1
|
Lim JL, Augustinus R, Plomp JJ, Roya-Kouchaki K, Vergoossen DLE, Fillié-Grijpma Y, Struijk J, Thomas R, Salvatori D, Steyaert C, Blanchetot C, Vanhauwaert R, Silence K, van der Maarel SM, Verschuuren JJ, Huijbers MG. Development and characterization of agonistic antibodies targeting the Ig-like 1 domain of MuSK. Sci Rep 2023; 13:7478. [PMID: 37156800 PMCID: PMC10167245 DOI: 10.1038/s41598-023-32641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise.
Collapse
Affiliation(s)
- Jamie L Lim
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Roy Augustinus
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kasra Roya-Kouchaki
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Yvonne Fillié-Grijpma
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Josephine Struijk
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Rachel Thomas
- Department PDC-Pathologie, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Salvatori
- Veterinary Faculty, Department Clinical Sciences, Universiteit Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Morén B, Hansson B, Negoita F, Fryklund C, Lundmark R, Göransson O, Stenkula KG. EHD2 regulates adipocyte function and is enriched at cell surface-associated lipid droplets in primary human adipocytes. Mol Biol Cell 2019; 30:1147-1159. [PMID: 30811273 PMCID: PMC6724522 DOI: 10.1091/mbc.e18-10-0680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adipocytes play a central role in energy balance, and dysfunctional adipose tissue severely affects systemic energy homeostasis. The ATPase EH domain–containing 2 (EHD2) has previously been shown to regulate caveolae, plasma membrane-specific domains that are involved in lipid uptake and signal transduction. Here, we investigated the role of EHD2 in adipocyte function. We demonstrate that EHD2 protein expression is highly up-regulated at the onset of triglyceride accumulation during adipocyte differentiation. Small interfering RNA–mediated EHD2 silencing affected the differentiation process and impaired insulin sensitivity, lipid storage capacity, and lipolysis. Fluorescence imaging revealed localization of EHD2 to caveolae, close to cell surface–associated lipid droplets in primary human adipocytes. These lipid droplets stained positive for glycerol transporter aquaporin 7 and phosphorylated perilipin-1 following adrenergic stimulation. Further, EHD2 overexpression in human adipocytes increased the lipolytic signaling and suppressed the activity of transcription factor PPARγ. Overall, these data suggest that EHD2 plays a key role for adipocyte function.
Collapse
Affiliation(s)
- Björn Morén
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Björn Hansson
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Florentina Negoita
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Claes Fryklund
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Richard Lundmark
- Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Olga Göransson
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| |
Collapse
|
3
|
Thangavel C, Gomes CM, Zderic SA, Javed E, Addya S, Singh J, Das S, Birbe R, Den RB, Rattan S, Deshpande DA, Penn RB, Chacko S, Boopathi E. NF-κB and GATA-Binding Factor 6 Repress Transcription of Caveolins in Bladder Smooth Muscle Hypertrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:847-867. [PMID: 30707892 DOI: 10.1016/j.ajpath.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Caveolins (CAVs) are structural proteins of caveolae that function as signaling platforms to regulate smooth muscle contraction. Loss of CAV protein expression is associated with impaired contraction in obstruction-induced bladder smooth muscle (BSM) hypertrophy. In this study, microarray analysis of bladder RNA revealed down-regulation of CAV1, CAV2, and CAV3 gene transcription in BSM from models of obstructive bladder disease in mice and humans. We identified and characterized regulatory regions responsible for CAV1, CAV2, and CAV3 gene expression in mice with obstruction-induced BSM hypertrophy, and in men with benign prostatic hyperplasia. DNA affinity chromatography and chromatin immunoprecipitation assays revealed a greater increase in binding of GATA-binding factor 6 (GATA-6) and NF-κB to their cognate binding motifs on CAV1, CAV2, and CAV3 promoters in obstructed BSM relative to that observed in control BSM. Knockout of NF-κB subunits, shRNA-mediated knockdown of GATA-6, or pharmacologic inhibition of GATA-6 and NF-κB in BSM increased CAV1, CAV2, and CAV3 transcription and promoter activity. Conversely, overexpression of GATA-6 decreased CAV2 and CAV3 transcription and promoter activity. Collectively, these data provide new insight into the mechanisms by which CAV gene expression is repressed in hypertrophied BSM in obstructive bladder disease.
