo R, Chebel A, Baseggio L, Michallet AS, Roualdes O, Magaud JP, Salles G, Ffrench M. The ibrutinib B-cell proliferation inhibition is potentiated in vitro by dexamethasone: Application to chronic lymphocytic leukemia. Leuk Res 2016; 47:1-7. [PMID: 27235717 DOI: 10.1016/j.leukres.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 01/26/2023]
Abstract
New B-cell receptor-targeted therapies such as ibrutinib, a Bruton tyrosine kinase inhibitor, are now proposed for lymphoid pathologies. The putative benefits of its combination with glucocorticoids were evaluated here. We compared the effects of dexamethasone (DXM), ibrutinib and their in vitro combination on proliferation and metabolic stress markers in stimulated normal B-lymphocytes and in malignant lymphocytes from chronic lymphocytic leukemia (CLL) patients. In both cellular models, cell cycle progression was globally inhibited by DXM and/or ibrutinib. This inhibition was significantly amplified by DXM addition to ibrutinib and was related to a significant decrease in the expression of the cell cycle regulatory proteins CDK4 and cyclin E. Apoptosis increased especially with DXM/ibrutinib combination and was associated with a significant decrease in Mcl-1 expression. Treatment effects on metabolic stress were evaluated by DNA damage recognition after 53BP1 foci labeling. The percentage of cells with more than five 53BP1 foci decreased significantly with ibrutinib in normal and CLL lymphocytes. This decrease was strongly reinforced, in CLL, by DXM addition. Our data indicated that, in vitro, DXM potentiated antiproliferative effects of ibrutinib and decreased DNA damage in lymphoid B-cells. Thus their combination may be proposed for CLL treatment.
Collapse
Affiliation(s)
- Delphine Manzoni
- Laboratory "Proliférations B indolentes", Université Claude Bernard Lyon 1, CNRS UMR 5239-Ecole Normale Supérieure (ENS)-Hospices Civil de Lyon (HCL), Faculté de Médecine Lyon Sud, France; Hematology laboratory, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon (HCL), France
| | - Régine Catallo
- Laboratory "Proliférations B indolentes", Université Claude Bernard Lyon 1, CNRS UMR 5239-Ecole Normale Supérieure (ENS)-Hospices Civil de Lyon (HCL), Faculté de Médecine Lyon Sud, France
| | - Amel Chebel
- Laboratory "Proliférations B indolentes", Université Claude Bernard Lyon 1, CNRS UMR 5239-Ecole Normale Supérieure (ENS)-Hospices Civil de Lyon (HCL), Faculté de Médecine Lyon Sud, France
| | - Lucile Baseggio
- Laboratory "Proliférations B indolentes", Université Claude Bernard Lyon 1, CNRS UMR 5239-Ecole Normale Supérieure (ENS)-Hospices Civil de Lyon (HCL), Faculté de Médecine Lyon Sud, France; Hematology laboratory, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon (HCL), France
| | - Anne-Sophie Michallet
- Hematology department, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon (HCL), France
| | - Olivier Roualdes
- Laboratory "Proliférations B indolentes", Université Claude Bernard Lyon 1, CNRS UMR 5239-Ecole Normale Supérieure (ENS)-Hospices Civil de Lyon (HCL), Faculté de Médecine Lyon Sud, France; Hematology laboratory, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon (HCL), France
| | - Jean-Pierre Magaud
- Hematology laboratory, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon (HCL), France
| | - Gilles Salles
- Laboratory "Proliférations B indolentes", Université Claude Bernard Lyon 1, CNRS UMR 5239-Ecole Normale Supérieure (ENS)-Hospices Civil de Lyon (HCL), Faculté de Médecine Lyon Sud, France; Hematology department, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon (HCL), France
| | - Martine Ffrench
- Laboratory "Proliférations B indolentes", Université Claude Bernard Lyon 1, CNRS UMR 5239-Ecole Normale Supérieure (ENS)-Hospices Civil de Lyon (HCL), Faculté de Médecine Lyon Sud, France; Hematology laboratory, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon (HCL), France; Hematology department, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon (HCL), France.