Collapse
Affiliation(s)
| | - Cristiano M Gomes
- Division of Urology, University of Sao Paulo School of Medicine, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Stephen A Zderic
- Department of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elham Javed
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sankar Addya
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jagmohan Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sreya Das
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ruth Birbe
- Department of Pathology and Laboratory Medicine, Cooper University Health Care, Camden, New Jersey
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samuel Chacko
- Division of Urology, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ettickan Boopathi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Division of Urology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Effects of caveolae depletion and urothelial denudation on purinergic and cholinergic signaling in healthy and cyclophosphamide-induced cystitis in the rat bladder. Auton Neurosci 2018; 213:60-70. [PMID: 30005741 DOI: 10.1016/j.autneu.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023]
Abstract
Cholesterol rich membrane invaginations, caveolae, have important roles in various cellular activities, one of them being signal transduction. This signaling pathway seems to be affected during various bladder disorders and the current study aimed to elucidate the plausible involvement of caveolae mediated signal transduction during cyclophosphamide induced cystitis. Furthermore, the urothelial cholinergic part of ATP-evoked contractions and its possible link to caveolae were investigated. Cholinergic, as well as purinergic, contractile responses in rat urinary bladders were examined using a classic organ bath set-up with full-thickness strip preparations or a whole bladder model that enabled luminal administration of substances. Furthermore, sub groups with and without urothelium were examined. The expression of caveolin-1 was also tested using western blot and immunofluorescence. Caveolae cholesterol depletion by methyl-β-cyclodextrin entailed a significant decrease of ATP-evoked bladder contractility. Interestingly, after muscarinic blockade the ATP induced contractions were significantly reduced in the same manner. Furthermore, this atropine-sensitive part of ATP-evoked responses was absent in denuded as well as inflamed bladders. A tendency towards a reduced expression of caveolin-1 was observed in rats with experimental cystitis. The cholinergic part of ATP-induced contractile responses seemed to be affected by urothelium denudation as well as caveolae depletion. Removing one of these structures nullifies the effect of the other, suggesting an important interaction between the urothelium and the caveolar structures. These effects are absent in inflamed animals and might be one pathophysiological aspect behind BPS/IC.
Collapse
|
5
|
Zhu B, Rippe C, Thi Hien T, Zeng J, Albinsson S, Stenkula KG, Uvelius B, Swärd K. Similar regulatory mechanisms of caveolins and cavins by myocardin family coactivators in arterial and bladder smooth muscle. PLoS One 2017; 12:e0176759. [PMID: 28542204 PMCID: PMC5444588 DOI: 10.1371/journal.pone.0176759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Caveolae are membrane invaginations present at high densities in muscle and fat. Recent work has demonstrated that myocardin family coactivators (MYOCD, MKL1), which are important for contractile differentiation and cell motility, increase caveolin (CAV1, CAV2, CAV3) and cavin (CAVIN1, CAVIN2, CAVIN3) transcription, but several aspects of this control mechanism remain to be investigated. Here, using promoter reporter assays we found that both MKL1/MRTF-A and MKL2/MRTF-B control caveolins and cavins via their proximal promoter sequences. Silencing of MKL1 and MKL2 in smooth muscle cells moreover reduced CAV1 and CAVIN1 mRNA levels by well over 50%, as did treatment with second generation inhibitors of MKL activity. GATA6, which modulates expression of smooth muscle-specific genes, reduced CAV1 and CAV2, whereas the cavins were unaffected or increased. Viral overexpression of MKL1 and myocardin induced caveolin and cavin expression in bladder smooth muscle cells from rats and humans and MYOCD correlated tightly with CAV1 and CAVIN1 in human bladder specimens. A recently described activator of MKL-driven transcription (ISX) failed to induce CAV1/CAVIN1 which may be due to an unusual transactivation mechanism. In all, these findings further support the view that myocardin family coactivators are important transcriptional drivers of caveolins and cavins in smooth muscle.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tran Thi Hien
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jianwen Zeng
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | | | - Karin G. Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
6
|
Zhu B, Swärd K, Ekman M, Uvelius B, Rippe C. Cavin-3 (PRKCDBP) deficiency reduces the density of caveolae in smooth muscle. Cell Tissue Res 2017; 368:591-602. [PMID: 28285351 PMCID: PMC5429901 DOI: 10.1007/s00441-017-2587-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/14/2017] [Indexed: 01/08/2023]
Abstract
Cavins belong to a family of proteins that contribute to the formation of caveolae, which are membrane organelles with functional roles in muscle and fat. Here, we investigate the effect of cavin-3 ablation on vascular and urinary bladder structure and function. Arteries and urinary bladders from mice lacking cavin-3 (knockout: KO) and from controls (wild type: WT) were examined. Our studies revealed that the loss of cavin-3 resulted in ∼40% reduction of the caveolae protein cavin-1 in vascular and bladder smooth muscle. Electron microscopy demonstrated that the loss of cavin-3 was accompanied by a reduction of caveolae abundance by 40-45% in smooth muscle, whereas the density of caveolae in endothelial cells was unchanged. Vascular contraction in response to an α1-adrenergic agonist was normal but nitric-oxide-dependent relaxation was enhanced, in parallel with an increased relaxation on direct activation of soluble guanylyl cyclase (sGC). This was associated with an elevated expression of sGC, although blood pressure was similar in WT and KO mice. Contraction of the urinary bladder was not affected by the loss of cavin-3. The proteomic response to outlet obstruction, including STAT3 phosphorylation, the induction of synthetic markers and the repression of contractile markers were identical in WT and KO mice, the only exception being a curtailed induction of the Golgi protein GM130. Loss of cavin-3 thus reduces the number of caveolae in smooth muscle and partly destabilizes cavin-1 but the functional consequences are modest and include an elevated vascular sensitivity to nitric oxide and slightly disturbed Golgi homeostasis in situations of severe cellular stress.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University, BMC D12, 223 84, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, BMC D12, 223 84, Lund, Sweden
| | - Mari Ekman
- Department of Experimental Medical Science, Lund University, BMC D12, 223 84, Lund, Sweden
| | - Bengt Uvelius
- Department of Experimental Medical Science, Lund University, BMC D12, 223 84, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, BMC D12, 223 84, Lund, Sweden.
| |
Collapse
|
7
|
Dong X, Song Q, Zhu J, Zhao J, Liu Q, Zhang T, Long Z, Li J, Wu C, Wang Q, Hu X, Damaser M, Li L. Interaction of Caveolin-3 and HCN is involved in the pathogenesis of diabetic cystopathy. Sci Rep 2016; 6:24844. [PMID: 27122250 PMCID: PMC4848475 DOI: 10.1038/srep24844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
A growing body of research suggests that impaired bladder Cajal-like interstitial cells (ICCs) are a important component in the pathogenesis of diabetes-induced bladder dysfunction, although the molecular mechanisms have not been illustrated completely. The purpose of this study was to examine whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in ICCs-DM were responsible for the detrusor weak contractility of Diabetic cystopathy (DCP) and to study the possible mechanism of regulating the expression and function of HCN channels. HCN channels expression were decreased at the mRNA and protein levels. Forskolin (FSK), which can elevate intracellular cAMP levels, increased the density of the hyperpolarization-activated current and intracellular calcium concentration in both normal control (NC) rats and DCP rats, but the sensitivity of FSK on HCN channels was clearly down-regulated in DCP rats. The loss of caveolae and caveolin was in accordance with the decrease in HCN channels. Caveolin-3 co-localizes with and affects the expression and function of HCN. Taken together, these results indicate that the loss of caveolae and HCN channels in ICCs-DM is important in the pathogenesis of DCP. Increasing the number of caveolae to enhance the function of HCN channels may represent a viable target for the pharmacological treatment of DCP.
Collapse
Affiliation(s)
- Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qixiang Song
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Teng Zhang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhou Long
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jia Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Chao Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qingqing Wang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Margot Damaser
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Ekman M, Albinsson S, Uvelius B, Swärd K. MicroRNAs in Bladder Outlet Obstruction: Relationship to Growth and Matrix Remodelling. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:5-17. [DOI: 10.1111/bcpt.12534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Mari Ekman
- Department of Experimental Medical Science; Lund University; Lund Sweden
| | | | - Bengt Uvelius
- Department of Experimental Medical Science; Lund University; Lund Sweden
| | - Karl Swärd
- Department of Experimental Medical Science; Lund University; Lund Sweden
| |
Collapse
|
9
|
Chang SD, Lin YH, Liang CC, Chen TC. Effects of sacral nerve stimulation on postpartum urinary retention-related changes in rat bladder. Taiwan J Obstet Gynecol 2015; 54:671-7. [PMID: 26700983 DOI: 10.1016/j.tjog.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To examine the effect of sacral nerve stimulation (SNS) on the urodynamic function and molecular structure of bladders in rats following acute urinary retention (AUR) after parturition. MATERIAL AND METHODS Thirty primiparous rats were divided into three groups: postpartum, postpartum+AUR, and postpartum+AUR+SNS. AUR was achieved by clamping the distal urethra of a rat for 60 minutes. The postpartum+AUR+SNS group received electrical stimulation 60 minutes daily for 3 days after AUR. In addition to cystometric studies and external urethral sphincter electromyography, the expression of caveolins and nerve growth factor (NGF) and caveolae number in bladder muscle were analyzed. RESULTS The postpartum+AUR group has significantly greater residual volume than the postpartum group, but the residual volume decreased significantly after SNS treatment. The postpartum+AUR group had significantly lower peak voiding pressure, a longer bursting period and lower amplitude of electromyograms of external urethral sphincter activity than the postpartum and postpartum+AUR+SNS groups. The postpartum+AUR rats had higher NGF expression, lower caveolin-1 expression, and fewer caveolae in bladder muscle compared with the postpartum rats. Conversely, the caveolin-1 expression and caveolae number increased, and the NGF expression decreased after SNS treatment. CONCLUSION Bladder dysfunction after parturition in a rat model caused by AUR may be restored to the non-AUR structural and functional level after SNS treatment.