| |
Collapse
|
7
|
Medves S, Auchter M, Chambeau L, Gazzo S, Poncet D, Grangier B, Verney A, Moussay E, Ammerlaan W, Brisou G, Morjani H, Géli V, Palissot V, Berchem G, Salles G, Wenner T. A high rate of telomeric sister chromatid exchange occurs in chronic lymphocytic leukaemia B-cells. Br J Haematol 2016; 174:57-70. [PMID: 26970083 DOI: 10.1111/bjh.13995] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/25/2015] [Indexed: 01/30/2023]
Abstract
Cancer cells protect their telomere ends from erosion through reactivation of telomerase or by using the Alternative Lengthening of Telomere (ALT) mechanism that depends on homologous recombination. Chronic lymphocytic leukaemia (CLL) B cells are characterized by almost no telomerase activity, shelterin deregulation and telomere fusions. To characterize telomeric maintenance mechanisms in B-CLL patients, we measured their telomere length, telomerase expression and the main hallmarks of the ALT activity i.e. C-circle concentration, an extra-chromosomal telomere repeat (ECTR), and the level of telomeric sister chromatid exchange (T-SCE) rate. Patients showed relative homogenous telomere length although almost no TERT transcript and nearly no C-circle were evidenced. Nevertheless, compared with normal B cells, B-CLL cells showed an increase in T-SCE rate that was correlated with a strong down-regulation of the topoisomerase III alpha (TOP3A) expression, involved in the dissolution of Holliday Junctions (HJ), together with an increased expression of SLX1A, SLX4, MUS81 and GEN1, involved in the resolution of HJ. Altogether, our results suggest that the telomere maintenance mechanism of B-CLL cells do not preferentially use telomerase or ALT. Rather, the rupture of the dissolvasome/resolvasome balance may increase telomere shuffling that could homogenize telomere length, slowing telomere erosion in this disease.
Collapse
Affiliation(s)
- Sandrine Medves
- Laboratory of Experimental Cancer Research, LIH, Luxembourg, Luxembourg
| | - Morgan Auchter
- Cancer Research Centre Marseille CRCM, U1068 Inserm, UMR7258 CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale contre le Cancer équipe labellisée, Marseille, France
| | - Laetitia Chambeau
- Laboratory of Experimental Cancer Research, LIH, Luxembourg, Luxembourg
| | - Sophie Gazzo
- Equipe Proliférations B Indolentes, Faculté de Médecine Lyon Sud, UMR CNRS 5239, Oullins Cedex, France
| | - Delphine Poncet
- Biochemistry Department, Transfer and Molecular Oncology Unit, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France.,Faculté de Médecine, UCBL Lyon 1, Oullins cedex 12, France
| | - Blandine Grangier
- Biochemistry Department, Transfer and Molecular Oncology Unit, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France.,Faculté de Médecine, UCBL Lyon 1, Oullins cedex 12, France
| | - Aurélie Verney
- Equipe Proliférations B Indolentes, Faculté de Médecine Lyon Sud, UMR CNRS 5239, Oullins Cedex, France
| | - Etienne Moussay
- Laboratory of Experimental Cancer Research, LIH, Luxembourg, Luxembourg
| | - Wim Ammerlaan
- Core Facility Flow Cytometry, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg, Luxembourg
| | - Gabriel Brisou
- Equipe Proliférations B Indolentes, Faculté de Médecine Lyon Sud, UMR CNRS 5239, Oullins Cedex, France
| | - Hamid Morjani
- MEDyC, Unité CNRS UMR7369, UFR de Pharmacie, Reims, France
| | - Vincent Géli
- Cancer Research Centre Marseille CRCM, U1068 Inserm, UMR7258 CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale contre le Cancer équipe labellisée, Marseille, France
| | - Valérie Palissot
- Laboratory of Experimental Cancer Research, LIH, Luxembourg, Luxembourg
| | - Guy Berchem
- Laboratory of Experimental Cancer Research, LIH, Luxembourg, Luxembourg
| | - Gilles Salles
- Equipe Proliférations B Indolentes, Faculté de Médecine Lyon Sud, UMR CNRS 5239, Oullins Cedex, France
| | - Thomas Wenner