Collapse
Affiliation(s)
- Shuenn-Dhy Chang
- Division of Urogynecology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hao Lin
- Division of Urogynecology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chung Liang
- Division of Urogynecology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tse-Ching Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pathology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| |
Collapse
|
10
|
Smith PP, Kuchel GA, Griffiths D. Functional Brain Imaging and the Neural Basis for Voiding Dysfunction in Older Adults. Clin Geriatr Med 2015; 31:549-65. [DOI: 10.1016/j.cger.2015.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Non-uniform changes in membrane receptors in the rat urinary bladder following outlet obstruction. Eur J Pharmacol 2015; 762:82-8. [PMID: 26004535 DOI: 10.1016/j.ejphar.2015.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/15/2015] [Accepted: 05/11/2015] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to investigate the expression and distribution of membrane receptors after bladder outlet obstruction (BOO). Partial bladder outlet obstruction (BOO) was induced in female rats and bladders were harvested after either 10 days or 6 weeks of BOO. The expression of different receptors was surveyed by microarrays and corroborated by immunohistochemistry and western blotting. A microarray experiment identified 10 membrane receptors that were differentially expressed compared to sham-operated rats including both upregulated and downregulated receptors. Four of these were selected for functional experiments on the basis of magnitude of change and relevance to bladder physiology. At 6 weeks of BOO, maximal contraction was reduced for neuromedin B and vasopressin (AVP), consistent with reductions of receptor mRNA levels. Glycine receptor-induced contraction on the other hand was increased and receptor mRNA expression was accordingly upregulated. Maximal relaxation by the β3-adrenergic receptor agonist CL316243 was reduced as was the receptor mRNA level. Immunohistochemistry supported reduced expression of neuromedin B receptors, V1a receptors and β3-adrenergic receptors, but glycine receptor expression appeared unchanged. Western blotting confirmed repression of V1a receptors and induction of glycine receptors in BOO. mRNA for vasopressin was detectable in the bladder, suggesting local AVP production. We conclude that changes in receptor expression following bladder outlet obstruction are non-uniform. Some receptors are upregulated, conferring increased responsiveness to agonist, whereas others are downregulated, leading to decreased agonist-induced responses. This study might help to select pharmacological agents that are effective in modulating lower urinary tract symptoms in BOO.
Collapse
|
12
|
Vasopressin-induced mouse urethral contraction is modulated by caveolin-1. Eur J Pharmacol 2015; 750:59-65. [PMID: 25637087 DOI: 10.1016/j.ejphar.2015.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/06/2023]
Abstract
Caveolae are 50-100nm large invaginations in the cell membrane that are considered to play roles in receptor signaling. Here we aimed to investigate the expression and distribution of the arginine-vasopressin (AVP) V1a receptor and its functional dependence on caveolin-1 (Cav1) in the mouse urethra. Female Cav1 knockout (KO) and wild type (WT) mice were used, and urethral preparations were micro-dissected for mechanical experiments. Methyl-β-cyclodextrin (mβcd) was used to deplete cholesterol and to disrupt caveolae. Protein expression and localization was determined using immunofluorescence and western blotting and transcript expression was determined by qRT-PCR. We found that Cav1 and AVP V1a receptors were expressed in urethral smooth muscle cells with apparent co-localization at the cell membrane. AVP caused urethral contraction that was inhibited by the V1a receptor antagonist SR49059. Concentration-response curves for AVP were right-shifted and maximal contraction was reduced in Cav1 KO mice and after mβcd treatment. In addition to caveolin-1 we also detected caveolin-2, cavin-1 and cavin-3 in the mouse urethra by western blotting. Caveolin-2, cavin-1 and cavin-3 as well as V1a receptor expression was reduced in KO urethra. We conclude that AVP regulates urethral contractility via the V1a receptor through a Cav1-dependent mechanism involving, in part, altered V1a receptor expression.