- Laboratory of Experimental Cancer Research, LIH, Luxembourg, Luxembourg.,Equipe Proliférations B Indolentes, Faculté de Médecine Lyon Sud, UMR CNRS 5239, Oullins Cedex, France
| |
Collapse
|
8
|
The p16INK4A/pRb pathway and telomerase activity define a subgroup of Ph+ adult Acute Lymphoblastic Leukemia associated with inferior outcome. Leuk Res 2015; 39:453-61. [DOI: 10.1016/j.leukres.2015.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 11/15/2022]
|
9
|
Hemmatzadeh F, Keyvanfar H, Hasan NH, Niap F, Bani Hassan E, Hematzade A, Ebrahimie E, McWhorter A, Ignjatovic J. Interaction between Bovine leukemia virus (BLV) infection and age on telomerase misregulation. Vet Res Commun 2015; 39:97-103. [PMID: 25665900 DOI: 10.1007/s11259-015-9629-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/29/2015] [Indexed: 01/23/2023]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). BLV can interact with telomerase and inhibits telomere shortening, contributing in leukemogenesis and tumour induction. The role of telomerase in BLV-induced lymphosarcoma and aging has been extensively studied. To date, the interaction of both BLV and aging on telomerase mis-regulation have, however, not been investigated. In the present study, telomerase activity in BLV positive and negative cows was compared over a wide range of ages (11-85 months). Lymphocyte counts were also measured in both BLV positive and negative groups. Telomerase activity was detected in all BLV infected animals with persistent lymphocytosis (PL), especially in older individuals. This study revealed that the cells undergo the natural telomerase shortening even in the presence of an existing viral infection. We also show that viral infection, especially during the PL phase of the disease, increases telomerase activity. A statistically significant interaction between age and viral infection was observed for telomere shortening during BLV infection. Older animals with BLV infection, especially those with persistent lymphocytosis or visible tumors, exhibited a sharp increase in telomerase activity. This study demonstrates that there is a significant interaction between BLV infection and telomerase up-regulation and lymphocytosis.
Collapse
Affiliation(s)
- Farhid Hemmatzadeh
- School of Animal and Veterinary Science, The University of Adelaide, Adelaide, Australia,
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The role of nibrin in doxorubicin-induced apoptosis and cell senescence in Nijmegen Breakage Syndrome patients lymphocytes. PLoS One 2014; 9:e104964. [PMID: 25119968 PMCID: PMC4132076 DOI: 10.1371/journal.pone.0104964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Nibrin plays an important role in the DNA damage response (DDR) and DNA repair. DDR is a crucial signaling pathway in apoptosis and senescence. To verify whether truncated nibrin (p70), causing Nijmegen Breakage Syndrome (NBS), is involved in DDR and cell fate upon DNA damage, we used two (S4 and S3R) spontaneously immortalized T cell lines from NBS patients, with the founding mutation and a control cell line (L5). S4 and S3R cells have the same level of p70 nibrin, however p70 from S4 cells was able to form more complexes with ATM and BRCA1. Doxorubicin-induced DDR followed by cell senescence could only be observed in L5 and S4 cells, but not in the S3R ones. Furthermore the S3R cells only underwent cell death, but not senescence after doxorubicin treatment. In contrary to doxorubicin treatment, cells from all three cell lines were able to activate the DDR pathway after being exposed to γ-radiation. Downregulation of nibrin in normal human vascular smooth muscle cells (VSMCs) did not prevent the activation of DDR and induction of senescence. Our results indicate that a substantially reduced level of nibrin or its truncated p70 form is sufficient to induce DNA-damage dependent senescence in VSMCs and S4 cells, respectively. In doxorubicin-treated S3R cells DDR activation was severely impaired, thus preventing the induction of senescence.