Collapse
|
13
|
Detrusor induction of miR-132/212 following bladder outlet obstruction: association with MeCP2 repression and cell viability. PLoS One 2015; 10:e0116784. [PMID: 25617893 PMCID: PMC4305303 DOI: 10.1371/journal.pone.0116784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 12/17/2022] Open
Abstract
The microRNAs (miRNAs) miR-132 and miR-212 have been found to regulate synaptic plasticity and cholinergic signaling and recent work has demonstrated roles outside of the CNS, including in smooth muscle. Here, we examined if miR-132 and miR-212 are induced in the urinary bladder following outlet obstruction and whether this correlates with effects on gene expression and cell growth. Three to seven-fold induction of miR-132/212 was found at 10 days of obstruction and this was selective for the detrusor layer. We cross-referenced putative binding sites in the miR-132/212 promoter with transcription factors that were predicted to be active in the obstruction model. This suggested involvement of Creb and Ahr in miR-132/212 induction. Creb phosphorylation (S-133) was not increased, but the number of Ahr positive nuclei increased. Moreover, we found that serum stimulation and protein kinase C activation induced miR-132/212 in human detrusor cells. To identify miR-132/212 targets, we correlated the mRNA levels of validated targets with the miRNA levels. Significant correlations between miR-132/212 and MeCP2, Ep300, Pnkd and Jarid1a were observed, and the protein levels of MeCP2, Pnkd and Ache were reduced after obstruction. Reduction of Ache however closely matched a 90% reduction of synapse density arguing that its repression was unrelated to miR-132/212 induction. Importantly, transfection of antimirs and mimics in cultured detrusor cells increased and decreased, respectively, the number of cells and led to changes in MeCP2 expression. In all, these findings show that obstruction of the urethra increases miR-132 and miR-212 in the detrusor and suggests that this influences gene expression and limits cell growth.
Collapse
|
14
|
The N-terminal leucine-zipper motif in PTRF/cavin-1 is essential and sufficient for its caveolae-association. Biochem Biophys Res Commun 2014; 456:750-6. [PMID: 25514038 DOI: 10.1016/j.bbrc.2014.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 01/28/2023]
Abstract
PTRF/cavin-1 is a protein of two lives. Its reported functions in ribosomal RNA synthesis and in caveolae formation happen in two different cellular locations: nucleus vs. plasma membrane. Here, we identified that the N-terminal leucine-zipper motif in PTRF/cavin-1 was essential for the protein to be associated with caveolae in plasma membrane. It could counteract the effect of nuclear localization sequence in the molecule (AA 235-251). Deletion of this leucine-zipper motif from PTRF/cavin-1 caused the mutant to be exclusively localized in nuclei. The fusion of this leucine-zipper motif with histone 2A, which is a nuclear protein, could induce the fusion protein to be exported from nucleus. Cell migration was greatly inhibited in PTRF/cavin-1(-/-) mouse embryonic fibroblasts (MEFs). The inhibited cell motility could only be rescued by exogenous cavin-1 but not the leucine-zipper motif deleted cavin-1 mutant. Plasma membrane dynamics is an important factor in cell motility control. Our results suggested that the membrane dynamics in cell migration is affected by caveolae associated PTRF/cavin-1.
Collapse
|
15
|
Osman NI, Chapple CR. Contemporary concepts in the aetiopathogenesis of detrusor underactivity. Nat Rev Urol 2014; 11:639-48. [PMID: 25330789 DOI: 10.1038/nrurol.2014.286] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Detrusor underactivity (DUA) is a poorly understood, yet common, bladder dysfunction, referred to as underactive bladder, which is observed in both men and women undergoing urodynamic studies. Despite its prevalence, no effective therapeutic approaches exist for DUA. Exactly how the contractile function of the detrusor muscle changes with ageing is unclear. Data from physiological studies in animal and human bladders are contradictory, as are the results of the limited number of clinical studies assessing changes in urodynamic parameters with ageing. The prevalence of DUA in different patient groups suggests that multiple aetiologies are involved in DUA pathogenesis. Traditional concepts focused on either efferent innervation or myogenic dysfunction. By contrast, contemporary views emphasize the importance of the neural control mechanisms, particularly the afferent system, which can fail to potentiate detrusor contraction, leading to premature termination of the voiding reflex. In conclusion, the contemporary understanding of the aetiology and pathophysiology of DUA is limited. Further elucidation of the underlying mechanisms is needed to enable the development of new and effective treatment approaches.
Collapse
Affiliation(s)
- Nadir I Osman
- Department of Urology, Royal Hallamshire Hospital, Glossop Road, Sheffield, South Yorkshire S10 2JF, UK
| | - Christopher R Chapple
- Department of Urology, Royal Hallamshire Hospital, Glossop Road, Sheffield, South Yorkshire S10 2JF, UK
| |
Collapse
|
16
|
Yang Y, Xin Z, Chu J, Li N, Sun T. Involvement of Caveolin-1 in CD83 Internalization in Mouse Dendritic Cells. Cell Transplant 2014; 24:1395-404. [PMID: 24898475 DOI: 10.3727/096368914x682116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To become potent T-cell stimulators, DCs need to mature. Treatment with soluble CD83 (sCD83) induces immune tolerance and protects against transplant rejection by maintaining dendritic cells in an immature, tolerogenic state. Until now, the mechanism through which sCD83 keeps DCs immature has not been investigated. The internalizing pathway of CD83 was screened by Western blot, and the direct interactions between internalized proteins were verified through coimmunoprecipitation (co-IP) and transmission electron microscopy (TEM). CD83 plasma membrane levels were detected by Western blot using a plasma membrane protein extraction protocol. The changes in CD83 surface levels in DCs were detected by flow cytometry. Caveolin-1 function was detected in a kidney transplant model. In this study, we demonstrated that caveolin-1 could affect CD83 level during endocytosis in mouse DCs. Caveolin-1 coprecipitates with CD83, as demonstrated by co-IP analysis. TEM morphometric analysis of the entire CD83 distribution associated with internalized caveolin-1 demonstrated a significant interaction in cellular vesicles. sCD83 reduces endogenous CD83 plasma membrane levels, and caveolin-1 knockdown reverts CD83 levels in plasma membrane. sCD83 treatment decreases CD83 surface levels in DCs. siRNA to caveolin-1 in DCs inhibits this effect of sCD83. The effects of sCD83-treated DCs were proved in CD1 mice. Knocking down caveolin-1 in DCs obstructs the effects of sCD83 on kidney transplant. In conclusion, our data indicated that a caveolin-dependent endocytic pathway is involved in CD83 internalization in DCs and that caveolin-1 is involved in the activity of DCs.