Collapse
|
11
|
Mondal AM, Horikawa I, Pine SR, Fujita K, Morgan KM, Vera E, Mazur SJ, Appella E, Vojtesek B, Blasco MA, Lane DP, Harris CC. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest 2013; 123:5247-57. [PMID: 24231352 PMCID: PMC3859419 DOI: 10.1172/jci70355] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/10/2013] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence contributes to aging and decline in tissue function. p53 isoform switching regulates replicative senescence in cultured fibroblasts and is associated with tumor progression. Here, we found that the endogenous p53 isoforms Δ133p53 and p53β are physiological regulators of proliferation and senescence in human T lymphocytes in vivo. Peripheral blood CD8+ T lymphocytes collected from healthy donors displayed an age-dependent accumulation of senescent cells (CD28-CD57+) with decreased Δ133p53 and increased p53β expression. Human lung tumor-associated CD8+ T lymphocytes also harbored senescent cells. Cultured CD8+ blood T lymphocytes underwent replicative senescence that was associated with loss of CD28 and Δ133p53 protein. In poorly proliferative, Δ133p53-low CD8+CD28- cells, reconstituted expression of either Δ133p53 or CD28 upregulated endogenous expression of each other, which restored cell proliferation, extended replicative lifespan and rescued senescence phenotypes. Conversely, Δ133p53 knockdown or p53β overexpression in CD8+CD28+ cells inhibited cell proliferation and induced senescence. This study establishes a role for Δ133p53 and p53β in regulation of cellular proliferation and senescence in vivo. Furthermore, Δ133p53-induced restoration of cellular replicative potential may lead to a new therapeutic paradigm for treating immunosenescence disorders, including those associated with aging, cancer, autoimmune diseases, and HIV infection.
Collapse
Affiliation(s)
- Abdul M. Mondal
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sharon R. Pine
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kaori Fujita
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Katherine M. Morgan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Elsa Vera
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sharlyn J. Mazur
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ettore Appella
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Borivoj Vojtesek
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maria A. Blasco
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - David P. Lane
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Medicine, UMDNJ/Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Telomeres and Telomerase Group/Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández Almagro, Madrid, Spain.
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
12
|
Immunosenescence, aging, and systemic lupus erythematous. Autoimmune Dis 2013; 2013:267078. [PMID: 24260712 PMCID: PMC3821895 DOI: 10.1155/2013/267078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/18/2013] [Indexed: 12/29/2022] Open
Abstract
Senescence is a normal biological process that occurs in all organisms and involves a decline in cell functions. This process is caused by molecular regulatory machinery alterations, and it is closely related to telomere erosion in chromosomes. In the context of the immune system, this phenomenon is known as immunosenescence and refers to the immune function deregulation. Therefore, functions of several cells involved in the innate and adaptive immune responses are severely compromised with age progression (e.g., changes in lymphocyte subsets, decreased proliferative responses, chronic inflammatory states, etc.). These alterations make elderly individuals prone to not only infectious diseases but also to malignancy and autoimmunity.
This review will explore the molecular aspects of processes related to cell aging, their importance in the context of the immune system, and their participation in elderly SLE patients.
Collapse
|
13
|
Hoffecker BM, Raffield LM, Kamen DL, Nowling TK. Systemic lupus erythematosus and vitamin D deficiency are associated with shorter telomere length among African Americans: a case-control study. PLoS One 2013; 8:e63725. [PMID: 23700431 PMCID: PMC3658981 DOI: 10.1371/journal.pone.0063725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/04/2013] [Indexed: 11/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease that disproportionately affects African American females. The causes of SLE are unknown but postulated to be a combination of genetic predisposition and environmental triggers. Vitamin D deficiency is one of the possible environmental triggers. In this study we evaluated relationships between vitamin D status, cellular aging (telomere length) and anti-telomere antibodies among African American Gullah women with SLE. The study population included African American female SLE patients and unaffected controls from the Sea Island region of South Carolina. Serum 25-hydroxyvitamin D levels were measured using a nonchromatographic radioimmunoassay. Telomere length was measured in genomic DNA of peripheral blood mononuclear cells (PBMCs) by monochrome multiplex quantitative PCR. Anti-telomere antibody levels were measured by enzyme-linked immunosorbent assay (ELISA). Patients with SLE had significantly shorter telomeres and higher anti-telomere antibody titers compared to age- and gender-matched unaffected controls. There was a positive correlation between anti-telomere antibody levels and disease activity among patients and a significant correlation of shorter telomeres with lower 25-hydroxyvitamin D levels in both patients and controls. In follow-up examination of a subset of the patients, the patients who remained vitamin D deficient tended to have shorter telomeres than those patients whose 25-hydroxyvitamin D levels were repleted. Increasing 25-hydroxyvitamin D levels in African American patients with SLE may be beneficial in maintaining telomere length and preventing cellular aging. Moreover, anti-telomere antibody levels may be a promising biomarker of SLE status and disease activity.