Collapse
Affiliation(s)
- Yuejing Yang
- The 2nd Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | | | |
Collapse
|
17
|
Mahavadi S, Bhattacharya S, Kumar DP, Clay C, Ross G, Akbarali HI, Grider JR, Murthy KS. Increased PDE5 activity and decreased Rho kinase and PKC activities in colonic muscle from caveolin-1-/- mice impair the peristaltic reflex and propulsion. Am J Physiol Gastrointest Liver Physiol 2013; 305:G964-74. [PMID: 24157969 PMCID: PMC3882438 DOI: 10.1152/ajpgi.00165.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Caveolae are specialized regions of the plasma membrane that concentrate receptors and associated signaling molecules critical in regulation of cellular response to transmitters and hormones. We have determined the effects of caveolin-1 (Cav-1) deletion, caveolin-1 siRNA, and caveolar disruption in mice on the signaling pathways that mediate contraction and relaxation in colonic smooth muscle and on the components of the peristaltic reflex in isolated tissue and propulsion in intact colonic segments. In Cav-1-/- mice, both relaxation and contraction were decreased in smooth muscle cells and muscle strips, as well as during both phases of the peristaltic reflex and colonic propulsion. The decrease in relaxation in response to the nitric oxide (NO) donor was accompanied by a decrease in cGMP levels and an increase in phosphodiesterase 5 (PDE5) activity. Relaxation by a PDE5-resistant cGMP analog was not affected in smooth muscle of Cav-1-/- mice, suggesting that inhibition of relaxation was due to augmentation of PDE5 activity. Similar effects on relaxation, PDE5 and cGMP were obtained in muscle cells upon disruption of caveolae by methyl-β-cyclodextrin or suppression of Cav-1. Sustained contraction mediated via inhibition of myosin light chain phosphatase (MLCP) activity is regulated by Rho kinase and PKC via phosphorylation of two endogenous inhibitors of MLCP: myosin phosphatase-targeting subunit (MYPT1) and 17-kDa PKC-potentiated protein phosphatase 1 inhibitor protein (CPI-17), respectively. The activity of both enzymes and phosphorylation of MYPT1 and CPI-17 were decreased in smooth muscle from Cav-1-/- mice. We conclude that the integrity of caveolae is essential for contractile and relaxant activity in colonic smooth muscle and the maintenance of neuromuscular function at organ level.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Box 980551, Dept. of Physiology, School of Medicine, Virginia Commonwealth Univ., Richmond, VA 23298-0551.
| | | | | | | | | | - Hamid I. Akbarali
- Departments of 1Physiology and Biophysics, ,2Pharmacology and Toxicology, and ,3Medicine, and VCU Program in Enteric Neuromuscular Science (VPENS), School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - John R. Grider
- Departments of 1Physiology and Biophysics, ,3Medicine, and VCU Program in Enteric Neuromuscular Science (VPENS), School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S. Murthy
- Departments of 1Physiology and Biophysics, ,3Medicine, and VCU Program in Enteric Neuromuscular Science (VPENS), School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Ekman M, Bhattachariya A, Dahan D, Uvelius B, Albinsson S, Swärd K. Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness. PLoS One 2013; 8:e82308. [PMID: 24340017 PMCID: PMC3858279 DOI: 10.1371/journal.pone.0082308] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022] Open
Abstract
Recent work has uncovered a role of the microRNA (miRNA) miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-κB and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-κB activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-κB and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-κB and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to matrix remodeling and altered passive mechanical properties of the detrusor.