Collapse
Affiliation(s)
- Brett M. Hoffecker
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Laura M. Raffield
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Diane L. Kamen
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail: (DLK); (TKN)
| | - Tamara K. Nowling
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail: (DLK); (TKN)
| |
Collapse
|
14
|
Valdiglesias V, Giunta S, Fenech M, Neri M, Bonassi S. γH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res 2013; 753:24-40. [PMID: 23416207 DOI: 10.1016/j.mrrev.2013.02.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
DNA double strand breaks (DSB) are the gravest form of DNA damage in eukaryotic cells. Failure to detect DSB and activate appropriate DNA damage responses can cause genomic instability, leading to tumorigenesis and possibly accelerated aging. Phosphorylated histone H2AX (γH2AX) is used as a biomarker of cellular response to DSB and its potential for monitoring DNA damage and repair in human populations has been explored in this review. A systematic search was conducted in PubMed for articles, in English, on human studies reporting γH2AX as a biomarker of either DNA repair or DNA damage. A total of 68 publications were identified. Thirty-four studies (50.0%) evaluated the effect of medical procedures or treatments on γH2AX levels; 20 (29.4%) monitored γH2AX in specific pathological conditions with a case/control or case/case design; 5 studies (7.4%) evaluated the effect of environmental genotoxic exposures, and 9 (13.2%) were descriptive studies on cancer and aging. Peripheral blood lymphocytes (44.6%) or biopsies/tissue specimens (24.3%) were the most commonly used samples. γH2AX was scored by optical microscopy as immunostained foci (78%), or by flow cytometry (16%). Critical features affecting the reliability of the assay, including protocols heterogeneity, specimen, cell cycle, kinetics, study design, and statistical analysis, are hereby discussed. Because of its sensitivity, efficiency and mechanistic relevance, the γH2AX assay has great potential as a DNA damage biomarker; however, the technical and epidemiological heterogeneity highlighted in this review infer a necessity for experimental standardization of the assay.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Simona Giunta
- CSIRO Preventative Health Flagship, Adelaide 5000, Australia
| | - Michael Fenech
- CSIRO Preventative Health Flagship, Adelaide 5000, Australia
| | - Monica Neri
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy.
| |
Collapse
|
15
|
Vasilyev SA, Kubes M, Markova E, Belyaev I. DNA damage response in CD133 + stem/progenitor cells from umbilical cord blood: low level of endogenous foci and high recruitment of 53BP1. Int J Radiat Biol 2013. [PMID: 23206244 DOI: 10.3109/09553002.2013.754555] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Abstract Purpose: Human hematopoietic stem cells (HSC) are thought to be a major target of radiation-induced leukemogenesis and also provide a relevant cellular model for assessing cancer risk. Cluster of designation 133+ (CD133+) is a marker found in human progenitor and hematopoietic stem cells. Our study examined the repair of radiation-induced DNA double-strand breaks (DSB) in CD133 + umbilical cord blood cells (UCBC). MATERIALS AND METHODS After γ-irradiation, endogenous and induced DSB were evaluated in CD133 + UCBC, CD133 - UCBC and peripheral blood lymphocytes (PBL) in terms of phosphorylated histone 2A family member X (γH2AX) and tumor suppressor p53 binding protein 1 (53BP1) foci. RESULTS We found that repair signaling in CD133 + UCBC is different from CD133 - UCBC and PBL. These differences include lower endogenous DSB levels and higher 53BP1 recruitment. CONCLUSIONS Our data, together with a recent report on radiation-induced γH2AX and 53BP1 foci in CD34 + cells, indicate enhanced DNA repair capacity in HSC as compared to mature lymphocytes.
Collapse
Affiliation(s)
- Stanislav A Vasilyev
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
16
|
Zane L, Sibon D, Capraro V, Galia P, Karam M, Delfau-Larue MH, Gilson E, Gessain A, Gout O, Hermine O, Mortreux F, Wattel E. HTLV-1 positive and negative T cells cloned from infected individuals display telomerase and telomere genes deregulation that predominate in activated but untransformed CD4+ T cells. Int J Cancer 2012; 131:821-33. [PMID: 21717459 DOI: 10.1002/ijc.26270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 05/12/2011] [Indexed: 01/02/2023]
Abstract
Untransformed HTLV-1 positive CD4(+) cells from infected individuals are selected for expressing tax and displaying morphological features consistent with telomere dysfunctions. We show that in resting HTLV-1 positive CD4(+) cells cloned from patients, hTERT expression parallels tax expression and cell cycling. Upon activation, these cells dramatically augment tax expression, whereas their increase in telomerase activity is about 20 times lower than that of their uninfected counterpart. Activated HTLV-1 positive CD4(+) but not uninfected CD4(+) or CD8(+) clones also repress the transcription of TRF1, TPP1, TANK1, POT1, DNA-PKc and Ku80. Both infected and uninfected lymphocytes from infected individuals shared common telomere gene deregulations toward a pattern consistent with premature senescence. ATLL cells displayed the highest telomerase activity (TA) whereas recovered a telomere gene transcriptome close to that of normal CD4(+) cells. In conclusion HTLV-1-dependent telomere modulations seem involved in clonal expansion, immunosuppression, tumor initiation and progression.
Collapse
Affiliation(s)
- Linda Zane
- Université de Lyon, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chebel A, Ffrench M. Transcriptional regulation of the human telomerase reverse transcriptase: new insights. Transcription 2012; 1:27-31. [PMID: 21327156 DOI: 10.4161/trns.1.1.12062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 12/26/2022] Open
Abstract
hTERT and NFAT were thought until recently to belong to separate metabolic compartments. The involvement of NFAT in the induction of hTERT transcription suggested by hTERT expression variations during lymphocyte stimulation and immunosuppressive treatments explains the link between hTERT expression and cell stimulation and offers new insights for therapeutic developments.
Collapse
Affiliation(s)
- Amel Chebel
- Université Claude Bernard - UMR, Oullins, France
| | | |
Collapse
|
18
|
Shelterin dysfunction and p16(INK4a)-mediated growth inhibition in HIV-1-specific CD8 T cells. J Virol 2012; 86:5533-40. [PMID: 22398292 DOI: 10.1128/jvi.00196-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV-1-specific cytotoxic T cell responses are expanded during advanced HIV-1 infection but seem unable to effectively protect the host against disease progression. These cells are able to produce gamma interferon and remain metabolically active but have defective proliferative activities, shortened telomeric DNA, and other signs of accelerated aging. To investigate the molecular mechanisms underlying the premature senescence of HIV-1-specific T cells, we focused here on the expression and function of a group of six nucleoproteins that are responsible for protecting and maintaining the structural integrity of telomeric DNA and are commonly referred to as "shelterin." We show that in progressive HIV-1 infection, the two major shelterin components TRF2 and TPP1 are selectively reduced in HIV-1-specific CD8 T cells, but not in T cells recognizing alternative viral species. This coincided with increased recruitment of 53BP1, a prominent DNA damage response factor, to telomeric DNA sites and was associated with elevated expression of the tumor suppressor p16(INK4a), which causes cellular growth inhibition in response to structural DNA damage. Notably, defective shelterin function and upregulation of p16(INK4a) remained unaffected by experimental blockade of PD-1, indicating a possibly irreversible structural defect in HIV-1-specific CD8 T cells in progressors that cannot be overcome by manipulation of inhibitory cell-signaling pathways. These data suggest that shelterin dysfunction and ensuing upregulation of the tumor suppressor p16(INK4a) promote accelerated aging of HIV-1-specific T cells during progressive HIV-1 infection.
Collapse
|
19
|
Vandenberk B, Brouwers B, Hatse S, Wildiers H. p16INK4a: A central player in cellular senescence and a promising aging biomarker in elderly cancer patients. J Geriatr Oncol 2011. [DOI: 10.1016/j.jgo.2011.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Larbi A, Pawelec G, Wong SC, Goldeck D, Tai JJY, Fulop T. Impact of age on T cell signaling: a general defect or specific alterations? Ageing Res Rev 2011; 10:370-8. [PMID: 20933612 DOI: 10.1016/j.arr.2010.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 01/09/2023]
Abstract
Decreased immune responsiveness associated with aging is generally termed "immunosenescence". Several theories have been proposed to explain age-related declines in immune responses. Here, we will focus on and describe potential defects in T cell signal transduction from the membrane to the nucleus, leading to changes in the type, intensity and duration of the response as a major factor contributing to immunosenescence. We will first detail T cell signaling through the T cell receptor (TCR), CD28 and IL-2 receptor (IL-2R) and then discuss the observed age-related alterations to these signaling pathways. The role of membrane rafts in T cell signaling and T cell aging will be described. These factors will be considered in the context of the notion that age-related changes to T cell signaling may be attributed to changes in the functionality of the T cells due to shifts in T cell subpopulations with age. For this reason, we conclude by highlighting the application of multiparametric signaling analysis in leukocyte subsets using flow cytometry as a means to obtain a clearer picture with respect to age-related changes to immune signaling.