Collapse
Affiliation(s)
- Mari Ekman
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Biology, Lund University, Lund, Sweden
| | | | - Diana Dahan
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt Uvelius
- Department of Urology, Lund University, Lund, Sweden
| | | | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
19
|
Nassar ZD, Hill MM, Parton RG, Parat MO. Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat Rev Urol 2013; 10:529-36. [PMID: 23938946 DOI: 10.1038/nrurol.2013.168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expression of caveola-forming proteins is dysregulated in prostate cancer. Caveolae are flask-shaped invaginations of the plasma membrane that have roles in membrane trafficking and cell signalling. Members of two families of proteins--caveolins and cavins--are known to be required for the formation and functions of caveolae. Caveolin-1, the major structural protein of caveolae, is overexpresssed in prostate cancer and has been demonstrated to be involved in prostate cancer angiogenesis, growth and metastasis. Polymerase I and transcript release factor (PTRF) is the only cavin family member necessary for caveola formation. When exogenously expressed in prostate cancer cells, PTRF reduces aggressive potential, probably via both caveola-mediated and caveola-independent mechanisms. In addition, stromal PTRF expression decreases with progression of the disease. Evaluation of caveolin-1 antibodies in the clinical setting is underway and it is hoped that future studies will reveal the mechanisms of PTRF action, allowing its targeting for therapeutic purposes.
Collapse
Affiliation(s)
- Zeyad D Nassar
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | | | | | | |
Collapse
|
20
|
Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep 2013; 1:e00008. [PMID: 24303100 PMCID: PMC3831936 DOI: 10.1002/phy2.8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022] Open
Abstract
Caveolae are invaginations in the plasma membrane that depend on caveolins and cavins for maturation. Here, we investigated the pulmonary phenotype in mice lacking cavin-1. Bright field and electron-microscopy showed that the cavin-1-deficient mice lacked caveolae in the lung, had an increased lung tissue density, and exhibited hypertrophic remodeling of pulmonary arteries. The right ventricle of the heart moreover had an increased mass and the right ventricular pressure was elevated. A microarray analysis revealed upregulation of Arg1 and downregulation of Ddah1, molecules whose altered expression has previously been associated with pulmonary arterial hypertension. Taken together, this work demonstrates vascular remodeling and increased pulmonary blood pressure in cavin-1 deficient mice and associates this phenotype with altered expression of Arg1 and Ddah1.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Biomedical Centre, Lund University BMC D12, SE-221 84, Lund, Sweden
| | | | | | | | | |
Collapse
|
21
|
Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep 2013. [PMID: 24303100 PMCID: PMC3831936 DOI: 10.1002/phy2.8,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Caveolae are invaginations in the plasma membrane that depend on caveolins and cavins for maturation. Here, we investigated the pulmonary phenotype in mice lacking cavin-1. Bright field and electron-microscopy showed that the cavin-1-deficient mice lacked caveolae in the lung, had an increased lung tissue density, and exhibited hypertrophic remodeling of pulmonary arteries. The right ventricle of the heart moreover had an increased mass and the right ventricular pressure was elevated. A microarray analysis revealed upregulation of Arg1 and downregulation of Ddah1, molecules whose altered expression has previously been associated with pulmonary arterial hypertension. Taken together, this work demonstrates vascular remodeling and increased pulmonary blood pressure in cavin-1 deficient mice and associates this phenotype with altered expression of Arg1 and Ddah1.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Biomedical Centre, Lund University BMC D12, SE-221 84, Lund, Sweden
| | | | | | | | | |
Collapse
|
22
|
Ochodnicky P, Uvelius B, Andersson KE, Michel MC. Autonomic nervous control of the urinary bladder. Acta Physiol (Oxf) 2013; 207:16-33. [PMID: 23033838 DOI: 10.1111/apha.12010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/28/2011] [Accepted: 09/10/2012] [Indexed: 01/25/2023]
Abstract
The autonomic nervous system plays an important role in the regulation of the urinary bladder function. Under physiological circumstances, noradrenaline, acting mainly on β(3) -adrenoceptors in the detrusor and on α(1) (A) -adrenoceptors in the bladder outflow tract, promotes urine storage, whereas neuronally released acetylcholine acting mainly on M(3) receptors promotes bladder emptying. Under pathophysiological conditions, however, this system may change in several ways. Firstly, there may be plasticity at the levels of innervation and receptor expression and function. Secondly, non-neuronal acetylcholine synthesis and release from the urothelium may occur during the storage phase, leading to a concomitant exposure of detrusor smooth muscle, urothelium and afferent nerves to acetylcholine and noradrenaline. This can cause interactions between the adrenergic and cholinergic system, which have been studied mostly at the post-junctional smooth muscle level until now. The implications of such plasticity are being discussed.
Collapse
Affiliation(s)
- P. Ochodnicky
- Department of Pharmacology & Pharmacotherapy; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - B. Uvelius
- Department of Urology; Skane University Hospital; Malmö; Sweden
| | - K.-E. Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem; NC; USA
| | - M. C. Michel
- Department of Pharmacology; Johannes Gutenberg University; Mainz; Germany
| |
Collapse
|
23
|
Cristofaro V, Yalla SV, Sullivan MP. Altered Caveolar Mediated Purinergic Signaling in Spontaneously Hypertensive Rats with Detrusor Overactivity. J Urol 2012; 188:1017-26. [DOI: 10.1016/j.juro.2012.04.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/27/2022]
Affiliation(s)
- Vivian Cristofaro
- Division of Urology, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| | - Subbarao V. Yalla
- Division of Urology, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| | - Maryrose P. Sullivan
- Division of Urology, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Karbalaei MS, Rippe C, Albinsson S, Ekman M, Mansten A, Uvelius B, Swärd K. Impaired contractility and detrusor hypertrophy in cavin-1-deficient mice. Eur J Pharmacol 2012; 689:179-85. [PMID: 22643325 DOI: 10.1016/j.ejphar.2012.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/08/2012] [Accepted: 05/16/2012] [Indexed: 12/19/2022]
Abstract
Caveolae are membrane invaginations present in a variety of cell types. Formation of caveolae depends on caveolins and on the more recently discovered family of proteins known as the cavins. Genetic ablation of caveolin-1 was previously shown to give rise to a number of urogenital alterations, but the effects of cavin-1 deletion on urogenital function remain unknown. Here we characterised detrusor contractility and structure in cavin-1-deficient mice. Electron microscopy demonstrated essentially complete lack of caveolae in the knock-out detrusor, and immunoblotting disclosed reduced levels of cavin-3 and of all caveolin proteins. Bladder weight was increased in male knock-out mice, and length-tension relationships demonstrated a reduction in depolarisation-induced contraction. Contractility in response to muscarinic receptor activation was similarly reduced. Despite these functional changes, micturition patterns were similar in conscious and freely moving animals and diuresis was unchanged. Our breeding additionally disclosed that the number of knock-out mice generated in heterozygous crosses was lower than expected, suggesting embryonic/perinatal lethality. In conclusion, this is the first study to show that cavin-1 is critical for detrusor caveolae and for the overall contractility and structure of the urinary bladder.
Collapse
Affiliation(s)
- Mardjaneh Sadegh Karbalaei
- Department of Experimental Medical Science, Lund University, Biomedical Centre, BMC D12, SE-221 84 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Ekman M, Rippe C, Sadegh MK, Dabestani S, Mörgelin M, Uvelius B, Swärd K. Association of muscarinic M3 receptors and Kir6.1 with caveolae in human detrusor muscle. Eur J Pharmacol 2012; 683:238-45. [DOI: 10.1016/j.ejphar.2012.02.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/19/2012] [Accepted: 02/26/2012] [Indexed: 01/04/2023]
|
26
|
Sadegh MK, Ekman M, Rippe C, Uvelius B, Swärd K, Albinsson S. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission. PLoS One 2012; 7:e35882. [PMID: 22558254 PMCID: PMC3338793 DOI: 10.1371/journal.pone.0035882] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO) mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c). It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+) channels in the detrusor.
Collapse
Affiliation(s)
| | - Mari Ekman
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Lowalekar SK, Cristofaro V, Radisavljevic ZM, Yalla SV, Sullivan MP. Loss of bladder smooth muscle caveolae in the aging bladder. Neurourol Urodyn 2012; 31:586-92. [PMID: 22374691 DOI: 10.1002/nau.21217] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
AIMS Caveolae are specialized regions of the cell membrane that modulate signal transduction and alterations in these structures affect bladder smooth muscle (BSM) contraction. Since bladder dysfunctions are common in the elderly, we evaluated the effect of aging on the morphology of caveolae and caveolin protein expression in BSM. METHODS Caveolar morphology (number, size, and depth) in BSM was determined from electron microscopy images of young (10 weeks), adult (6-month old), and old (12-month old) rat urinary bladders. Changes in expression levels of caveolin proteins with age were investigated by Western blot and immunofluorescence microscopy. Caveolin-3 gene expression was determined by real-time RT-PCR in young and 19-month-old rat bladders. RESULTS Twelve-month-old animals exhibited 50% fewer BSM caveolae compared to young (P < 0.01). The area of caveolae was significantly decreased at 6 and 12 months. Despite a decrease in the number of BSM caveolae at 12 months, the expression of caveolin-1 and cavin-1 were unaltered with age. In contrast, caveolin-2 and caveolin-3 protein expression and immunoreactivity were reduced in BSM at 6 and 12 months of age. Caveolin-3 gene expression was also downregulated at 19 months compared to young animals. CONCLUSION Biological aging significantly decreases BSM caveolae number and morphology with associated selective alteration in caveolin protein expression. Since caveolae are protected membrane regions that regulate signal transduction, age-related alterations in caveolae and caveolin protein expression could alter BSM contractility resulting in bladder dysfunctions of the elderly.
Collapse
Affiliation(s)
- Samar K Lowalekar
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|