Collapse
|
21
|
Marková E, Torudd J, Belyaev I. Long time persistence of residual 53BP1/γ-H2AX foci in human lymphocytes in relationship to apoptosis, chromatin condensation and biological dosimetry. Int J Radiat Biol 2011; 87:736-45. [DOI: 10.3109/09553002.2011.577504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Barsov EV. Telomerase and primary T cells: biology and immortalization for adoptive immunotherapy. Immunotherapy 2011; 3:407-21. [PMID: 21395382 PMCID: PMC3120014 DOI: 10.2217/imt.10.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Telomeres are specialized repeats, present at the end of chromosomes, whose loss during cell division is followed by growth arrest, a central mechanism of replicative senescence in human cells. Telomere length in stem cells is maintained by telomerase, a specialized reverse transcriptase, whose function is to restore shortening telomeres. Unlike most somatic cell types, human T lymphocytes are capable of briefly reactivating telomerase expression at the time of stimulation. Telomerase expression in T lymphocytes is modulated by a variety of external stimuli and by viral infections. However, telomerase reactivation in stimulated, proliferating human T lymphocytes is limited and cannot prevent the ultimate onset of senescence. Ectopic telomerase expression can rescue human and macaque antigen-specific T cells from senescence. Primary T cells have been engineered with telomerase to have substantially extended replicative lifespans without the loss of primary cell functions or malignant transformation. 'Immortal' antigen-specific T-cell lines and clones overexpressing telomerase are an invaluable source of well-characterized quasi-primary T cells for research of T-cell biology and are potentially useful for immunotherapy of cancer and AIDS.
Collapse
Affiliation(s)
- Eugene V Barsov
- SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood 2011; 118:1316-22. [PMID: 21355086 DOI: 10.1182/blood-2010-07-295774] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cells of B-cell chronic lymphocytic leukemia (B-CLL) are characterized by short telomeres despite a low proliferative index. Because telomere length has been reported to be a valuable prognosis criteria, there is a great interest in a deep understanding of the origin and consequences of telomere dysfunction in this pathology. Cases of chromosome fusion involving extremely short telomeres have been reported at advanced stage. In the present study, we address the question of the existence of early telomere dysfunction during the B-CLL time course. In a series restricted to 23 newly diagnosed Binet stage A CLL patients compared with 12 healthy donors, we found a significant increase in recruitment of DNA-damage factors to telomeres showing telomere dysfunction in the early stage of the disease. Remarkably, the presence of dysfunctional telomeres did not correlate with telomere shortening or chromatin marks deregulation but with a down-regulation of 2 shelterin genes: ACD (coding for TPP1; P = .0464) and TINF2 (coding for TIN2; P = .0177). We propose that telomeric deprotection in the early step of CLL is not merely the consequence of telomere shortening but also of shelterin alteration.
Collapse
|
24
|
Cassar L, Li H, Jiang FX, Liu JP. TGF-beta induces telomerase-dependent pancreatic tumor cell cycle arrest. Mol Cell Endocrinol 2010; 320:97-105. [PMID: 20138964 DOI: 10.1016/j.mce.2010.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/27/2010] [Accepted: 02/02/2010] [Indexed: 12/21/2022]
Abstract
Recent studies suggest that transforming growth factor beta (TGF-beta) inhibits telomerase activity by repression of the telomerase reverse transcriptase (TERT) gene. In this report, we show that TGF-beta induces TERT repression-dependent apoptosis in pancreatic tumor, vascular smooth muscle, and cervical cancer cell cultures. TGF-beta activates Smad3 signaling, induces TERT gene repression and results in G1/S phase cell cycle arrest and apoptosis. TERT over-expression stimulates the G1/S phase transition and alienates TGF-beta-induced cell cycle arrest and apoptosis. Our data suggest that telomere maintenance is a limiting factor of the transition of the cell cycle. TGF-beta triggers cell cycle arrest and death by a mechanism involving telomerase deregulation of telomere maintenance.
Collapse
Affiliation(s)
- Lucy Cassar
- Department of Immunology, Monash University, Central Clinical School, AMREP, Commercial Road, Melbourne, Victoria 3004, Australia.
| | | | | | | |
Collapse
|
25
|
Degerman S, Siwicki JK, Osterman P, Lafferty-Whyte K, Keith WN, Roos G. Telomerase upregulation is a postcrisis event during senescence bypass and immortalization of two Nijmegen breakage syndrome T cell cultures. Aging Cell 2010; 9:220-35. [PMID: 20089118 DOI: 10.1111/j.1474-9726.2010.00550.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Our knowledge on immortalization and telomere biology is mainly based on genetically manipulated cells analyzed before and many population doublings post growth crisis. The general view is that growth crisis is telomere length (TL) dependent and that escape from crisis is coupled to increased expression of the telomerase reverse transcriptase (hTERT) gene, telomerase activity upregulation and TL stabilization. Here we have analyzed the process of spontaneous immortalization of human T cells, regarding pathways involved in senescence and telomerase regulation. Two Nijmegen breakage syndrome (NBS) T cell cultures (S3R and S4) showed gradual telomere attrition until a period of growth crisis followed by the outgrowth of immortalized cells. Whole genome expression analysis indicated differences between pre-, early post- and late postcrisis cells. Early postcrisis cells demonstrated a logarithmic growth curve, very short telomeres and, notably, no increase in hTERT or telomerase activity despite downregulation of several negative hTERT regulators (e.g. FOS, JUN D, SMAD3, RUNX2, TNF-a and TGFb-R2). Thereafter, cMYC mRNA increased in parallel with increased hTERT expression, telomerase activity and elongation of short telomeres, indicating a step-wise activation of hTERT transcription involving reduction of negative regulators followed by activation of positive regulator(s). Gene expression analysis indicated that cells escaped growth crisis by deregulated DNA damage response and senescence controlling genes, including downregulation of ATM, CDKN1B (p27), CDKN2D (p19) and ASF1A and upregulation of CDK4, TWIST1, TP73L (p63) and SYK. Telomerase upregulation was thus found to be uncoupled to escape of growth crisis but rather a later event in the immortalization process of NBS T cell cultures.
Collapse
Affiliation(s)
- Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Belyaev IY. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat Res 2010; 704:132-41. [PMID: 20096808 DOI: 10.1016/j.mrrev.2010.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/26/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
Several proteins involved in DNA repair and DNA damage signaling have been shown to produce discrete foci in response to ionizing radiation. These foci are believed to co-localize to DSB and referred to as ionizing radiation-induced foci (IRIF) or DNA repair foci. Recent studies have revealed that some residual IRIF remain in cells for a relatively long time after irradiation, and have indicated a possible correlation between radiosensitivity of cells and residual IRIF. Remarkably, residual foci are significantly larger in size than the initial foci. Increase in the size of IRIF with time upon irradiation has been found in various cell types and has partially been correlated with dynamics and fusion of initial foci. Although it is admitted that the number of IRIF reflect that of DSB, several studies report a lack of correlation between kinetics for IRIF and DSB and a lack of co-localization between DSB repair proteins. These studies suggest that some proportion of residual IRIF that depend on cell type, dose, and post-irradiation time may represent alternations in chromatin structure after DSB have been repaired or misrepaired. While precise functions of residual foci are presently unknown, their possible link to remaining chromatin alternations, nuclear matrix, apoptosis, delayed repair and misrejoining of DSB, activity of several kinases, phosphatases, and checkpoint signaling has been suggested. Another intriguing possibility is that some of DNA repair foci may mark break-points at chromosomal aberrations (CA). While this possibility has not been confirmed substantially, the residual foci seem to be useful for biological dosimetry and estimation of individual radiosensitivity in radiotherapy of cancer.
Collapse
Affiliation(s)
- I Y Belyaev
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic.
| |
Collapse
|